Sample records for large scale change

  1. Comprehensive School Teachers' Professional Agency in Large-Scale Educational Change

    ERIC Educational Resources Information Center

    Pyhältö, Kirsi; Pietarinen, Janne; Soini, Tiina

    2014-01-01

    This article explores how comprehensive school teachers' sense of professional agency changes in the context of large-scale national educational change in Finland. We analysed the premises on which teachers (n = 100) view themselves and their work in terms of developing their own school, catalysed by the large-scale national change. The study…

  2. Male group size, female distribution and changes in sexual segregation by Roosevelt elk

    PubMed Central

    Peterson, Leah M.

    2017-01-01

    Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076

  3. Wetlands as large-scale nature-based solutions: status and future challenges for research and management

    NASA Astrophysics Data System (ADS)

    Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia

    2017-04-01

    Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.

  4. Modulation of Small-scale Turbulence Structure by Large-scale Motions in the Absence of Direct Energy Transfer.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1996-11-01

    Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117

  5. Tools for understanding landscapes: combining large-scale surveys to characterize change. Chapter 9.

    Treesearch

    W. Keith Moser; Janine Bolliger; Don C. Bragg; Mark H. Hansen; Mark A. Hatfield; Timothy A. Nigh; Lisa A. Schulte

    2008-01-01

    All landscapes change continuously. Since change is perceived and interpreted through measures of scale, any quantitative analysis of landscapes must identify and describe the spatiotemporal mosaics shaped by large-scale structures and processes. This process is controlled by core influences, or "drivers," that shape the change and affect the outcome...

  6. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  7. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  8. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  9. Policy Incentives in Canadian Large-Scale Assessment: How Policy Levers Influence Teacher Decisions about Instructional Change

    ERIC Educational Resources Information Center

    Copp, Derek T.

    2017-01-01

    Large-scale assessment (LSA) is a tool used by education authorities for several purposes, including the promotion of teacher-based instructional change. In Canada, all 10 provinces engage in large-scale testing across several grade levels and subjects, and also have the common expectation that the results data will be used to improve instruction…

  10. Public attitudes toward programs of large-scale technological changes: Some reflections and policy prescriptions, appendix E

    NASA Technical Reports Server (NTRS)

    Shostak, A. B.

    1973-01-01

    The question of how ready the public is for the implementation of large-scale programs of technological change is considered. Four vital aspects of the issue are discussed which include: (1) the ways in which the public mis-perceives the change process, (2) the ways in which recent history impacts on public attitudes, (3) the ways in which the public divides among itself, and (4) the fundamentals of public attitudes towards change. It is concluded that nothing is so critical in the 1970's to securing public approval for large-scale planned change projects as is securing the approval by change-agents of the public.

  11. Leading Educational Change and Improvement at Scale: Some Inconvenient Truths about System Performance

    ERIC Educational Resources Information Center

    Harris, Alma; Jones, Michelle

    2017-01-01

    The challenges of securing educational change and transformation, at scale, remain considerable. While sustained progress has been made in some education systems (Fullan, 2009; Hargreaves & Shirley, 2009) generally, it remains the case that the pathway to large-scale, system improvement is far from easy or straightforward. While large-scale…

  12. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

    USDA-ARS?s Scientific Manuscript database

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...

  13. Large-Scale Innovation and Change in UK Higher Education

    ERIC Educational Resources Information Center

    Brown, Stephen

    2013-01-01

    This paper reflects on challenges universities face as they respond to change. It reviews current theories and models of change management, discusses why universities are particularly difficult environments in which to achieve large scale, lasting change and reports on a recent attempt by the UK JISC to enable a range of UK universities to employ…

  14. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  15. The observation of possible reconnection events in the boundary changes of solar coronal holes

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Moses, J. Daniel

    1989-01-01

    Coronal holes are large scale regions of magnetically open fields which are easily observed in solar soft X-ray images. The boundaries of coronal holes are separatrices between large scale regions of open and closed magnetic fields where one might expect to observe evidence of solar magnetic reconnection. Previous studies by Nolte and colleagues using Skylab X-ray images established that large scale (greater than or equal to 9 x 10(4) km) changes in coronal hole boundaries were due to coronal processes, i.e., magnetic reconnection, rather than to photospheric motions. Those studies were limited to time scales of about one day, and no conclusion could be drawn about the size and time scales of the reconnection process at hole boundaries. Sequences of appropriate Skylab X-ray images were used with a time resolution of about 90 min during times of the central meridian passages of the coronal hole labelled Coronal Hole 1 to search for hole boundary changes which can yield the spatial and temporal scales of coronal magnetic reconnection. It was found that 29 of 32 observed boundary changes could be associated with bright points. The appearance of the bright point may be the signature of reconnection between small scale and large scale magnetic fields. The observed boundary changes contributed to the quasi-rigid rotation of Coronal Hole 1.

  16. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  17. Cytology of DNA Replication Reveals Dynamic Plasticity of Large-Scale Chromatin Fibers.

    PubMed

    Deng, Xiang; Zhironkina, Oxana A; Cherepanynets, Varvara D; Strelkova, Olga S; Kireev, Igor I; Belmont, Andrew S

    2016-09-26

    In higher eukaryotic interphase nuclei, the 100- to >1,000-fold linear compaction of chromatin is difficult to reconcile with its function as a template for transcription, replication, and repair. It is challenging to imagine how DNA and RNA polymerases with their associated molecular machinery would move along the DNA template without transient decondensation of observed large-scale chromatin "chromonema" fibers [1]. Transcription or "replication factory" models [2], in which polymerases remain fixed while DNA is reeled through, are similarly difficult to conceptualize without transient decondensation of these chromonema fibers. Here, we show how a dynamic plasticity of chromatin folding within large-scale chromatin fibers allows DNA replication to take place without significant changes in the global large-scale chromatin compaction or shape of these large-scale chromatin fibers. Time-lapse imaging of lac-operator-tagged chromosome regions shows no major change in the overall compaction of these chromosome regions during their DNA replication. Improved pulse-chase labeling of endogenous interphase chromosomes yields a model in which the global compaction and shape of large-Mbp chromatin domains remains largely invariant during DNA replication, with DNA within these domains undergoing significant movements and redistribution as they move into and then out of adjacent replication foci. In contrast to hierarchical folding models, this dynamic plasticity of large-scale chromatin organization explains how localized changes in DNA topology allow DNA replication to take place without an accompanying global unfolding of large-scale chromatin fibers while suggesting a possible mechanism for maintaining epigenetic programming of large-scale chromatin domains throughout DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A worldwide analysis of the impact of forest cover change on annual runoff across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Liu, S.

    2017-12-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  19. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Treesearch

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  20. Detecting Change in Landscape Greenness over Large Areas: An Example for New Mexico, USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can potentially detect large-scale, slow changes (e.g., climate change), as well as more local and rapid changes (e.g., fire, land development). A useful indicator for detecting change i...

  1. The Challenge of Large-Scale Literacy Improvement

    ERIC Educational Resources Information Center

    Levin, Ben

    2010-01-01

    This paper discusses the challenge of making large-scale improvements in literacy in schools across an entire education system. Despite growing interest and rhetoric, there are very few examples of sustained, large-scale change efforts around school-age literacy. The paper reviews 2 instances of such efforts, in England and Ontario. After…

  2. MOCC: A Fast and Robust Correlation-Based Method for Interest Point Matching under Large Scale Changes

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Huang, Qingming; Wang, Hao; Gao, Wen

    2010-12-01

    Similarity measures based on correlation have been used extensively for matching tasks. However, traditional correlation-based image matching methods are sensitive to rotation and scale changes. This paper presents a fast correlation-based method for matching two images with large rotation and significant scale changes. Multiscale oriented corner correlation (MOCC) is used to evaluate the degree of similarity between the feature points. The method is rotation invariant and capable of matching image pairs with scale changes up to a factor of 7. Moreover, MOCC is much faster in comparison with the state-of-the-art matching methods. Experimental results on real images show the robustness and effectiveness of the proposed method.

  3. A large-scale perspective on stress-induced alterations in resting-state networks

    NASA Astrophysics Data System (ADS)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  4. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    NASA Astrophysics Data System (ADS)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  5. Minimum important differences for the patient-specific functional scale, 4 region-specific outcome measures, and the numeric pain rating scale.

    PubMed

    Abbott, J Haxby; Schmitt, John

    2014-08-01

    Multicenter, prospective, longitudinal cohort study. To investigate the minimum important difference (MID) of the Patient-Specific Functional Scale (PSFS), 4 region-specific outcome measures, and the numeric pain rating scale (NPRS) across 3 levels of patient-perceived global rating of change in a clinical setting. The MID varies depending on the external anchor defining patient-perceived "importance." The MID for the PSFS has not been established across all body regions. One thousand seven hundred eight consecutive patients with musculoskeletal disorders were recruited from 5 physical therapy clinics. The PSFS, NPRS, and 4 region-specific outcome measures-the Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale-were assessed at the initial and final physical therapy visits. Global rating of change was assessed at the final visit. MID was calculated for the PSFS and NPRS (overall and for each body region), and for each region-specific outcome measure, across 3 levels of change defined by the global rating of change (small, medium, large change) using receiver operating characteristic curve methodology. The MID for the PSFS (on a scale from 0 to 10) ranged from 1.3 (small change) to 2.3 (medium change) to 2.7 (large change), and was relatively stable across body regions. MIDs for the NPRS (-1.5 to -3.5), Oswestry Disability Index (-12), Neck Disability Index (-14), Upper Extremity Functional Index (6 to 11), and Lower Extremity Functional Scale (9 to 16) are also reported. We reported the MID for small, medium, and large patient-perceived change on the PSFS, NPRS, Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale for use in clinical practice and research.

  6. An evaluation of Health of the Nation Outcome Scales data to inform psychiatric morbidity following the Canterbury earthquakes.

    PubMed

    Beaglehole, Ben; Frampton, Chris M; Boden, Joseph M; Mulder, Roger T; Bell, Caroline J

    2017-11-01

    Following the onset of the Canterbury, New Zealand earthquakes, there were widespread concerns that mental health services were under severe strain as a result of adverse consequences on mental health. We therefore examined Health of the Nation Outcome Scales data to see whether this could inform our understanding of the impact of the Canterbury earthquakes on patients attending local specialist mental health services. Health of the Nation Outcome Scales admission data were analysed for Canterbury mental health services prior to and following the Canterbury earthquakes. These findings were compared to Health of the Nation Outcome Scales admission data from seven other large District Health Boards to delineate local from national trends. Percentage changes in admission numbers were also calculated before and after the earthquakes for Canterbury and the seven other large district health boards. Admission Health of the Nation Outcome Scales scores in Canterbury increased after the earthquakes for adult inpatient and community services, old age inpatient and community services, and Child and Adolescent inpatient services compared to the seven other large district health boards. Admission Health of the Nation Outcome Scales scores for Child and Adolescent community services did not change significantly, while admission Health of the Nation Outcome Scales scores for Alcohol and Drug services in Canterbury fell compared to other large district health boards. Subscale analysis showed that the majority of Health of the Nation Outcome Scales subscales contributed to the overall increases found. Percentage changes in admission numbers for the Canterbury District Health Board and the seven other large district health boards before and after the earthquakes were largely comparable with the exception of admissions to inpatient services for the group aged 4-17 years which showed a large increase. The Canterbury earthquakes were followed by an increase in Health of the Nation Outcome Scales scores for attendees of local mental health services compared to other large district health boards. This suggests that patients presented with greater degrees of psychiatric distress, social disruption, behavioural change and impairment as a result of the earthquakes.

  7. Large-Scale Atmospheric Teleconnection Patterns Associated with the Interannual Variability of Heatwaves in East Asia and Its Decadal Changes

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.

    2017-12-01

    Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.

  8. The potential for agricultural land use change to reduce flood risk in a large watershed

    USDA-ARS?s Scientific Manuscript database

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  9. From catchment scale hydrologic processes to numerical models and robust predictions of climate change impacts at regional scales

    NASA Astrophysics Data System (ADS)

    Wagener, T.

    2017-12-01

    Current societal problems and questions demand that we increasingly build hydrologic models for regional or even continental scale assessment of global change impacts. Such models offer new opportunities for scientific advancement, for example by enabling comparative hydrology or connectivity studies, and for improved support of water management decision, since we might better understand regional impacts on water resources from large scale phenomena such as droughts. On the other hand, we are faced with epistemic uncertainties when we move up in scale. The term epistemic uncertainty describes those uncertainties that are not well determined by historical observations. This lack of determination can be because the future is not like the past (e.g. due to climate change), because the historical data is unreliable (e.g. because it is imperfectly recorded from proxies or missing), or because it is scarce (either because measurements are not available at the right scale or there is no observation network available at all). In this talk I will explore: (1) how we might build a bridge between what we have learned about catchment scale processes and hydrologic model development and evaluation at larger scales. (2) How we can understand the impact of epistemic uncertainty in large scale hydrologic models. And (3) how we might utilize large scale hydrologic predictions to understand climate change impacts, e.g. on infectious disease risk.

  10. Coronal hole evolution by sudden large scale changes

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.

    1978-01-01

    Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.

  11. Leading a School through Change--Principals' Hands-on Leadership Strategies in School Reform

    ERIC Educational Resources Information Center

    Soini, Tiina; Pietarinen, Janne; Pyhältö, Kirsi

    2016-01-01

    Principal's hands-on strategies reflecting their theories of changing have a substantial effect on the development of their schools and on how the large-scale reform takes root. The study explores five comprehensive school principals' leadership strategies during a large-scale school reform in Finland. The principals' strategies in the middle of…

  12. How Leaders Learn to Be Successful during Large-Scale Organizational Change

    ERIC Educational Resources Information Center

    Rey, Donna S.

    2009-01-01

    The purpose of this study was to understand the strategies leaders used to learn new roles during large-scale organizational change and to understand what organizations can do to support the learning process. This was accomplished by exploring the experience of 15 school principals who learned to lead in the midst of two complex organizational…

  13. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  14. Quantifying Stock Return Distributions in Financial Markets

    PubMed Central

    Botta, Federico; Moat, Helen Susannah; Stanley, H. Eugene; Preis, Tobias

    2015-01-01

    Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales. PMID:26327593

  15. Quantifying Stock Return Distributions in Financial Markets.

    PubMed

    Botta, Federico; Moat, Helen Susannah; Stanley, H Eugene; Preis, Tobias

    2015-01-01

    Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales.

  16. Overview of current research on atmospheric interactions with wildland fires

    Treesearch

    Warren E. Heilman

    1996-01-01

    Changes in the large-scale mean thermal structure of the atmosphere have the potential for affecting the dynamics of the atmosphere across the entire spectrum of scales that govern atmospheric processes. Inherent in these changes are interactions among the scales that could change, resulting in an alteration in the frequency of regional weather systems conducive to...

  17. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.

  18. Linking crop yield anomalies to large-scale atmospheric circulation in Europe.

    PubMed

    Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J

    2017-06-15

    Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.

  19. Techniques for automatic large scale change analysis of temporal multispectral imagery

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.

  20. Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.

    PubMed

    Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R

    2016-11-01

    Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.

  1. Inducing a health-promoting change process within an organization: the effectiveness of a large-scale intervention on social capital, openness, and autonomous motivation toward health.

    PubMed

    van Scheppingen, Arjella R; de Vroome, Ernest M M; Ten Have, Kristin C J M; Bos, Ellen H; Zwetsloot, Gerard I J M; van Mechelen, W

    2014-11-01

    To examine the effectiveness of an organizational large-scale intervention applied to induce a health-promoting organizational change process. A quasi-experimental, "as-treated" design was used. Regression analyses on data of employees of a Dutch dairy company (n = 324) were used to examine the effects on bonding social capital, openness, and autonomous motivation toward health and on employees' lifestyle, health, vitality, and sustainable employability. Also, the sensitivity of the intervention components was examined. Intervention effects were found for bonding social capital, openness toward health, smoking, healthy eating, and sustainable employability. The effects were primarily attributable to the intervention's dialogue component. The change process initiated by the large-scale intervention contributed to a social climate in the workplace that promoted health and ownership toward health. The study confirms the relevance of collective change processes for health promotion.

  2. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  3. Using MHD Models for Context for Multispacecraft Missions

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sazykin, S. Y.; Webster, J.; Daou, A.; Welling, D. T.; Giles, B. L.; Pollock, C.

    2016-12-01

    The use of global MHD models such as BATS-R-US to provide context to data from widely spaced multispacecraft mission platforms is gaining in popularity and in effectiveness. Examples are shown, primarily from the Magnetospheric Multiscale Mission (MMS) program compared to BATS-R-US. We present several examples of large-scale magnetospheric configuration changes such as tail dipolarization events and reconfigurations after a sector boundary crossing which are made much more easily understood by placing the spacecraft in the model fields. In general, the models can reproduce the large-scale changes observed by the various spacecraft but sometimes miss small-scale or rapid time changes.

  4. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring should be strengthened.

  5. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  6. Mechanisms Controlling the Interannual Variation of Mixed Layer Temperature Averaged over the Nino-3 Region

    NASA Technical Reports Server (NTRS)

    Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro

    2007-01-01

    The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.

  7. How do large-scale agricultural investments affect land use and the environment on the western slopes of Mount Kenya? Empirical evidence based on small-scale farmers' perceptions and remote sensing.

    PubMed

    Zaehringer, Julie G; Wambugu, Grace; Kiteme, Boniface; Eckert, Sandra

    2018-05-01

    Africa has been heavily targeted by large-scale agricultural investments (LAIs) throughout the last decade, with scarcely known impacts on local social-ecological systems. In Kenya, a large number of LAIs were made in the region northwest of Mount Kenya. These large-scale farms produce vegetables and flowers mainly for European markets. However, land use in the region remains dominated by small-scale crop and livestock farms with less than 1 ha of land each, who produce both for their own subsistence and for the local markets. We interviewed 100 small-scale farmers living near five different LAIs to elicit their perceptions of the impacts that these LAIs have on their land use and the overall environment. Furthermore, we analyzed remotely sensed land cover and land use data to assess land use change in the vicinity of the five LAIs. While land use change did not follow a clear trend, a number of small-scale farmers did adapt their crop management to environmental changes such as a reduced river water flows and increased pests, which they attributed to the presence of LAIs. Despite the high number of open conflicts between small-scale land users and LAIs around the issue of river water abstraction, the main environmental impact, felt by almost half of the interviewed land users, was air pollution with agrochemicals sprayed on the LAIs' land. Even though only a low percentage of local land users and their household members were directly involved with LAIs, a large majority of respondents favored the presence of LAIs nearby, as they are believed to contribute to the region's overall economic development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Future changes in large-scale transport and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  9. Treatment effect of methylphenidate on intrinsic functional brain network in medication-naïve ADHD children: A multivariate analysis.

    PubMed

    Yoo, Jae Hyun; Kim, Dohyun; Choi, Jeewook; Jeong, Bumseok

    2018-04-01

    Methylphenidate is a first-line therapeutic option for treating attention-deficit/hyperactivity disorder (ADHD); however, elicited changes on resting-state functional networks (RSFNs) are not well understood. This study investigated the treatment effect of methylphenidate using a variety of RSFN analyses and explored the collaborative influences of treatment-relevant RSFN changes in children with ADHD. Resting-state functional magnetic resonance imaging was acquired from 20 medication-naïve ADHD children before methylphenidate treatment and twelve weeks later. Changes in large-scale functional connectivity were defined using independent component analysis with dual regression and graph theoretical analysis. The amplitude of low frequency fluctuation (ALFF) was measured to investigate local spontaneous activity alteration. Finally, significant findings were recruited to random forest regression to identify the feature subset that best explains symptom improvement. After twelve weeks of methylphenidate administration, large-scale connectivity was increased between the left fronto-parietal RSFN and the left insula cortex and the right fronto-parietal and the brainstem, while the clustering coefficient (CC) of the global network and nodes, the left fronto-parietal, cerebellum, and occipital pole-visual network, were decreased. ALFF was increased in the bilateral superior parietal cortex and decreased in the right inferior fronto-temporal area. The subset of the local and large-scale RSFN changes, including widespread ALFF changes, the CC of the global network and the cerebellum, could explain the 27.1% variance of the ADHD Rating Scale and 13.72% of the Conner's Parent Rating Scale. Our multivariate approach suggests that the neural mechanism of methylphenidate treatment could be associated with alteration of spontaneous activity in the superior parietal cortex or widespread brain regions as well as functional segregation of the large-scale intrinsic functional network.

  10. Environment and host as large-scale controls of ectomycorrhizal fungi.

    PubMed

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  11. Large-Scale Assessment of Change in Student Achievement: Dutch Primary School Students' Results on Written Division in 1997 and 2004 as an Example

    ERIC Educational Resources Information Center

    van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander; Treffers, Adri; Koller, Olaf

    2009-01-01

    This article discusses large-scale assessment of change in student achievement and takes the study by Hickendorff, Heiser, Van Putten, and Verhelst (2009) as an example. This study compared the achievement of students in the Netherlands in 1997 and 2004 on written division problems. Based on this comparison, they claim that there is a performance…

  12. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  13. On the scaling features of high-latitude geomagnetic field fluctuations during a large geomagnetic storm

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Federica Marcucci, Maria; Consolini, Giuseppe

    2015-04-01

    Recently we have investigated the spatial distribution of the scaling features of short-time scale magnetic field fluctuations using measurements from several ground-based geomagnetic observatories distributed in the northern hemisphere. We have found that the scaling features of fluctuations of the horizontal magnetic field component at time scales below 100 minutes are correlated with the geomagnetic activity level and with changes in the currents flowing in the ionosphere. Here, we present a detailed analysis of the dynamical changes of the magnetic field scaling features as a function of the geomagnetic activity level during the well-known large geomagnetic storm occurred on July, 15, 2000 (the Bastille event). The observed dynamical changes are discussed in relationship with the changes of the overall ionospheric polar convection and potential structure as reconstructed using SuperDARN data. This work is supported by the Italian National Program for Antarctic Research (PNRA) - Research Project 2013/AC3.08 and by the European Community's Seventh Framework Programme ([FP7/2007-2013]) under Grant no. 313038/STORM and

  14. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco

    2013-12-19

    Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

  15. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  16. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  17. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  18. Self-Organized Evolution of Sandy Coastline Shapes: Connections with Shoreline Erosion Problems

    NASA Astrophysics Data System (ADS)

    Murray, A. B.; Ashton, A.

    2002-12-01

    Landward movement of the shoreline severely impacts property owners and communities where structures and infrastructure are built near the coast. While sea level rise will increase the average rate of coastal erosion, even a slight gradient in wave-driven alongshore sediment flux will locally overwhelm that effect, causing either shoreline accretion or enhanced erosion. Recent analysis shows that because of the nonlinear relationship between alongshore sediment flux and the angle between deep water wave crests and local shoreline orientation, in some wave climates a straight coastline is unstable (Ashton et al., Nature, 2001). When deep-water waves approach from angles greater than the one that maximizes alongshore flux, in concave-seaward shoreline segments sediment flux will diverge, causing erosion. Similarly, convex regions such as the crests of perturbations on an otherwise straight shoreline will experience accretion; perturbations will grow. When waves approach from smaller angles, the sign of the relationship between shoreline curvature and shoreline change is reversed, but any deviation from a perfectly straight coastline will still result in alongshore-inhomogeneous shoreline change. A numerical model designed to explore the long-term effects of this instability operating over a spatially extended alongshore domain has shown that as perturbations grow to finite amplitude and interact with each other, large-scale coastline structures can emerge. The character of the local and non-local interactions, and the resulting emergent structures, depends on the wave climate. The 100-km scale capes and cuspate forelands that form much of the coast of the Carolinas, USA, provides one possible natural example. Our modeling suggests that on such a shoreline, continued interactions between large-scale structures will cause continued large-scale change in coastline shape. Consequently, some coastline segments will tend to experience accentuated erosion. Communities established in these areas face discouraging future prospects. Attempts can be made to arrest the shoreline retreat on large scales-for example through large beach nourishment projects or policies that allow pervasive hard stabilization (e.g. seawall, jetties) along a coastline segment. However, even if such attempts are successful for a significant period of time, the pinning in place of some parts of an otherwise dynamic system will change the large-scale evolution of the coastline, altering the future erosion/accretion experienced at other, perhaps distant, locations. Simple properties of alongshore sediment transport could also be relevant to alongshore-inhomogeneous shoreline change (including erosion 'hot spots') on shorter time scales and smaller spatial scales. We are comparing predictions arising from the modeling, and from analysis of alongshore transport as a function of shoreline orientation, to recent observations of shoreline change ranging across spatial scales from 100s of meters to 10s of kilometers, and time scales from days to decades (List and Farris, Coastal Sediments,1999; Tebbens et al., PNAS, 2002). Considering that many other processes and factors can also influence shoreline change, initial results show a surprising degree of correlation between observations and predictions.

  19. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures.

    PubMed

    Lehnert, L W; Wesche, K; Trachte, K; Reudenbach, C; Bendix, J

    2016-04-13

    The Tibetan Plateau (TP) is a globally important "water tower" that provides water for nearly 40% of the world's population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  20. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.

  1. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2016-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  2. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  3. Physical habitat monitoring strategy (PHAMS) for reach-scale restoration effectiveness monitoring

    USGS Publications Warehouse

    Jones, Krista L.; O'Daniel, Scott J.; Beechie, Tim J.; Zakrajsek, John; Webster, John G.

    2015-04-14

    Habitat restoration efforts by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) have shifted from the site scale (1-10 meters) to the reach scale (100-1,000 meters). This shift was in response to the growing scientific emphasis on process-based restoration and to support from the 2007 Accords Agreement with the Bonneville Power Administration. With the increased size of restoration projects, the CTUIR and other agencies are in need of applicable monitoring methods for assessing large-scale changes in river and floodplain habitats following restoration. The goal of the Physical Habitat Monitoring Strategy is to outline methods that are useful for capturing reach-scale changes in surface and groundwater hydrology, geomorphology, hydrologic connectivity, and riparian vegetation at restoration projects. The Physical Habitat Monitoring Strategy aims to avoid duplication with existing regional effectiveness monitoring protocols by identifying complimentary reach-scale metrics and methods that may improve the ability of CTUIR and others to detect instream and riparian changes at large restoration projects.

  4. Race and Space in the 1990s: Changes in the Geographic Scale of Racial Residential Segregation, 1990-2000

    PubMed Central

    Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn

    2014-01-01

    We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292

  5. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  6. Reforming primary healthcare: from public policy to organizational change.

    PubMed

    Gilbert, Frédéric; Denis, Jean-Louis; Lamothe, Lise; Beaulieu, Marie-Dominique; D'amour, Danielle; Goudreau, Johanne

    2015-01-01

    Governments everywhere are implementing reform to improve primary care. However, the existence of a high degree of professional autonomy makes large-scale change difficult to achieve. The purpose of this paper is to elucidate the change dynamics and the involvement of professionals in a primary healthcare reform initiative carried out in the Canadian province of Quebec. An empirical approach was used to investigate change processes from the inception of a public policy to the execution of changes in professional practices. The data were analysed from a multi-level, combined contextualist-processual perspective. Results are based on a longitudinal multiple-case study of five family medicine groups, which was informed by over 100 interviews, questionnaires, and documentary analysis. The results illustrate the multiple processes observed with the introduction of planned large-scale change in primary care services. The analysis of change content revealed that similar post-change states concealed variations between groups in the scale of their respective changes. The analysis also demonstrated more precisely how change evolved through the introduction of "intermediate change" and how cycles of prescribed and emergent mechanisms distinctively drove change process and change content, from the emergence of the public policy to the change in primary care service delivery. This research was conducted among a limited number of early policy adopters. However, given the international interest in turning to the medical profession to improve primary care, the results offer avenues for both policy development and implementation. The findings offer practical insights for those studying and managing large-scale transformations. They provide a better understanding of how deliberate reforms coexist with professional autonomy through an intertwining of change content and processes. This research is one of few studies to examine a primary care reform from emergence to implementation using a longitudinal multi-level design.

  7. Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa

    NASA Astrophysics Data System (ADS)

    Bibi, Faysal; Kiessling, Wolfgang

    2015-08-01

    Much debate has revolved around the question of whether the mode of evolutionary and ecological turnover in the fossil record of African mammals was continuous or pulsed, and the degree to which faunal turnover tracked changes in global climate. Here, we assembled and analyzed large specimen databases of the fossil record of eastern African Bovidae (antelopes) and Turkana Basin large mammals. Our results indicate that speciation and extinction proceeded continuously throughout the Pliocene and Pleistocene, as did increases in the relative abundance of arid-adapted bovids, and in bovid body mass. Species durations were similar among clades with different ecological attributes. Occupancy patterns were unimodal, with long and nearly symmetrical origination and extinction phases. A single origination pulse may be present at 2.0-1.75 Ma, but besides this, there is no evidence that evolutionary or ecological changes in the eastern African record tracked rapid, 100,000-y-scale changes in global climate. Rather, eastern African large mammal evolution tracked global or regional climatic trends at long (million year) time scales, while local, basin-scale changes (e.g., tectonic or hydrographic) and biotic interactions ruled at shorter timescales.

  8. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique and South Africa. Keywords: Land use change, water resources, green water, blue water, biofuels, developing countries

  9. DNA barcoding at riverscape scales: Assessing biodiversity among fishes of the genus Cottus (Teleostei) in northern Rocky Mountain streams

    Treesearch

    Michael K. Young; Kevin S. McKelvey; Kristine L. Pilgrim; Michael K. Schwartz

    2013-01-01

    There is growing interest in broad-scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification...

  10. School Improvement Networks as a Strategy for Large-Scale Education Reform: The Role of Educational Environments

    ERIC Educational Resources Information Center

    Glazer, Joshua L.; Peurach, Donald J.

    2013-01-01

    The development and scale-up of school improvement networks is among the most important educational innovations of the last decade, and current federal, state, and district efforts attempt to use school improvement networks as a mechanism for supporting large-scale change. The potential of improvement networks, however, rests on the extent to…

  11. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  12. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  13. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  14. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  15. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makesmore » an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected.« less

  16. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    NASA Astrophysics Data System (ADS)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    Any long-term change in the patterns of average weather in a global or regional scale is called climate change. It may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological parameters may modify the water cycle: run-off, infiltration, aquifer recharge, etc. Recent studies in Catalonia foresee changes in hydrological systems caused by climate change. This will lead to alterations in the hydrological cycle that could impact in land use, in the regimen of water extractions, in the hydrological characteristics of the territory and reduced groundwater recharge. Besides, can expect a loss of flow in rivers. In addition to possible increases in the frequency of extreme rainfall, being necessary to modify the design of infrastructure. Because this, it work focuses on studying the impacts of climate change in one of the most important basins in Catalonia, the Llobregat River Basin. The basin is the hub of the province of Barcelona. It is a highly populated and urbanized catchment, where water resources are used for different purposes, as drinking water production, agricultural irrigation, industry and hydro-electrical energy production. In consequence, many companies and communities depend on these resources. To study the impact of climate change in the Llobregat basin, storms (frequency, intensity) mainly, we will need regional climate change information. A regional climate is determined by interactions at large, regional and local scales. The general circulation models (GCMs) are run at too coarse resolution to permit accurate description of these regional and local interactions. So far, they have been unable to provide consistent estimates of climate change on a local scale. Several regionalization techniques have been developed to bridge the gap between the large-scale information provided by GCMs and fine spatial scales required for regional and environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  17. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    NASA Astrophysics Data System (ADS)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.

  18. Modeling Change in Large-Scale Longitudinal Studies of Educational Growth: Four Decades of Contributions to the Assessment of Educational Growth. ETC R&D Scientific and Policy Contributions Series. ETS SPC-12-01. Research Report No. RR-12-04

    ERIC Educational Resources Information Center

    Rock, Donald A.

    2012-01-01

    This paper provides a history of ETS's role in developing assessment instruments and psychometric procedures for measuring change in large-scale national assessments funded by the Longitudinal Studies branch of the National Center for Education Statistics. It documents the innovations developed during more than 30 years of working with…

  19. Modeling Change in Large-Scale Longitudinal Studies of Educational Growth: Four Decades of Contributions to the Assessment of Educational Growth. Research Report. ETS RR-12-04. ETS R&D Scientific and Policy Contributions Series. ETS SPC-12-01

    ERIC Educational Resources Information Center

    Rock, Donald A.

    2012-01-01

    This paper provides a history of ETS's role in developing assessment instruments and psychometric procedures for measuring change in large-scale national assessments funded by the Longitudinal Studies branch of the National Center for Education Statistics. It documents the innovations developed during more than 30 years of working with…

  20. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.

    PubMed

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.

  1. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size

    PubMed Central

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745

  2. Side effects of problem-solving strategies in large-scale nutrition science: towards a diversification of health.

    PubMed

    Penders, Bart; Vos, Rein; Horstman, Klasien

    2009-11-01

    Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.

  3. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    PubMed

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  4. Large Scale Pedagogical Transformation as Widespread Cultural Change in Mexican Public Schools

    ERIC Educational Resources Information Center

    Rincón-Gallardo, Santiago

    2016-01-01

    This article examines how and under what conditions a new pedagogy can spread at scale using the Learning Community Project (LCP) in Mexico as a case study. Started as a small-scale, grassroots pedagogical change initiative in a handful of public schools, LCP evolved over an 8-year period into a national policy that spread its pedagogy of tutorial…

  5. The atmospheric implications of radiation belt remediation

    NASA Astrophysics Data System (ADS)

    Rodger, C. J.; Clilverd, M. A.; Ulich, Th.; Verronen, P. T.; Turunen, E.; Thomson, N. R.

    2006-08-01

    High altitude nuclear explosions (HANEs) and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR). Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  6. Modelling potential changes in marine biogeochemistry due to large-scale offshore tidal energy extraction

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan

    2015-04-01

    Tidal power generation through submerged turbine-type devices is in an advanced stage of testing, and large-scale applications are being planned in areas with high tidal current speeds. The potential impact of such large-scale applications on the hydrography can be investigated using hydrodynamical models. In addition, aspects of the potential impact on the marine ecosystem can be studied using biogeochemical models. In this study, the coupled hydrodynamics-biogeochemistry model GETM-ERSEM is used in a shelf-wide application to investigate the potential impact of large-scale tidal power generation in the Pentland Firth. A scenario representing the currently licensed power extraction suggested i) an average reduction in M2 tidal current velocities of several cm/s within the Pentland Firth, ii) changes in the residual circulation of several mm/s in the vicinity of the Pentland Firth, iii) an increase in M2 tidal amplitude of up to 1 cm to the west of the Pentland Firth, and iv) a reduction of several mm in M2 tidal amplitude along the east coast of the UK. A second scenario representing 10 times the currently licensed power extraction resulted in changes that were approximately 10 times as large. Simulations including the biogeochemistry model for these scenarios are currently in preparation, and first results will be presented at the the conference, aiming at impacts on primary production and benthic production.

  7. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2016-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  8. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  9. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    PubMed Central

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-01-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding. PMID:27073126

  10. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    NASA Astrophysics Data System (ADS)

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-04-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  11. A large-scale, long-term study of scale drift: The micro view and the macro view

    NASA Astrophysics Data System (ADS)

    He, W.; Li, S.; Kingsbury, G. G.

    2016-11-01

    The development of measurement scales for use across years and grades in educational settings provides unique challenges, as instructional approaches, instructional materials, and content standards all change periodically. This study examined the measurement stability of a set of Rasch measurement scales that have been in place for almost 40 years. In order to investigate the stability of these scales, item responses were collected from a large set of students who took operational adaptive tests using items calibrated to the measurement scales. For the four scales that were examined, item samples ranged from 2183 to 7923 items. Each item was administered to at least 500 students in each grade level, resulting in approximately 3000 responses per item. Stability was examined at the micro level analysing change in item parameter estimates that have occurred since the items were first calibrated. It was also examined at the macro level, involving groups of items and overall test scores for students. Results indicated that individual items had changes in their parameter estimates, which require further analysis and possible recalibration. At the same time, the results at the total score level indicate substantial stability in the measurement scales over the span of their use.

  12. Large-scale marine ecosystem change and the conservation of marine mammals

    USGS Publications Warehouse

    O'Shea, T.J.; Odell, D.K.

    2008-01-01

    Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.

  13. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  14. Climate Change and Macro-Economic Cycles in Pre-Industrial Europe

    PubMed Central

    Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

  15. Climate change and macro-economic cycles in pre-industrial europe.

    PubMed

    Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.

  16. EPA'S LANDSCAPE SCIENCES RESEARCH: NUTRIENT POLLUTION, FLOODING, AND HABITAT

    EPA Science Inventory

    There is a growing need to understand the pattern of landscape change at regional scales and to determine how such changes affect environmental values. Key to conducting these assessments is the development of land-cover databases that permit large-scale analyses, such as an exam...

  17. Culture and cognition in health systems change.

    PubMed

    Evans, Jenna M; Baker, G Ross; Berta, Whitney; Barnsley, Jan

    2015-01-01

    Large-scale change involves modifying not only the structures and functions of multiple organizations, but also the mindsets and behaviours of diverse stakeholders. This paper focuses on the latter: the informal, less visible, and often neglected psychological and social factors implicated in change efforts. The purpose of this paper is to differentiate between the concepts of organizational culture and mental models, to argue for the value of applying a shared mental models (SMM) framework to large-scale change, and to suggest directions for future research. The authors provide an overview of SMM theory and use it to explore the dynamic relationship between culture and cognition. The contributions and limitations of the theory to change efforts are also discussed. Culture and cognition are complementary perspectives, providing insight into two different levels of the change process. SMM theory draws attention to important questions that add value to existing perspectives on large-scale change. The authors outline these questions for future research and argue that research and practice in this domain may be best served by focusing less on the potentially narrow goal of "achieving consensus" and more on identifying, understanding, and managing cognitive convergences and divergences as part of broader research and change management programmes. Drawing from both cultural and cognitive paradigms can provide researchers with a more complete picture of the processes by which coordinated action are achieved in complex change initiatives in the healthcare domain.

  18. Climate and wildfires in the North American boreal forest.

    PubMed

    Macias Fauria, Marc; Johnson, E A

    2008-07-12

    The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.

  19. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  20. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.

  1. Characterizing Impacts of Land Grabbing on Terrestrial Vegetation and Ecohydrologic change in Mozambique through Multiple-sensor Remote Sensing and Models

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.

    2017-12-01

    Land grabbing, the acquisition of large areas of land by external entities, results from interactions of complex global economic, social, and political processes. These transactions are controversial because they can result in large-scale disruptions to historical land uses, including increased intensity of agricultural practices and significant conversions in land cover. These large-scale disruptions have the potential to impact surface water and energy balance because vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Because large-scale land acquisitions can impact local ecosystem services, it is important to document changes in terrestrial vegetation associated with these acquisitions to support the assessment of associated impacts on regional surface water and energy balance, spatiotemporal scales of those changes, and interactions and feedbacks with other processes, particularly in the atmosphere. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique during periods that bracket periods associated with significant. The Advanced very High Resolution Radiometer (AVHRR) sensor provides long-term continuous data that can document historical seasonal cycles of vegetation greenness. These data are augmented with analyses from Landsat multispectral data, which provides significantly higher spatial resolution. Here we quantify spatiotemporal changes in vegetation are associated with periods of significant land acquisitions in Mozambique. This analysis complements a suite of land-atmosphere modeling experiments designed to deduce potential changes in land surface water and energy budgets associated with these acquisitions. This work advance understanding of how telecouplings between global economic and political forcings and regional hydrology and climate.

  2. Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data.

    Treesearch

    D.J. Hayes; W.B. Cohen

    2006-01-01

    This article describes the development of a methodology for scaling observations of changes in tropical forest cover to large areas at high temporal frequency from coarse-resolution satellite imagery. The approach for estimating proportional forest cover change as a continuous variable is based on a regression model that relates multispectral, multitemporal Moderate...

  3. Patterns of Metabolite Changes Identified from Large-Scale Gene Perturbations in Arabidopsis Using a Genome-Scale Metabolic Network1[OPEN

    PubMed Central

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J.; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S.; Rhee, Seung Y.

    2015-01-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes. PMID:25670818

  4. Evaluating the Health Impact of Large-Scale Public Policy Changes: Classical and Novel Approaches

    PubMed Central

    Basu, Sanjay; Meghani, Ankita; Siddiqi, Arjumand

    2018-01-01

    Large-scale public policy changes are often recommended to improve public health. Despite varying widely—from tobacco taxes to poverty-relief programs—such policies present a common dilemma to public health researchers: how to evaluate their health effects when randomized controlled trials are not possible. Here, we review the state of knowledge and experience of public health researchers who rigorously evaluate the health consequences of large-scale public policy changes. We organize our discussion by detailing approaches to address three common challenges of conducting policy evaluations: distinguishing a policy effect from time trends in health outcomes or preexisting differences between policy-affected and -unaffected communities (using difference-in-differences approaches); constructing a comparison population when a policy affects a population for whom a well-matched comparator is not immediately available (using propensity score or synthetic control approaches); and addressing unobserved confounders by utilizing quasi-random variations in policy exposure (using regression discontinuity, instrumental variables, or near-far matching approaches). PMID:28384086

  5. Exact-Differential Large-Scale Traffic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanai, Masatoshi; Suzumura, Toyotaro; Theodoropoulos, Georgios

    2015-01-01

    Analyzing large-scale traffics by simulation needs repeating execution many times with various patterns of scenarios or parameters. Such repeating execution brings about big redundancy because the change from a prior scenario to a later scenario is very minor in most cases, for example, blocking only one of roads or changing the speed limit of several roads. In this paper, we propose a new redundancy reduction technique, called exact-differential simulation, which enables to simulate only changing scenarios in later execution while keeping exactly same results as in the case of whole simulation. The paper consists of two main efforts: (i) amore » key idea and algorithm of the exact-differential simulation, (ii) a method to build large-scale traffic simulation on the top of the exact-differential simulation. In experiments of Tokyo traffic simulation, the exact-differential simulation shows 7.26 times as much elapsed time improvement in average and 2.26 times improvement even in the worst case as the whole simulation.« less

  6. Lessons from SMD experience with approaches to the evaluation of fare changes

    DOT National Transportation Integrated Search

    1980-01-01

    Over the past several years UMTA's Service and Methods Demonstration Program (SMD) has undertaken a large number of studies of the effects of fare changes, both increases and decreases. Some of these studies have been large scale efforts directed at ...

  7. Examining the Invisible Loop: Tutors in Large Scale Teacher Development Programmes

    ERIC Educational Resources Information Center

    Bansilal, Sarah

    2014-01-01

    The recent curriculum changes in the South African education system have necessitated the development of large scale in-service training programmes for teachers. For some teacher training providers this has resulted in utilizing the services of tutors or facilitators from the various regions to deliver the programme. This article examines the role…

  8. Evaluating stream trout habitat on large-scale aerial color photographs

    Treesearch

    Wallace J. Greentree; Robert C. Aldrich

    1976-01-01

    Large-scale aerial color photographs were used to evaluate trout habitat by studying stream and streambank conditions. Ninety-two percent of these conditions could be identified correctly on the color photographs. Color photographs taken 1 year apart showed that rehabilitation efforts resulted in stream vegetation changes. Water depth was correlated with film density:...

  9. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia: Analyzing Regional Land Use Change Effects.

    Treesearch

    Michael Keller; Maria Assunção Silva-Dias; Daniel C. Nepstad; Meinrat O. Andreae

    2004-01-01

    The Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) is a multi-disciplinary, multinational scientific project led by Brazil. LBA researchers seek to understand Amazonia in its global context especially with regard to regional and global climate. Current development activities in Amazonia including deforestation, logging, cattle ranching, and agriculture...

  10. Scaling up the diversity-resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire.

    PubMed

    Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N

    2016-04-01

    Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.

  11. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  12. Vulnerability of ecosystems to climate change moderated by habitat intactness.

    PubMed

    Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse

    2015-01-01

    The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.

  13. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  14. Identifying the scale-dependent motifs in atmospheric surface layer by ordinal pattern analysis

    NASA Astrophysics Data System (ADS)

    Li, Qinglei; Fu, Zuntao

    2018-07-01

    Ramp-like structures in various atmospheric surface layer time series have been long studied, but the presence of motifs with the finer scale embedded within larger scale ramp-like structures has largely been overlooked in the reported literature. Here a novel, objective and well-adapted methodology, the ordinal pattern analysis, is adopted to study the finer-scaled motifs in atmospheric boundary-layer (ABL) time series. The studies show that the motifs represented by different ordinal patterns take clustering properties and 6 dominated motifs out of the whole 24 motifs account for about 45% of the time series under particular scales, which indicates the higher contribution of motifs with the finer scale to the series. Further studies indicate that motif statistics are similar for both stable conditions and unstable conditions at larger scales, but large discrepancies are found at smaller scales, and the frequencies of motifs "1234" and/or "4321" are a bit higher under stable conditions than unstable conditions. Under stable conditions, there are great changes for the occurrence frequencies of motifs "1234" and "4321", where the occurrence frequencies of motif "1234" decrease from nearly 24% to 4.5% with the scale factor increasing, and the occurrence frequencies of motif "4321" change nonlinearly with the scale increasing. These great differences of dominated motifs change with scale can be taken as an indicator to quantify the flow structure changes under different stability conditions, and motif entropy can be defined just by only 6 dominated motifs to quantify this time-scale independent property of the motifs. All these results suggest that the defined scale of motifs with the finer scale should be carefully taken into consideration in the interpretation of turbulence coherent structures.

  15. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE PAGES

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; ...

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  16. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.; Timmermans, Ben W.

    2018-04-01

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ˜25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderate rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.

  17. Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present-Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kooperman, Gabriel J.; Pritchard, Michael S.; O'Brien, Travis A.

    Deficiencies in the parameterizations of convection used in global climate models often lead to a distorted representation of the simulated rainfall intensity distribution (i.e., too much rainfall from weak rain rates). While encouraging improvements in high percentile rainfall intensity have been found as the horizontal resolution of the Community Atmosphere Model is increased to ~25 km, we demonstrate no corresponding improvement in the moderate rain rates that generate the majority of accumulated rainfall. Using a statistical framework designed to emphasize links between precipitation intensity and accumulated rainfall beyond just the frequency distribution, we show that CAM cannot realistically simulate moderatemore » rain rates, and cannot capture their intensification with climate change, even as resolution is increased. However, by separating the parameterized convective and large-scale resolved contributions to total rainfall, we find that the intensity, geographic pattern, and climate change response of CAM's large-scale rain rates are more consistent with observations (TRMM 3B42), superparameterization, and theoretical expectations, despite issues with parameterized convection. Increasing CAM's horizontal resolution does improve the representation of total rainfall intensity, but not due to changes in the intensity of large-scale rain rates, which are surprisingly insensitive to horizontal resolution. Rather, improvements occur through an increase in the relative contribution of the large-scale component to the total amount of accumulated rainfall. Analysis of sensitivities to convective timescale and entrainment rate confirm the importance of these parameters in the possible development of scale-aware parameterizations, but also reveal unrecognized trade-offs from the entanglement of precipitation frequency and total amount.« less

  18. Cross-scale interactions affect tree growth and intrinsic water use efficiency and highlight the importance of spatial context in managing forests under global change

    Treesearch

    Kenneth J. Ruzicka; Klaus J. Puettmann; J. Renée Brooks

    2017-01-01

    Summary1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment to better understand options for managing forests under climate change. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (δ...

  19. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  20. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  1. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    NASA Astrophysics Data System (ADS)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value

  2. Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.

    2017-04-01

    Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.

  3. The stability and change of etiological influences on depression, anxiety symptoms and their co-occurrence across adolescence and young adulthood.

    PubMed

    Waszczuk, M A; Zavos, H M S; Gregory, A M; Eley, T C

    2016-01-01

    Depression and anxiety persist within and across diagnostic boundaries. The manner in which common v. disorder-specific genetic and environmental influences operate across development to maintain internalizing disorders and their co-morbidity is unclear. This paper investigates the stability and change of etiological influences on depression, panic, generalized, separation and social anxiety symptoms, and their co-occurrence, across adolescence and young adulthood. A total of 2619 twins/siblings prospectively reported symptoms of depression and anxiety at mean ages 15, 17 and 20 years. Each symptom scale showed a similar pattern of moderate continuity across development, largely underpinned by genetic stability. New genetic influences contributing to change in the developmental course of the symptoms emerged at each time point. All symptom scales correlated moderately with one another over time. Genetic influences, both stable and time-specific, overlapped considerably between the scales. Non-shared environmental influences were largely time- and symptom-specific, but some contributed moderately to the stability of depression and anxiety symptom scales. These stable, longitudinal environmental influences were highly correlated between the symptoms. The results highlight both stable and dynamic etiology of depression and anxiety symptom scales. They provide preliminary evidence that stable as well as newly emerging genes contribute to the co-morbidity between depression and anxiety across adolescence and young adulthood. Conversely, environmental influences are largely time-specific and contribute to change in symptoms over time. The results inform molecular genetics research and transdiagnostic treatment and prevention approaches.

  4. Atmospheric energetics in regions of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1977-01-01

    Synoptic-scale budgets of kinetic and total potential energy are computed using 3- and 6-h data at nine times from NASA's fourth Atmospheric Variability Experiment (AVE IV). Two intense squall lines occurred during the period. Energy budgets for areas that enclose regions of intense convection are shown to have systematic changes that relate to the life cycles of the convection. Some of the synoptic-scale energy processes associated with the convection are found to be larger than those observed in the vicinity of mature cyclones. Volumes enclosing intense convection are found to have large values of cross-contour conversion of potential to kinetic energy and large horizontal export of kinetic energy. Although small net vertical transport of kinetic energy is observed, values at individual layers indicate large upward transport. Transfer of kinetic energy from grid to subgrid scales of motion occurs in the volumes. Latent heat release is large in the middle and upper troposphere and is thought to be the cause of the observed cyclic changes in the budget terms. Total potential energy is found to be imported horizontally in the lower half of the atmosphere, transported aloft, and then exported horizontally. Although local changes of kinetic energy and total potential energy are small, interaction between volumes enclosing convection with surrounding larger volumes is quite large.

  5. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals

    Treesearch

    Linda Laikre; Michael K. Schwartz; Robin S. Waples; Nils Ryman; F. W. Allendorf; C. S. Baker; D. P. Gregovich; M. M. Hansen; J. A. Jackson; K. C. Kendall; K. McKelvey; M. C. Neel; I. Olivieri; R. Short Bull; J. B. Stetz; D. A. Tallmon; C. D. Vojta; D. M. Waller

    2010-01-01

    Large-scale exploitation of wild animals and plants through fishing, hunting and logging often depends on augmentation through releases of translocated or captively raised individuals. Such releases are performed worldwide in vast numbers. Augmentation can be demographically and economically beneficial but can also cause four types of adverse genetic change to wild...

  6. How to Measure and Explain Achievement Change in Large-Scale Assessments: A Rejoinder

    ERIC Educational Resources Information Center

    Hickendorff, Marian; Heiser, Willem J.; van Putten, Cornelis M.; Verhelst, Norman D.

    2009-01-01

    In this rejoinder, we discuss substantive and methodological validity issues of large-scale assessments of trends in student achievement, commenting on the discussion paper by Van den Heuvel-Panhuizen, Robitzsch, Treffers, and Koller (2009). We focus on methodological challenges in deciding what to measure, how to measure it, and how to foster…

  7. Changing the English Classroom: When Large-Scale "Common" Testing Meets Secondary Curriculum and Instruction in the United States

    ERIC Educational Resources Information Center

    Cimbricz, Sandra K.; McConn, Matthew L.

    2015-01-01

    This article explores the intersection of new, large-scale standards-based testing, teacher accountability policy, and secondary curriculum and instruction in the United States. Two federally funded consortia--the Smarter Balanced Assessment Consortium and the Partnership for Readiness of College and Careers--prove focal to this paper, as these…

  8. Implementing Large-Scale Instructional Technology in Kenya: Changing Instructional Practice and Developing Accountability in a National Education System

    ERIC Educational Resources Information Center

    Piper, Benjamin; Oyanga, Arbogast; Mejia, Jessica; Pouezevara, Sarah

    2017-01-01

    Previous large-scale education technology interventions have shown only modest impacts on student achievement. Building on results from an earlier randomized controlled trial of three different applications of information and communication technologies (ICTs) on primary education in Kenya, the Tusome Early Grade Reading Activity developed the…

  9. Large-scale coastal change in the Columbia River littoral cell: an overview

    USGS Publications Warehouse

    Gelfenbaum, Guy; Kaminsky, George M.

    2010-01-01

    This overview introduces large-scale coastal change in the Columbia River littoral cell (CRLC). Covering 165 km of the southwest Washington and northwest Oregon coasts, the littoral cell is made up of wide low-sloping dissipative beaches, broad coastal dunes and barrier plains, three large estuaries, and is bounded by rocky headlands. The beaches and inner shelf are composed of fine-grained sand from the Columbia River and are exposed to a high-energy winter wave climate. Throughout the Holocene, the CRLC has undergone large fluctuations in shoreline change trends, responding to a variety of coastal change drivers, including changing rates of sea-level rise, infrequent, yet catastrophic, co-seismic subsidence events, a large regional sediment supply, inter-annual climatic fluctuations (El Niño cycles), seasonally varying wave climate, and numerous anthropogenic influences. Human influences on the CRLC include construction of over 200 dams in the Columbia River drainage basin, dredging of navigation channels removing sand to upland sites and offshore deep-water sites, and construction of large inlet jetties at the entrances to the Columbia River and Grays Harbor. The construction of these massive entrance jetties at the end of the 19th century has been the dominant driver of coastal change through most of the littoral cell over the last hundred years. Presently, some beaches in the littoral cell are eroding in response to nearshore sediment deficits resulting from a) ebb-jets of the confined entrances pushing the previously large, shallow ebb-tidal deltas offshore into deeper water, and b) waves dispersing the nearshore delta flanks initially onshore and then alongshore away from the jetties. This overview describes 1) the motivation for developing a system-wide understanding of sediment dynamics in the littoral cell at multiple time and space scales, 2) the formation and approach of the Southwest Washington Coastal Erosion Study, and 3) an introduction to the papers in this special issue.

  10. Soil and tree ring chemistry changes in an oak forest.

    Treesearch

    Quentin D. Read

    2009-01-01

    Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...

  11. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle

    PubMed Central

    Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus

    2016-01-01

    Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769

  12. A Commercialization Roadmap for Carbon-Negative Energy Systems

    NASA Astrophysics Data System (ADS)

    Sanchez, D.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.

  13. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    PubMed Central

    Devaraju, N.; Bala, Govindasamy; Modak, Angshuman

    2015-01-01

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures. PMID:25733889

  14. A large scale membrane-binding protein conformational change that initiates at small length scales

    NASA Astrophysics Data System (ADS)

    Grandpre, Trevor; Andorf, Matthew; Chakravarthy, Srinivas; Lamb, Robert; Poor, Taylor; Landahl, Eric

    2013-03-01

    The fusion (F) protein of parainfluenza virus 5 (PIV5) is a membrane-bound, homotrimeric glycoprotein located on the surface of PIV5 viral envelopes. Upon being triggered by the receptor-binding protein (HN), F undergoes a greater than 100Å ATP-independent refolding event. This refolding event results in the insertion of a hydrophobic fusion peptide into the membrane of the target cell, followed by the desolvation and subsequent fusion event as the two membranes are brought together. Isothermal calorimetry and hydrophobic dye incorporation experiments indicate that the soluble construct of the F protein undergoes a conformational rearrangement event at around 55 deg C. We present the results of an initial Time-Resolved Small-Angle X-Ray Scattering (TR-SAXS) study of this large scale, entropically driven conformational change using a temperature jump. Although we the measured radius of gyration of this protein changes on a 110 second timescale, we find that the x-ray scattering intensity at higher angles (corresponding to smaller length scales in the protein) changes nearly an order of magnitude faster. We believe this may be a signature of entropically-driven conformational change. To whom correspondence should be addressed

  15. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  16. Extratropical Respones to Amazon Deforestation

    NASA Astrophysics Data System (ADS)

    Badger, A.; Dirmeyer, P.

    2014-12-01

    Land-use change (LUC) is known to impact local climate conditions through modifications of land-atmosphere interactions. Large-scale LUC, such as Amazon deforestation, could have a significant effect on the local and regional climates. The question remains as to what the global impact of large-scale LUC could be, as previous modeling studies have shown non-local responses due to Amazon deforestation. A common shortcoming in many previous modeling studies is the use of prescribed ocean conditions, which can act as a boundary condition to dampen the global response with respect to changes in the mean and variability. Using fully coupled modeling simulations with the Community Earth System Model version 1.2.0, the Amazon rainforest has been replaced with a distribution of representative tropical crops. Through the modifications of local land-atmosphere interactions, a significant change in the region, both at the surface and throughout the atmosphere, can be quantified. Accompanying these local changes are significant changes to the atmospheric circulation across all scales, thus modifying regional climates in other locales. Notable impacts include significant changes in precipitation, surface fluxes, basin-wide sea surface temperatures and ENSO behavior.

  17. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  18. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  19. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  20. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    NASA Astrophysics Data System (ADS)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  1. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  2. Synoptic circulation and temperature pattern during severe wildland fires

    Treesearch

    Warren E. Heilman

    1996-01-01

    Large-scale changes in the atmosphere associated with a globally changed climate and changes in climatic variability may have important regional impacts on the frequency and severity of wildland fires in the future.

  3. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  4. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  5. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.

  6. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  7. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.

  8. Evaluation of Large-Scale Public-Sector Reforms: A Comparative Analysis

    ERIC Educational Resources Information Center

    Breidahl, Karen N.; Gjelstrup, Gunnar; Hansen, Hanne Foss; Hansen, Morten Balle

    2017-01-01

    Research on the evaluation of large-scale public-sector reforms is rare. This article sets out to fill that gap in the evaluation literature and argues that it is of vital importance since the impact of such reforms is considerable and they change the context in which evaluations of other and more delimited policy areas take place. In our…

  9. Studying Teacher Selection of Resources in an Ultra-Large Scale Interactive System: Does Metadata Guide the Way?

    ERIC Educational Resources Information Center

    Abramovich, Samuel; Schunn, Christian

    2012-01-01

    Ultra-large-scale interactive systems on the Internet have begun to change how teachers prepare for instruction, particularly in regards to resource selection. Consequently, it is important to look at how teachers are currently selecting resources beyond content or keyword search. We conducted a two-part observational study of an existing popular…

  10. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Treesearch

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  11. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  12. Achieving Excellence: Bringing Effective Literacy Pedagogy to Scale in Ontario's Publicly-Funded Education System

    ERIC Educational Resources Information Center

    Gallagher, Mary Jean; Malloy, John; Ryerson, Rachel

    2016-01-01

    This paper offers an insiders' perspective on the large-scale, system-wide educational change undertaken in Ontario, Canada from 2003 to the present. The authors, Ministry and school system leaders intimately involved in this change process, explore how Ontario has come to be internationally recognized as an equitable, high-achieving, and…

  13. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  14. Triton Blushes: A Clue to Global Warming?

    NASA Technical Reports Server (NTRS)

    Buratti, B. J.; Hicks, M. D.; Newburn, R. L., Jr.

    1998-01-01

    The large Neptunian satellite Triton is a geologically active body that apparently undergoes complex seasonal changes in its 165 year journey around the sun. Because it is the vehicle for the seasonal transport of volatiles, Triton's atmosphere is expected to undergo large changes in temperature and pressure on a time scale of decades.

  15. Natural disasters and population mobility in Bangladesh.

    PubMed

    Gray, Clark L; Mueller, Valerie

    2012-04-17

    The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity.

  16. Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicumstrains.

    PubMed

    Tummala, Seshu B; Junne, Stefan G; Paredes, Carlos J; Papoutsakis, Eleftherios T

    2003-12-30

    Antisense RNA (asRNA) downregulation alters protein expression without changing the regulation of gene expression. Downregulation of primary metabolic enzymes possibly combined with overexpression of other metabolic enzymes may result in profound changes in product formation, and this may alter the large-scale transcriptional program of the cells. DNA-array based large-scale transcriptional analysis has the potential to elucidate factors that control cellular fluxes even in the absence of proteome data. These themes are explored in the study of large-scale transcriptional analysis programs and the in vivo primary-metabolism fluxes of several related recombinant C. acetobutylicum strains: C. acetobutylicum ATCC 824(pSOS95del) (plasmid control; produces high levels of butanol snd acetone), 824(pCTFB1AS) (expresses antisense RNA against CoA transferase (ctfb1-asRNA); produces very low levels of butanol and acetone), and 824(pAADB1) (expresses ctfb1-asRNA and the alcohol-aldehyde dahydrogenase gene (aad); produce high alcohol and low acetone levels). DNA-array based transcriptional analysis revealed that the large changes in product concentrations (snd notably butanol concentration) due to ctfb1-asRNA expression alone and in combination with aad overexpression resulted in dramatic changes of the cellular transcriptome. Cluster analysis and gene expression patterns of established and putative operons involved in stress response, motility, sporulation, and fatty-acid biosynthesis indicate that these simple genetic changes dramatically alter the cellular programs of C. acetobutylicum. Comparison of gene expression and flux analysis data may point to possible flux-controling steps and suggest unknown regulatory mechanisms. Copyright 2003; Wiley Periodicals, Inc.

  17. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  18. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  19. Effects of multiple-scale driving on turbulence statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyunju; Cho, Jungyeon, E-mail: hyunju527@gmail.com, E-mail: jcho@cnu.ac.kr

    2014-01-01

    Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and the intracluster medium. In turbulence studies, it is customary to assume that fluid is driven on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales. If there are multiple energy-injection scales, the process of energy cascade and turbulence dynamo will be different compared with the case of the single energy-injection scale. In this work, we perform three-dimensional incompressible/compressible magnetohydrodynamic turbulence simulations. We drive turbulence in Fourier space in two wavenumber ranges, 2≤k≤√12 (large scale) and 15 ≲ kmore » ≲ 26 (small scale). We inject different amount of energy in each range by changing the amplitude of forcing in the range. We present the time evolution of the kinetic and magnetic energy densities and discuss the turbulence dynamo in the presence of energy injections at two scales. We show how kinetic, magnetic, and density spectra are affected by the two-scale energy injections and we discuss the observational implications. In the case ε {sub L} < ε {sub S}, where ε {sub L} and ε {sub S} are energy-injection rates at the large and small scales, respectively, our results show that even a tiny amount of large-scale energy injection can significantly change the properties of turbulence. On the other hand, when ε {sub L} ≳ ε {sub S}, the small-scale driving does not influence the turbulence statistics much unless ε {sub L} ∼ ε {sub S}.« less

  20. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  1. Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng

    1998-03-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equation model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to January 1994. The physical nature of sea level's temporal variability from periods of days to a year is examined on the basis of spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements. The study elucidates and diagnoses the inhomogeneous physics of sea level change in space and frequency domain. At midlatitudes, large-scale sea level variability is primarily due to steric changes associated with the seasonal heating and cooling cycle of the surface layer. In comparison, changes in the tropics and high latitudes are mainly wind driven. Wind-driven variability exhibits a strong latitudinal dependence in itself. Wind-driven changes are largely baroclinic in the tropics but barotropic at higher latitudes. Baroclinic changes are dominated by the annual harmonic of the first baroclinic mode and is largest off the equator; variabilities associated with equatorial waves are smaller in comparison. Wind-driven barotropic changes exhibit a notable enhancement over several abyssal plains in the Southern Ocean, which is likely due to resonant planetary wave modes in basins semienclosed by discontinuities in potential vorticity. Otherwise, barotropic sea level changes are typically dominated by high frequencies with as much as half the total variance in periods shorter than 20 days, reflecting the frequency spectra of wind stress curl. Implications of the findings with regards to analyzing observations and data assimilation are discussed.

  2. Data assimilation in optimizing and integrating soil and water quality water model predictions at different scales

    USDA-ARS?s Scientific Manuscript database

    Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...

  3. Microwave evidence for large-scale changes associated with a filament eruption

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Schmahl, E. J.; Fu, Q.-J.

    1989-01-01

    VLA observations at 6 and 20 cm wavelengths taken on August 3, 1985 are presented, showing an eruptive filament event in which microwave emission originated in two widely separated regions during the disintegration of the filament. The amount of heat required for the enhancement is estimated. Near-simultaneous changes in intensity and polarization were observed in the western components of the northern and southern regions. It is suggested that large-scale magnetic interconnections permitted the two regions to respond similarly to an external energy or mass source involved in the disruption of the filament.

  4. Images from Galileo of the Venus cloud deck

    USGS Publications Warehouse

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  5. Effects of large scale deforestation on precipitation in the monsoon regions: Remote versus local effects

    NASA Astrophysics Data System (ADS)

    Bala, G.; N, D.; Modak, A.

    2015-12-01

    In this study, we investigate the bio-geophysical effects of large-scale deforestation on monsoon regions using idealized deforestation simulations. The simulations are performed using the NCAR CAM5 atmospheric model coupled to a mixed layer ocean model. The four deforestation experiments are named Global, Boreal, Temperate and Tropical, respectively. In these deforestation experiments, trees are replaced by grasses around the globe, between 20oS and 20oN, between 20oN and 50oN and poleward of 50oN, respectively. We find that the remote forcing from large-scale deforestation in the Temperate and Boreal cases shift the Inter-tropical Convergence Zone (ITCZ) southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America and Australia). The magnitude of the monsoonal precipitation changes depend on the location of deforestation with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most with 18% decline in precipitation over India in the Global deforestation case. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation besides the large local impacts on temperatures and carbon sequestration benefits. Our results also demonstrate the linkages between any large scale forcing that causes large warming/cooling in the high latitudes and rainfall changes in tropical monsoonal regions via ITCZ shifts. Figure Caption: Changes in annual mean precipitation (mm/day) between the deforestation experiments and the control simulation. Hatched areas are regions where changes are statistically significant at the 95% confidence level. Shading in line plots represents the ±1 standard deviation estimated from the control simulation. Comparison of (b) with (d) clearly indicates that the remote effect has a larger influence on tropical precipitation than local effect.The location of the precipitation centroid in the ITCZ region in the CTL case and the shifts in the experiments are shown above the panels.

  6. Triangles bridge the scales: Quantifying cellular contributions to tissue deformation

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphaël; Popović, Marko; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    2017-03-01

    In this article, we propose a general framework to study the dynamics and topology of cellular networks that capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations and elongation as well as cellular growth and elongation to tissue deformation. Using this triangle method, we discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.

  7. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  8. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  9. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  10. Recent Developments in Language Assessment and the Case of Four Large-Scale Tests of ESOL Ability

    ERIC Educational Resources Information Center

    Stoynoff, Stephen

    2009-01-01

    This review article surveys recent developments and validation activities related to four large-scale tests of L2 English ability: the iBT TOEFL, the IELTS, the FCE, and the TOEIC. In addition to describing recent changes to these tests, the paper reports on validation activities that were conducted on the measures. The results of this research…

  11. IKONOS imagery for the Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA).

    Treesearch

    George Hurtt; Xiangming Xiao; Michael Keller; Michael Palace; Gregory P. Asner; Rob Braswell; Brond& #305; Eduardo S. zio; Manoel Cardoso; Claudio J.R. Carvalho; Matthew G. Fearon; Liane Guild; Steve Hagen; Scott Hetrick; Berrien Moore III; Carlos Nobre; Jane M. Read; S& aacute; Tatiana NO-VALUE; Annette Schloss; George Vourlitis; Albertus J. Wickel

    2003-01-01

    The LBA-ECO program is one of several international research components under the Brazilian-led Large Scale Biosphere–Atmosphere Experiment in Amazonia (LBA). The field-oriented research activities of this study are organized along transects and include a set of primary field sites, where the major objective is to study land-use change and ecosystem dynamics, and a...

  12. In Search of the Rainbow: Pathways to Quality in Large-Scale Programmes for Young Disadvantaged Children. Early Childhood Development: Practice and Reflections Number 10.

    ERIC Educational Resources Information Center

    Woodhead, Martin

    Those involved in early childhood development must recognize that many of their most cherished beliefs about what is best for children are cultural constructions. This book focuses on quality in large-scale programs for disadvantaged young children in a variety of cultural settings. Chapter 1, "Changing Childhoods," discusses issues…

  13. Working with Secondary School Leadership in a Large-Scale Reform in London, UK: Consultants' Perspectives of Their Role as Agents of School Change and Improvement

    ERIC Educational Resources Information Center

    Cameron, David Hagen

    2010-01-01

    This article uses a cultural and political theoretical framework to examine the relationship between consultants and secondary school leaders within a large-scale consultancy-based reform, the Secondary National Strategy (SNS), in London UK. The SNS follows a cascade model of implementation, in which nationally created initiatives are introduced…

  14. Driving terrestrial ecosystem models from space

    NASA Technical Reports Server (NTRS)

    Waring, R. H.

    1993-01-01

    Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.

  15. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  16. Degree program changes and curricular flexibility: Addressing long held beliefs about student progression

    NASA Astrophysics Data System (ADS)

    Ricco, George Dante

    In higher education and in engineering education in particular, changing majors is generally considered a negative event - or at least an event with negative consequences. An emergent field of study within engineering education revolves around understanding the factors and processes driving student changes of major. Of key importance to further the field of change of major research is a grasp of large scale phenomena occurring throughout multiple systems, knowledge of previous attempts at describing such issues, and the adoption of metrics to probe them effectively. The problem posed is exacerbated by the drive in higher education institutions and among state legislatures to understand and reduce time-to-degree and student attrition. With these factors in mind, insights into large-scale processes that affect student progression are essential to evaluating the success or failure of programs. The goals of this work include describing the current educational research on switchers, identifying core concepts and stumbling blocks in my treatment of switchers, and using the Multiple Institutional Database for Investigating Engineering Longitudinal Development (MIDFIELD) to explore how those who change majors perform as a function of large-scale academic pathways within and without the engineering context. To accomplish these goals, it was first necessary to delve into a recent history of the treatment of switchers within the literature and categorize their approach. While three categories of papers exist in the literature concerning change of major, all three may or may not be applicable to a given database of students or even a single institution. Furthermore, while the term has been coined in the literature, no portable metric for discussing large-scale navigational flexibility exists in engineering education. What such a metric would look like will be discussed as well as the delimitations involved. The results and subsequent discussion will include a description of changes of major, how they may or may not have a deleterious effect on one's academic pathway, the special context of changes of major in the pathways of students within first-year engineering programs students labeled as undecided, an exploration of curricular flexibility by the construction of a novel metric, and proposed future work.

  17. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  18. Sustainable Land Management's potential for climate change adaptation in Mediterranean environments: a regional scale assessment

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; de Vente, Joris

    2017-04-01

    Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate change at the field-scale and partly at the catchment-scale. Therefore, we conclude that large-scale adoption of SLM can effectively contribute to climate change adaptation by increasing the soil infiltration capacity, the soil water retention capacity and soil moisture content in the rootzone, leading to less crop stress. These findings of regional scale impacts of SLM are of high relevance for land-owners, -managers and policy makers to design effective climate change adaptation strategies.

  19. Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; hide

    2018-01-01

    We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.

  20. Understanding middle managers' influence in implementing patient safety culture.

    PubMed

    Gutberg, Jennifer; Berta, Whitney

    2017-08-22

    The past fifteen years have been marked by large-scale change efforts undertaken by healthcare organizations to improve patient safety and patient-centered care. Despite substantial investment of effort and resources, many of these large-scale or "radical change" initiatives, like those in other industries, have enjoyed limited success - with practice and behavioural changes neither fully adopted nor ultimately sustained - which has in large part been ascribed to inadequate implementation efforts. Culture change to "patient safety culture" (PSC) is among these radical change initiatives, where results to date have been mixed at best. This paper responds to calls for research that focus on explicating factors that affect efforts to implement radical change in healthcare contexts, and focuses on PSC as the radical change implementation. Specifically, this paper offers a novel conceptual model based on Organizational Learning Theory to explain the ability of middle managers in healthcare organizations to influence patient safety culture change. We propose that middle managers can capitalize on their unique position between upper and lower levels in the organization and engage in 'ambidextrous' learning that is critical to implementing and sustaining radical change. This organizational learning perspective offers an innovative way of framing the mid-level managers' role, through both explorative and exploitative activities, which further considers the necessary organizational context in which they operate.

  1. CLIMATE CONSTRAINTS AND ISSUES OF SCALE CONTROLLING REGIONAL BIOMES

    EPA Science Inventory

    The prosepct of climate change threatens to cause large changes in regional biomes. hese effects could be in the form of qualitative changes within biomes, as well as spatial changes in the boundaries of biomes. he boundaries, or ecotones, between biomes have been suggested as po...

  2. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  3. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  4. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  5. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations

    PubMed Central

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414

  6. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  7. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  8. Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.

    PubMed

    Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali

    2015-01-01

    Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.

  9. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  10. Setting Learning Analytics in Context: Overcoming the Barriers to Large-Scale Adoption

    ERIC Educational Resources Information Center

    Ferguson, Rebecca; Macfadyen, Leah P.; Clow, Doug; Tynan, Belinda; Alexander, Shirley; Dawson, Shane

    2014-01-01

    A core goal for most learning analytic projects is to move from small-scale research towards broader institutional implementation, but this introduces a new set of challenges because institutions are stable systems, resistant to change. To avoid failure and maximize success, implementation of learning analytics at scale requires explicit and…

  11. Scale-dependent temporal variations in stream water geochemistry.

    PubMed

    Nagorski, Sonia A; Moore, Iohnnie N; McKinnon, Temple E; Smith, David B

    2003-03-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  12. Scale-dependent temporal variations in stream water geochemistry

    USGS Publications Warehouse

    Nagorski, S.A.; Moore, J.N.; McKinnon, Temple E.; Smith, D.B.

    2003-01-01

    A year-long study of four western Montana streams (two impacted by mining and two "pristine") evaluated surface water geochemical dynamics on various time scales (monthly, daily, and bi-hourly). Monthly changes were dominated by snowmelt and precipitation dynamics. On the daily scale, post-rain surges in some solute and particulate concentrations were similar to those of early spring runoff flushing characteristics on the monthly scale. On the bi-hourly scale, we observed diel (diurnal-nocturnal) cycling for pH, dissolved oxygen, water temperature, dissolved inorganic carbon, total suspended sediment, and some total recoverable metals at some or all sites. A comparison of the cumulative geochemical variability within each of the temporal groups reveals that for many water quality parameters there were large overlaps of concentration ranges among groups. We found that short-term (daily and bi-hourly) variations of some geochemical parameters covered large proportions of the variations found on a much longer term (monthly) time scale. These results show the importance of nesting short-term studies within long-term geochemical study designs to separate signals of environmental change from natural variability.

  13. Responsiveness of the Care Dependency Scale for Rehabilitation (CDS-R).

    PubMed

    Eichhorn-Kissel, Juliane; Dassen, Theo; Lohrmann, Christa

    2012-03-01

    Around 10% of Western Europe's population suffer from a disability which can entail a decrease of independency and quality of life. However, the lives of these people can be improved by rehabilitative treatment and care. Changing the degree of dependency from dependent to independent is essential in rehabilitation, as is the assessment of these changes. To perform such kind of measurements, assessment instruments have to be responsive. In spite of this concern, responsiveness of assessment instruments is studied to a small extent only. This also applies to the Care Dependency Scale for Rehabilitation (CDS-R), a short assessment instrument measuring the care dependency of patients regarding physical and psychosocial aspects. In this longitudinal-study, the responsiveness of the CDS-R, in general and related to different disease-groups, should be determined. Therefore, a convenience sample of 1564 patients was assessed in an Austrian rehabilitation centre with the scale after admission and before discharge. Responsiveness was determined by descriptive analysis, calculation of effect-sizes and significance tests. Differences between admission and discharge occurred on a statistically significant level for patients who changed. Kazis' effect-sizes can be considered as of small/medium effect for patients who changed (0.24/0.49), and as of large effect according to Liang (0.86/1.46). Eta squared was 0.10/0.19 which can be interpreted as of moderate/large effect for patients who changed. Responsiveness-analyses related to different disease-groups showed constantly large effect-sizes for patients with musculoskeletal-disorders. These results indicate that the CDS-R can detect patient-changes over time and discriminate between patients who change under rehabilitation or not. These aspects argue for the responsiveness of the scale, wherefore the CDS-R seems to be appropriate for the assessment of treatment/health-care effectiveness and the evaluation of individual patient-changes. Nevertheless further research is recommended to confirm the level of responsiveness of the scale in general and for different disease-groups. © 2011 The Authors. Scandinavian Journal of Caring Sciences © 2011 Nordic College of Caring Science.

  14. The Dynamics of a Semi-Arid Region in Response to Climate and Water - Use Policy

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Hamburg, Steve; Grant, John A.; Manning, Sara J.; Steinwand, Aaron; Howard, Chris

    2000-01-01

    The objectives of this project were to determine the response of semi-arid ecosystems to the combined forcings of climate variability and anthropogenic stress. Arid and semi-arid systems encompass close to 40% of the worlds land surface. The ecology of these regions are principally limited by water, and as the water resources wax and wane, so should the health and vigor of the ecosystems. Water, however, is a necessary and critical resource for humans living in these same regions. Thus for many and and semi-arid regions the natural systems and human systems are in direct competition for a limited resource. Increasing competition through development of and and semi-arid regions, export of water resources, as well as potential persistent changes in weather patterns are likely to lead to fundamental changes in carrying capacity, resilience, and ecology of these regions. A detailed understanding of these systems respond to forcing on a regional and local scale is required in order to better prepare for and manage future changes in the availability of water. In the Owens Valley CA, decadal changes in rainfall and increased use of groundwater resources by Los Angles (which derives 60-70% of its water from this region) have resulted in a large-scale experiment on the impacts of these changes in semi-arid ecosystems. This project works directly with the Inyo County Water Department (local water authority) and the Los Angles Department of Water and Power (regional demand on water resources) to understand changes, their causes, and impacts. Very detailed records have been kept for a number of selected sites in the valley which provide essential ground truth. These results are then scaled up through remote sensed data to regions scale to assess large scale patterns and link them to the fundamental decisions regarding the water resources of this region. A fundamental goal is to understand how resilient the native ecosystems are to large changes in water resources. Are they are on a spring (remove and return resources, do the systems return to the original state) or a vector (when water returns have the systems fundamentally changed).

  15. Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region

    DTIC Science & Technology

    2012-03-01

    low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean

  16. The consequences of landscape change on ecological resources: An assessment of the United States Mid-Atlantic region, 1973-1993

    Treesearch

    K. Bruce Jones; Anne C. Neale; Timothy G. Wade; James D. Wickham; Chad L. Cross; Curtis M. Edmonds; Thomas R. Loveland; Maliha S. Nash; Kurt H. Riitters; Elizabeth R. Smith

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioitizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have...

  17. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Treesearch

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  18. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  19. Large and local-scale influences on physical and chemical characteristics of coastal waters of Western Europe during winter

    NASA Astrophysics Data System (ADS)

    Tréguer, Paul; Goberville, Eric; Barrier, Nicolas; L'Helguen, Stéphane; Morin, Pascal; Bozec, Yann; Rimmelin-Maury, Peggy; Czamanski, Marie; Grossteffan, Emilie; Cariou, Thierry; Répécaud, Michel; Quéméner, Loic

    2014-11-01

    There is now a strong scientific consensus that coastal marine systems of Western Europe are highly sensitive to the combined effects of natural climate variability and anthropogenic climate change. However, it still remains challenging to assess the spatial and temporal scales at which climate influence operates. While large-scale hydro-climatic indices, such as the North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) and the weather regimes such as the Atlantic Ridge (AR), are known to be relevant predictors of physical processes, changes in coastal waters can also be related to local hydro-meteorological and geochemical forcing. Here, we study the temporal variability of physical and chemical characteristics of coastal waters located at about 48°N over the period 1998-2013 using (1) sea surface temperature, (2) sea surface salinity and (3) nutrient concentration observations for two coastal sites located at the outlet of the Bay of Brest and off Roscoff, (4) river discharges of the major tributaries close to these two sites and (5) regional and local precipitation data over the region of interest. Focusing on the winter months, we characterize the physical and chemical variability of these coastal waters and document changes in both precipitation and river runoffs. Our study reveals that variability in coastal waters is connected to the large-scale North Atlantic atmospheric circulation but is also partly explained by local river influences. Indeed, while the NAO is strongly related to changes in sea surface temperature at the Brest and Roscoff sites, the EAP and the AR have a major influence on precipitations, which in turn modulate river discharges that impact sea surface salinity at the scale of the two coastal stations.

  20. Forest Conversion, Agricultural Transitions and the Influence of Multi-scale Market Factors in Southwest Cameroon

    NASA Astrophysics Data System (ADS)

    Ordway, E.; Lambin, E.; Asner, G. P.

    2015-12-01

    The changing structure of demand for commodities associated with food security and energy has had a startling impact on land use change in tropical forests in recent decades. Yet, the composition of conversion in the Congo basin remains a major uncertainty, particularly with regards to the scale of drivers of change. Owing to rapid expansion of production globally and longstanding historical production locally in the Congo basin, oil palm offers a lens through which to evaluate local land use decisions across a spectrum of small- to large-scales of production as well as interactions with regional and global supply chains. We examined the effect of global commodity crop expansion on land use change in Southwest Cameroon using a mixed-methods approach to integrate remote sensing, field surveys and socioeconomic data. Southwest Cameroon (2.5 Mha) has a long history of large- and small-scale agriculture, ranging from mixed crop subsistence agriculture to large monocrop plantations of oil palm, cocoa, and rubber. Trends and spatial patterns of forest conversion and agricultural transitions were analyzed from 2000-2015 using satellite imagery. We used economic, demographic and field survey datasets to assess how regional and global market factors and local commodity crop decisions affect land use patterns. Our results show that oil palm is a major commodity crop expanding in this region, and that conversion is occurring primarily through expansion by medium-scale producers and local elites. Results also indicate that global and regional supply chain dynamics influence local land use decision making. This research contributes new information on land use patterns and dynamics in the Congo basin, an understudied region. More specifically, results from this research contribute information on recent trends of oil palm expansion in Cameroon that will be used in national land use planning strategies.

  1. Regional variability of the frequency distribution of daily precipitation and the synoptic characteristics of heavy precipitation events in present and future climate simulations

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.

    Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.

  2. An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Sung, H. J.; Hyun, J. M.

    Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.

  3. Tracing Multi-Scale Climate Change at Low Latitude from Glacier Shrinkage

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Kaser, G.

    2009-12-01

    Significant shrinkage of glaciers on top of Africa's highest mountain (Kilimanjaro, 5895 m a.s.l.) has been observed between the late 19th century and the present. Multi-year data from our automatic weather station on the largest remaining slope glacier at 5873 m allow us to force and verify a process-based distributed glacier mass balance model. This generates insights into energy and mass fluxes at the glacier-atmosphere interface, their feedbacks, and how they are linked to atmospheric conditions. By means of numerical atmospheric modeling and global climate model simulations, we explore the linkages of the local climate in Kilimanjaro's summit zone to larger-scale climate dynamics - which suggests a causal connection between Indian Ocean dynamics, mesoscale mountain circulation, and glacier mass balance. Based on this knowledge, the verified mass balance model is used for backward modeling of the steady-state glacier extent observed in the 19th century, which yields the characteristics of local climate change between that time and the present (30-45% less precipitation, 0.1-0.3 hPa less water vapor pressure, 2-4 percentage units less cloud cover at present). Our multi-scale approach provides an important contribution, from a cryospheric viewpoint, to the understanding of how large-scale climate change propagates to the tropical free troposphere. Ongoing work in this context targets the millennium-scale relation between large-scale climate and glacier behavior (by downscaling precipitation), and the possible effects of regional anthropogenic activities (land use change) on glacier mass balance.

  4. Scaling of an information system in a public healthcare market--infrastructuring from the vendor's perspective.

    PubMed

    Johannessen, Liv Karen; Obstfelder, Aud; Lotherington, Ann Therese

    2013-05-01

    The purpose of this paper is to explore the making and scaling of information infrastructures, as well as how the conditions for scaling a component may change for the vendor. The first research question is how the making and scaling of a healthcare information infrastructure can be done and by whom. The second question is what scope for manoeuvre there might be for vendors aiming to expand their market. This case study is based on an interpretive approach, whereby data is gathered through participant observation and semi-structured interviews. A case study of the making and scaling of an electronic system for general practitioners ordering laboratory services from hospitals is described as comprising two distinct phases. The first may be characterized as an evolving phase, when development, integration and implementation were achieved in small steps, and the vendor, together with end users, had considerable freedom to create the solution according to the users' needs. The second phase was characterized by a large-scale procurement process over which regional healthcare authorities exercised much more control and the needs of groups other than the end users influenced the design. The making and scaling of healthcare information infrastructures is not simply a process of evolution, in which the end users use and change the technology. It also consists of large steps, during which different actors, including vendors and healthcare authorities, may make substantial contributions. This process requires work, negotiation and strategies. The conditions for the vendor may change dramatically, from considerable freedom and close relationships with users and customers in the small-scale development, to losing control of the product and being required to engage in more formal relations with customers in the wider public healthcare market. Onerous procurement processes may be one of the reasons why large-scale implementation of information projects in healthcare is difficult and slow. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  6. Large-Scale Simulation of Multi-Asset Ising Financial Markets

    NASA Astrophysics Data System (ADS)

    Takaishi, Tetsuya

    2017-03-01

    We perform a large-scale simulation of an Ising-based financial market model that includes 300 asset time series. The financial system simulated by the model shows a fat-tailed return distribution and volatility clustering and exhibits unstable periods indicated by the volatility index measured as the average of absolute-returns. Moreover, we determine that the cumulative risk fraction, which measures the system risk, changes at high volatility periods. We also calculate the inverse participation ratio (IPR) and its higher-power version, IPR6, from the absolute-return cross-correlation matrix. Finally, we show that the IPR and IPR6 also change at high volatility periods.

  7. Polar ocean ecosystems in a changing world.

    PubMed

    Smetacek, Victor; Nicol, Stephen

    2005-09-15

    Polar organisms have adapted their seasonal cycles to the dynamic interface between ice and water. This interface ranges from the micrometre-sized brine channels within sea ice to the planetary-scale advance and retreat of sea ice. Polar marine ecosystems are particularly sensitive to climate change because small temperature differences can have large effects on the extent and thickness of sea ice. Little is known about the interactions between large, long-lived organisms and their planktonic food supply. Disentangling the effects of human exploitation of upper trophic levels from basin-wide, decade-scale climate cycles to identify long-term, global trends is a daunting challenge facing polar bio-oceanography.

  8. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  9. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  10. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  11. Natural disasters and population mobility in Bangladesh

    PubMed Central

    Gray, Clark L.; Mueller, Valerie

    2012-01-01

    The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity. PMID:22474361

  12. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  14. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  15. Energetics of subdomain movements and fluorescence probe solvation environment change in ATP-bound myosin.

    PubMed

    Harris, Michael J; Woo, Hyung-June

    2008-11-01

    Energetics of conformational changes experienced by an ATP-bound myosin head detached from actin was studied by all-atom explicit water umbrella sampling simulations. The statistics of coupling between large scale domain movements and smaller scale structural features were examined, including the closing of the ATP binding pocket, and a number of key hydrogen bond formations shown to play roles in structural and biochemical studies. The statistics for the ATP binding pocket open/close transition show an evolution of the relative stability from the open state in the early stages of the recovery stroke to the stable closed state after the stroke. The change in solvation environment of the fluorescence probe Trp507 (scallop numbering; 501 in Dictyostelium discoideum) indicates that the probe faithfully reflects the closing of the binding pocket as previously shown in experimental studies, while being directly coupled to roughly the early half of the overall large scale conformational change of the converter domain rotation. The free energy change of this solvation environment change, in particular, is -1.3 kcal/mol, in close agreement with experimental estimates. In addition, our results provide direct molecular level data allowing for interpretations of the fluorescence experiments of myosin conformational change in terms of the de-solvation of Trp side chain.

  16. Three Mars Years of Surface Albedo Changes Observed by the Mars Reconnaissance Orbiter MARCI Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Wellington, D. F.; Anderson, R. B.; Wolff, M. J.; Supulver, K. D.; Cantor, B. A.; Malin, M. C.

    2012-12-01

    The NASA Mars Reconnaissance Orbiter (MRO) spacecraft has been in its prime mapping orbit of the Red Planet since November 2006, a little over three Mars years. MRO's Mars Color Imager (MARCI) investigation has been acquiring wide-angle, approximately 1 km/pixel resolution multispectral images (from the UV to the short-wave near-IR) throughout the mission from the spacecraft's 300 km circular polar orbit. As of fall 2012, MARCI has acquired more than 25,000 image sequences, with its 180 degree field of view covering local solar times of approximately 15:00 +/- 2 hours at the equator. These images can be merged and map projected to provide near-global imaging coverage of Mars for almost every sol of the mission. These maps have been used to characterize and monitor changes in seasonal and interannual dust and water ice cloud opacity, growth and decay of local- to global-scale dust storms, and polar cap growth and recession. The data are also well-suited for studying small- to large-scale changes in surface albedo markings, important for understanding the nature of aeolian transport of dust and sand in the current Martian environment, as well as for modeling the radiative influence of the darker (warmer) or brighter (cooler) surface on local-scale atmospheric circulation and storm systems. We are using calibrated, map-projected, coregistered subsets of MARCI images to characterize and investigate surface albedo changes in a number of specific regions of interest, based on past Viking Orbiter, Hubble Space Telescope, and Mars Global Surveyor images of changing large-scale surface albedo patterns over recent decades, as well as recent surface missions that have characterized small-scale changes in surface albedo. Specific areas of study of large-scale changes include the dark areas Syrtis Major, Acidalia, Cimmeria, Sirenum, and Solis Lacus, and our initial focus areas for small-scale variations include regions in and around the landing sites of the Mars Exploration Rovers Spirit (Gusev crater) and Opportunity (Meridiani Planum), as well as Gale crater, the landing site for the Mars Science Laboratory rover Curiosity. Time-lapse animations of albedo changes in and around Gale crater, for example, reveal tens of km-scale changes in low albedo surface markings both within the crater (including near the rover's planned traverse path) as well as within the 500 km long low albedo wind streak south of the crater. Combined with morphologic, thermal inertia, and compositional/mineralogic constraints from other data sets, MARCI albedo variation measurements can help to constrain present rates of dust and sand transport in a variety of environments on Mars.

  17. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    NASA Astrophysics Data System (ADS)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  18. The large-scale modulation of cosmic rays in mid-1982: Its dependence on heliospheric longitude and radius

    NASA Technical Reports Server (NTRS)

    Pyle, K. R.; Simpson, J. A.

    1985-01-01

    Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum.

  19. Controlling Guessing Bias in the Dichotomous Rasch Model Applied to a Large-Scale, Vertically Scaled Testing Program

    ERIC Educational Resources Information Center

    Andrich, David; Marais, Ida; Humphry, Stephen Mark

    2016-01-01

    Recent research has shown how the statistical bias in Rasch model difficulty estimates induced by guessing in multiple-choice items can be eliminated. Using vertical scaling of a high-profile national reading test, it is shown that the dominant effect of removing such bias is a nonlinear change in the unit of scale across the continuum. The…

  20. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  1. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  2. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks.

    PubMed

    Goya-Maldonado, Roberto; Brodmann, Katja; Keil, Maria; Trost, Sarah; Dechent, Peter; Gruber, Oliver

    2016-02-01

    Misdiagnosing bipolar depression can lead to very deleterious consequences of mistreatment. Although depressive symptoms may be similarly expressed in unipolar and bipolar disorder, changes in specific brain networks could be very distinct, being therefore informative markers for the differential diagnosis. We aimed to characterize specific alterations in candidate large-scale networks (frontoparietal, cingulo-opercular, and default mode) in symptomatic unipolar and bipolar patients using resting state fMRI, a cognitively low demanding paradigm ideal to investigate patients. Networks were selected after independent component analysis, compared across 40 patients acutely depressed (20 unipolar, 20 bipolar), and 20 controls well-matched for age, gender, and education levels, and alterations were correlated to clinical parameters. Despite comparable symptoms, patient groups were robustly differentiated by large-scale network alterations. Differences were driven in bipolar patients by increased functional connectivity in the frontoparietal network, a central executive and externally-oriented network. Conversely, unipolar patients presented increased functional connectivity in the default mode network, an introspective and self-referential network, as much as reduced connectivity of the cingulo-opercular network to default mode regions, a network involved in detecting the need to switch between internally and externally oriented demands. These findings were mostly unaffected by current medication, comorbidity, and structural changes. Moreover, network alterations in unipolar patients were significantly correlated to the number of depressive episodes. Unipolar and bipolar groups displaying similar symptomatology could be clearly distinguished by characteristic changes in large-scale networks, encouraging further investigation of network fingerprints for clinical use. Hum Brain Mapp 37:808-818, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  4. The Saskatchewan River Basin - a large scale observatory for water security research (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.

    2013-12-01

    The 336,000 km2 Saskatchewan River Basin (SaskRB) in Western Canada illustrates many of the issues of Water Security faced world-wide. It poses globally-important science challenges due to the diversity in its hydro-climate and ecological zones. With one of the world's more extreme climates, it embodies environments of global significance, including the Rocky Mountains (source of the major rivers in Western Canada), the Boreal Forest (representing 30% of Canada's land area) and the Prairies (home to 80% of Canada's agriculture). Management concerns include: provision of water resources to more than three million inhabitants, including indigenous communities; balancing competing needs for water between different uses, such as urban centres, industry, agriculture, hydropower and environmental flows; issues of water allocation between upstream and downstream users in the three prairie provinces; managing the risks of flood and droughts; and assessing water quality impacts of discharges from major cities and intensive agricultural production. Superimposed on these issues is the need to understand and manage uncertain water futures, including effects of economic growth and environmental change, in a highly fragmented water governance environment. Key science questions focus on understanding and predicting the effects of land and water management and environmental change on water quantity and quality. To address the science challenges, observational data are necessary across multiple scales. This requires focussed research at intensively monitored sites and small watersheds to improve process understanding and fine-scale models. To understand large-scale effects on river flows and quality, land-atmosphere feedbacks, and regional climate, integrated monitoring, modelling and analysis is needed at large basin scale. And to support water management, new tools are needed for operational management and scenario-based planning that can be implemented across multiple scales and multiple jurisdictions. The SaskRB has therefore been developed as a large scale observatory, now a Regional Hydroclimate Project of the World Climate Research Programme's GEWEX project, and is available to contribute to the emerging North American Water Program. State-of-the-art hydro-ecological experimental sites have been developed for the key biomes, and a river and lake biogeochemical research facility, focussed on impacts of nutrients and exotic chemicals. Data are integrated at SaskRB scale to support the development of improved large scale climate and hydrological modelling products, the development of DSS systems for local, provincial and basin-scale management, and the development of related social science research, engaging stakeholders in the research and exploring their values and priorities for water security. The observatory provides multiple scales of observation and modelling required to develop: a) new climate, hydrological and ecological science and modelling tools to address environmental change in key environments, and their integrated effects and feedbacks at large catchment scale, b) new tools needed to support river basin management under uncertainty, including anthropogenic controls on land and water management and c) the place-based focus for the development of new transdisciplinary science.

  5. Predicting spatio-temporal failure in large scale observational and micro scale experimental systems

    NASA Astrophysics Data System (ADS)

    de las Heras, Alejandro; Hu, Yong

    2006-10-01

    Forecasting has become an essential part of modern thought, but the practical limitations still are manifold. We addressed future rates of change by comparing models that take into account time, and models that focus more on space. Cox regression confirmed that linear change can be safely assumed in the short-term. Spatially explicit Poisson regression, provided a ceiling value for the number of deforestation spots. With several observed and estimated rates, it was decided to forecast using the more robust assumptions. A Markov-chain cellular automaton thus projected 5-year deforestation in the Amazonian Arc of Deforestation, showing that even a stable rate of change would largely deplete the forest area. More generally, resolution and implementation of the existing models could explain many of the modelling difficulties still affecting forecasting.

  6. GENASIS Basics: Object-oriented utilitarian functionality for large-scale physics simulations (Version 2)

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2017-05-01

    GenASiS Basics provides Fortran 2003 classes furnishing extensible object-oriented utilitarian functionality for large-scale physics simulations on distributed memory supercomputers. This functionality includes physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. This revision -Version 2 of Basics - makes mostly minor additions to functionality and includes some simplifying name changes.

  7. Isolating causal pathways between flow and fish in the regulated river hierarchy

    Treesearch

    Ryan McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews

    2015-01-01

    Unregulated river systems are organized in a hierarchy in which large scale factors (i.e. landscape and segment scales) influence local habitats (i.e. reach, meso- and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative...

  8. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  9. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of climate change on crop productivity in a watershed. The first was carried out by the large-scale crop model alone. The second was carried out by the integrated model of the large-scale crop model and the H08 model. The former projected that changes in temperature and precipitation due to future climate change would give rise to increasing the water stress in crops. Nevertheless, the latter projected that the increasing amount of agricultural water resources in the watershed would supply sufficient amount of water for irrigation, consequently reduce the water stress. The integrated model demonstrated the importance of taking into account the water circulation in watershed when predicting the regional crop production.

  10. CONSORT to community: translation of an RCT to a large-scale community intervention and learnings from evaluation of the upscaled program.

    PubMed

    Moores, Carly Jane; Miller, Jacqueline; Perry, Rebecca Anne; Chan, Lily Lai Hang; Daniels, Lynne Allison; Vidgen, Helen Anna; Magarey, Anthea Margaret

    2017-11-29

    Translation encompasses the continuum from clinical efficacy to widespread adoption within the healthcare service and ultimately routine clinical practice. The Parenting, Eating and Activity for Child Health (PEACH™) program has previously demonstrated clinical effectiveness in the management of child obesity, and has been recently implemented as a large-scale community intervention in Queensland, Australia. This paper aims to describe the translation of the evaluation framework from a randomised controlled trial (RCT) to large-scale community intervention (PEACH™ QLD). Tensions between RCT paradigm and implementation research will be discussed along with lived evaluation challenges, responses to overcome these, and key learnings for future evaluation conducted at scale. The translation of evaluation from PEACH™ RCT to the large-scale community intervention PEACH™ QLD is described. While the CONSORT Statement was used to report findings from two previous RCTs, the REAIM framework was more suitable for the evaluation of upscaled delivery of the PEACH™ program. Evaluation of PEACH™ QLD was undertaken during the project delivery period from 2013 to 2016. Experiential learnings from conducting the evaluation of PEACH™ QLD to the described evaluation framework are presented for the purposes of informing the future evaluation of upscaled programs. Evaluation changes in response to real-time changes in the delivery of the PEACH™ QLD Project were necessary at stages during the project term. Key evaluation challenges encountered included the collection of complete evaluation data from a diverse and geographically dispersed workforce and the systematic collection of process evaluation data in real time to support program changes during the project. Evaluation of large-scale community interventions in the real world is challenging and divergent from RCTs which are rigourously evaluated within a more tightly-controlled clinical research setting. Constructs explored in an RCT are inadequate in describing the enablers and barriers of upscaled community program implementation. Methods for data collection, analysis and reporting also require consideration. We present a number of experiential reflections and suggestions for the successful evaluation of future upscaled community programs which are scarcely reported in the literature. PEACH™ QLD was retrospectively registered with the Australian New Zealand Clinical Trials Registry on 28 February 2017 (ACTRN12617000315314).

  11. A new method for large-scale assessment of change in ecosystem functioning in relation to land degradation

    NASA Astrophysics Data System (ADS)

    Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus

    2017-04-01

    Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes driving LD (Vogt et al., 2011). Moreover, the link between LD and changes in land use (how land use changes relates to change in vegetation productivity and ecosystem functioning) is not straightforward. In this study we used the segmented trend method developed by Horion et al. (2016) for large-scale systematic assessment of hotspots of change in ecosystem functioning in relation to LD. This method alleviates shortcomings of widely used linear trend model that does not account for abrupt change, nor adequately captures the actual changes in ecosystem functioning (de Jong et al. 2013; Horion et al. 2016). Here we present a new methodology for assessing gradual and abrupt changes in ecosystem functioning in Europe. Based on segmented trend analysis of water-use efficiency (WUE) time series, an Ecosystem Change Type (ECT) map was produced over Europe at 1km resolution for the period 1999 to 2013. An analysis of auxiliary data on land use/cover change, drought trends, and soil threats was performed over hotspot areas to better understand the observed changes in ecosystem functioning and their driving mechanisms. The ECT map was validated using the case study sites from the EU-funded RECARE project. Overall, the ECT map accurately highlighted areas characterized by a major change in pathways of ecosystem functioning as well as indicated the type and timing of changes. Allan, R. et al. (2007). Climate and land degradation. Verlag Berlin Heidelberg: Springer. de Jong, R et al. (2013). Remote Sensing, 5, 1117-1133 Horion, S. et al. (2016). Global Change Biology, 22, 2801-2817 Vogt, J. V et al. (2011). Land Degradation & Development, 22: 150-165.

  12. Variations of trends of indicators describing complex systems: Change of scaling precursory to extreme events

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A. A.

    2010-09-01

    Socioeconomic and natural complex systems persistently generate extreme events also known as disasters, crises, or critical transitions. Here we analyze patterns of background activity preceding extreme events in four complex systems: economic recessions, surges in homicides in a megacity, magnetic storms, and strong earthquakes. We use as a starting point the indicators describing the system's behavior and identify changes in an indicator's trend. Those changes constitute our background events (BEs). We demonstrate a premonitory pattern common to all four systems considered: relatively large magnitude BEs become more frequent before extreme event. A premonitory change of scaling has been found in various models and observations. Here we demonstrate this change in scaling of uniformly defined BEs in four real complex systems, their enormous differences notwithstanding.

  13. Characterizing Long-Term Groundwater Conditions and Lithology for the Design of Large-Scale Borehole Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Smith, David Charles

    Construction of large scale ground coupled heat pump (GCHP) systems that operate with hundreds or even thousands of boreholes for the borehole heat exchangers (BHE) has increased in recent years with many coming on line in the past 10 years. Many large institutions are constructing these systems because of their ability to store energy in the subsurface for indoor cooling during the warm summer months and extract that energy for heating during the cool winter months. Despite the increase in GCHP system systems constructed, there have been few long term studies on how these large systems interact with the subsurface. The thermal response test (TRT) is the industry standard for determining the thermal properties of the rock and soil. The TRT is limited in that it can only be used to determine the effective thermal conductivity over the whole length of a single borehole at the time that it is administered. The TRT cannot account for long-term changes in the aquifer saturation, changes in groundwater flow, or characterize different rock and soil units by effectiveness for heat storage. This study established new methods and also the need for the characterization of the subsurface for the purpose of design and long-term monitoring for GCHP systems. These new methods show that characterizing the long-term changes in aquifer saturation and groundwater flow, and characterizing different rock and soil units are an important part of the design and planning process of these systems. A greater understanding of how large-scale GCHP systems interact with the subsurface will result in designs that perform more efficiently over a longer period of time and expensive modifications due to unforeseen changes in system performance will be reduced.

  14. Extreme weather: Subtropical floods and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.

  15. How life changes itself: the Read-Write (RW) genome.

    PubMed

    Shapiro, James A

    2013-09-01

    The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences. © 2013 Elsevier B.V. All rights reserved.

  16. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.

  17. Statistical Model to Analyze Quantitative Proteomics Data Obtained by 18O/16O Labeling and Linear Ion Trap Mass Spectrometry

    PubMed Central

    Jorge, Inmaculada; Navarro, Pedro; Martínez-Acedo, Pablo; Núñez, Estefanía; Serrano, Horacio; Alfranca, Arántzazu; Redondo, Juan Miguel; Vázquez, Jesús

    2009-01-01

    Statistical models for the analysis of protein expression changes by stable isotope labeling are still poorly developed, particularly for data obtained by 16O/18O labeling. Besides large scale test experiments to validate the null hypothesis are lacking. Although the study of mechanisms underlying biological actions promoted by vascular endothelial growth factor (VEGF) on endothelial cells is of considerable interest, quantitative proteomics studies on this subject are scarce and have been performed after exposing cells to the factor for long periods of time. In this work we present the largest quantitative proteomics study to date on the short term effects of VEGF on human umbilical vein endothelial cells by 18O/16O labeling. Current statistical models based on normality and variance homogeneity were found unsuitable to describe the null hypothesis in a large scale test experiment performed on these cells, producing false expression changes. A random effects model was developed including four different sources of variance at the spectrum-fitting, scan, peptide, and protein levels. With the new model the number of outliers at scan and peptide levels was negligible in three large scale experiments, and only one false protein expression change was observed in the test experiment among more than 1000 proteins. The new model allowed the detection of significant protein expression changes upon VEGF stimulation for 4 and 8 h. The consistency of the changes observed at 4 h was confirmed by a replica at a smaller scale and further validated by Western blot analysis of some proteins. Most of the observed changes have not been described previously and are consistent with a pattern of protein expression that dynamically changes over time following the evolution of the angiogenic response. With this statistical model the 18O labeling approach emerges as a very promising and robust alternative to perform quantitative proteomics studies at a depth of several thousand proteins. PMID:19181660

  18. The causality analysis of climate change and large-scale human crisis

    PubMed Central

    Zhang, David D.; Lee, Harry F.; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-01-01

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500–1800 in Europe. Results show that cooling from A.D. 1560–1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined “golden” and “dark” ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere. PMID:21969578

  19. The causality analysis of climate change and large-scale human crisis.

    PubMed

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  20. Distant storms as drivers of environmental change at Pacific atolls.

    PubMed

    Gardner, Jonathan P A; Garton, David W; Collen, John D; Zwartz, Daniel

    2014-01-01

    The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls.

  1. Distant Storms as Drivers of Environmental Change at Pacific Atolls

    PubMed Central

    Gardner, Jonathan P. A.; Garton, David W.; Collen, John D.; Zwartz, Daniel

    2014-01-01

    The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls. PMID:24498232

  2. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Changing American Education. Recapturing the Past or Inventing the Future?

    ERIC Educational Resources Information Center

    Borman, Kathryn M., Ed.; Greenman, Nancy P., Ed.

    This book examines the nature of comprehensive, large scale historical and social changes that contextualize educational reform, and it amplifies the meaning of lessons learned by those who have assisted in change efforts. It also examines how the rhetoric of educational change may fall short of the reality, as translated to processes and…

  4. Wildfire as a hydrological and geomorphological agent

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Doerr, S. H.

    2006-02-01

    Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.

  5. Estimation of shoreline position and change using airborne topographic lidar data

    USGS Publications Warehouse

    Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A.

    2002-01-01

    A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.

  6. Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws

    NASA Astrophysics Data System (ADS)

    Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel

    2018-07-01

    Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.

  7. Regional Climate Implications of Large-scale Cultivation of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Rowe, C. M.; Oglesby, R. J.; Hays, C. J.; van Etten, A. R.

    2008-12-01

    Conversion from corn-based ethanol to cellulosic ethanol has the potential to dramatically alter the production of biofuels in the United States and could result in large-scale changes in the agricultural landscape of vast areas of the country. Regions currently dominated by corn production could see widespread planting of switchgrass and other fast-growing, water-efficient sources of cellulose biomass. An often overlooked side effect of these land-cover changes could be a significant alteration of the energy fluxes between the land surface and the atmosphere with profound local, regional, and continental impacts on the climate system. Changes in the surface energy balance result primarily from differences in the seasonality of transpiration from corn versus switchgrass and could be enhanced as a result of a reduced need for irrigation of switchgrass in areas where corn can be produced only under irrigation. Preliminary modeling results using a simple "bucket" land surface model coupled to the WRF mesoscale model have demonstrated increases in summertime average daily maximum temperature of up to 4° C, smaller increases of up to 2° C in nighttime minimum temperatures and reductions in precipitation by up to 25% when corn was changed to switchgrass over the central United States. Improved parameterization of biofuel crops in more sophisticated land surface models will allow us to refine these preliminary estimates and assess the impacts of large-scale conversion to cellulosic biofuel crops, relative to greenhouse gas induced regional climate change.

  8. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  9. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    NASA Astrophysics Data System (ADS)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  10. Ecological fire use for ecological fire management: Managing large wildfires by design

    Treesearch

    Timothy Ingalsbee

    2015-01-01

    Past fire exclusion policies and fire suppression actions have led to a historic "fire deficit" on public wildlands. These sociocultural actions have led to unprecedented environmental changes that have created conditions conducive to more frequent large-scale wildfires. Politicians, the newsmedia, and agency officials portray large wildland fires as...

  11. Barriers Inhibiting Inquiry-Based Science Teaching and Potential Solutions: Perceptions of Positively Inclined Early Adopters

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Michael; Danaia, Lena; McKinnon, David H.

    2017-07-01

    In recent years, calls for the adoption of inquiry-based pedagogies in the science classroom have formed a part of the recommendations for large-scale high school science reforms. However, these pedagogies have been problematic to implement at scale. This research explores the perceptions of 34 positively inclined early-adopter teachers in relation to their implementation of inquiry-based pedagogies. The teachers were part of a large-scale Australian high school intervention project based around astronomy. In a series of semi-structured interviews, the teachers identified a number of common barriers that prevented them from implementing inquiry-based approaches. The most important barriers identified include the extreme time restrictions on all scales, the poverty of their common professional development experiences, their lack of good models and definitions for what inquiry-based teaching actually is, and the lack of good resources enabling the capacity for change. Implications for expectations of teachers and their professional learning during educational reform and curriculum change are discussed.

  12. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri

    2013-02-01

    Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.

  13. Operational monitoring of land-cover change using multitemporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Rogan, John

    2005-11-01

    Land-cover change, manifested as either land-cover modification and/or conversion, can occur at all spatial scales, and changes at local scales can have profound, cumulative impacts at broader scales. The implication of operational land-cover monitoring is that researchers have access to a continuous stream of remote sensing data, with the long term goal of providing for consistent and repetitive mapping. Effective large area monitoring of land-cover (i.e., >1000 km2) can only be accomplished by using remotely sensed images as an indirect data source in land-cover change mapping and as a source for land-cover change model projections. Large area monitoring programs face several challenges: (1) choice of appropriate classification scheme/map legend over large, topographically and phenologically diverse areas; (2) issues concerning data consistency and map accuracy (i.e., calibration and validation); (3) very large data volumes; (4) time consuming data processing and interpretation. Therefore, this dissertation research broadly addresses these challenges in the context of examining state-of-the-art image pre-processing, spectral enhancement, classification, and accuracy assessment techniques to assist the California Land-cover Mapping and Monitoring Program (LCMMP). The results of this dissertation revealed that spatially varying haze can be effectively corrected from Landsat data for the purposes of change detection. The Multitemporal Spectral Mixture Analysis (MSMA) spectral enhancement technique produced more accurate land-cover maps than those derived from the Multitemporal Kauth Thomas (MKT) transformation in northern and southern California study areas. A comparison of machine learning classifiers showed that Fuzzy ARTMAP outperformed two classification tree algorithms, based on map accuracy and algorithm robustness. Variation in spatial data error (positional and thematic) was explored in relation to environmental variables using geostatistical interpolation techniques. Finally, the land-cover modification maps generated for three time intervals (1985--1990--1996--2000), with nine change-classes revealed important variations in land-cover gain and loss between northern and southern California study areas.

  14. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    NASA Astrophysics Data System (ADS)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  15. Recent developments in large-scale ozone generation with dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose L.

    2014-10-01

    Large-scale ozone generation for industrial applications has been entirely based on the creation of microplasmas or microdischarges created using dielectric barrier discharge (DBD) reactors. Although versions of DBD generated ozone have been in continuous use for over a hundred years especially in water treatment, recent changes in environmental awareness and sustainability have lead to a surge of ozone generating facilities throughout the world. As a result of this enhanced global usage of this environmental cleaning application various new discoveries have emerged in the science and technology of ozone generation. This presentation will describe some of the most recent breakthrough developments in large-scale ozone generation while further addressing some of the current scientific and engineering challenges of this technology.

  16. Effect of von Karman Vortex Shedding on Regular and Open-slit V-gutter Stabilized Turbulent Premixed Flames

    DTIC Science & Technology

    2012-04-01

    Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain

  17. 6 Ways to Create Change

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2013-01-01

    With so many disruptive forces at work in higher education, colleges and universities are faced with the imperative to change not just technologies and processes, but behaviors and mindsets. In part one of a two-part series, change-management experts share six ways to foster large-scale transformations on campus. "Campus Technology"…

  18. The Management of Large-Scale Change in Pakistani Education

    ERIC Educational Resources Information Center

    Razzaq, Jamila; Forde, Christine

    2014-01-01

    This article argues that although there are increasing similarities in priorities across different national education systems, contextual differences raise questions about the replication of sets of change strategies based on particular understandings of the nature of educational change across these different systems. This article begins with an…

  19. The Effect of Digital Publishing on Technical Services in University Libraries

    ERIC Educational Resources Information Center

    Hunter, Ben

    2013-01-01

    The past decade has brought enormous changes in scholarly communication, leading many libraries to undertake large-scale digital publishing initiatives. However, no study has investigated how technical services departments are changing to support these new services. Using change management as a theoretical framework, the investigator uses content…

  20. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    NASA Astrophysics Data System (ADS)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  1. Climate change alters stability and species potential interactions in a large marine ecosystem.

    PubMed

    Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M

    2018-01-01

    We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. © 2017 John Wiley & Sons Ltd.

  2. A conditional approach to determining the effect of anthropogenic climate change on very rare events.

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Pall, Pardeep; Zarzycki, Colin; Stone, Daithi

    2016-04-01

    Probabilistic extreme event attribution is especially difficult for weather events that are caused by extremely rare large-scale meteorological patterns. Traditional modeling techniques have involved using ensembles of climate models, either fully coupled or with prescribed ocean and sea ice. Ensemble sizes for the latter case ranges from several 100 to tens of thousand. However, even if the simulations are constrained by the observed ocean state, the requisite large-scale meteorological pattern may not occur frequently enough or even at all in free running climate model simulations. We present a method to ensure that simulated events similar to the observed event are modeled with enough fidelity that robust statistics can be determined given the large scale meteorological conditions. By initializing suitably constrained short term ensemble hindcasts of both the actual weather system and a counterfactual weather system where the human interference in the climate system is removed, the human contribution to the magnitude of the event can be determined. However, the change (if any) in the probability of an event of the observed magnitude is conditional not only on the state of the ocean/sea ice system but also on the prescribed initial conditions determined by the causal large scale meteorological pattern. We will discuss the implications of this technique through two examples; the 2013 Colorado flood and the 2014 Typhoon Haiyan.

  3. Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busuioc, A.; Storch, H. von; Schnur, R.

    Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). Themore » climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in time-slice mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 x CO{sub 2} GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.« less

  4. Similarity spectra analysis of high-performance jet aircraft noise.

    PubMed

    Neilsen, Tracianne B; Gee, Kent L; Wall, Alan T; James, Michael M

    2013-04-01

    Noise measured in the vicinity of an F-22A Raptor has been compared to similarity spectra found previously to represent mixing noise from large-scale and fine-scale turbulent structures in laboratory-scale jet plumes. Comparisons have been made for three engine conditions using ground-based sideline microphones, which covered a large angular aperture. Even though the nozzle geometry is complex and the jet is nonideally expanded, the similarity spectra do agree with large portions of the measured spectra. Toward the sideline, the fine-scale similarity spectrum is used, while the large-scale similarity spectrum provides a good fit to the area of maximum radiation. Combinations of the two similarity spectra are shown to match the data in between those regions. Surprisingly, a combination of the two is also shown to match the data at the farthest aft angle. However, at high frequencies the degree of congruity between the similarity and the measured spectra changes with engine condition and angle. At the higher engine conditions, there is a systematically shallower measured high-frequency slope, with the largest discrepancy occurring in the regions of maximum radiation.

  5. Short term evolution of coronal hole boundaries

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Krieger, A. S.; Solodyna, C. V.

    1978-01-01

    The evolution of coronal hole boundary positions on a time scale of approximately 1 day is studied on the basis of an examination of all coronal holes observed by Skylab from May to November 1973. It is found that a substantial fraction (an average of 38%) of all coronal hole boundaries shifted by at least 1 deg heliocentric in the course of a day. Most (70%) of these changes were on a relatively small scale (less than 3 times the supergranulation cell size), but a significant fraction occurred as discrete events on a much larger scale. The large-scale shifts in the boundary locations involved changes in X-ray emission from these areas of the sun. There were generally more changes in the boundaries of the most rapidly evolving holes, but no simple relationship between the amount of change and the rate of hole growth or decay.

  6. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Attema, Jisk

    2015-08-01

    Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.

  7. Cross-scale interactions affect tree growth and intrinsic water use efficiency and highlight the importance of spatial context in managing forests under global change

    EPA Science Inventory

    1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the...

  8. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  9. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  10. Studies of Sub-Synchronous Oscillations in Large-Scale Wind Farm Integrated System

    NASA Astrophysics Data System (ADS)

    Yue, Liu; Hang, Mend

    2018-01-01

    With the rapid development and construction of large-scale wind farms and grid-connected operation, the series compensation wind power AC transmission is gradually becoming the main way of power usage and improvement of wind power availability and grid stability, but the integration of wind farm will change the SSO (Sub-Synchronous oscillation) damping characteristics of synchronous generator system. Regarding the above SSO problem caused by integration of large-scale wind farms, this paper focusing on doubly fed induction generator (DFIG) based wind farms, aim to summarize the SSO mechanism in large-scale wind power integrated system with series compensation, which can be classified as three types: sub-synchronous control interaction (SSCI), sub-synchronous torsional interaction (SSTI), sub-synchronous resonance (SSR). Then, SSO modelling and analysis methods are categorized and compared by its applicable areas. Furthermore, this paper summarizes the suppression measures of actual SSO projects based on different control objectives. Finally, the research prospect on this field is explored.

  11. Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection.

    PubMed

    Gayen, Bishakhdatta; Hughes, Graham O; Griffiths, Ross W

    2013-09-20

    A new, more complete view of the mechanical energy budget for Rayleigh-Bénard convection is developed and examined using three-dimensional numerical simulations at large Rayleigh numbers and Prandtl number of 1. The driving role of available potential energy is highlighted. The relative magnitudes of different energy conversions or pathways change significantly over the range of Rayleigh numbers Ra ~ 10(7)-10(13). At Ra < 10(7) small-scale turbulent motions are energized directly from available potential energy via turbulent buoyancy flux and kinetic energy is dissipated at comparable rates by both the large- and small-scale motions. In contrast, at Ra ≥ 10(10) most of the available potential energy goes into kinetic energy of the large-scale flow, which undergoes shear instabilities that sustain small-scale turbulence. The irreversible mixing is largely confined to the unstable boundary layer, its rate exactly equal to the generation of available potential energy by the boundary fluxes, and mixing efficiency is 50%.

  12. [Stress management in large-scale establishments].

    PubMed

    Fukasawa, Kenji

    2002-07-01

    Due to a recent dramatic change in industrial structures in Japan, the role of large-scale enterprises is changing. Mass production used to be the major income sources of companies, but nowadays it has changed to high value-added products, including, software development. As a consequence of highly competitive inter-corporate development, there are various sources of job stress which induce health problems in employees, especially those concerned with development or management. To simply to obey the law or offer medical care are not enough to achieve management of these problems. Occupational health staff need to act according to the disease type and provide care with support from the Supervisor and Personnel Division. And for the training, development and consultation system, occupational health staff must work with the Personnel Division and Safety Division, and be approved by management supervisors.

  13. Global change in wilderness areas: disentangling natural and anthropogenic changes

    Treesearch

    Lisa J. Graumlich

    2000-01-01

    Human impacts on the Earth’s ecosystems are globally pervasive. Wilderness areas, although largely protected from direct human impact at local scales, nevertheless are subject to global changes in atmospheric composition, climate and biodiversity. Research in wilderness areas plays a critical role in disentangling natural and anthropogenic changes in ecosystems by...

  14. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Treesearch

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  15. Perceptions of Human Services Students about Social Change Education

    ERIC Educational Resources Information Center

    Herzberg, Judith T.

    2010-01-01

    Human services educators and scholars maintain that they are teaching social change theory and skills that will allow students to engage in large-scale social change. A review of the literature, from a critical theory perspective, offered little evidence that social change is being taught in human services programs. In this collective case study,…

  16. Multi-scale Modeling of Radiation Damage: Large Scale Data Analysis

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Bhardwaj, U.; Bukkuru, S.

    2016-10-01

    Modification of materials in nuclear reactors due to neutron irradiation is a multiscale problem. These neutrons pass through materials creating several energetic primary knock-on atoms (PKA) which cause localized collision cascades creating damage tracks, defects (interstitials and vacancies) and defect clusters depending on the energy of the PKA. These defects diffuse and recombine throughout the whole duration of operation of the reactor, thereby changing the micro-structure of the material and its properties. It is therefore desirable to develop predictive computational tools to simulate the micro-structural changes of irradiated materials. In this paper we describe how statistical averages of the collision cascades from thousands of MD simulations are used to provide inputs to Kinetic Monte Carlo (KMC) simulations which can handle larger sizes, more defects and longer time durations. Use of unsupervised learning and graph optimization in handling and analyzing large scale MD data will be highlighted.

  17. Measuring coral reef decline through meta-analyses

    PubMed Central

    Côté, I.M; Gill, J.A; Gardner, T.A; Watkinson, A.R

    2005-01-01

    Coral reef ecosystems are in decline worldwide, owing to a variety of anthropogenic and natural causes. One of the most obvious signals of reef degradation is a reduction in live coral cover. Past and current rates of loss of coral are known for many individual reefs; however, until recently, no large-scale estimate was available. In this paper, we show how meta-analysis can be used to integrate existing small-scale estimates of change in coral and macroalgal cover, derived from in situ surveys of reefs, to generate a robust assessment of long-term patterns of large-scale ecological change. Using a large dataset from Caribbean reefs, we examine the possible biases inherent in meta-analytical studies and the sensitivity of the method to patchiness in data availability. Despite the fact that our meta-analysis included studies that used a variety of sampling methods, the regional estimate of change in coral cover we obtained is similar to that generated by a standardized survey programme that was implemented in 1991 in the Caribbean. We argue that for habitat types that are regularly and reasonably well surveyed in the course of ecological or conservation research, meta-analysis offers a cost-effective and rapid method for generating robust estimates of past and current states. PMID:15814352

  18. Transformation of social networks in the late pre-Hispanic US Southwest.

    PubMed

    Mills, Barbara J; Clark, Jeffery J; Peeples, Matthew A; Haas, W R; Roberts, John M; Hill, J Brett; Huntley, Deborah L; Borck, Lewis; Breiger, Ronald L; Clauset, Aaron; Shackley, M Steven

    2013-04-09

    The late pre-Hispanic period in the US Southwest (A.D. 1200-1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure.

  19. Explaining Large-Scale Policy Change in the Turkish Health Care System: Ideas, Institutions, and Political Actors.

    PubMed

    Agartan, Tuba I

    2015-10-01

    Explaining policy change has been one of the major concerns of the health care politics and policy development literature. This article aims to explain the specific dynamics of large-scale reforms introduced within the framework of the Health Transformation Program in Turkey. It argues that confluence of the three streams - problem, policy, and politics - with the exceptional political will of the Justice and Development Party's (JDP) leaders opened up a window of opportunity for a large-scale policy change. The article also underscores the contribution of recent ideational perspectives that help explain "why" political actors in Turkey would focus on health care reform, given that there are a number of issues waiting to be addressed in the policy agenda. Examining how political actors framed problems and policies deepens our understanding of the content of the reform initiatives as well as the construction of the need to reform. The article builds on the insights of both the ideational and institutionalist perspectives when it argues that the interests, aspirations, and fears of the JDP, alongside the peculiar characteristics of the institutional context, have shaped its priorities and determination to carry out this reform initiative. Copyright © 2015 by Duke University Press.

  20. Transformation of social networks in the late pre-Hispanic US Southwest

    PubMed Central

    Mills, Barbara J.; Clark, Jeffery J.; Peeples, Matthew A.; Haas, W. R.; Roberts, John M.; Hill, J. Brett; Huntley, Deborah L.; Borck, Lewis; Breiger, Ronald L.; Clauset, Aaron; Shackley, M. Steven

    2013-01-01

    The late pre-Hispanic period in the US Southwest (A.D. 1200–1450) was characterized by large-scale demographic changes, including long-distance migration and population aggregation. To reconstruct how these processes reshaped social networks, we compiled a comprehensive artifact database from major sites dating to this interval in the western Southwest. We combine social network analysis with geographic information systems approaches to reconstruct network dynamics over 250 y. We show how social networks were transformed across the region at previously undocumented spatial, temporal, and social scales. Using well-dated decorated ceramics, we track changes in network topology at 50-y intervals to show a dramatic shift in network density and settlement centrality from the northern to the southern Southwest after A.D. 1300. Both obsidian sourcing and ceramic data demonstrate that long-distance network relationships also shifted from north to south after migration. Surprisingly, social distance does not always correlate with spatial distance because of the presence of network relationships spanning long geographic distances. Our research shows how a large network in the southern Southwest grew and then collapsed, whereas networks became more fragmented in the northern Southwest but persisted. The study also illustrates how formal social network analysis may be applied to large-scale databases of material culture to illustrate multigenerational changes in network structure. PMID:23530201

  1. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.

  2. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.

    PubMed

    Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M

    2017-11-01

    Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.

  3. Asynchrony, Fragmentation, and Scale Determine Benefits of Landscape Heterogeneity to Mobile Herbivores

    USDA-ARS?s Scientific Manuscript database

    Fragmentation of landscapes into spatially isolated parts is a prevailing source of environmental change worldwide. However, predicting the consequences of fragmentation for populations remains problematic, in large measure because the mechanisms translating landscape change into population performa...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang

    Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less

  5. Land Use, Livelihoods, Vulnerabilities, and Resilience in Coastal Bangladesh

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; Ackerly, B.; Goodbred, S. L., Jr.; Wilson, C.

    2014-12-01

    The densely populated, low-lying coast of Bangladesh is famously associated with vulnerability to sea-level rise, storms, and flooding. Simultaneously, land-use change has significantly altered local sediment transport, causing elevation loss and degradation of drainage. The rapid growth of shrimp aquaculture has also affected soil chemistry in former agricultural areas and the stock of riverine fisheries through intense larval harvesting. To understand the net impact of these environmental changes on the region's communities, it is necessary to examine interactions across scale - from externally driven large scale environmental change to smaller scale, but often more intense, local change - and also between the physical environment and social, political, and economic conditions. We report on a study of interactions between changing communities and changing environment in coastal Bangladesh, exploring the role of societal and physical factors in shaping the different outcomes and their effects on people's lives. Land reclamation projects in the 1960s surrounded intertidal islands with embankments. This allowed rice farming to expand, but also produced significant elevation loss, which rendered many islands vulnerable to waterlogging and flooding from storm surges. The advent of large-scale shrimp aquaculture added environmental, economic, social, and political stresses, but also brought much export revenue to a developing nation. Locally, attempts to remedy environmental stresses have produced mixed results, with similar measures succeeding in some communities and failing in others. In this context, we find that people are continually adapting to changing opportunities and constraints for food, housing, and income. Niches that support different livelihood activities emerge and dwindle, and their occupants' desires affect the political context. Understanding and successfully responding to the impacts of environmental change requires understanding not only the physical environment, but also the human livelihoods, interpersonal interactions, and human-environmental interactions within a socio-ecological system.

  6. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  7. Distributions and Changes of Carbonate Parameters Along the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Cai, W. J.; Wanninkhof, R. H.; Salisbury, J., II

    2017-12-01

    On top of anthropogenic climate change, upwelling, eutrophication, river discharge, and interactions with the open ocean have affected carbonate chemistry in coastal waters. In this study, we present the large-scale variations of carbonate parameters along the U.S. east coast using in situ observations obtained during an East Coast Ocean Acidification (ECOA) cruise in summer 2015. Compare with previous large-scale cruises along the east coast, the ECOA cruise increases spatial coverage in the Gulf of Marine region and has more offshore stations for a better understanding of carbon dynamics in coastal waters and their interactions with open ocean waters. Our results show that the spatial distribution of water mass properties set up the large-scale advection of salt and heat and the distribution of total alkalinity (TA). However, dissolved inorganic carbon (DIC) shows a distinct pattern. Coastal water pH displays high variability in the Gulf of Maine and the Mid-Atlantic Bight (MAB). But it is relatively homogeneous in the South Atlantic Bight (SAB). In contrast, the distribution of aragonite saturation state (Ω) has an increase pattern from north to south similar to those of TA, SST, and SSS. A mechanistic discussion will be presented to understand the controls on Ω in eastern coastal waters. A comparison with previous cruises also suggests very different changes of pH and Ω in the MAB and SAB. Preliminary analysis suggests an overall increase in surface pH and Ω in the MAB. In contrast, pH and Ω in the SAB surface waters decrease over the past two decades. This work serves as a platform for the monitoring of large-scale carbon cycling in the U.S. east coast. It is also important to identify the physical and biogeochemical processes that affect these distributions and changes over time for a better understanding of carbon cycling and ocean acidification in coastal waters.

  8. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  9. Flagellum synchronization inhibits large-scale hydrodynamic instabilities in sperm suspensions

    NASA Astrophysics Data System (ADS)

    Schöller, Simon F.; Keaveny, Eric E.

    2016-11-01

    Sperm in suspension can exhibit large-scale collective motion and form coherent structures. Our picture of such coherent motion is largely based on reduced models that treat the swimmers as self-locomoting rigid bodies that interact via steady dipolar flow fields. Swimming sperm, however, have many more degrees of freedom due to elasticity, have a more exotic shape, and generate spatially-complex, time-dependent flow fields. While these complexities are known to lead to phenomena such as flagellum synchronization and attraction, how these effects impact the overall suspension behaviour and coherent structure formation is largely unknown. Using a computational model that captures both flagellum beating and elasticity, we simulate suspensions on the order of 103 individual swimming sperm cells whose motion is coupled through the surrounding Stokesian fluid. We find that the tendency for flagella to synchronize and sperm to aggregate inhibits the emergence of the large-scale hydrodynamic instabilities often associated with active suspensions. However, when synchronization is repressed by adding noise in the flagellum actuation mechanism, the picture changes and the structures that resemble large-scale vortices appear to re-emerge. Supported by an Imperial College PhD scholarship.

  10. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  11. Impacts of large scale afforestation on regional climate: a case study in the Kubuqi Desert, Inner Mongolia based on WRF model

    NASA Astrophysics Data System (ADS)

    Wang, L.; Lin, G.; Feng, D.; Chen, S.; Schultz, N. M.; Fu, C.; Wei, Z.; Yin, C.; Wang, W.; Lee, X.

    2017-12-01

    To better design climate mitigation strategies, it is important to understand the response of regional climatic indicators and related biophysical forcings to large scale afforestation projects. The response of surface temperature (Ts) caused by afforestation activities in the Kubuqi Desert, Inner Mongolia, China is simulated by the weather research and forecasting (WRF) model and the temperature changes (ΔTs) are decomposed into contributions from changes in surface albedo, surface roughness, Bowen ratio and ground heat flux using the intrinsic biophysical mechanism (IBPM). The 30-m resolution land cover maps of the Kubuqi Desert corresponding to 2000 and 2010 conditions are analyzed and the major land use changes are found to be an increase in the area of grassland (6%) and shrubland (15%), but a decrease in the area of bare land (21%) owed to the aerial seeding afforestation activities organized by Elion Resources Group, Co. and local government agencies. Our WRF simulations show that during winter, the increased cover of vegetation mainly has a warming effect (0.38 K) in the daytime due to the changes in albedo (0.24 K) and Bowen ratio (0.15 K). In the nighttime, the vegetation has a slight warming effect (0.2 K) mainly caused by energy redistribution associated with roughness change (0.2 K) as a result of vegetation turbulence, which brought heat from aloft to the surface. Although both roughness change (-0.35 K) and Bowen ratio change (-0.35 K) have cooling effects during summer days, the warming effect caused by radiative forcing (0.93 K) dominates the ΔTs. During summer nights, the change in surface temperature is not significant. Our findings demonstrate that the large-scale afforestation project in the Kubuqi Desert during a decade alters the regional surface temperature and the analysis of biophysical forcings changes using WRF simulation provides useful information for developing climate change mitigation strategies in semi-arid and arid regions.

  12. Gaining and maintaining commitment to large-scale change in healthcare organizations.

    PubMed

    Narine, L; Persaud, D D

    2003-08-01

    Healthcare administrators have sought to improve the quality of healthcare services by using organizational change as a lever. Unfortunately, evaluations of organizational change efforts in areas such as total quality management (TQM), continuous quality improvement (CQI), and organizational restructuring have indicated that these change programmes have not fulfilled their promise in improving service delivery. Furthermore, there are no easy answers as to why so many large-scale change programmes are unsuccessful. The aim of this analysis is to provide insights into practices that may be utilized to improve the chances of successful change management. It is proposed that in order to effect change, implementers must first gain commitment to the change. This is done by ensuring organizational readiness for change, surfacing dissatisfaction with the present state, communicating a clear vision of the proposed change, promoting participation in the change effort, and developing a clear and consistent communication plan. However gaining commitment is not enough. Many change programmes have been initially perceived as being successful but long-term success has been elusive. Therefore, maintaining commitment during the uncertainty associated with the transition period is imperative. This can be done by successfully managing the transition using action steps such as consolidating change using feedback mechanisms and making the change a permanent part of the organization's culture.

  13. The Mediterranean Sea regime shift at the end of the 1980s, and intriguing parallelisms with other European basins.

    PubMed

    Conversi, Alessandra; Fonda Umani, Serena; Peluso, Tiziana; Molinero, Juan Carlos; Santojanni, Alberto; Edwards, Martin

    2010-05-19

    Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems. Our results show that the Mediterranean Sea underwent a major change at the end of the 1980s that encompassed atmospheric, hydrological, and ecological systems, for which it can be considered a regime shift. We further provide evidence that the local hydrography is linked to the larger scale, northern hemisphere climate. These results suggest that the shifts that affected the North, Baltic, Black and Mediterranean (this work) Seas at the end of the 1980s, that have been so far only partly associated, are likely linked as part a northern hemisphere change. These findings bear wide implications for the development of climate change scenarios, as synchronous shifts may provide the key for distinguishing local (i.e., basin) anthropogenic drivers, such as eutrophication or fishing, from larger scale (hemispheric) climate drivers.

  14. United States Temperature and Precipitation Extremes: Phenomenology, Large-Scale Organization, Physical Mechanisms and Model Representation

    NASA Astrophysics Data System (ADS)

    Black, R. X.

    2017-12-01

    We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.

  15. SCALING-UP INFORMATION IN LAND-COVER DATA FOR LARGE-SCALE ENVIRONMENTAL ASSESSMENTS

    EPA Science Inventory

    The NLCD project provides national-scope land-cover data for the conterminous United States. The first land-cover data set was completed in 2000, and the continuing need for recent land-cover information has motivated continuation of the project to provide current and change info...

  16. Soil organic carbon across scales.

    PubMed

    O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B

    2015-10-01

    Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. © 2015 John Wiley & Sons Ltd.

  17. Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)

    2000-01-01

    HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).

  18. The New Big Science at the NSLS

    NASA Astrophysics Data System (ADS)

    Crease, Robert

    2016-03-01

    The term ``New Big Science'' refers to a phase shift in the kind of large-scale science that was carried out throughout the U.S. National Laboratory system, when large-scale materials science accelerators rather than high-energy physics accelerators became marquee projects at most major basic research laboratories in the post-Cold War era, accompanied by important changes in the character and culture of the research ecosystem at these laboratories. This talk explores some aspects of this phase shift at BNL's National Synchrotron Light Source.

  19. Large scale obscuration and related climate effects open literature bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  20. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  1. Analysis of central enterprise architecture elements in models of six eHealth projects.

    PubMed

    Virkanen, Hannu; Mykkänen, Juha

    2014-01-01

    Large-scale initiatives for eHealth services have been established in many countries on regional or national level. The use of Enterprise Architecture has been suggested as a methodology to govern and support the initiation, specification and implementation of large-scale initiatives including the governance of business changes as well as information technology. This study reports an analysis of six health IT projects in relation to Enterprise Architecture elements, focusing on central EA elements and viewpoints in different projects.

  2. Assessing change in the family impact of caries in young children after treatment under general anaesthesia.

    PubMed

    Thomson, William Murray; Malden, Penelope Elizabeth

    2011-09-01

    To examine the properties, validity and responsiveness of the Family Impact Scale in a consecutive clinical sample of patients undergoing dental treatment under general anaesthesia. A consecutive clinical sample of parents/caregivers of children receiving dental treatment under general anaesthesia provided data using the Family Impact Scale (FIS) component of the COHQOL(©) Questionnaire. The first questionnaire was completed before treatment, the follow-up questionnaire 1-4 weeks afterward. Treatment-associated changes in the FIS and its components were determined by comparing baseline and follow-up data. Baseline and follow-up data were obtained for 202 and 130 participants, respectively (64.4% follow-up). All FIS items showed large relative decreases in prevalence, the greatest seen in those relating to having sleep disrupted, blaming others, being upset, the child requiring more attention, financial difficulties and having to take time off work. Factor analysis largely confirmed the underlying factor structure, with three sub-scales (parental/family, parental emotions and family conflict) identified. The parental/family and parental emotions sub-scales showed the greatest treatment-associated improvement, with large effect sizes. There was a moderate improvement in scores on the family conflict sub-scale. The overall FIS showed a large improvement. Treating children with severe caries under general anaesthesia results in OHRQoL improvements for the family. Severe dental caries is not merely a restorative and preventive challenge for those who treat children; it has far-reaching effects on those who share the household and care for the affected child.

  3. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient.

    PubMed

    Guidetti, P; Dulcić, J

    2007-03-01

    Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.

  4. Morphological response of a large-scale coastal blowout to a strong magnitude transport event

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, Irene; Jackson, Derek; Smith, Alexander; Smyth, Thomas

    2017-04-01

    Large-scale blowouts are fundamental features of many coastal dune fields in temperate areas around the world. These distinctive erosional (mostly unvegetated) landform features are often characterised by a significant depression area and a connected depositional lobe at their downwind edges. These areas also provide important transport corridors to inland parts of the dune system and can provide ideal habitats for specialist flora and fauna as well as helping to enhance landscape diversity. The actual morphology and shape/size of blowouts can significantly modify the overlying atmospheric boundary layer of the wind, influencing wind flow steering and intensity within the blowout, and ultimately aeolian sediment transport. While investigations of morphological changes within blowouts have largely focused on the medium (months) to long (annual/decadal) temporal scale, studies of aeolian transport dynamics within blowouts have predominantly focused on the short-term (event) scale. Work on wind-transport processes in blowouts is still relatively rare, with ad-hoc studies providing only limited information on airflow and aeolian transport. Large-scale blowouts are characterised by elongated basins that can reach hundreds of meters, potentially resulting in airflow and transport dynamics that are very different from their smaller scale counterparts. This research focuses on a short-term, strong wind event measured at the Devil's Hole blowout (Sefton dunes, NW England), a large-scale blowout feature approximately 300 m in length and 100 m in width. In situ measurements of airflow and aeolian transport were collected during a short-term experiment on the 22nd October 2015. A total of twenty three, 3D ultrasonic anemometers, sand traps, and wenglor sensors were deployed in a spatial grid covering the distal end of the basin, walls, and depositional lobe. Terrestrial laser scanning (TLS) was used to quantify morphological changes within the blowout before and after the strong magnitude transport event. This allowed, for the first time, examination of the morphological response as a direct result of a high energy wind event as it passes through a large-scale blowout. Results indicate strong steering and acceleration of the wind along the blowout basin and up the south wall opposite to the incident regional winds. These accelerated flows generated very strong transport rates of up to 3 g/s along the basin, and moderate strong transport rates of up to 1.5 g/s up the steep north wall. The coupling of high-frequency wind events and transport response together with topographic changes defined by TLS data allows, for the first time, the ability to co-connect the morphological evolution of a coastal blowout landform with the localised driving processes.

  5. Reaction dynamics analysis of a reconstituted Escherichia coli protein translation system by computational modeling

    PubMed Central

    Matsuura, Tomoaki; Tanimura, Naoki; Hosoda, Kazufumi; Yomo, Tetsuya; Shimizu, Yoshihiro

    2017-01-01

    To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on an Escherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions. PMID:28167777

  6. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  7. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.« less

  8. Evidence for the timing of sea-level events during MIS 3

    NASA Astrophysics Data System (ADS)

    Siddall, M.

    2005-12-01

    Four large sea-level peaks of millennial-scale duration occur during MIS 3. In addition smaller peaks may exist close to the sensitivity of existing methods to derive sea level during these periods. Millennial-scale changes in temperature during MIS 3 are well documented across much of the planet and are linked in some unknown, yet fundamental way to changes in ice volume / sea level. It is therefore highly likely that the timing of the sea level events during MIS 3 will prove to be a `Rosetta Stone' for understanding millennial scale climate variability. I will review observational and mechanistic arguments for the variation of sea level on Antarctic, Greenland and absolute time scales.

  9. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE PAGES

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  10. Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2011-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.

  11. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  12. Divergence of species responses to climate change

    Treesearch

    Songlin Fei; Johanna M. Desprez; Kevin M. Potter; Insu Jo; Jonathan A. Knott; Christopher M. Oswalt

    2017-01-01

    Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impactsare less understood.Weanalyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more...

  13. University Change in Ireland: Understanding the "What", the "Why" and the "How"

    ERIC Educational Resources Information Center

    Dowling-Hetherington, Linda

    2016-01-01

    Over the past decade, universities in Ireland have been implementing large-scale institutional change designed to better prepare them for the multitude of pressures they face. Changes have been taking place, for example, in approaches to institutional management and leadership practices and in decision-making structures. However, despite the rapid…

  14. Evaluating Change in Medical School Curricula: How Did We Know Where We Were Going?

    ERIC Educational Resources Information Center

    Mahaffy, John; Gerrity, Martha S.

    1998-01-01

    Compares and contrasts the primary outcomes and methods used to evaluate curricular changes at eight medical schools participating in a large-scale medical curriculum development project. Describes how the evaluative data, both quantitative and qualitative, were collected, and how evaluation drove curricular change. Although the evaluations were…

  15. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: Insight from a cross-site study

    USDA-ARS?s Scientific Manuscript database

    Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. Responses of communities of mites and nematodes to changes in moisture availability are not well known, yet these organisms play ...

  16. Mission Impossible? Leadership Responsibility without Authority for Initiatives To Reorganise Schools.

    ERIC Educational Resources Information Center

    Wallace, Mike

    This paper explores how characteristics of complex educational change may virtually dictate the leadership strategies adopted by those charged with bringing about change. The change in question here is the large-scale reorganization of local education authorities (LEAs) across England. The article focuses on how across-the-board initiatives to…

  17. LAND COVER CHANGE AND LARGE SCALE HYDROLOGIC MODELING OF THE SAN PEDRO RIVER AND CATSKILL/DELAWARE BASINS

    EPA Science Inventory

    This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...

  18. Mental Health Workforce Change through Social Work Education: A California Case Study

    ERIC Educational Resources Information Center

    Foster, Gwen; Morris, Meghan Brenna; Sirojudin, Sirojudin

    2013-01-01

    The 2004 California Mental Health Services Act requires large-scale system change in the public mental health system through a shift to recovery-oriented services for diverse populations. This article describes an innovative strategy for workforce recruitment and retention to create and sustain these systemic changes. The California Social Work…

  19. Evolution of IPv6 Internet topology with unusual sudden changes

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Zhao, Hai; Kathleen, M. Carley; Su, Zhan; Li, Hui

    2013-07-01

    The evolution of Internet topology is not always smooth but sometimes with unusual sudden changes. Consequently, identifying patterns of unusual topology evolution is critical for Internet topology modeling and simulation. We analyze IPv6 Internet topology evolution in IP-level graph to demonstrate how it changes in uncommon ways to restructure the Internet. After evaluating the changes of average degree, average path length, and some other metrics over time, we find that in the case of a large-scale growing the Internet becomes more robust; whereas in a top—bottom connection enhancement the Internet maintains its efficiency with links largely decreased.

  20. Wind power for the electric-utility industry: Policy incentives for fuel conservation

    NASA Astrophysics Data System (ADS)

    March, F.; Dlott, E. H.; Korn, D. H.; Madio, F. R.; McArthur, R. C.; Vachon, W. A.

    1982-06-01

    A systematic method for evaluating the economics of solar-electric/conservation technologies as fuel-savings investments for electric utilities in the presence of changing federal incentive policies is presented. The focus is on wind energy conversion systems (WECS) as the solar technology closest to near-term large scale implementation. Commercially available large WECS are described, along with computer models to calculate the economic impact of the inclusion of WECS as 10% of the base-load generating capacity on a grid. A guide to legal structures and relationships which impinge on large-scale WECS utilization is developed, together with a quantitative examination of the installation of 1000 MWe of WECS capacity by a utility in the northeast states. Engineering and financial analyses were performed, with results indicating government policy changes necessary to encourage the entrance of utilities into the field of windpower utilization.

  1. Measuring the relative resilience of subarctic lakes to global change: redundancies of functions within and across temporal scales

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Johnson, Richard K.

    2013-01-01

    1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change. The relative ‘intactness’ of these scales that are unaffected by global change and the persistence of functions at those scales may safeguard the whole system from the potential loss of functions at the scale at which global change impacts can be substantial. Thus, an understanding of scale-specific processes provides managers with a realistic assessment of vulnerabilities and the relative resilience of ecosystems to environmental change. Explicit consideration of ‘intact’ and ‘affected’ scales in analyses of global change impacts provides opportunities to tailor more specific management plans.

  2. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  3. Estimating ecosystem service changes as a precursor to modeling

    EPA Science Inventory

    EPA's Future Midwestern Landscapes Study will project changes in ecosystem services (ES) for alternative future policy scenarios in the Midwestern U.S. Doing so for detailed landscapes over large spatial scales will require serial application of economic and ecological models. W...

  4. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.

    PubMed

    Bruetzel, Linda K; Walker, Philipp U; Gerling, Thomas; Dietz, Hendrik; Lipfert, Jan

    2018-04-11

    Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl 2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.

  5. Statistical analysis of the time and space characteristic scales for large precipitating systems in the equatorial, tropical, sahelian and mid-latitude regions.

    NASA Astrophysics Data System (ADS)

    Duroure, Christophe; Sy, Abdoulaye; Baray, Jean luc; Van baelen, Joel; Diop, Bouya

    2017-04-01

    Precipitation plays a key role in the management of sustainable water resources and flood risk analyses. Changes in rainfall will be a critical factor determining the overall impact of climate change. We propose to analyse long series (10 years) of daily precipitation at different regions. We present the Fourier densities energy spectra and morphological spectra (i.e. probability repartition functions of the duration and the horizontal scale) of large precipitating systems. Satellite data from the Global precipitation climatology project (GPCP) and local pluviometers long time series in Senegal and France are used and compared in this work. For mid-latitude and Sahelian regions (North of 12°N), the morphological spectra are close to exponential decreasing distribution. This fact allows to define two characteristic scales (duration and space extension) for the precipitating region embedded into the large meso-scale convective system (MCS). For tropical and equatorial regions (South of 12°N) the morphological spectra are close to a Levy-stable distribution (power law decrease) which does not allow to define a characteristic scale (scaling range). When the time and space characteristic scales are defined, a "statistical velocity" of precipitating MCS can be defined, and compared to observed zonal advection. Maps of the characteristic scales and Levy-stable exponent over West Africa and south Europe are presented. The 12° latitude transition between exponential and Levy-stable behaviors of precipitating MCS is compared with the result of ECMWF ERA-Interim reanalysis for the same period. This morphological sharp transition could be used to test the different parameterizations of deep convection in forecast models.

  6. Long-term change of potential evapotranspiration over Southwest China and teleconnections with large-scale climate anomalies

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, X.; Li, Y.; Chen, Z.

    2017-12-01

    bstract: Potential evapotranspiration (PET) is a sensitive factor for atmospheric and ecological systems over Southwest China which is characterized by intensive karst geomorphology and fragile environment. Based on daily meteorological data of 94 stations during 1961-2013, the spatiotemporal characteristics of PET are analyzed. The changing characteristics of local meteorological factors and large-scale climatic features are also investigated to explain the potential reasons for changing PET. Study results are as follows: (1) The high-value center of PET with a mean value of 1097 mm/a locates in the south mainly resulted from the regional climatic features of higher air temperature (TEM), sunshine duration (SSD) and lower relative humidity (RHU); and the low-value center of PET with a mean value of 831 mm/a is in the northeast primarily attributed to higher RHU and weaker SSD. (2) Annual PET decreases at -10.04 mm decade-1 before the year 2000 but increases at 50.65 mm decade-1 thereafter; and the dominant factors of PET change are SSD, RHU and wind speed (WIN), with the relative contributions of 33.29%, 25.42% and 22.16%, respectively. (3) The abrupt change of PET in 2000 is strongly dominated by large-scale climatic anomalies. The strengthened 850hPa geostrophic wind (0.51 ms-1 decade-1), weakened total cloud cover (-2.25 % decade-1) and 500hPa water vapor flux (-2.85 % decade-1) have provided advantageous dynamic, thermal and dry conditions for PET over Southwest China since the 21st century.

  7. Ghosts of habitats past: Contribution of landscape change to current habitats used by shrubland birds

    USGS Publications Warehouse

    Knick, Steven T.; Rotenberry, J.T.

    2000-01-01

    Models of habitat associations for species often are developed with an implicit assumption that habitats are static, even though recent disturbance may have altered the landscape. We tested our hypothesis that trajectory and magnitude of habitat change influenced observed distribution and abundance of passerine birds breeding in shrubsteppe habitats of southwestern Idaho. Birds in this region live in dynamic landscapes undergoing predominantly large-scale, radical, and unidirectional habitat change because wildfires are converting shrublands into expanses of exotic annual grasslands. We used data from field surveys and satellite image analyses in a series of redundancy analyses to partition variances and to determine the relative contribution of habitat change and current landscapes. Although current habitats explained a greater proportion of total variation, changes in habitat and measures of habitat richness and texture also contributed to variation in abundance of Horned Larks (Eremophila alpestris), Brewera??s Sparrows (Spizella breweri), and Sage Sparrows (Amphispiza belli). Abundance of birds was insensitive to scale for nonspatial habitat variables. In contrast, spatial measures of habitat richness and texture in the landscape were significant only at large spatial scales. Abundance of Horned Larks, Western Meadowlarks (Sturnella neglecta), and Brewera??s Sparrows, but not Sage Thrashers (Oreoscoptes montanus) or Sage Sparrows, was positively correlated with changes toward stable habitats. Because dominant habitat changes were toward less stable conditions, regional declines of those birds in shrubsteppe habitats reflect current landscapes as well as the history, magnitude, and trajectory of habitat change.

  8. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  9. Probing aerosol indirect effect on deep convection using idealized cloud-resolving simulations with parameterized large-scale dynamics.

    NASA Astrophysics Data System (ADS)

    Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.

    2017-12-01

    A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.

  10. Cross-borehole flowmeter tests for transient heads in heterogeneous aquifers.

    PubMed

    Le Borgne, Tanguy; Paillet, Frederick; Bour, Olivier; Caudal, Jean-Pierre

    2006-01-01

    Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.

  11. Smectic viral capsids and the aneurysm instability

    NASA Astrophysics Data System (ADS)

    Dharmavaram, S.; Rudnick, J.; Lawrence, C. M.; Bruinsma, R. F.

    2018-05-01

    The capsids of certain Archaea-infecting viruses undergo large shape changes, while maintaining their integrity against rupture by osmotic pressure. We propose that these capsids are in a smectic liquid crystalline state, with the capsid proteins assembling along spirals. We show that smectic capsids are intrinsically stabilized against the formation of localized bulges with non-zero Gauss curvature while still allowing for large-scale cooperative shape transformation that involves global changes in the Gauss curvature.

  12. Effect of small versus large clusters of fish school on the yield of a purse-seine small pelagic fishery including a marine protected area.

    PubMed

    Hieu, Nguyen Trong; Brochier, Timothée; Tri, Nguyen-Huu; Auger, Pierre; Brehmer, Patrice

    2014-09-01

    We consider a fishery model with two sites: (1) a marine protected area (MPA) where fishing is prohibited and (2) an area where the fish population is harvested. We assume that fish can migrate from MPA to fishing area at a very fast time scale and fish spatial organisation can change from small to large clusters of school at a fast time scale. The growth of the fish population and the catch are assumed to occur at a slow time scale. The complete model is a system of five ordinary differential equations with three time scales. We take advantage of the time scales using aggregation of variables methods to derive a reduced model governing the total fish density and fishing effort at the slow time scale. We analyze this aggregated model and show that under some conditions, there exists an equilibrium corresponding to a sustainable fishery. Our results suggest that in small pelagic fisheries the yield is maximum for a fish population distributed among both small and large clusters of school.

  13. Detecting and monitoring large-scale drought effects on forests: toward an integrated approach

    Treesearch

    Steve Norman; Frank H. Koch; William W. Hargrove

    2016-01-01

    Although drought is recognized as an important and overarching driver of ecosystem change, its occurrence and effects have been difficult to describe over large geographic areas (Hogg and others 2008, Panu and Sharma 2002).

  14. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE PAGES

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...

    2016-11-23

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  15. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  16. An analytical approach to separate climate and human contributions to basin streamflow variability

    NASA Astrophysics Data System (ADS)

    Li, Changbin; Wang, Liuming; Wanrui, Wang; Qi, Jiaguo; Linshan, Yang; Zhang, Yuan; Lei, Wu; Cui, Xia; Wang, Peng

    2018-04-01

    Climate variability and anthropogenic regulations are two interwoven factors in the ecohydrologic system across large basins. Understanding the roles that these two factors play under various hydrologic conditions is of great significance for basin hydrology and sustainable water utilization. In this study, we present an analytical approach based on coupling water balance method and Budyko hypothesis to derive effectiveness coefficients (ECs) of climate change, as a way to disentangle contributions of it and human activities to the variability of river discharges under different hydro-transitional situations. The climate dominated streamflow change (ΔQc) by EC approach was compared with those deduced by the elasticity method and sensitivity index. The results suggest that the EC approach is valid and applicable for hydrologic study at large basin scale. Analyses of various scenarios revealed that contributions of climate change and human activities to river discharge variation differed among the regions of the study area. Over the past several decades, climate change dominated hydro-transitions from dry to wet, while human activities played key roles in the reduction of streamflow during wet to dry periods. Remarkable decline of discharge in upstream was mainly due to human interventions, although climate contributed more to runoff increasing during dry periods in the semi-arid downstream. Induced effectiveness on streamflow changes indicated a contribution ratio of 49% for climate and 51% for human activities at the basin scale from 1956 to 2015. The mathematic derivation based simple approach, together with the case example of temporal segmentation and spatial zoning, could help people understand variation of river discharge with more details at a large basin scale under the background of climate change and human regulations.

  17. Describing Ecosystem Complexity through Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tenhunen, J. D.; Peiffer, S.

    2011-12-01

    Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.

  18. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore, it shows that regional changes in the climate occur also where the radiative forcing from aerosol particles is not particularly strong, which would indicate that the large scale dynamical response to aerosol forcing can induce changes in temperature, precipitation and wind patterns outside the region where the forcing is initially located.

  19. Environmental change on tidal flat induced by anthropogenic effect around west coast of Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Kyung; Choi, Jong-Kuk; Ryu, Joo-Hyung; Eom, Jinah

    2014-05-01

    Tidal flats are valuable ecosystem by a productive flora and fauna which support large populations of birds, form nursery and feeding areas for coastal fisheries, provide intrinsic values such as aesthetics and education (Costanza et al., 1997; Goodwin et al., 2001). The half of the world's coastal wetlands will submerge during this century in response to sea level rise although salt marsh has a capacity to adjust to sea level rise change. However, tidal flats have been changed because of several coastal construction projects that had not been considered sustainable over the last 30 years in Korean Peninsula. The total area of tidal flats decreased from approximately 2,800 km2 in 1990 to 2,393 km2 in 2005 due to the land reclamations and dredging in South Korea. Many researchers investigated topography, sedimentation changes and local hydrodynamics for this area in the early 1990s. However, they are limited to the temporal and spatial scale because field surveys in the tidal flats are restricted due to the difficulties in accessing. The aim of this study was to examine environmental change in tidal flat in a large scale for long-term based on the remotely sensed data as well as in situ measurements. This study focused on the tidal flat that not only had been affected by reclamations on a large scale such as Ganghwa and Saemangeum but also had been indirectly affected by reclamations such as Hwang-do and Gomso-bay. In this study, changes in morphology and sedimentary facies in tidal flats were estimated. Digital elevation models (DEMs) in early 2000 and 2010 were generated based on the Landsat TM/ETM+ images using a waterline method. Morphological change was estimated based on the differences of DEMs and sedimentary facies was investigated based on the calculation of image-derived PCA coefficient. Results of the morphological change in tidal flats interestingly showed that large amount of areas had been deposited whereas the other areas were eroded. Area with deposited tendency showed increase in fine sediments whereas area with eroded tendency showed increase in coarse sediments. This result was compared with the tidal current speed estimated from a hydrological model.

  20. Large-scale Vertical Motions, Intensity Change and Precipitation Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.; Kwembe, T.; Zhang, Z.

    2016-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data for Convective Available Potential Energy for water vapor (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorm, tornadoes, storm surge and floods Numerical model (WRF/ARW) with data assimilations have been used for this research to investigate the model's performances on hurricane tracks and intensities associated with the hurricane Katrina, which began to strengthen until reaching Category 5 on 28 August 2005. The model was run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 hr periods, from August 28th to August 30th. The model output was compared with the observations and is capable of simulating the surface features, intensity change and track associated with hurricane Katrina.

  1. Mechanisation of large-scale agricultural fields in developing countries - a review.

    PubMed

    Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila

    2016-09-01

    Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  3. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  4. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D.; Kiem, A. S.

    2008-10-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  5. 'Getting to Know Me': The second phase roll-out of a staff training programme for supporting people with dementia in general hospitals.

    PubMed

    Elvish, Ruth; Burrow, Simon; Cawley, Rosanne; Harney, Kathryn; Pilling, Mark; Gregory, Julie; Keady, John

    2018-01-01

    Objectives The aims were to evaluate a second phase roll-out of a dementia care training programme for general hospital staff and to further develop two outcome scales: the Confidence in Dementia scale for measuring confidence in working with people with dementia and the Knowledge in Dementia scale for measuring knowledge in dementia. Method Following a 'training the trainers' phase, the study involved the delivery of the 'Getting to Know Me' training programme to a large number of staff (n = 517) across three National Health Service (NHS) Trusts situated in North-West England. The impact of the programme was evaluated using a pre-post design which explored: (i) changes in confidence in dementia, (ii) changes in knowledge in dementia, and (iii) changes in beliefs about behaviours that challenge. Results Statistically significant change was identified between pre-post training on all outcome measures (Confidence in Dementia: eight point increase, p < 0.001; Knowledge in Dementia: two point increase p < 0.001; controllability beliefs scale: four point decrease, p < 0.001). Medium to large effect sizes were demonstrated on all outcome measures. The psychometric properties of the Confidence in Dementia and Knowledge in Dementia scales are reported. Conclusion Staff knowledge in dementia and confidence in working with people with dementia significantly increased following attendance at the training sessions. The findings are consistent with preliminary findings and strengthen current knowledge about the impact of dementia care training in general hospitals. The Confidence in Dementia and Knowledge in Dementia scales continue to demonstrate psychometrically sound properties and demonstrate utility in the field of dementia research.

  6. Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology.

    PubMed

    Oliver, Ruth Y; Ellis, Daniel P W; Chmura, Helen E; Krause, Jesse S; Pérez, Jonathan H; Sweet, Shannan K; Gough, Laura; Wingfield, John C; Boelman, Natalie T

    2018-06-01

    Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.

  7. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications.

    PubMed

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-06

    In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs) and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS) material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  8. Living the lesson: can the Lifestyle Project be used to achieve deep learning in environmental earth science?

    NASA Astrophysics Data System (ADS)

    Padden, M.; Whalen, K.

    2013-12-01

    Students in a large, second-year environmental earth science class made significant changes to their daily lives over a three-week period to learn how small-scale actions interact with global-scaled issues such as water and energy supplies, waste management and agriculture. The Lifestyle Project (Kirk and Thomas, 2003) was slightly adapted to fit a large-class setting (350 students). Students made changes to their lifestyle in self-selected categories (water, home heating, transportation, waste, food) and created journals over a three-week period as the changes increased in difficulty. The goal of this study is to gain an understanding of which aspects of the project played a pivotal role in impacting long-term learning. Content analysis of the journal entries and follow-up interviews are used to investigate if the Lifestyle Project is having a lasting impact on the students 18 months after the initial assignment.

  9. Are large-scale flow experiments informing the science and management of freshwater ecosystems?

    USGS Publications Warehouse

    Olden, Julian D.; Konrad, Christopher P.; Melis, Theodore S.; Kennard, Mark J.; Freeman, Mary C.; Mims, Meryl C.; Bray, Erin N.; Gido, Keith B.; Hemphill, Nina P.; Lytle, David A.; McMullen, Laura E.; Pyron, Mark; Robinson, Christopher T.; Schmidt, John C.; Williams, John G.

    2013-01-01

    Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.

  10. Impact of tissue atrophy on high-pass filtered MRI signal phase-based assessment in large-scale group-comparison studies: A simulation study

    NASA Astrophysics Data System (ADS)

    Schweser, Ferdinand; Dwyer, Michael G.; Deistung, Andreas; Reichenbach, Jürgen R.; Zivadinov, Robert

    2013-10-01

    The assessment of abnormal accumulation of tissue iron in the basal ganglia nuclei and in white matter plaques using the gradient echo magnetic resonance signal phase has become a research focus in many neurodegenerative diseases such as multiple sclerosis or Parkinson’s disease. A common and natural approach is to calculate the mean high-pass-filtered phase of previously delineated brain structures. Unfortunately, the interpretation of such an analysis requires caution: in this paper we demonstrate that regional gray matter atrophy, which is concomitant with many neurodegenerative diseases, may itself directly result in a phase shift seemingly indicative of increased iron concentration even without any real change in the tissue iron concentration. Although this effect is relatively small results of large-scale group comparisons may be driven by anatomical changes rather than by changes of the iron concentration.

  11. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  12. Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA

    USGS Publications Warehouse

    Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.

    1999-01-01

    Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.

  13. Some Studies in Large-Scale Surface Fluxes and Vertical Motions Associated with Land falling Hurricane Katrina over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2010-12-01

    We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.

  14. a Voxel-Based Metadata Structure for Change Detection in Point Clouds of Large-Scale Urban Areas

    NASA Astrophysics Data System (ADS)

    Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.

    2018-05-01

    Mobile laser scanning has not only the potential to create detailed representations of urban environments, but also to determine changes up to a very detailed level. An environment representation for change detection in large scale urban environments based on point clouds has drawbacks in terms of memory scalability. Volumes, however, are a promising building block for memory efficient change detection methods. The challenge of working with 3D occupancy grids is that the usual raycasting-based methods applied for their generation lead to artifacts caused by the traversal of unfavorable discretized space. These artifacts have the potential to distort the state of voxels in close proximity to planar structures. In this work we propose a raycasting approach that utilizes knowledge about planar surfaces to completely prevent this kind of artifacts. To demonstrate the capabilities of our approach, a method for the iterative volumetric approximation of point clouds that allows to speed up the raycasting by 36 percent is proposed.

  15. Global change impacts on large-scale biogeographic patterns of marine organisms on Atlantic oceanic islands.

    PubMed

    Ávila, Sérgio P; Cordeiro, Ricardo; Madeira, Patrícia; Silva, Luís; Medeiros, António; Rebelo, Ana C; Melo, Carlos; Neto, Ana I; Haroun, Ricardo; Monteiro, António; Rijsdijk, Kenneth; Johnson, Markes E

    2018-01-01

    Past climate changes provide important clues for advancement of studies on current global change biology. We have tested large-scale biogeographic patterns through four marine groups from twelve Atlantic Ocean archipelagos and searched for patterns between species richness/endemism and littoral area, age, isolation, latitude and mean annual sea-surface temperatures. Species richness is strongly correlated with littoral area. Two reinforcing effects take place during glacial episodes: i) species richness is expected to decrease (in comparison with interglacial periods) due to the local disappearance of sandy/muddy-associated species; ii) because littoral area is minimal during glacial episodes, area per se induces a decrease on species richness (by extirpation/extinction of marine species) as well as affecting speciation rates. Maximum speciation rates are expected to occur during the interglacial periods, whereas immigration rates are expected to be higher at the LGM. Finally, sea-level changes are a paramount factor influencing marine biodiversity of animals and plants living on oceanic islands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fabric changes and their influence on P-wave velocity patterns—examples from a polyphase deformed orthogneiss

    NASA Astrophysics Data System (ADS)

    Siegesmund, S.; Vollbrecht, A.; Pros, Z.

    1993-10-01

    The complete P-wave velocity distribution, preferred orientation of rock-forming minerals and microcracks of two differently deformed orthogneisses from the Kutna Hora Crystalline Unit were investigated. The complete symmetry of P-wave velocities were determined as a function of confining pressure on the basis of 132 independent propagation directions up to 400 MPa. The two samples are of almost identical mineralogical composition, but exhibit different fabrics which can be related to different positions within a large-scale fold structure. The symmetry of the Vp-diagrams change from nearly transversely isotropic for the sample from the limb area to orthorhombic for the sample from the hinge zone, which shows an additional crenulation cleavage. This change of symmetry is observed at all pressure levels. Reorientation of the main velocity directions ( Vpmin, Vpmax, Kpint) between hinge and limb is controlled by the microcrack fabric and the texture of the rock-forming minerals. This can cause significant differences in reflectivity related to fabric changes within large-scale folds.

  17. Effects of climate variability on global scale flood risk

    NASA Astrophysics Data System (ADS)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change research. We carried out the research by simulating daily river discharge using a global hydrological model (PCR-GLOBWB), forced with gridded climate reanalysis time-series. From this, we derived peak annual flood volumes for large-scale river basins globally. These were used to force a global inundation model (dynRout) to map inundation extent and depth for return periods between 2 and 1000 years, under El Niño conditions, neutral conditions, and La Niña conditions. Theses flood hazard maps were combined with global datasets on socioeconomic variables such as population and income to represent the socioeconomic exposure to flooding, and depth-damage curves to represent vulnerability.

  18. Multifarious anchovy and sardine regimes in the Humboldt Current System during the last 150 years.

    PubMed

    Salvatteci, Renato; Field, David; Gutiérrez, Dimitri; Baumgartner, Tim; Ferreira, Vicente; Ortlieb, Luc; Sifeddine, Abdel; Grados, Daniel; Bertrand, Arnaud

    2018-03-01

    The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large-scale forcing controls decadal-scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin-scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large-scale forcing. Moreover, we show that a long-term increase in coastal upwelling translates via a bottom-up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS. © 2017 John Wiley & Sons Ltd.

  19. An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.

    1994-01-01

    In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.

  20. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    PubMed

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Large-scale oscillatory calcium waves in the immature cortex.

    PubMed

    Garaschuk, O; Linn, J; Eilers, J; Konnerth, A

    2000-05-01

    Two-photon imaging of large neuronal networks in cortical slices of newborn rats revealed synchronized oscillations in intracellular Ca2+ concentration. These spontaneous Ca2+ waves usually started in the posterior cortex and propagated slowly (2.1 mm per second) toward its anterior end. Ca2+ waves were associated with field-potential changes and required activation of AMPA and NMDA receptors. Although GABAA receptors were not involved in wave initiation, the developmental transition of GABAergic transmission from depolarizing to hyperpolarizing (around postnatal day 7) stopped the oscillatory activity. Thus we identified a type of large-scale Ca2+ wave that may regulate long-distance wiring in the immature cortex.

  2. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale

    PubMed Central

    Niklaus, Pascal A.

    2017-01-01

    Experiments have shown positive biodiversity-ecosystem functioning (BEF) relationships in small plots with model communities established from species pools typically comprising few dozen species. Whether patterns found can be extrapolated to complex, nonexperimental, real-world landscapes that provide ecosystem services to humans remains unclear. Here, we combine species inventories from a large-scale network of 447 1-km2 plots with remotely sensed indices of primary productivity (years 2000–2015). We show that landscape-scale productivity and its temporal stability increase with the diversity of plants and other taxa. Effects of biodiversity indicators on productivity were comparable in size to effects of other important drivers related to climate, topography, and land cover. These effects occurred in plots that integrated different ecosystem types (i.e., metaecosystems) and were consistent over vast environmental and altitudinal gradients. The BEF relations we report are as strong or even exceed the ones found in small-scale experiments, despite different community assembly processes and a species pool comprising nearly 2,000 vascular plant species. Growing season length increased progressively over the observation period, and this shift was accelerated in more diverse plots, suggesting that a large species pool is important for adaption to climate change. Our study further implies that abiotic global-change drivers may mediate ecosystem functioning through biodiversity changes. PMID:28874547

  3. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  4. Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA

    ERIC Educational Resources Information Center

    Wild, Fridolin; Valentine, Chris; Scott, Peter

    2010-01-01

    Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…

  5. Supporting Source Code Comprehension during Software Evolution and Maintenance

    ERIC Educational Resources Information Center

    Alhindawi, Nouh

    2013-01-01

    This dissertation addresses the problems of program comprehension to support the evolution of large-scale software systems. The research concerns how software engineers locate features and concepts along with categorizing changes within very large bodies of source code along with their versioned histories. More specifically, advanced Information…

  6. Voices Carry

    ERIC Educational Resources Information Center

    Guth, Douglas J.

    2017-01-01

    A community college's success hinges in large part on the effectiveness of its teaching faculty, no more so than in times of major organizational change. However, any large-scale foundational shift requires institutional buy-in, with the onus on leadership to create an environment where everyone is working together toward the same endpoint.…

  7. Leading a change process to improve health service delivery.

    PubMed Central

    Bahamon, Claire; Dwyer, Joseph; Buxbaum, Ann

    2006-01-01

    In the fields of health and development, donors channel multiple resources into the design of new practices and technologies, as well as small-scale programmes to test them. But successful practices are rarely scaled up to the level where they beneficially impact large, impoverished populations. An effective process for change is to use the experiences of new practices gained at the programme level for full-scale implementation. To make an impact, new practices need to be applied, and supported by management systems, at many organizational levels. At every level, potential implementers and likely beneficiaries must first recognize some characteristics that would benefit them in the new practices. An effective change process, led by a dedicated internal change agent, comprises several well-defined phases that successively broaden and institutionalize the use of new practices. PMID:16917654

  8. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  9. Taking the pulse of a continent: Expanding site-based research infrastructure for regional- to continental-scale ecology

    USDA-ARS?s Scientific Manuscript database

    Many of the most dramatic and surprising effects of global change on ecological systems will occur across large spatial extents, from regions to continents. Multiple ecosystem types will be impacted across a range of interacting spatial and temporal scales. The ability of ecologists to understand an...

  10. Telehealth and Indian healthcare: moving to scale and sustainability.

    PubMed

    Carroll, Mark; Horton, Mark B

    2013-05-01

    Telehealth innovation has brought important improvements in access to quality healthcare for American Indian and Alaska Native communities. Despite these improvements, substantive work remains before telehealth capability can be more available and sustainable across Indian healthcare. Some of this work will rely on system change guided by new care model development. Such care model development depends on expansion of telehealth reimbursement. The U.S. Indian healthcare system is an ideal framework for implementing and evaluating large-scale change in U.S. telehealth reimbursement policy.

  11. Determination of semi-arid landscape endmembers and seasonal trends using convex geometry spectral unmixing techniques

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Boardman, Joseph W.; Goetz, Alexander F. H.

    1993-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive growing seasons (26 September 1989, 22 March 1990, and 7 August 1990) over an area of the High Plains east of Greeley, Colorado (40 deg 20 min N and 104 deg 16 min W). A repeat visit to assess vegetation at its peak growth was flown on 6 June 1993. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling and morphological relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, this area and regions similarly situated could be the first to experience the effects caused by global climate change. During the past 10,000 years there were at least four periods of extensive sand activity due to climate change, followed by periods of landscape stability, as shown in the stratigraphic record of this area.

  12. Bio-inspired wooden actuators for large scale applications.

    PubMed

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.

  13. Bio-Inspired Wooden Actuators for Large Scale Applications

    PubMed Central

    Rüggeberg, Markus; Burgert, Ingo

    2015-01-01

    Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386

  14. A study of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1975-01-01

    Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.

  15. Using NDVI to assess vegetative land cover change in central Puget Sound.

    PubMed

    Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina

    2006-03-01

    We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.

  16. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain.

    PubMed

    Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G

    2016-05-25

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.

  17. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain

    PubMed Central

    Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  18. An Exploratory Analysis of the Longitudinal Impact of Principal Change on Elementary School Achievement

    ERIC Educational Resources Information Center

    Hochbein, Craig; Cunningham, Brittany C.

    2013-01-01

    Recent reform initiatives, such as the Title I School Improvement Grants and Race to the Top, recommended a principal change to jump-start school turnaround. Yet, few educational researchers have examined principal change as way to improve schools in a state of systematic reform; furthermore, no large-scale quantitative study has determined the…

  19. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Treesearch

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  20. Projected changes in precipitation intensity and frequency over complex topography: a multi-model perspective

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Keller, Denise; Liniger, Mark; Rajczak, Jan; Schär, Christoph; Appenzeller, Christof

    2014-05-01

    Fundamental changes in the hydrological cycle are expected in a future warmer climate. This is of particular relevance for the Alpine region, as a source and reservoir of several major rivers in Europe and being prone to extreme events such as floodings. For this region, climate change assessments based on the ENSEMBLES regional climate models (RCMs) project a significant decrease in summer mean precipitation under the A1B emission scenario by the mid-to-end of this century, while winter mean precipitation is expected to slightly rise. From an impact perspective, projected changes in seasonal means, however, are often insufficient to adequately address the multifaceted challenges of climate change adaptation. In this study, we revisit the full matrix of the ENSEMBLES RCM projections regarding changes in frequency and intensity, precipitation-type (convective versus stratiform) and temporal structure (wet/dry spells and transition probabilities) over Switzerland and surroundings. As proxies for raintype changes, we rely on the model parameterized convective and large-scale precipitation components. Part of the analysis involves a Bayesian multi-model combination algorithm to infer changes from the multi-model ensemble. The analysis suggests a summer drying that evolves altitude-specific: over low-land regions it is associated with wet-day frequency decreases of convective and large-scale precipitation, while over elevated regions it is primarily associated with a decline in large-scale precipitation only. As a consequence, almost all the models project an increase in the convective fraction at elevated Alpine altitudes. The decrease in the number of wet days during summer is accompanied by decreases (increases) in multi-day wet (dry) spells. This shift in multi-day episodes also lowers the likelihood of short dry spell occurrence in all of the models. For spring and autumn the combined multi-model projections indicate higher mean precipitation intensity north of the Alps, while a similar tendency is expected for the winter season over most of Switzerland.

  1. Impacts of near-future cultivation of biofuel feedstocks on atmospheric composition and local air quality

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.

    2011-09-01

    Large-scale production of feedstock crops for biofuels will lead to land-use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 92 Mha of SRC are planted, each sufficient to replace just over 1 % of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1 %. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are significant at the regional scale and are detectable even at a global scale with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. The oil palm plantations and processing plants result in global average annual mean increases in ozone and bSOA of 38 pptv and 2 ng m-3 respectively. Over SE Asia, one region of planting, increases reach over 2 ppbv and 300 ng m-3 for large parts of Borneo. Planting of SRC causes global annual mean changes of 46 pptv and 3 ng m-3. Europe experiences peak monthly mean changes of almost 0.6 ppbv and 90 ng m-3 in June and July. Large areas of Central and Eastern Europe see changes of over 1.5 ppbv and 200 ng m-3 in the summer. That such significant atmospheric impacts from low level planting scenarios are discernible globally clearly demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.

  2. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  3. Fuzzy Adaptive Decentralized Optimal Control for Strict Feedback Nonlinear Large-Scale Systems.

    PubMed

    Sun, Kangkang; Sui, Shuai; Tong, Shaocheng

    2018-04-01

    This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

  4. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  5. The effects of climate change associated abiotic stresses on maize phytochemical defenses

    USDA-ARS?s Scientific Manuscript database

    Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...

  6. Field scale test of multi-dimensional flow and morphodynamic simulations used for restoration design analysis

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.

  7. Could gradual changes in Holocene Saharan landscape have caused the observed abrupt shift in North Atlantic dust deposition?

    NASA Astrophysics Data System (ADS)

    Egerer, Sabine; Claussen, Martin; Reick, Christian; Stanelle, Tanja

    2017-09-01

    The abrupt change in North Atlantic dust deposition found in sediment records has been associated with a rapid large scale transition of Holocene Saharan landscape. We hypothesize that gradual changes in the landscape may have caused this abrupt shift in dust deposition either because of the non-linearity in dust activation or because of the heterogeneous distribution of major dust sources. To test this hypothesis, we investigate the response of North Atlantic dust deposition to a prescribed 1) gradual and spatially homogeneous decrease and 2) gradual southward retreat of North African vegetation and lakes during the Holocene using the aerosol-climate model ECHAM-HAM. In our simulations, we do not find evidence of an abrupt increase in dust deposition as observed in marine sediment records along the Northwest African margin. We conclude that such gradual changes in landscape are not sufficient to explain the observed abrupt changes in dust accumulation in marine sediment records. Instead, our results point to a rapid large-scale retreat of vegetation and lakes in the area of significant dust sources.

  8. Performance of Gout Impact Scale in a longitudinal observational study of patients with gout

    PubMed Central

    Wallace, Beth; Khanna, Dinesh; Aquino-Beaton, Cleopatra; Singh, Jasvinder A.; Duffy, Erin; Elashoff, David

    2016-01-01

    Abstract Objective. The aim was to evaluate the reliability, validity and responsiveness to change of the Gout Impact Scale (GIS), a disease-specific measure of patient-reported outcomes, in a multicentre longitudinal prospective cohort of gout patients. Methods. Subjects completed the GIS, a 24-item instrument with five scales: Concern Overall, Medication Side Effects, Unmet Treatment Need, Well-Being during Attack, and Concern Over Attack. The total GIS score was calculated by averaging the GIS scale scores. HAQ-Disability Index (HAQ-DI), Short Form (SF)-36 physical and mental component summaries (PCS and MCS) and physician and patient gout severity assessments were also completed. Reliability was assessed with Cronbach’s α. Baseline GIS scores were compared in subjects with and without gout attacks in the past 3 months using Wilcoxon rank sum tests. Multivariate linear regression was used to evaluate predictors of total GIS. Pearson’s correlation coefficients 0.24–0.36 were considered moderate and >0.37 considered large. The effect size for responsiveness to change was interpreted as follows: 0.20–0.49 small, 0.50–0.79 medium and >0.79 large. Results. In 147 subjects, reliability was acceptable for total GIS (0.93) and all GIS scales (0.82–0.94) except Medication Side Effects and Unmet Treatment Need. Total GIS and all scales except Medication Side Effects discriminated between subjects with and without recent gout attacks (P < 0.05). Total GIS showed moderate-to-large correlations with HAQ-DI, SF-36 PCS and MCS (0.33–0.46). Improvement in total GIS tracked with improved physician and patient severity scores. Worsening physician severity score and recent gout attack predicted worsening total GIS. Conclusion. Total GIS score is reliable, valid and responsive to change in patients with gout, and differentiates between subjects with and without recent gout attacks. PMID:26888852

  9. Resonant obliquity of Mars?. [climate driven by spin axis and orbit plane precession caused oscillations

    NASA Technical Reports Server (NTRS)

    Ward, William R.; Rudy, Donald J.

    1991-01-01

    The large-scale oscillations generated by the obliquity of Mars through spin-axis and orbit-plane precessions constitute basic climate system drivers with periodicities of 100,000 yrs in differential spin axis-orbit precession rates and of over 1 million yrs in amplitude modulations due to orbital-inclination changes. Attention is presently given to a third time-scale for climate change, which involves a possible spin-spin resonance and whose mechanism operates on a 10-million-yr time-scale: this effect implies an average obliquity increase for Mars of 15 deg only 5 million yrs ago, with important climatic consequences.

  10. Use of historical logging patterns to identify disproportionately logged ecosystems within temperate rainforests of southeastern Alaska.

    PubMed

    Albert, David M; Schoen, John W

    2013-08-01

    The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old-growth temperate rainforest. Nonetheless, industrial-scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large-tree stands and landscapes with contiguous productive old-growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m³/ha). Although only 11.9% of productive old-growth forests have been logged region wide, large-tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. © 2013 Society for Conservation Biology.

  11. On the feasibility of using satellite gravity observations for detecting large-scale solid mass transfer events

    NASA Astrophysics Data System (ADS)

    Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros

    2017-10-01

    The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.

  12. Characterizing Temperature Variability and Associated Large Scale Meteorological Patterns Across South America

    NASA Astrophysics Data System (ADS)

    Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.

    2017-12-01

    South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.

  13. The ocean response at multiple space and time scales to tidal stream energy extraction by a large-scale turbine array.

    NASA Astrophysics Data System (ADS)

    De Dominicis, Michela; O'Hara Murray, Rory; Wolf, Judith

    2017-04-01

    A comprehensive assessment of the tidal energy resource realistically available for electricity generation and the study of the potential environmental impacts associated with its extraction in the Pentland Firth (Scottish Waters, UK) are presented. In order to examine both local (< 100 km) and region-wide (>100 km) spatial scales, the Scottish Shelf Model (SSM), an unstructured grid three-dimensional FVCOM (Finite Volume Community Ocean Model) model implementation has been used, since it covers the entire NW European Shelf, with a high resolution where the tidal stream energy is extracted. A large theoretical array of tidal stream turbines has been designed and implemented in the model using the momentum sink approach, in which a momentum sink term represents the loss of momentum due to tidal energy extraction. The estimate of the maximum available power for electricity generation from the Pentland Firth is 1.64 GW, which requires thousands of turbines to be deployed. This estimate takes into account the tidal stream energy extraction feedbacks on the flow and considers, for the first time, the realistic operation of a generic tidal stream turbine, which is limited to operate in a range of flow velocities due to technological constraints. The ocean response to the extraction of 1.64 GW of energy has been examined by comparing a typical annual cycle of the NW European Shelf hydrodynamics reproduced by the SSM with the same period perturbed by tidal stream energy extraction. The changes were analysed at the temporal scale of a spring-neap tidal cycle and, for the first time, on longer term seasonal timescales. Tidal elevation mainly increases in the vicinity of the tidal farm, while far-field effects show a decrease in the mean spring tidal range of the order of 2 cm along the whole east coast of the UK, possibly counteracting some part of the predicted sea level rise due to climate change. Marine currents, both tidal and residual flows, are also affected. They can slow down due to the turbines action or speed up due to flow diversion processes, on both a local and regional scale. The strongest signal in tidal velocities is an overall reduction, which can in turn decrease the energy of tidal mixing and perturb the seasonal stratification on the NW European Shelf. Although the strength of summer water stratification has been found to slightly increase, the extent of the stratified region does not greatly change, thus suggesting the enhanced biological and pelagic biodiversity hotspots, e.g. tidal mixing front locations, are not displaced. Such large scale tidal stream energy extraction is unlikely to occur in the near future, but such potential changes should be considered when planning future tidal energy exploitation. It is likely that large scale developments around the NW European shelf will interact and could, for example, intensify or weaken the changes predicted here, or even be used as mitigation measures (e.g. coastal defence) for other changes (e.g. climate change).

  14. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ultrafast carrier dynamics in the large-magnetoresistance material WTe 2

    DOE PAGES

    Dai, Y. M.; Bowlan, J.; Li, H.; ...

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe 2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in,more » most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less

  16. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  17. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  18. Reconsidering earthquake scaling

    USGS Publications Warehouse

    Gomberg, Joan S.; Wech, Aaron G.; Creager, Kenneth; Obara, K.; Agnew, Duncan

    2016-01-01

    The relationship (scaling) between scalar moment, M0, and duration, T, potentially provides key constraints on the physics governing fault slip. The prevailing interpretation of M0-T observations proposes different scaling for fast (earthquakes) and slow (mostly aseismic) slip populations and thus fundamentally different driving mechanisms. We show that a single model of slip events within bounded slip zones may explain nearly all fast and slow slip M0-T observations, and both slip populations have a change in scaling, where the slip area growth changes from 2-D when too small to sense the boundaries to 1-D when large enough to be bounded. We present new fast and slow slip M0-T observations that sample the change in scaling in each population, which are consistent with our interpretation. We suggest that a continuous but bimodal distribution of slip modes exists and M0-T observations alone may not imply a fundamental difference between fast and slow slip.

  19. Jovian meterology: Large-scale moist convection without a lower boundary

    NASA Technical Reports Server (NTRS)

    Gierasch, P. J.

    1975-01-01

    It is proposed that Jupiter's cloud bands represent large scale convection whose character is determined by the phase change of water at a level where the temperature is about 275K. It is argued that there are three important layers in the atmosphere: a tropopause layer where emission to space occurs; an intermediate layer between the tropopause and the water cloud base; and the deep layer below the water cloud. All arguments are only semi-quantitative. It is pointed out that these ingredients are essential to Jovian meteorology.

  20. Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Duane L; Pouquet, Dr. Annick; Mininni, Dr. Pablo D.

    2015-01-01

    We report results on rotating stratified turbulence in the absence of forcing, with large-scale isotropic initial conditions, using direct numerical simulations computed on grids of up tomore » $4096^3$ points. The Reynolds and Froude numbers are respectively equal to $$Re=5.4\\times 10^4$$ and $Fr=0.0242$$. The ratio of the Brunt-V\\"ais\\"al\\"a to the inertial wave frequency, $$N/f$, is taken to be equal to 5, a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global buoyancy Reynolds number $$R_B=ReFr^2=32$$, a value sufficient for some isotropy to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-scale dynamics and confirm that the Froude number based on a typical vertical length scale is of order unity, with strong gradients in the vertical. Two characteristic scales emerge from this computation, and are identified from sharp variations in the spectral distribution of either total energy or helicity. A spectral break is also observed at a scale at which the partition of energy between the kinetic and potential modes changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous in the flow in the velocity and temperature fields, and a large-scale enhancement of energy is also observed, directly attributable to the effect of rotation.« less

  1. Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kerry H.; Vizy, Edward

    The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less

  2. Personality and symptom change in treatment-refractory inpatients: evaluation of the phase model of change using Rorschach,TAT, and DSM-IV Axis V.

    PubMed

    Fowler, J Christopher; Ackerman, Steven J; Speanburg, Stefanie; Bailey, Adrian; Blagys, Matthew; Conklin, Adam C

    2004-12-01

    In this study, we examined global treatment outcomes during 16 months of intensive, psychodynamic treatment for 77 inpatients suffering from treatment-refractory disorders. Hypotheses based on the phase model of treatment change (Howard, Lueger, Maling, & Martinovich, 1993; Howard, Moras, Brill, Martinovich, & Lutz, 1996) were supported in the study results. Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) Axis V scales assessing behavioral functioning demonstrated large and medium effect size change, whereas stable, enduring personality functioning assessed by psychoanalytic Rorschach scales and the Social Cognition and Object Relations Scale (Westen, 1995) for the Thematic Apperception Test (Murray, 1943) demonstrated small and medium effect size change. We also report assessment of reliable change index and clinical significance. The ecological validity of Rorschach measures is supported by significant validity coefficients (in the hypothesized directions) between implicit measures of personality functioning and behavioral ratings.

  3. Past and future changes in streamflow in the U.S. Midwest: Bridging across time scales

    NASA Astrophysics Data System (ADS)

    Villarini, G.; Slater, L. J.; Salvi, K. A.

    2017-12-01

    Streamflows have increased notably across the U.S. Midwest over the past century, principally due to changes in precipitation and land use / land cover. Improving our understanding of the physical drivers that are responsible for the observed changes in discharge may enhance our capability of predicting and projecting these changes, and may have large implications for water resources management over this area. This study will highlight our efforts towards the statistical attribution of changes in discharge across the U.S. Midwest, with analyses performed at the seasonal scale from low to high flows. The main drivers of changing streamflows that we focus on are: urbanization, agricultural land cover, basin-averaged temperature, basin-averaged precipitation, and antecedent soil moisture. Building on the insights from this attribution, we will examine the potential predictability of streamflow across different time scales, with lead times ranging from seasonal to decadal, and discuss a potential path forward for engineering design for future conditions.

  4. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal.

    PubMed

    Obreht, Igor; Hambach, Ulrich; Veres, Daniel; Zeeden, Christian; Bösken, Janina; Stevens, Thomas; Marković, Slobodan B; Klasen, Nicole; Brill, Dominik; Burow, Christoph; Lehmkuhl, Frank

    2017-07-19

    Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.

  5. On supervised graph Laplacian embedding CA model & kernel construction and its application

    NASA Astrophysics Data System (ADS)

    Zeng, Junwei; Qian, Yongsheng; Wang, Min; Yang, Yongzhong

    2017-01-01

    There are many methods to construct kernel with given data attribute information. Gaussian radial basis function (RBF) kernel is one of the most popular ways to construct a kernel. The key observation is that in real-world data, besides the data attribute information, data label information also exists, which indicates the data class. In order to make use of both data attribute information and data label information, in this work, we propose a supervised kernel construction method. Supervised information from training data is integrated into standard kernel construction process to improve the discriminative property of resulting kernel. A supervised Laplacian embedding cellular automaton model is another key application developed for two-lane heterogeneous traffic flow with the safe distance and large-scale truck. Based on the properties of traffic flow in China, we re-calibrate the cell length, velocity, random slowing mechanism and lane-change conditions and use simulation tests to study the relationships among the speed, density and flux. The numerical results show that the large-scale trucks will have great effects on the traffic flow, which are relevant to the proportion of the large-scale trucks, random slowing rate and the times of the lane space change.

  6. Deterministic object tracking using Gaussian ringlet and directional edge features

    NASA Astrophysics Data System (ADS)

    Krieger, Evan W.; Sidike, Paheding; Aspiras, Theus; Asari, Vijayan K.

    2017-10-01

    Challenges currently existing for intensity-based histogram feature tracking methods in wide area motion imagery (WAMI) data include object structural information distortions, background variations, and object scale change. These issues are caused by different pavement or ground types and from changing the sensor or altitude. All of these challenges need to be overcome in order to have a robust object tracker, while attaining a computation time appropriate for real-time processing. To achieve this, we present a novel method, Directional Ringlet Intensity Feature Transform (DRIFT), which employs Kirsch kernel filtering for edge features and a ringlet feature mapping for rotational invariance. The method also includes an automatic scale change component to obtain accurate object boundaries and improvements for lowering computation times. We evaluated the DRIFT algorithm on two challenging WAMI datasets, namely Columbus Large Image Format (CLIF) and Large Area Image Recorder (LAIR), to evaluate its robustness and efficiency. Additional evaluations on general tracking video sequences are performed using the Visual Tracker Benchmark and Visual Object Tracking 2014 databases to demonstrate the algorithms ability with additional challenges in long complex sequences including scale change. Experimental results show that the proposed approach yields competitive results compared to state-of-the-art object tracking methods on the testing datasets.

  7. Punctuated Evolution of Influenza Virus Neuraminidase (A/H1N1) under Opposing Migration and Vaccination Pressures

    PubMed Central

    Phillips, J. C.

    2014-01-01

    Influenza virus contains two highly variable envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). The structure and properties of HA, which is responsible for binding the virus to the cell that is being infected, change significantly when the virus is transmitted from avian or swine species to humans. Here we focus first on the simpler problem of the much smaller human individual evolutionary amino acid mutational changes in NA, which cleaves sialic acid groups and is required for influenza virus replication. Our thermodynamic panorama shows that very small amino acid changes can be monitored very accurately across many historic (1945–2011) Uniprot and NCBI strains using hydropathicity scales to quantify the roughness of water film packages. Quantitative sequential analysis is most effective with the fractal differential hydropathicity scale based on protein self-organized criticality (SOC). Our analysis shows that large-scale vaccination programs have been responsible for a very large convergent reduction in common influenza severity in the last century. Hydropathic analysis is capable of interpreting and even predicting trends of functional changes in mutation prolific viruses directly from amino acid sequences alone. An engineered strain of NA1 is described which could well be significantly less virulent than current circulating strains. PMID:25143953

  8. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    NASA Astrophysics Data System (ADS)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  9. An evaluation of sex-age-kill (SAK) model performance

    USGS Publications Warehouse

    Millspaugh, Joshua J.; Skalski, John R.; Townsend, Richard L.; Diefenbach, Duane R.; Boyce, Mark S.; Hansen, Lonnie P.; Kammermeyer, Kent

    2009-01-01

    The sex-age-kill (SAK) model is widely used to estimate abundance of harvested large mammals, including white-tailed deer (Odocoileus virginianus). Despite a long history of use, few formal evaluations of SAK performance exist. We investigated how violations of the stable age distribution and stationary population assumption, changes to male or female harvest, stochastic effects (i.e., random fluctuations in recruitment and survival), and sampling efforts influenced SAK estimation. When the simulated population had a stable age distribution and λ > 1, the SAK model underestimated abundance. Conversely, when λ < 1, the SAK overestimated abundance. When changes to male harvest were introduced, SAK estimates were opposite the true population trend. In contrast, SAK estimates were robust to changes in female harvest rates. Stochastic effects caused SAK estimates to fluctuate about their equilibrium abundance, but the effect dampened as the size of the surveyed population increased. When we considered both stochastic effects and sampling error at a deer management unit scale the resultant abundance estimates were within ±121.9% of the true population level 95% of the time. These combined results demonstrate extreme sensitivity to model violations and scale of analysis. Without changes to model formulation, the SAK model will be biased when λ ≠ 1. Furthermore, any factor that alters the male harvest rate, such as changes to regulations or changes in hunter attitudes, will bias population estimates. Sex-age-kill estimates may be precise at large spatial scales, such as the state level, but less so at the individual management unit level. Alternative models, such as statistical age-at-harvest models, which require similar data types, might allow for more robust, broad-scale demographic assessments.

  10. Multi-scale connectivity and graph theory highlight critical areas for conservation under climate change

    USGS Publications Warehouse

    Dilts, Thomas E.; Weisberg, Peter J.; Leitner, Phillip; Matocq, Marjorie D.; Inman, Richard D.; Nussear, Ken E.; Esque, Todd C.

    2016-01-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land-use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multi-scale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods including graph theory, circuit theory and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this California threatened species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American Southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously-distributed habitat, and should be applicable across a broad range of taxa.

  11. Scaling and criticality in a stochastic multi-agent model of a financial market

    NASA Astrophysics Data System (ADS)

    Lux, Thomas; Marchesi, Michele

    1999-02-01

    Financial prices have been found to exhibit some universal characteristics that resemble the scaling laws characterizing physical systems in which large numbers of units interact. This raises the question of whether scaling in finance emerges in a similar way - from the interactions of a large ensemble of market participants. However, such an explanation is in contradiction to the prevalent `efficient market hypothesis' in economics, which assumes that the movements of financial prices are an immediate and unbiased reflection of incoming news about future earning prospects. Within this hypothesis, scaling in price changes would simply reflect similar scaling in the `input' signals that influence them. Here we describe a multi-agent model of financial markets which supports the idea that scaling arises from mutual interactions of participants. Although the `news arrival process' in our model lacks both power-law scaling and any temporal dependence in volatility, we find that it generates such behaviour as a result of interactions between agents.

  12. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  13. Bathymetric comparisons adjacent to the Louisiana barrier islands: Processes of large-scale change

    USGS Publications Warehouse

    List, J.H.; Jaffe, B.E.; Sallenger, A.H.; Hansen, M.E.

    1997-01-01

    This paper summarizes the results of a comparative bathymetric study encompassing 150 km of the Louisiana barrier-island coast. Bathymetric data surrounding the islands and extending to 12 m water depth were processed from three survey periods: the 1880s, the 1930s, and the 1980s. Digital comparisons between surveys show large-scale, coherent patterns of sea-floor erosion and accretion related to the rapid erosion and disintegration of the islands. Analysis of the sea-floor data reveals two primary processes driving this change: massive longshore transport, in the littoral zone and at shoreface depths; and increased sediment storage in ebb-tidal deltas. Relative sea-level rise, although extraordinarily high in the study area, is shown to be an indirect factor in causing the area's rapid shoreline retreat rates.

  14. Space Observations for Global Change

    NASA Technical Reports Server (NTRS)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  15. Robust Detection of Examinees with Aberrant Answer Changes

    ERIC Educational Resources Information Center

    Belov, Dmitry I.

    2015-01-01

    The statistical analysis of answer changes (ACs) has uncovered multiple testing irregularities on large-scale assessments and is now routinely performed at testing organizations. However, AC data has an uncertainty caused by technological or human factors. Therefore, existing statistics (e.g., number of wrong-to-right ACs) used to detect examinees…

  16. Climate change and the outbreak ranges of two North American bark beetles

    Treesearch

    David W. Williams; Andrew M. Liebhold

    2002-01-01

    One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...

  17. Implementing Technology: A Change Process

    ERIC Educational Resources Information Center

    Atwell, Nedra; Maxwell, Marge; Romero, Elizabeth

    2008-01-01

    The state of Kentucky has embarked upon a large scale systems change effort to integrate Universal Design for Learning (UDL) principles, including use of digital curriculum and computerized reading supports to improve overall student achievement. A major component of this initiative is the use of Read & Write Gold. As higher expectations are…

  18. THE CONSEQUENCES OF LANDSCAPE CHANGE ON ECOLOGICAL RESOURCES: AN ASSESSMENT OF THE UNITED STATES MID-ATLANTIC REGION

    EPA Science Inventory



    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has bee...

  19. Elementary Administrators' Mathematics Supervision and Self-Efficacy Development

    ERIC Educational Resources Information Center

    Johnson, Kelly M. Gomez

    2017-01-01

    Mathematics curriculum reform is changing the content and resources in today's elementary classrooms as well as the culture of mathematics teaching and learning. Administrators face the challenge of leading large-scale curricular change efforts with limited prior knowledge or experiences with reform curricula structures. Administrators, as the…

  20. Implementing large-scale workforce change: learning from 55 pilot sites of allied health workforce redesign in Queensland, Australia

    PubMed Central

    2013-01-01

    Background Increasingly, health workforces are undergoing high-level ‘re-engineering’ to help them better meet the needs of the population, workforce and service delivery. Queensland Health implemented a large scale 5-year workforce redesign program across more than 13 health-care disciplines. This study synthesized the findings from this program to identify and codify mechanisms associated with successful workforce redesign to help inform other large workforce projects. Methods This study used Inductive Logic Reasoning (ILR), a process that uses logic models as the primary functional tool to develop theories of change, which are subsequently validated through proposition testing. Initial theories of change were developed from a systematic review of the literature and synthesized using a logic model. These theories of change were then developed into propositions and subsequently tested empirically against documentary, interview, and survey data from 55 projects in the workforce redesign program. Results Three overarching principles were identified that optimized successful workforce redesign: (1) drivers for change need to be close to practice; (2) contexts need to be supportive both at the local levels and legislatively; and (3) mechanisms should include appropriate engagement, resources to facilitate change management, governance, and support structures. Attendance to these factors was uniformly associated with success of individual projects. Conclusions ILR is a transparent and reproducible method for developing and testing theories of workforce change. Despite the heterogeneity of projects, professions, and approaches used, a consistent set of overarching principles underpinned success of workforce change interventions. These concepts have been operationalized into a workforce change checklist. PMID:24330616

  1. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments.

    PubMed

    Pincebourde, Sylvain; Murdock, Courtney C; Vickers, Mathew; Sears, Michael W

    2016-07-01

    When predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms. This past few decades has seen an important increase in the number of studies reporting microclimatic patterns at small scales. This synthesis intends to unify studies reporting microclimatic heterogeneity (mostly temperature) at various spatial scales, to infer any emerging trends, and to discuss the causes and consequences of such heterogeneity for organismal performance and with respect to changing land use patterns and climate. First, we identify the environmental drivers of heterogeneity across the various spatial scales that are pertinent to ectotherms. The thermal heterogeneity at the local and micro-scales is mostly generated by the architecture or the geometrical features of the microhabitat. Then, the thermal heterogeneity experienced by individuals is modulated by behavior. Second, we survey the literature to quantify thermal heterogeneity from the micro-scale up to the scale of a landscape in natural habitats. Despite difficulties in compiling studies that differ much in their design and aims, we found that there is as much thermal heterogeneity across micro-, local and landscape scales, and that the temperature range is large in general (>9 °C on average, and up to 26 °C). Third, we examine the extent to which urban habitats can be used to infer the microclimatic patterns of the future. Urban areas generate globally drier and warmer microclimatic patterns and recent evidence suggest that thermal traits of ectotherms are adapted to them. Fourth, we explore the interplay between microclimate heterogeneity and the behavioral thermoregulatory abilities of ectotherms in setting their overall performance. We used a random walk framework to show that the thermal heterogeneity allows a more precise behavioral thermoregulation and a narrower temperature distribution of the ectotherm compared to less heterogeneous microhabitats. Finally, we discuss the potential impacts of global change on the fine scale mosaics of microclimates. The amplitude of change may differ between spatial scales. In heterogeneous microhabitats, the amplitude of change at micro-scale, caused by atmospheric warming, can be substantial while it can be limited at the local and landscape scales. We suggest that the warming signal will influence species performance and biotic interactions by modulating the mosaic of microclimates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  2. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes.

    PubMed

    García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H

    2013-08-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.

  3. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.

    PubMed

    Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew

    2017-12-20

    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.

  4. Hofmeister series salts enhance purification of plasmid DNA by non-ionic detergents

    PubMed Central

    Lezin, George; Kuehn, Michael R.; Brunelli, Luca

    2011-01-01

    Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated LPS contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures. PMID:21351074

  5. Intercomparison of methods of coupling between convection and large-scale circulation: 2. Comparison over nonuniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2016-03-18

    As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less

  6. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks

    PubMed Central

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory. PMID:28736535

  7. Mind-Body Practice Changes Fractional Amplitude of Low Frequency Fluctuations in Intrinsic Control Networks.

    PubMed

    Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian

    2017-01-01

    Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.

  8. Revisiting Ontario Teachers' and Students' Perceptions of Large-Scale Reform

    ERIC Educational Resources Information Center

    Ryan, Thomas G.; Joong, Yee Han Peter

    2013-01-01

    Within the following text, educational reform is examined to reveal how and to what extent Ontario secondary teachers (n = 87) have implemented educational changes that had a direct impact on students (n = 396), themselves, and curriculum. Our mixed methods data, while limited in scope, indicated that secondary school teachers were largely content…

  9. A Phenomenology of Learning Large: The Tutorial Sphere of xMOOC Video Lectures

    ERIC Educational Resources Information Center

    Adams, Catherine; Yin, Yin; Vargas Madriz, Luis Francisco; Mullen, C. Scott

    2014-01-01

    The current discourse surrounding Massive Open Online Courses (MOOCs) is powerful. Despite their rapid and widespread deployment, research has yet to confirm or refute some of the bold claims rationalizing the popularity and efficacy of these large-scale virtual learning environments. Also, MOOCs' reputed disruptive, game-changing potential…

  10. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2010-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  11. Ignition and flame travel on realistic building and landscape objects in changing environments

    Treesearch

    Mark A. Dietenberger

    2007-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures from close proximity of burning vegetations and (2) stopping flame travel from firebrands landing on combustible building objects. In using bench-scale and mid-scale fire tests to obtain fire growth...

  12. A multi-scale assessment of population connectivity in African lions (Panthera leo) in response to landscape change

    Treesearch

    Samuel A. Cushman; Nicholas B. Elliot; David W. Macdonald; Andrew J. Loveridge

    2015-01-01

    Habitat loss and fragmentation are among the major drivers of population declines and extinction, particularly in large carnivores. Connectivity models provide practical tools for assessing fragmentation effects and developing mitigation or conservation responses. To be useful to conservation practitioners, connectivity models need to incorporate multiple scales and...

  13. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    USDA-ARS?s Scientific Manuscript database

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  14. Liquidation sales: Land speculation and landscape change

    NASA Astrophysics Data System (ADS)

    Lazarus, E.

    2012-12-01

    Large-scale land-use transitions can occur with astonishing speed, and landscape stability can change with equal suddenness: for example, the catastrophic dustbowl that paralyzed the Midwestern US in the early 1930s came barely 40 years after the derby for homestead land in Oklahoma in 1889. Some human-landscape systems, like the large prehistoric settlements in the Brazilian Amazon, persisted for centuries without environmental collapse. Others quickly exhausted all of the environmental resources available, as occurred with phosphate mining on the Pacific Island of Nauru. Although abrupt shifts from resource plenty to resource scarcity are theoretically interesting for their complexity, the very real consequences of modern social and environmental boom-bust dynamics can catalyze humanitarian crises. Drawing on historical examples and investigative reporting of current events, I explore the hypothesis that land speculation drives rapid transitions in physical landscapes at large spatial scales. "Land grabs" is one of four core environmental justice and equality issues Oxfam International is targeting in its GROW campaign, citing evidence that foreign investors are buying up vast tracts of land in developing countries, and as a consequence exacerbating food scarcity and marginalization of poor families. Al Jazeera has reported extensively on land-rights disputes in Honduras and investment deals involving foreign ownership of large areas of agricultural land in New Zealand, India, Africa, and South America. Overlapping coverage has also appeared in the New York Times, the Washington Post, the BBC News, the Guardian, and other outlets. Although land itself is only one kind of natural resource, land rights typically determine access to other natural resources (e.g. water, timber, minerals, fossil fuels). Consideration of land speculation therefore includes speculative bubbles in natural-resource markets more broadly. There are categorical commonalities in agricultural change and deforestation around the world. Although the details differ at local scales, even disparate cases of land use and landscape changes may express similar patterns and structures. Records of sediment flux in salt marshes and fluvial deposits indicate rates of past landscape responses to human activities; the 1930s dustbowl event left a sedimentary signature in western North American lakes. Petrochemicals and fertilizers from agricultural runnoff are causing hypoxic dead zones in coastal waters to expand. In the Brazilian Amazon, regional-scale changes in weather and climate have been linked to deforestation, and deforestation has been linked to patterns of boom-bust development. But even when rampant land acquisition for agriculture or housing has been identified as problematic, the attendant environmental consequences are not necessarily obvious. The nonlinear attenuation of cause and effect is a function of the hierarchy of scales that typify these complex, human-landscape systems: the emergence of long-term, large-scale environmental dynamics lag behind the short-term, localized dynamics of a resource bubble. Insight into how these coupled systems behave may reveal the scales at which government, institutional, or self-organized social intervention may be most effective, and presents an opportunity to integrate evolving spheres of research from the behavioural sciences and Earth-surface processes.

  15. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Energy transformations associated with the synoptic and planetary scales during the evolution of a blocking anticyclone and an upstream explosively-developing cyclone

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Tsou, Chih-Hua

    1992-01-01

    The eddy kinetic energy (KE), release of eddy potential energy, generation of eddy kinetic energy, and exchange between eddy and zonal kinetic energy are investigated for a blocking anticyclone over the North Atlantic Ocean and an extratropical cyclone that developed during January 17-21, 1979. The results indicate that KE was maintained by baroclinic conversion of potential to kinetic. As released potential energy was being used to generate KE, a portion of the KE was barotropically converted to zonal KE. These transformations were dominated by the synoptic-scale component. While changes in the mass field depended not only on the synoptic scale but also on the interactions between the synoptic and planetary scales, the corresponding changes in the eddy motion fields responded largely to synoptic-scale processes.

  17. Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia

    PubMed Central

    Cumming, Brian F.; Laird, Kathleen R.; Bennett, Joseph R.; Smol, John P.; Salomon, Anne K.

    2002-01-01

    Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansion/recession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions. PMID:12461174

  18. Persistent millennial-scale shifts in moisture regimes in western Canada during the past six millennia.

    PubMed

    Cumming, Brian F; Laird, Kathleen R; Bennett, Joseph R; Smol, John P; Salomon, Anne K

    2002-12-10

    Inferences of past climatic conditions from a sedimentary record from Big Lake, British Columbia, Canada, over the past 5,500 years show strong millennial-scale patterns, which oscillate between periods of wet and drier climatic conditions. Higher frequency decadal- to centennial-scale fluctuations also occur within the dominant millennial-scale patterns. These changes in climatic conditions are based on estimates of changes in lake depth and salinity inferred from diatom assemblages in a well dated sediment core. After periods of relative stability, abrupt shifts in diatom assemblages and inferred climatic conditions occur approximately every 1,220 years. The correspondence of these shifts to millennial-scale variations in records of glacial expansionrecession and ice-rafting events in the Atlantic suggest that abrupt millennial-scale shifts are important to understanding climatic variability in North America during the mid- to late Holocene. Unfortunately, the spatial patterns and mechanisms behind these large and abrupt swings are poorly understood. Similar abrupt and prolonged changes in climatic conditions today could pose major societal challenges for many regions.

  19. Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA.

    PubMed

    Wang, Guiming; Hobbs, N Thompson; Galbraith, Hector; Giesen, Kenneth M

    2002-09-01

    Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.

  20. Herbivory drives large-scale spatial variation in reef fish trophic interactions

    PubMed Central

    Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R

    2014-01-01

    Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large-scale pattern; however, it affected the contribution of some groups on a local scale (e.g., large-bodied parrotfish) highlighting the need to incorporate critical functions into conservation strategies. PMID:25512851

  1. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    DTIC Science & Technology

    2016-09-01

    Laboratory Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS) by JL Cogan...analysis. As expected, accuracy generally tended to decline as the large-scale data aged , but appeared to improve slightly as the age of the large...19 Table 7 Minimum and maximum mean RMDs for each WRF time (or GFS data age ) category. Minimum and

  2. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  3. Monitoring network confirms land use change is a substantial component of the forest carbon sink in the eastern United States

    Treesearch

    Christopher W. Woodall; Brian F. Walters; John Coulston; A.W. D’Amato; Grant M. Domke; M.B. Russell; Paul Sowers

    2015-01-01

    Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region–wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories...

  4. Historical changes in pool habitats in the Columbia River basin

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler

    1995-01-01

    Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...

  5. Climate-induced changes in vulnerability to biological threats in the southern United States

    Treesearch

    Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett

    2014-01-01

    Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...

  6. The effects of seed dispersal on the simulation of long-term forest landscape change

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...

  7. A framework for assessing global change risks to forest carbon stocks in the United States

    Treesearch

    Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

    2013-01-01

    Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...

  8. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd

    2018-04-17

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.

  9. Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.

    NASA Astrophysics Data System (ADS)

    Baatsen, M.

    2016-12-01

    The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.

  10. Assessing the Impact of Urbanization on Direct Runoff Using Improved Composite CN Method in a Large Urban Area

    PubMed Central

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd

    2018-01-01

    Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182

  11. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.

  12. Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Hendriks, Iris E.; Duarte, Carlos M.; Olsen, Ylva S.; Steckbauer, Alexandra; Ramajo, Laura; Moore, Tommy S.; Trotter, Julie A.; McCulloch, Malcolm

    2015-01-01

    The direct influence of anthropogenic CO2 might play a limited role in pH regulation in coastal ecosystems as pH regulation in these areas can be complex. They experience large variability across a broad range of spatial and temporal scales, with complex external and internal drivers. Organisms influence pH at a patch scale, where community metabolic effects and hydrodynamic processes interact to produce broad ranges in pH, (˜0.3-0.5 pH units) over daily cycles and spatial scales (mm to m) particularly in shallow vegetated habitats and coral reefs where both respiration and photosynthetic activity are intense. Biological interactions at the ecosystem scale, linked to patchiness in habitat landscapes and seasonal changes in metabolic processes and temperature lead to changes of about 0.3-0.5 pH units throughout a year. Furthermore, on the scale of individual organisms, small-scale processes including changes at the Diffusive Boundary Layer (DBL), interactions with symbionts, and changes to the specific calcification environment, induce additional changes in excess of 0.5 pH units. In these highly variable pH environments calcifying organisms have developed the capacity to alter the pH of their calcifying environment, or specifically within critical tissues where calcification occurs, thus achieving a homeostasis. This capacity to control the conditions for calcification at the organism scale may therefore buffer the full impacts of ocean acidification on an organism scale, although this might be at a cost to the individual. Furthermore, in some areas, calcifiers may potentially benefit from changes to ambient seawater pH, where photosynthetic organisms drawdown CO2.

  13. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and future periods. Implementation differences in these and other modeling choices contribute to significant variation among global-scale crop model assessments in addition to differences in crop model implementations that also cause large differences in site-specific crop modeling (Asseng et al., 2013; Bassu et al., 2014).

  14. Some aspects of large-scale travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Bowman, G. G.

    1992-06-01

    On two occasions the speeds and directions of travel of large-scale traveling ionospheric disturbances (LS-TIDs) following geomagnetic substorm onsets, have been calculated for the propagation of these disturbances in both hemispheres of the earth. N(h) analyses have been used to produce height change profiles at a fixed frequency from which time shifts between stations (used for the speed and direction-of-travel values) have been calculated. Fixed-frequency phase path measurements at Bribie Island for two events reveal wavetrains with periodicities around 17 min associated with these disturbances. Another event recorded a periodicity of 19 min. Also, for two of the events additional periodicities around 30 min were found. These wavetrains along with the macroscale height changes and electron density depletions associated with these LS-TIDs are essentially the same as the ionospheric structure changes observed during the passage of night-time medium-scale traveling ionospheric disturbances (MS-TIDs). However, unlike these MS-TIDs, the LS-TIDs are generally not associated with the recording of spread-F on ionograms. Possible reasons for this difference are discussed as well as the special conditions which probably prevail on the few occasions when spread-F is associated with LS-TIDs.

  15. Web based visualization of large climate data sets

    USGS Publications Warehouse

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.

  16. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  17. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  18. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  19. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  20. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  1. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  2. Are large-scale manipulations of streamflow for ecological outcomes effective either as experiments or management actions? (Invited)

    NASA Astrophysics Data System (ADS)

    Konrad, C. P.; Olden, J.

    2013-12-01

    Dams impose a host of impacts on freshwater and estuary ecosystems. In recent decades, dam releases for ecological outcomes have been increasingly implemented to mitigate for these impacts and are gaining global scope. Many are designed and conducted using an experimental framework. A recent review of large-scale flow experiments (FE) evaluates their effectiveness and identifies ways to enhance their scientific and management value. At least 113 large-scale flow experiments affecting 98 river systems globally have been documented over the last 50 years. These experiments span a range of flow manipulations from single pulse events to comprehensive changes in flow regime across all seasons and different water year types. Clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam operating policies. We found a strong disparity between the recognized ecological importance of a multi faceted flow regimes and discrete flow events that characterized 80% of FEs. Over three quarters of FEs documented both abiotic and biotic outcomes, but only one third examined multiple trophic groups, thus limiting how this information informs future dam management. Large-scale flow experiments represent a unique opportunity for integrated biophysical investigations for advancing ecosystem science. Nonetheless, they must remain responsive to site-specific issues regarding water management, evolving societal values and changing environmental conditions and, in particular, can characterize the incremental benefits from and necessary conditions for changing dam operations to improve ecological outcomes. This type of information is essential for understanding the full context of value based trade-offs in benefits and costs from different dam operations that can serve as an empirical basis for societal decisions regarding water and ecosystem management. FE may be the best approach available to managers for resolving critical uncertainties that impede decision making in adaptive settings, for example, when we lack sufficient understanding to model biophysical responses to alternative operations. Integrated long term monitoring of biotic abiotic responses and defining clear management based objectives highlight ways for improving the efficiency and value of FEs.

  3. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  4. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  5. Simulation research on the process of large scale ship plane segmentation intelligent workshop

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei

    2017-04-01

    Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.

  6. Deployment dynamics and control of large-scale flexible solar array system with deployable mast

    NASA Astrophysics Data System (ADS)

    Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping

    2016-10-01

    In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.

  7. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.

  8. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    NASA Astrophysics Data System (ADS)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  9. Spatio-temporal trends in crop damage inform recent climate-mediated expansion of a large boreal herbivore into an agro-ecosystem.

    PubMed

    Laforge, Michel P; Michel, Nicole L; Brook, Ryan K

    2017-11-09

    Large-scale climatic fluctuations have caused species range shifts. Moose (Alces alces) have expanded their range southward into agricultural areas previously not considered moose habitat. We found that moose expansion into agro-ecosystems is mediated by broad-scale climatic factors and access to high-quality forage (i.e., crops). We used crop damage records to quantify moose presence across the Canadian Prairies. We regressed latitude of crop damage against North Atlantic Oscillation (NAO) and crop area to test the hypotheses that NAO-mediated wetland recharge and occurrence of more nutritious crop types would result in more frequent occurrences of crop damage by moose at southerly latitudes. We examined local-scale land use by generating a habitat selection model to test our hypothesis that moose selected for areas of high crop cover in agro-ecosystems. We found that crop damage by moose occurred farther south during dry winters and in years with greater coverage of oilseeds. The results of our analyses support our hypothesis that moose movement into cropland is mediated by high-protein crops, but not by thermoregulatory habitat at the scale examined. We conclude that broad-scale climate combined with changing land-use regimes are causal factors in species' range shifts and are important considerations when studying changing animal distributions.

  10. Scale invariant rearrangement of resting state networks in the human brain under sustained stimulation.

    PubMed

    Tommasin, Silvia; Mascali, Daniele; Moraschi, Marta; Gili, Tommaso; Assan, Ibrahim Eid; Fratini, Michela; DiNuzzo, Mauro; Wise, Richard G; Mangia, Silvia; Macaluso, Emiliano; Giove, Federico

    2018-06-14

    Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may be not the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation. Copyright © 2018. Published by Elsevier Inc.

  11. Varying the forcing scale in low Prandtl number dynamos

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Haugen, N. E. L.; Li, Xiang-Yu; Subramanian, K.

    2018-06-01

    Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.

  12. Widespread habitat change through paludification as an interactive mechanism in mass extinction events

    NASA Technical Reports Server (NTRS)

    Klinger, L. F.

    1988-01-01

    The study of mass extinction events has largely focused on defining an environmental factor or factors that might account for specific patterns of faunal demise. Several hypotheses elaborate on how a given environmental factor might affect fauna directly, but differentially, causing extinction in certain taxa but not others. Yet few studies have considered specific habitat changes that might result from natural vegetation processes or from perturbations of vegetation. The role of large-scale habitat change induced by natural successional change from forest to bog (paludification) is examined and how large perturbations (e.g., volcanism, bolide impacts) might favor increased rates of paludification and consequent mass extinctions is considered. This hypothesis has an advantage over other hypotheses for mass extinctions in that modern day analogs of paludification are common throughout the world, thus allowing for considerable testing.

  13. The Mekong's future flows under multiple driving factors: How future climate change, hydropower developments and irrigation expansion drive hydrological changes?

    NASA Astrophysics Data System (ADS)

    Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-12-01

    The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.

  14. Climate variations in northern North America (6000 BP to present) reconstructed from pollen and tree-ring data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, H.F.; Andrews, J.T.; Short, S.K.

    The characteristic anomaly patterns of modern surface temperature and precipitation are compared to tree-ring indices (0-300 yr) and fossil pollen (0-6000 yr) variations in northern North America. The data base consists of 245 climate stations, 55 tree-ring chronologies, 153 modern pollen collections, and 39 fossil pollen sites. A few areas exhibit relatively high climatic sensitivity, displaying generally consistent patterns during alternate warm and cold periods, regardless of time scales. The surface changes are related to the redistribution (i.e., changes in the mean position and strength) of the planetary-scale waves and to north-south shifts in the mean boundary of the Arcticmore » Front. The zone where the largest changes occur is typically located along the mean present-day boundary between Arctic and Pacific airstreams. Establishing plausible relationships between vegetation responses and concomitant changes in atmospheric circulation patterns increases our confidence that the paleoclimatic signals are indeed related to large-scale circulation changes.« less

  15. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  16. North American Extreme Temperature Events and Related Large Scale Meteorological Patterns: A Review of Statistical Methods, Dynamics, Modeling, and Trends

    NASA Technical Reports Server (NTRS)

    Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.; hide

    2015-01-01

    The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.

  17. A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G. E.; Lewis, S. L.; Kramer, M. G.; Staab, B.

    2014-09-01

    Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snow-dominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to low-sensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to an uncertain and potentially challenging future.

  18. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  19. Interoperability of Landsat and DMC imagery for continuous detection and quantification of nonindustrial forest harvests in the Western Upper Peninsula of Michigan, USA

    NASA Astrophysics Data System (ADS)

    Mayer, A. L.; Tortini, R.; Maianti, P.

    2013-12-01

    The relationship between human land use and land cover change is critical to sustainable forest management. Land use decisions by small land managers aggregate into substantial land cover changes at landscape and regional scales. Land ownership across large portions of the Upper Great Lakes region is in considerable flux, as large timber industry tracts are split into many smaller non-industrial ownerships, and new owners prioritize amenity and non-timber forest values. Nonindustrial Private Forest (NIPF) owners also transfer their properties to younger generations or other NIPF owners with different management approaches and goals. Survey data on intended harvests and sales are available through the National Woodland Owner Survey (NWOS), run by the USDA Forest Service. However, the disparity between NIPF owner-stated plans to harvest, and what actually occurs, can be substantially different, especially if annual fluctuations in timber prices or general economic fluctuations cause NIPF owners to deviate from their stated management and ownership intentions. This reduces the NWOS' utility. Remote sensing data have considerable value for identifying small scale harvests and, paired with ownership data at the parcel scale, can measure NIPF harvest rates as related to ownership change at a regional scale. Here we focus on the Western Upper Peninsula of Michigan (WUP) and the most recent decade to develop our methodology, using primarily Landsat images from 2003-2013. However, Landsat data series are characterized by gaps in coverage over long temporal and large spatial scales, and so a methodology to combine multiple remote sensing data sources is necessary for regional-scale land use/land cover change research. We filled these gaps by integrating the available Landsat time series with DMC imagery. We then combined these data with GIS overlays of the parcels and stand-level data on removed basal area (BA) during known harvesting events to develop a classification of harvest intensity for the WUP. Images taken during peak growing season were preferred to calculate NDVI and ΔNDVI, and in general for enhancing possible spectral changes. We classified the harvests as clear cut, selective harvesting or thinning using an object-based image analysis. In particular, we defined a clear cut a harvesting event in which ~90-100% BA is removed, commercial harvesting if ~50-80% BA is removed and thinning if ~20-40% BA removal. This work demonstrates that DMC images can effectively fill the Landsat data gap for the detection and quantification of harvesting events. Preliminary results show that the method is capable of identifying harvests down to ~20% BA removal. These results can then be used to monitor the accuracy of the NWOS, and to develop a probability estimate of harvest given either ownership change or changes in market conditions.

  20. The Politics of Education Revisited: Anthony Crosland and Michael Gove in Historical Perspective

    ERIC Educational Resources Information Center

    Finn, Mike

    2015-01-01

    This article traces continuity and change in the governance of British education through the comparison of two ministers, Anthony Crosland and Michael Gove. Taking Maurice Kogan's seminal "The Politics of Education" as the point of departure, the article highlights the role of political ideology in large-scale educational change, taking…

  1. Recent Developments in Assessment Procedures in England and Wales.

    ERIC Educational Resources Information Center

    Goldstein, Harvey; Nuttall, Desmond

    Focusing on technical issues, this paper critiques proposed changes in assessment procedures at the further educational level (ages 16 through 18) in England and Wales. Major structural changes are taking place at this educational level, partly because of large scale youth unemployment. The two current examination systems for the final year of…

  2. Fit for Play?

    ERIC Educational Resources Information Center

    Smith, Angela

    2007-01-01

    This article reports on the findings of a small-scale investigation into the views of children on potential changes to the playground in a large primary school. As a parent, midday supervisor and member of the school Grounds Development Committee I was interested in how views gathered to underpin change to the playground of one school might fit…

  3. Talkin' bout My Generation: Boomers, Xers, and Educational Change

    ERIC Educational Resources Information Center

    Stone-Johnson, Corrie

    2011-01-01

    From 1998 to 2003, Andy Hargreaves and Ivor Goodson, along with colleagues Shawn Moore, Sonia James-Wilson, Dean Fink, and Corrie Giles, undertook a large-scale study of eight secondary schools in Ontario, Canada, and New York in the United States to investigate teachers' perceptions and experiences of educational change over 30 years spanning…

  4. Lake Diatoms as Indicators of Land Use Effects, Changing Environmental Conditions, and the Effectiveness of Management Practices

    EPA Science Inventory

    Lakes continue to face escalating pressures associated with land cover change and growing human populations. The U.S. EPA National Lakes Assessment, which sampled more than 1000 lakes in a probabilistic survey, was the first large scale effort to characterize the condition of lak...

  5. Educational Games and Virtual Reality as Disruptive Technologies

    ERIC Educational Resources Information Center

    Psotka, Joseph

    2013-01-01

    New technologies often have the potential for disrupting existing established practices, but nowhere is this so pertinent as in education and training today. And yet, education has been glacially slow to adopt these changes in a large scale way, and innovations seem to be imposed mainly by students' and their changing social lifestyles than…

  6. Organizational Learning and Large-Scale Change: Adoption of Electronic Medical Records

    ERIC Educational Resources Information Center

    Chavis, Virginia D.

    2010-01-01

    Despite implementation of electronic medical record (EMR) systems in the United States and other countries, there is no organizational development model that addresses medical professionals' attitudes toward technology adoption in a learning organization. The purpose of this study was to assess whether a model would change those attitudes toward…

  7. Bigger Stores, More Stores, or No Stores: Paths of Retail Restructuring in Rural America

    ERIC Educational Resources Information Center

    Vias, Alexander C.

    2004-01-01

    Changes such as the development of large international retail chains, retail concentration, locational changes, technological innovation, new labor practices, and the increasing scale of individual stores, have revolutionized the retail sector. This broad restructuring will have profound impacts in rural America because employment in retail is a…

  8. Flexible strain sensor based on carbon nanotube rubber composites

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ho; Kim, Young-Ju; Baek, Woon Kyung; Lim, Kwon Taek; Kang, Inpil

    2010-04-01

    Electrically conducting rubber composites (CRC) with carbon nanotubes (CNTs) filler have received much attention as potential materials for sensors. In this work, Ethylene propylene diene M-class rubber (EPDM)/CNT composites as a novel nano sensory material were prepared to develop flexible strain sensors that can measure large deformation of flexible structures. The EPDM/CNT composites were prepared by using a Brabender mixer with multi-walled CNTs and organo-clay. A strain sensor made of EPDM/CNT composite was attached to the surface of a flexible beam and change of resistance of the strain sensor was measured with respect to the beam deflection. Resistance of the sensor was change quite linearly under the bending and compressive large beam deflection. Upon external forces, CRC deformation takes place with the micro scale change of inter-electrical condition in rubber matrix due to the change of contact resistance, and CRC reveals macro scale piezoresistivity. It is anticipated that the CNT/EPDM fibrous strain sensor can be eligible to develop a biomimetic artificial neuron that can continuously sense deformation, pressure and shear force.

  9. Large-scale patterns of turnover and Basal area change in Andean forests.

    PubMed

    Báez, Selene; Malizia, Agustina; Carilla, Julieta; Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Duque, Álvaro; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Homeier, Jürgen; Linares-Palomino, Reynaldo; Malizia, Lucio R; Cruz, Omar Melo; Osinaga, Oriana; Phillips, Oliver L; Reynel, Carlos; Silman, Miles R; Feeley, Kenneth J

    2015-01-01

    General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.

  10. Large-Scale Patterns of Turnover and Basal Area Change in Andean Forests

    PubMed Central

    Blundo, Cecilia; Aguilar, Manuel; Aguirre, Nikolay; Aquirre, Zhofre; Álvarez, Esteban; Cuesta, Francisco; Farfán-Ríos, William; García-Cabrera, Karina; Grau, Ricardo; Linares-Palomino, Reynaldo; Malizia, Lucio R.; Cruz, Omar Melo; Osinaga, Oriana; Reynel, Carlos; Silman, Miles R.

    2015-01-01

    General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century. PMID:25973977

  11. Response of the Baltic and North Seas to river runoff from the Baltic watershed - Physical and biological changes

    NASA Astrophysics Data System (ADS)

    Hänninen, Jari; Vuorinen, Ilppo; Rajasilta, Marjut; Reid, Philip C.

    2015-11-01

    Selected Baltic Sea watershed River Runoff (BSRR) events during 1970-2000 were used as predictor in Generalised Linear Mixed Models (GLIMMIX) for evidence of simultaneous changes/chain of events (including possible time lags) in some chemical, physical and biological variables in the Baltic and North Sea ecosystems. Our aim was to explore for climatic-based explanation for ecological regime shifts that were documented semi-simultaneously in both ecosystems. Certain similarities were identified in the North Sea and the Baltic Sea salinity, oxygen concentration, temperature and phyto- and zooplankton parameters. These findings suggest that BSRR events which originate in the Baltic Sea catchment area modify and contribute to large scale ecosystem changes not only in the Baltic Sea, but also in the adjacent parts of the North Sea. However, the Baltic Sea inter-annual and inter-decadal variabilities of physical and biological parameters are driven by direct atmospheric forcing, typically with a relatively short lag. In contrast, such changes in the North Sea are influenced by both local and direct atmospheric forcing, typically with a longer lag than in the Baltic, and a more regional, indirect forcing from changes in the North Atlantic. We suggest that this interactive system partially is behind large scale ecosystem regime shifts found in both Seas. During our study period two such shifts have been identified independently from us in a study earlier in the Southern and Central Baltic in 1980s and 1990s and a later one in 2001/2002 in the North Sea. As a post hoc test we compared the 0+ year class strength of the North Sea herring with BSRR intensity, and found evidence for higher herring production in high BSRR periods, which further corroborates the idea of a remote effect from the large watershed area of the Baltic. Regime shifts as well as their semi-synchronous appearance in two neighbouring sea areas could be identified. GLIMMIX models provide opportunities for determining and understanding the mechanisms behind marine ecosystem long-term and large-scale changes. Many studies have shown the importance of climatic factors (identified by the air pressure index, North Atlantic Oscillation) to the physical and biological changes over the North Atlantic. Our study enlarges the areal and temporal scope of these observations, and provides further support and explanation for climate as the pacemaker for marine ecological changes.

  12. Gap Acceptance During Lane Changes by Large-Truck Drivers—An Image-Based Analysis

    PubMed Central

    Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J.; Zhao, Ding; Peng, Huei; Pan, Christopher S.

    2016-01-01

    This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing. PMID:26924947

  13. Gap Acceptance During Lane Changes by Large-Truck Drivers-An Image-Based Analysis.

    PubMed

    Nobukawa, Kazutoshi; Bao, Shan; LeBlanc, David J; Zhao, Ding; Peng, Huei; Pan, Christopher S

    2016-03-01

    This paper presents an analysis of rearward gap acceptance characteristics of drivers of large trucks in highway lane change scenarios. The range between the vehicles was inferred from camera images using the estimated lane width obtained from the lane tracking camera as the reference. Six-hundred lane change events were acquired from a large-scale naturalistic driving data set. The kinematic variables from the image-based gap analysis were filtered by the weighted linear least squares in order to extrapolate them at the lane change time. In addition, the time-to-collision and required deceleration were computed, and potential safety threshold values are provided. The resulting range and range rate distributions showed directional discrepancies, i.e., in left lane changes, large trucks are often slower than other vehicles in the target lane, whereas they are usually faster in right lane changes. Video observations have confirmed that major motivations for changing lanes are different depending on the direction of move, i.e., moving to the left (faster) lane occurs due to a slower vehicle ahead or a merging vehicle on the right-hand side, whereas right lane changes are frequently made to return to the original lane after passing.

  14. Large space telescope engineering scale model optical design

    NASA Technical Reports Server (NTRS)

    Facey, T. A.

    1973-01-01

    The objective is to develop the detailed design and tolerance data for the LST engineering scale model optical system. This will enable MSFC to move forward to the optical element procurement phase and also to evaluate tolerances, manufacturing requirements, assembly/checkout procedures, reliability, operational complexity, stability requirements of the structure and thermal system, and the flexibility to change and grow.

  15. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Treesearch

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  16. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China

    Treesearch

    Yihe Lu; Bojie Fu; Xiaoming Feng; Yuan Zeng; Yu Liu; Ruiying Chang; Ge Sun; Bingfang Wu

    2012-01-01

    As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of...

  17. Coaching as Part of a Pilot Quality Rating Scale Initiative: Challenges to--and Supports for--the Change-Making Process

    ERIC Educational Resources Information Center

    Ackerman, Debra J.

    2008-01-01

    Several nonprofit agencies in a large Midwestern city provide assistance to early care and education programs participating in a pilot Quality Rating Scale (QRS) initiative by pairing them with itinerant consultants, who are known as coaches. Despite this assistance, not all programs improve their QRS score. Furthermore, while pilot stakeholders…

  18. Discrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm

    NASA Technical Reports Server (NTRS)

    Yuhas, Roberta H.; Goetz, Alexander F. H.; Boardman, Joe W.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were acquired during three consecutive seasons of the year (26 Sep. 1989, 22 Mar. 1990, and 7 Aug. 1990) over an area of the High Plains east of Greeley, Colorado. This region contains extensive eolian deposits in the form of stabilized dune complexes (small scale parabolic dunes superimposed on large scale longitudinal and parabolic dunes). Due to the dunes' large scale (2-10 km) and low relief (1-5 m), the scaling relationships that contribute to the evolution of this landscape are nearly impossible to understand without the use of remote sensing. Additionally, climate models indicate that the High Plains could be one of the first areas to experience changes in climate caused by either global warming or cooling. During the past 10,000 years there were at least three periods of extensive sand activity, followed by periods of landscape stability, as shown in the stratigraphic record of this area. Therefore, if the past is an indication of the future, the monitoring of this landscape and its sensitive ecosystem is important for early detection of regional and global climate change.

  19. Combined climate and carbon-cycle effects of large-scale deforestation

    PubMed Central

    Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.

    2007-01-01

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463

  20. Combined climate and carbon-cycle effects of large-scale deforestation.

    PubMed

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2007-04-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

Top