Sample records for large scale circulations

  1. Large-scale circulation departures related to wet episodes in north-east Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, Dhirendra N.; Elsner, James B.

    1987-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  2. Large-scale circulation departures related to wet episodes in northeast Brazil

    NASA Technical Reports Server (NTRS)

    Sikdar, D. N.; Elsner, J. B.

    1985-01-01

    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.

  3. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.

  4. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  5. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.

  6. Linking crop yield anomalies to large-scale atmospheric circulation in Europe.

    PubMed

    Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J

    2017-06-15

    Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.

  7. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    EPA Science Inventory

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...

  8. Regarding tracer transport in Mars' winter atmosphere in the presence of nearly stationary, forced planetary waves

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffrey L.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    Large-scale transport of volatiles and condensates on Mars, as well as atmospheric dust, is ultimately driven by the planet's global-scale atmospheric circulation. This circulation arises in part from the so-called mean meridional (Hadley) circulation that is associated with rising/poleward motion in low latitudes and sinking/equatorward motion in middle and high latitudes. Intimately connected to the mean circulation is an eddy-driven component due to large-scale wave activity in the planet's atmosphere. During winter this wave activity arises both from traveling weather systems (i.e., barotropic and baroclinic disturbances) and from 'forced' disturbances (e.g., the thermal tides and surface-forced planetary waves). Possible contributions to the effective (net) transport circulation from forced planetary waves are investigated.

  9. Summer circulation in the Mexican tropical Pacific

    NASA Astrophysics Data System (ADS)

    Trasviña, A.; Barton, E. D.

    2008-05-01

    The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.

  10. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  11. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  12. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  13. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.

  14. Production regimes in four eastern boundary current systems

    NASA Technical Reports Server (NTRS)

    Carr, M. E.; Kearns, E. J.

    2003-01-01

    High productivity (maxima 3 g C m(sup -2)day(sup -1)) of the Eastern Boundary Currents (EBCs), i.e. the California, Peru-Humboldt, Canary and Benguela Currents, is driven by a combination of local forcing and large-scale circulation. The characteristics of the deep water brought to the surface by upwelling favorable winds depend on the large-scale circulation patterns. Here we use a new hydrographic and nutrient climatology together with satellite measurements ofthe wind vector, sea-surface temperature (SST), chlorophyll concentration, and primary production modeled from ocean color to quantify the meridional and seasonal patterns of upwelling dynamics and biological response. The unprecedented combination of data sets allows us to describe objectively the variability for small regions within each current and to characterize the governing factors for biological production. The temporal and spatial environmental variability was due in most regions to large-scale circulation, alone or in combination with offshore transport (local forcing). The observed meridional and seasonal patterns of biomass and primary production were most highlycorrelated to components representing large-scale circulation. The biomass sustained by a given nutrient concentration in the Atlantic EBCs was twice as large as that of the Pacific EBCs. This apparent greater efficiency may be due toavailability of iron, physical retention, or differences in planktonic community structure.

  15. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    NASA Astrophysics Data System (ADS)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2017-09-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  16. Large-scale photospheric motions determined from granule tracking and helioseismology from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.

    2018-04-01

    Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.

  17. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different 'homogeneous monsoon regions'.

  18. Extended field observations of cirrus clouds using a ground-based cloud observing system

    NASA Technical Reports Server (NTRS)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  19. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI, large-scale atmospheric circulation

  20. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  1. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Wang, Lei; Chen, Deliang; Tu, Kai; Ruan, Chengqing; Hu, Zengyun

    2016-06-01

    The relationship between the large-scale circulation dynamics and regional precipitation regime in the Tibetan Plateau (TP) has so far not been well understood. In this study, we classify the circulation types using the self-organizing maps based on the daily field of 500 hPa geopotential height and link them to the precipitation climatology in the eastern and central TP. By virtue of an objective determining method, 18 circulation types are quantified. The results show that the large amount of precipitation in summer is closely related to the circulation types in which the enhanced and northward shifted subtropical high (SH) over the northwest Pacific and the obvious cyclconic circulation anomaly over the Bay of Bengal are helpful for the Indian summer monsoon and East Asian summer monsoon to take abundant low-latitude moisture to the eastern and southern TP. On the contrary, the dry winter in the central and eastern Tibet corresponds to the circulation types with divergence over the central and eastern TP and the water vapor transportations of East Asian winter monsoon and mid-latitude westerly are very weak. Some circulation types are associated with some well-known circulation patterns/monsoons influencing the TP (e.g. East Atlantic Pattern, El Niño Southern Oscillation, Indian Summer Monsoon and the mid-latitude westerly), and exhibit an overall good potential for explaining the variability of regional seasonal precipitation. Moreover, the climate shift signals in the late 1970s over the eastern Pacific/North Pacific Oceans could also be reflected by both the variability of some circulation types and their correspondingly composite precipitations. This study extends our understandings for the large-scale atmospheric dynamics and their linkages with regional precipitation and is beneficial for the climate change projection and related adaptation activities in the highest and largest plateau in the world.

  2. Large-scale effects on the regulation of tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hartmann, Dennis L.; Michelsen, Marc L.

    1993-01-01

    The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.

  3. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.

  4. Large-Scale Circulation and Climate Variability. Chapter 5

    NASA Technical Reports Server (NTRS)

    Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.

    2017-01-01

    The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.

  5. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    NASA Technical Reports Server (NTRS)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.

  6. Methods of testing parameterizations: Vertical ocean mixing

    NASA Technical Reports Server (NTRS)

    Tziperman, Eli

    1992-01-01

    The ocean's velocity field is characterized by an exceptional variety of scales. While the small-scale oceanic turbulence responsible for the vertical mixing in the ocean is of scales a few centimeters and smaller, the oceanic general circulation is characterized by horizontal scales of thousands of kilometers. In oceanic general circulation models that are typically run today, the vertical structure of the ocean is represented by a few tens of discrete grid points. Such models cannot explicitly model the small-scale mixing processes, and must, therefore, find ways to parameterize them in terms of the larger-scale fields. Finding a parameterization that is both reliable and plausible to use in ocean models is not a simple task. Vertical mixing in the ocean is the combined result of many complex processes, and, in fact, mixing is one of the less known and less understood aspects of the oceanic circulation. In present models of the oceanic circulation, the many complex processes responsible for vertical mixing are often parameterized in an oversimplified manner. Yet, finding an adequate parameterization of vertical ocean mixing is crucial to the successful application of ocean models to climate studies. The results of general circulation models for quantities that are of particular interest to climate studies, such as the meridional heat flux carried by the ocean, are quite sensitive to the strength of the vertical mixing. We try to examine the difficulties in choosing an appropriate vertical mixing parameterization, and the methods that are available for validating different parameterizations by comparing model results to oceanographic data. First, some of the physical processes responsible for vertically mixing the ocean are briefly mentioned, and some possible approaches to the parameterization of these processes in oceanographic general circulation models are described in the following section. We then discuss the role of the vertical mixing in the physics of the large-scale ocean circulation, and examine methods of validating mixing parameterizations using large-scale ocean models.

  7. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  8. Cyclonic circulation of Saturn's atmosphere due to tilted convection

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y. D.; Zhang, Y.

    2018-03-01

    Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.

  9. A High-Resolution WRF Tropical Channel Simulation Driven by a Global Reanalysis

    NASA Astrophysics Data System (ADS)

    Holland, G.; Leung, L.; Kuo, Y.; Hurrell, J.

    2006-12-01

    Since 2003, NCAR has invested in the development and application of Nested Regional Climate Model (NRCM) based on the Weather Research and Forecasting (WRF) model and the Community Climate System Model, as a key component of the Prediction Across Scales Initiative. A prototype tropical channel model has been developed to investigate scale interactions and the influence of tropical convection on large scale circulation and tropical modes. The model was developed based on the NCAR Weather Research and Forecasting Model (WRF), configured as a tropical channel between 30 ° S and 45 ° N, wide enough to allow teleconnection effects over the mid-latitudes. Compared to the limited area domain that WRF is typically applied over, the channel mode alleviates issues with reflection of tropical modes that could result from imposing east/west boundaries. Using a large amount of available computing resources on a supercomputer (Blue Vista) during its bedding in period, a simulation has been completed with the tropical channel applied at 36 km horizontal resolution for 5 years from 1996 to 2000, with large scale circulation provided by the NCEP/NCAR global reanalysis at the north/south boundaries. Shorter simulations of 2 years and 6 months have also been performed to include two-way nests at 12 km and 4 km resolution, respectively, over the western Pacific warm pool, to explicitly resolve tropical convection in the Maritime Continent. The simulations realistically captured the large-scale circulation including the trade winds over the tropical Pacific and Atlantic, the Australian and Asian monsoon circulation, and hurricane statistics. Preliminary analysis and evaluation of the simulations will be presented.

  10. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    NASA Astrophysics Data System (ADS)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  11. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  12. A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.

    2014-12-01

    The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.

  13. Experimental Investigation of Natural-Circulation Flow Behavior Under Low-Power/Low-Pressure Conditions in the Large-Scale PANDA Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auban, Olivier; Paladino, Domenico; Zboray, Robert

    2004-12-15

    Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity.more » The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.« less

  14. IAS Mesoscale Surface Circulation Observed Through Satellite Altimetry and its Influence in a Small Scale, Coastal Domain, Studied with a ROMS Model of the Cariaco Basin.

    NASA Astrophysics Data System (ADS)

    Alvera-Azcarate, A.; Barth, A.; Virmani, J. I.; Weisberg, R. H.

    2007-05-01

    The Intra-Americas Sea (IAS) surface circulation is characterized by large scale currents. The Caribbean current, which originates in the Lesser Antilles, travels westwards through the Caribbean Sea and eastern Mexico and passes through the Gulf of Mexico to finally form the Gulf Stream. This complex system of currents is also characterized by a high mesoscale variability, such as eddies and meanders. The objectives of this work are twofold: first, the multi-scale surface circulation of the IAS is described using satellite altimetry. The topographic influence of the different basins forming the IAS, the characteristic time and spatial scales, and the time variability of the surface circulation will be addressed. The second objective is to analyze the influence of this large scale circulation on a small scale coastal domain with a ROMS-based model of the Cariaco basin (Venezuela). Cariaco is a deep (1400 m), semi-enclosed basin connected to the open ocean by two shallow channels (Tortuga and Centinela Channels). Its connection with the open sea, and therefore the ventilation of the basin, occurs in the surface layers. The Cariaco ROMS model will be used to study the exchanges of mass, heat and salt through the channels. A 1/60 degree ROMS model nested in the global 1/12 degree HYCOM model from the Naval Research Laboratory will be used for this study. In addition, a series of observations (satellite altimetry and in situ temperature, salinity and velocity data), will be used to assess the influence of the Caribbean circulation on the basin.

  15. General circulation of the South Atlantic between 5 deg N and 35 deg S

    NASA Technical Reports Server (NTRS)

    Ollitrault, Michel; Mercier, H.; Blanc, F.; Letraon, L. Y.

    1991-01-01

    The TOPEX/POSEIDON altimeter will provide the temporal mean seal level. So, secondly, we propose to compute the difference between these two surfaces (mean sea level minus general circulation dynamic topography). The result will be an estimate of the marine geoid, which is time invariant for the 5-year period under consideration. If this geoid is precise enough, it will permit a description of seasonal variability of the large-scale surface circulation. If there happens to be enough float data, it may be possible to infer the first vertical modes of this variability. Thus the main goal of our investigation is to determine the 3-D general circulation of the South Atlantic and the large-scale seasonal fluctuations. This last objective, however, may be restricted to the western part of the South Atlantic because float deployments have been scheduled only in the Brasil basin.

  16. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  17. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    NASA Astrophysics Data System (ADS)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  18. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    NASA Astrophysics Data System (ADS)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  19. Large Scale Eocene Ocean Circulation Transition Could Help Antarctic Glaciation.

    NASA Astrophysics Data System (ADS)

    Baatsen, M.

    2016-12-01

    The global climate underwent major changes going from the Eocene into the Oligocene, including the formation of a continental-scale Antarctic ice sheet. In addition to a gradual drawdown of CO2 since the Early Eocene, the changing background geography of the earth may also have played a crucial role in setting the background oceanic circulation pattern favorable to ice growth. On the other hand, the ocean circulation may have changed only after the ice sheet started growing, with a similar climatic imprint. It is, therefore, still under debate what the primary forcing or trigger of this transition was. Using an ocean general circulation model (POP) and two different geography reconstruc-tions for the middle-late Eocene, we find two distinctly different patterns of the oceanic circulation to be possible under the same forcing. The first one features deep-water formation and warmer SSTs in the Southern Pacific while in the second, deep water forms in the North Pacific Ocean and Southern Ocean SSTs are colder. The presence of a double equilibrium shows that the ocean circulation was highly susceptible to large scale transitions during the middle-late Eocene. Additionally, changes in benthic oxygen and Neodymium isotopes depict significant changes during the same period. We suggest that a transition in the global meridional overturing circulation can explain the observed changes and preconditions the global climate for the two-step transition into an Icehouse state at the Eocene-Oligocene boundary.

  20. Stratospheric wind errors, initial states and forecast skill in the GLAS general circulation model

    NASA Technical Reports Server (NTRS)

    Tenenbaum, J.

    1983-01-01

    Relations between stratospheric wind errors, initial states and 500 mb skill are investigated using the GLAS general circulation model initialized with FGGE data. Erroneous stratospheric winds are seen in all current general circulation models, appearing also as weak shear above the subtropical jet and as cold polar stratospheres. In this study it is shown that the more anticyclonic large-scale flows are correlated with large forecast stratospheric winds. In addition, it is found that for North America the resulting errors are correlated with initial state jet stream accelerations while for East Asia the forecast winds are correlated with initial state jet strength. Using 500 mb skill scores over Europe at day 5 to measure forecast performance, it is found that both poor forecast skill and excessive stratospheric winds are correlated with more anticyclonic large-scale flows over North America. It is hypothesized that the resulting erroneous kinetic energy contributes to the poor forecast skill, and that the problem is caused by a failure in the modeling of the stratospheric energy cycle in current general circulation models independent of vertical resolution.

  1. Fog and rain in the Amazon

    PubMed Central

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; Sobel, Adam H.

    2015-01-01

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents. PMID:26324902

  2. Fog and rain in the Amazon

    DOE PAGES

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; ...

    2015-08-31

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget.more » Finally, these results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anber, Usama; Gentine, Pierre; Wang, Shuguang

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget.more » Finally, these results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.« less

  4. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  5. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  6. A two-tier atmospheric circulation classification scheme for the European-North Atlantic region

    NASA Astrophysics Data System (ADS)

    Guentchev, Galina S.; Winkler, Julie A.

    A two-tier classification of large-scale atmospheric circulation was developed for the European-North-Atlantic domain. The classification was constructed using a combination of principal components and k-means cluster analysis applied to reanalysis fields of mean sea-level pressure for 1951-2004. Separate classifications were developed for the winter, spring, summer, and fall seasons. For each season, the two classification tiers were identified independently, such that the definition of one tier does not depend on the other tier having already been defined. The first tier of the classification is comprised of supertype patterns. These broad-scale circulation classes are useful for generalized analyses such as investigations of the temporal trends in circulation frequency and persistence. The second, more detailed tier consists of circulation types and is useful for numerous applied research questions regarding the relationships between large-scale circulation and local and regional climate. Three to five supertypes and up to 19 circulation types were identified for each season. An intuitive nomenclature scheme based on the physical entities (i.e., anomaly centers) which dominate the specific patterns was used to label each of the supertypes and types. Two example applications illustrate the potential usefulness of a two-tier classification. In the first application, the temporal variability of the supertypes was evaluated. In general, the frequency and persistence of supertypes dominated by anticyclonic circulation increased during the study period, whereas the supertypes dominated by cyclonic features decreased in frequency and persistence. The usefulness of the derived circulation types was exemplified by an analysis of the circulation associated with heat waves and cold spells reported at several cities in Bulgaria. These extreme temperature events were found to occur with a small number of circulation types, a finding that can be helpful in understanding past variability and projecting future changes in the occurrence of extreme weather and climate events.

  7. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  8. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  9. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  10. Interannual drought index variations in Central Europe related to the large-scale atmospheric circulation—application and evaluation of statistical downscaling approaches based on circulation type classifications

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus

    2015-08-01

    This contribution investigates the relationship between the large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in Central Europe. To this end, circulation types (CT) have been derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity ( V), zonality ( Z) and meridionality ( M) have been calculated. Occurrence frequencies of CTs and circulation indices have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over Central Europe, for the period 1950 to 2010. CTC-based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one-out cross-validation procedure applying several skill scores. Furthermore, the relative importance of individual predictors has been estimated for each MRM. From these analyses, it can be stated that model skill is improved by (i) the consideration of vorticity characteristics within CTCs, (ii) a relatively small size of the spatial domain to which CTCs are applied and (iii) the inclusion of mean circulation indices. However, model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the Central European domain, only unsatisfactory skill is reached in the more continental regions and particularly during summer. Thus, it can be concluded that the presented approaches feature the potential for the downscaling of Central European drought index variations from the large-scale circulation, at least for some regions. Further improvements of CTC-based approaches may be expected from the optimization of CTCs for explaining the SPI, e.g. via the inclusion of additional variables in the classification procedure.

  11. The Sharav Cyclone: Observations and some theoretical considerations

    NASA Astrophysics Data System (ADS)

    Alpert, P.; Ziv, B.

    1989-12-01

    A special study of the Sharav Cyclones indicates that they are the result of large-scale weak baroclinicity, enhanced by vigorous boundary-layer baroclinicity between the North African coast and the Mediterranean. It is illustrated how the jet stream plays a major role in the vertical circulation in producing a complex cyclonic circulation dominated by at least three mechanisms: large-scale interior baroclinicity, boundary-layer baroclinicity, and jet stream related circulations. The main characteristics of the Sharav Cyclone (also called the Saharan Depression or Khamsin Depression) in the Mediterranean are reviewed. Unlike the cold winter cyclone, the Sharav Cyclone is a spring cyclone. Its tracks lie mainly along the North African coast and turn to the north near the southeastern Mediterranean. Its warm front is active and is sometimes associated with extremely high surface temperatures. Its cold front is shallow. The Sharav Cyclone moves eastward relatively fast, typically faster than 10 m s-1, and with a small speed variability. In general, there is an upper level trough to the west of the surface low and the surface horizontal scale is of the order of 500-1000 km. Finally, it is frequently associated with heavy dust/sand storms and low visibilities. Some of these features are illustrated in a case study of the April 28-30, 1986, cyclone. Vertical cross sections indicate a deep circulation associated with the exit region of an upper level jet. In addition to presenting evidence that the Sharav Cyclone is a deep tropospheric circulation, it is shown that the transverse indirect circulation at the exit region of the jet is a major component of its circulation. The classic two-level baroclinic model (Phillips, 1954) is applied. The effects of the major diabatic heating due to the sensible heat flux above the North African desert and the large north to south temperature gradients are incorporated through the thermal wind of the basic state. The model predicts the fast eastward motion, the relatively smaller horizontal scale and the fast growth rate. Furthermore, the model predicts an annual maximum growth rate in April and a secondary peak in October, which agrees with the frequency of occurrences of the Sharav Cyclones.

  12. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  13. The Amazon and climate

    NASA Technical Reports Server (NTRS)

    Nobre, C. A.

    1984-01-01

    The climatologies of cloudiness and precipitation for the Amazon, are reviewed and the physical causes of some of the observed features and those which are not well known are explained. The atmospheric circulation over the Amazon is discussed on the large scale tropical circulations forced by deep diabatic heating sources. Weather deforestation which leads to a reduction in evapotranspiration into the atmosphere, and a reduction in precipitation and its implicated for the gobal climate is discussed. It is indicated that a large scale clearing of tropical rainforests there would be a reduction in rainfall which would have global effects on climate and weather both in the tropical and extratropical regions.

  14. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Avissar, Roni

    1994-01-01

    Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

  15. Links between large-scale circulation patterns and streamflow in Central Europe: A review

    NASA Astrophysics Data System (ADS)

    Steirou, Eva; Gerlitz, Lars; Apel, Heiko; Merz, Bruno

    2017-06-01

    We disentangle the relationships between streamflow and large-scale atmospheric circulation in Central Europe (CE), an area affected by climatic influences from different origins (Atlantic, Mediterranean and Continental) and characterized by diverse topography and flow regimes. Our literature review examines in detail the links between mean, high and low flows in CE and large-scale circulation patterns, with focus on two closely related phenomena, the North Atlantic Oscillation (NAO) and the Western-zonal circulation (WC). For both patterns, significant relations, consistent between different studies, are found for large parts of CE. The strongest links are found for the winter season, forming a dipole-like pattern with positive relationships with streamflow north of the Alps and the Carpathians for both indices and negative relationships for the NAO in the south. An influence of winter NAO is also detected in the amplitude and timing of snowmelt flows later in the year. Discharge in CE has further been linked to other large-scale climatic modes such as the Scandinavia pattern (SCA), the East Atlantic/West Russian pattern (EA/WR), the El Niño-Southern Oscillation (ENSO) and synoptic weather patterns such as the Vb weather regime. Different mechanisms suggested in the literature to modulate links between streamflow and the NAO are combined with topographical characteristics of the target area in order to explain the divergent NAO/WC influence on streamflow in different parts of CE. In particular, a precipitation mechanism seems to regulate winter flows in North-Western Germany, an area with short duration of snow cover and with rainfall-generated floods. The precipitation mechanism is also likely in Southern CE, where correlations between the NAO and temperature are low. Finally, in the rest of the study area (Northern CE, Alpine region), a joint precipitation-snow mechanism influences floods not only in winter, but also in the spring/snowmelt period, providing some possibilities for flood forecasting.

  16. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  17. Proxy system modeling of tree-ring isotope chronologies over the Common Era

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; LeGrande, A. N.

    2017-12-01

    The Asian monsoon can be characterized in terms of both precipitation variability and atmospheric circulation across a range of spatial and temporal scales. While multicentury time series of tree-ring widths at hundreds of sites across Asia provide estimates of past rainfall, the oxygen isotope ratios of annual rings may reveal broader regional hydroclimate and atmosphere-ocean dynamics. Tree-ring oxygen isotope chronologies from Monsoon Asia have been interpreted to reflect a local 'amount effect', relative humidity, source water and seasonality, and winter snowfall. Here, we use an isotope-enabled general circulation model simulation from the NASA Goddard Institute for Space Science (GISS) Model E and a proxy system model of the oxygen isotope composition of tree-ring cellulose to interpret the large-scale and local climate controls on δ 18O chronologies. Broad-scale dominant signals are associated with a suite of covarying hydroclimate variables including growing season rainfall amounts, relative humidity, and vapor pressure deficit. Temperature and source water influences are region-dependent, as are the simulated tree-ring isotope signals associated with the El Nino Southern Oscillation (ENSO) and large-scale indices of the Asian monsoon circulation. At some locations, including southern coastal Viet Nam, local precipitation isotope ratios and the resulting simulated δ 18O tree-ring chronologies reflect upstream rainfall amounts and atmospheric circulation associated with monsoon strength and wind anomalies.

  18. Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast

    NASA Astrophysics Data System (ADS)

    Agel, L. A.; Barlow, M. A.

    2016-12-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.

  19. Interannual drought index variations in Central Europe related to large-scale atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus

    2014-05-01

    This contribution investigates the relationship between large-scale atmospheric circulation and interannual variations of the standardized precipitation index (SPI) in central Europe. To this end occurrence frequencies of circulation types (CT) derived from a variety of circulation type classifications (CTC) applied to daily sea level pressure (SLP) data and mean circulation indices of vorticity (V), zonality (Z) and meridionality (M) have been utilized as predictors within multiple regression models (MRM) for the estimation of gridded 3-month SPI values over central Europe for the period 1950 to 2010. CTC based MRMs used in the analyses comprise variants concerning the basic method for CT classification, the number of CTs, the size and location of the spatial domain used for CTCs and the exclusive use of CT frequencies or the combined use of CT frequencies and mean circulation indices as predictors. Adequate MRM predictor combinations have been identified by applying stepwise multiple regression analyses within a resampling framework. The performance (robustness) of the resulting MRMs has been quantified based on a leave-one out cross-validation procedure applying several skill scores. Furthermore the relative importance of individual predictors has been estimated for each MRM. From these analyses it can be stated that i.) the consideration of vorticity characteristics within CTCs, ii.) a relatively small size of the spatial domain to which CTCs are applied and iii.) the inclusion of mean circulation indices appear to improve model skill. However model skill exhibits distinct variations between seasons and regions. Whereas promising skill can be stated for the western and northwestern parts of the central European domain only unsatisfactorily skill is reached in the more continental regions and particularly during summer. Thus it can be concluded that the here presented approaches feature the potential for the downscaling of central European drought index variations from large-scale circulation at least for some regions. Further improvements of CTC based approaches may be expected from the optimization of CTCs for explaining the SPI e.g. via the inclusion of additional variables into the classification procedure.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gang

    Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less

  1. Toward Better Intraseasonal and Seasonal Prediction: Verification and Evaluation of the NOGAPS Model Forecasts

    DTIC Science & Technology

    2013-09-30

    Circulation (HC) in terms of the meridional streamfunction. The interannual variability of the Atlantic HC in boreal summer was examined using the EOF...large-scale circulations in the NAVGEM model and the source of predictability for the seasonal variation of the Atlantic TCs. We have been working...EOF analysis of Meridional Circulation (JAS). (a) The leading mode (M1); (b) variance explained by the first 10 modes. 9

  2. The Use of Principal Components in Long-Range Forecasting

    NASA Astrophysics Data System (ADS)

    Chern, Jonq-Gong

    Large-scale modes of the global sea surface temperatures and the Northern Hemisphere tropospheric circulation are described by principal component analysis. The first and the second SST components well describe the El Nino episodes, and the El Nino index (ENI), suggested in this study, is consistent with the winter Southern Oscillation index (SOI), where this ENI is a composite component of the weighted first and second SST components. The large-scale interactive modes of the coupling ocean-atmosphere system are identified by cross-correlation analysis The result shows that the first SST component is strongly correlated with the first component of geopotential height in lead time of 6 months. In the El Nino-Southern Oscillation (ENSO) evolution, the El Nino mode strongly influences the winter tropospheric circulation in the mid -latitudes for up to three leading seasons. The regional long-range variation of climate is investigated with these major components of the SST and the tropospheric circulation. In the mid-latitude, the climate of the central United States shows a weak linkage with these large-scale circulations, and the climate of the western United States appears to be consistently associated with the ENSO modes. These El Nino modes also show a dominant influence on Eastern Asia as evidenced in Taiwan Mei-Yu patterns. Possible regional long-range forecasting schemes, utilizing the complementary characteristics of the winter El Nino mode and SST anomalies, are examined with the Taiwan Mei-Yu.

  3. Meridional overturning and large-scale circulation of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John

    2000-11-01

    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  4. Effect of weak rotation on large-scale circulation cessations in turbulent convection.

    PubMed

    Assaf, Michael; Angheluta, Luiza; Goldenfeld, Nigel

    2012-08-17

    We investigate the effect of weak rotation on the large-scale circulation (LSC) of turbulent Rayleigh-Bénard convection, using the theory for cessations in a low-dimensional stochastic model of the flow previously studied. We determine the cessation frequency of the LSC as a function of rotation, and calculate the statistics of the amplitude and azimuthal velocity fluctuations of the LSC as a function of the rotation rate for different Rayleigh numbers. Furthermore, we show that the tails of the reorientation PDF remain unchanged for rotating systems, while the distribution of the LSC amplitude and correspondingly the cessation frequency are strongly affected by rotation. Our results are in close agreement with experimental observations.

  5. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Vecchi, Gabriel A.; Soden, Brian J.; Wittenberg, Andrew T.; Held, Isaac M.; Leetmaa, Ants; Harrison, Matthew J.

    2006-05-01

    Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean-driven by convection to the west and subsidence to the east-known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.

  6. Tropical atmospheric circulations with humidity effects.

    PubMed

    Hsia, Chun-Hsiung; Lin, Chang-Shou; Ma, Tian; Wang, Shouhong

    2015-01-08

    The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26 , 1399-1417. (doi:10.3934/dcds.2010.26.1399); 2011 Adv. Atmos. Sci. 28 , 612-622. (doi:10.1007/s00376-010-9089-0)). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system.

  7. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of circulations may be revealed from a collocation of space-borne sensors, including the Global Precipitation Measurement (GPM) and upcoming Aeolus missions.

  8. Large-scale circulation patterns, instability factors and global precipitation modeling as influenced by external forcing

    NASA Astrophysics Data System (ADS)

    Bundel, A.; Kulikova, I.; Kruglova, E.; Muravev, A.

    2003-04-01

    The scope of the study is to estimate the relationship between large-scale circulation regimes, various instability indices and global precipitation with different boundary conditions, considered as external forcing. The experiments were carried out in the ensemble-prediction framework of the dynamic-statistical monthly forecast scheme run in the Hydrometeorological Research Center of Russia every ten days. The extension to seasonal intervals makes it necessary to investigate the role of slowly changing boundary conditions among which the sea surface temperature (SST) may be defined as the most effective factor. Continuous integrations of the global spectral T41L15 model for the whole year 2000 (starting from January 1) were performed with the climatic SST and the Reynolds Archive SSTs. Monthly values of the SST were projected on the year days using spline interpolation technique. First, the global precipitation values in experiments were compared to the GPCP (Global Precipitation Climate Program) daily observation data. Although the global mean precipitation is underestimated by the model, some large-scale regional amounts correspond to the real ones (e.g. for Europe) fairly well. On the whole, however, anomaly phases failed to be reproduced. The precipitation averaged over the whole land revealed a greater sensitivity to the SSTs than that over the oceans. The wavelet analysis was applied to separate the low- and high-frequency signal of the SST influence on the large-scale circulation and precipitation. A derivative of the Wallace-Gutzler teleconnection index for the East-Atlantic oscillation was taken as the circulation characteristic. The daily oscillation index values and precipitation amounts averaged over Europe were decomposed using wavelet approach with different “mother wavelets” up to approximation level 3. It was demonstrated that an increase in the precipitation amount over Europe was associated with the zonal flow intensification over the Northern Atlantic when the real SSTs were used. Blocking structures in the circulation caused decreasing precipitation amounts. The wavelet approach gave a more distinctive discrimination in the modeled circulation and precipitation patterns versus different external forcing than a number of other statistical techniques. Several atmospheric instability indices (e.g. the Phillips like parameters, Richardson number etc) were additionally used in post-processing for a more detailed validation of the modeled large-scale and total precipitation amounts. It was shown that a reasonable variety of instability indices must be used for such validations and for precipitation output corrections. Their statistical stability may be substantiated only on the ensemble modeling basis. This work was performed with the financial support of the Russian Foundation for Basic Research (02-05-64655).

  9. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction

    NASA Astrophysics Data System (ADS)

    Goltz, Mark N.; Huang, Junqi; Close, Murray E.; Flintoft, Mark J.; Pang, Liping

    2008-09-01

    Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.

  10. Assessing Northern Hemisphere Land-Atmosphere Hotspots Using Dynamical Adjustment

    NASA Astrophysics Data System (ADS)

    Merrifield, Anna; Lehner, Flavio; Deser, Clara; Xie, Shang-Ping

    2017-04-01

    Understanding the influence of soil moisture on surface air temperature (SAT) is made more challenging by large-scale, internal atmospheric variability present in the midlatitude summer atmosphere. In this study, dynamical adjustment is used to characterize and remove summer SAT variability associated with large-scale circulation patterns in the Community Earth System Model large ensemble (CESM-LE). The adjustment is performed over North America and Europe with two different circulation indicators: sea level pressure (SLP) and 500mb height (Z500). The removal of dynamical "noise" leaves residual SAT variability in the central U.S. and Mediterranean regions identified as hotspots of land-atmosphere interaction (e.g. Koster et al. 2004, Seneviratne et al. 2006). The residual SAT variability "signal" is not clearly related to modes of sea surface temperature (SST) variability, but is related to local soil moisture, evaporative fraction, and radiation availability. These local relationships suggest that residual SAT variability is representative of the aggregate land surface signal. SLP dynamical adjustment removes ˜15% more variability in the central U.S. hotspot region than Z500 dynamical adjustment. Similar amounts of variability are removed by SLP and Z500 in the Mediterranean region. Differences in SLP and Z500 signal magnitude in the central U.S. are likely due to the modification of SLP by local land surface conditions, while the proximity of European hotspots to the Mediterranean sea mitigates the land surface influence. Variations in the Z500 field more closely resemble large-scale midlatitude circulation patterns and therefore Z500 may be a more suitable circulation indicator for summer dynamical adjustment. Changes in the residual SAT variability signal under increased greenhouse gas forcing will also be explored.

  11. Regional variability of the frequency distribution of daily precipitation and the synoptic characteristics of heavy precipitation events in present and future climate simulations

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.

    Changes in the characteristics of daily precipitation in response to global warming may have serious impacts on human life and property. An analysis of precipitation in climate models is performed to evaluate how well the models simulate the present climate and how precipitation may change in the future. Models participating in phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) have substantial biases in their simulation of heavy precipitation intensity over parts of North America during the 20th century. Despite these biases, the large-scale atmospheric circulation accompanying heavy precipitation is either simulated realistically or the strength of the circulation is overestimated. The biases are not related to the large-scale flow in a simple way, pointing toward the importance of other model deficiencies, such as coarse horizontal resolution and convective parameterizations, for the accurate simulation of intense precipitation. Although the models may not sufficiently simulate the intensity of precipitation, their realistic portrayal of the large-scale circulation suggests that projections of future precipitation may be reliable. In the CMIP5 ensemble, the distribution of daily precipitation is projected to undergo substantial changes in response to future atmospheric warming. The regional distribution of these changes was investigated, revealing that dry days and days with heavy-extreme precipitation are projected to increase at the expense of light-moderate precipitation over much of the middle and low latitudes. Such projections have serious implications for future impacts from flood and drought events. In other places, changes in the daily precipitation distribution are characterized by a shift toward either wetter or drier conditions in the future, with heavy-extreme precipitation projected to increase in all but the driest subtropical subsidence regions. Further analysis shows that increases in heavy precipitation in midlatitudes are largely explained by thermodynamics, including increases in atmospheric water vapor. However, in low latitudes and northern high latitudes, changes in vertical velocity accompanying heavy precipitation are also important. The strength of the large-scale atmospheric circulation is projected to change in accordance with vertical velocity in many places, though the circulation patterns, and therefore physical mechanisms that generate heavy precipitation, may remain the same.

  12. Wind-driven variations in an overturning circulation

    NASA Astrophysics Data System (ADS)

    Bringedal, Carina; Eldevik, Tor; Spall, Michael

    2017-04-01

    The Atlantic overturning circulation and poleward heat transport is balanced by northern heat loss to the atmosphere and corresponding water mass transformation. The structure of this circulation and transformation is particularly manifested - and observed - at the Greenland-Scotland ridge. There is however a rich variability in the exchanges across the ridge on seasonal and yearly time scales. This variability has been almost perfectly captured in atmospherically forced ocean GCMs (e.g. Olsen et al 2008, Sandø et al 2012), suggesting that on shorter time scales the variability of the exchanges are connected to sea level pressure and corresponding wind stress forcing. Focusing on seasonal and yearly time scales, we accordingly propose that the connection between the exchanges of overturning waters across the Greenland-Scotland ridge and the sea level pressure must be direct and simple, and we use idealized simulations to support this hypothesis. The mechanisms underlying the connection are formulated through conceptual models. Although the models and simulations are simplified with respect to bathymetry and hydrography, they can reproduce the main features of the overturning circulation in the Nordic seas. In the observations, the variable exchanges can largely be related to sea level pressure variations and large scale wind patterns, and the idealized simulations and accompanying conceptual models show how these impacts can manifest via coastal downwelling and gyre circulation. S. M. Olsen, B. Hansen, D. Quadfasel and S. Østerhus, Observed and modelled stability of overflow across the Greenland-Scotland ridge, Nature 455, (2008) A. B. Sandø, J. E. Ø. Nilsen, T. Eldevik and M. Bentsen, Mechanisms for variable North Atlantic-Nordic seas exchanges, Journal of Geophysical Research 117, (2012)

  13. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  14. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  15. Large-Scale Transport Responses to Tropospheric Circulation Changes Using GEOS-5

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Molod, Andrea; Arnold, Nathan; Waugh, Darryn W.; Yang, Huang

    2017-01-01

    The mean age since air was last at the Northern Hemisphere midlatitude surface is a fundamental property of tropospheric transport. Recent comparisons among chemistry climate models, however, reveal that there are large differences in the mean age among models and that these differences are most likely related to differences in tropical (parameterized) convection. Here we use aquaplanet simulations of the Goddard Earth Observing System Model Version 5 (GEOS-5) to explore the sensitivity of the mean age to changes in the tropical circulation. Tropical circulation changes are forced by prescribed localized off-equatorial warm sea surface temperature anomalies that (qualitatively) reproduce the convection and circulation differences among the comprehensive models. Idealized chemical species subject to prescribed OH loss are also integrated in parallel in order to illustrate the impact of tropical transport changes on interhemispheric constituent transport.

  16. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments in terms of regional and large-scale climate variability during the past.

  17. Intercomparison of methods of coupling between convection and large-scale circulation: 2. Comparison over nonuniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2016-03-18

    As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less

  18. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  19. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  20. Nearshore circulation on a sea breeze dominated beach during intense wind events

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, Alec; Puleo, Jack A.; DiCosmo, Nick; Allende-Arandía, Ma. Eugenia; Chardón-Maldonado, Patricia; López, José; Figueroa-Espinoza, Bernardo; de Alegria-Arzaburu, Amaia Ruiz; Figlus, Jens; Roberts Briggs, Tiffany M.; de la Roza, Jacobo; Candela, Julio

    2017-12-01

    A field experiment was conducted on the northern Yucatan coast from April 1 to April 12, 2014 to investigate the role of intense wind events on coastal circulation from the inner shelf to the swash zone. The study area is characterized by a micro-tidal environment, low-energy wave conditions, and a wide and shallow continental shelf. Furthermore, easterly trade winds, local breezes, and synoptic-scale events, associated with the passage of cold-fronts known as Nortes, are ubiquitous in this region. Currents were measured concurrently at different cross-shore locations during both local and synoptic-scale intense wind events to investigate the influence of different forcing mechanisms (i.e., large-scale currents, winds, tides, and waves) on the nearshore circulation. Field observations revealed that nearshore circulation across the shelf is predominantly alongshore-directed (westward) during intense winds. However, the mechanisms responsible for driving instantaneous spatial and temporal current variability depend on the weather conditions and the across-shelf location. During local strong sea breeze events (W > 10 m s-1 from the NE) occurring during spring tide, westward circulation is controlled by the tides, wind, and waves at the inner-shelf, shallow waters, and inside the surf/swash zone, respectively. The nearshore circulation is relaxed during intense land breeze events (W ≈ 9 m s-1 from the SE) associated with the low atmospheric pressure system that preceded a Norte event. During the Norte event (Wmax≈ 15 m s-1 from the NNW), westward circulation dominated outside the surf zone and was correlated to the Yucatan Current, whereas wave breaking forces eastward currents inside the surf/swash zone. The latter finding implies the existence of large alongshore velocity shear at the offshore edge of the surf zone during the Norte event, which enhances mixing between the surf zone and the inner shelf. These findings suggest that both sea breezes and Nortes play an important role in sediment and pollutant transport along/across the nearshore of the Yucatan shelf.

  1. Improvement of CFD Methods for Modeling Full Scale Circulating Fluidized Bed Combustion Systems

    NASA Astrophysics Data System (ADS)

    Shah, Srujal; Klajny, Marcin; Myöhänen, Kari; Hyppänen, Timo

    With the currently available methods of computational fluid dynamics (CFD), the task of simulating full scale circulating fluidized bed combustors is very challenging. In order to simulate the complex fluidization process, the size of calculation cells should be small and the calculation should be transient with small time step size. For full scale systems, these requirements lead to very large meshes and very long calculation times, so that the simulation in practice is difficult. This study investigates the requirements of cell size and the time step size for accurate simulations, and the filtering effects caused by coarser mesh and longer time step. A modeling study of a full scale CFB furnace is presented and the model results are compared with experimental data.

  2. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  3. Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region

    DTIC Science & Technology

    2012-03-01

    low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean

  4. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies

    PubMed Central

    Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika

    2017-01-01

    Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475

  5. More robust regional precipitation projection from selected CMIP5 models based on multiple-dimensional metrics

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, L.; Leung, L. R.; Lin, G.; Lu, J.; Gao, Y.; Zhang, Y.

    2017-12-01

    Projecting precipitation changes is challenging because of incomplete understanding of the climate system and biases and uncertainty in climate models. In East Asia where summer precipitation is dominantly influenced by the monsoon circulation and the global models from Coupled Model Intercomparison Project Phase 5 (CMIP5), however, give various projection of precipitation change for 21th century. It is critical for community to know which models' projection are more reliable in response to natural and anthropogenic forcings. In this study we defined multiple-dimensional metrics, measuring the model performance in simulating the present-day of large-scale circulation, regional precipitation and relationship between them. The large-scale circulation features examined in this study include the lower tropospheric southwesterly winds, the western North Pacific subtropical high, the South China Sea Subtropical High, and the East Asian westerly jet in the upper troposphere. Each of these circulation features transport moisture to East Asia, enhancing the moist static energy and strengthening the Meiyu moisture front that is the primary mechanism for precipitation generation in eastern China. Based on these metrics, 30 models in CMIP5 ensemble are classified into three groups. Models in the top performing group projected regional precipitation patterns that are more similar to each other than the bottom or middle performing group and consistently projected statistically significant increasing trends in two of the large-scale circulation indices and precipitation. In contrast, models in the bottom or middle performing group projected small drying or no trends in precipitation. We also find the models that only reasonably reproduce the observed precipitation climatology does not guarantee more reliable projection of future precipitation because good simulation skill could be achieved through compensating errors from multiple sources. Herein the potential for more robust projections of precipitation changes at regional scale is demonstrated through the use of discriminating metric to subsample the multi-model ensemble. The results from this study provides insights for how to select models from CMIP ensemble to project regional climate and hydrological cycle changes.

  6. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.

  7. Hydrological response of karst systems to large-scale climate variability for different catchments of the French karst observatory network INSU/CNRS SNO KARST

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Labat, David; Jourde, Hervé; Lecoq, Nicolas; Mazzilli, Naomi

    2017-04-01

    The french karst observatory network SNO KARST is a national initiative from the National Institute for Earth Sciences and Astronomy (INSU) of the National Center for Scientific Research (CNRS). It is also part of the new french research infrastructure for the observation of the critical zone OZCAR. SNO KARST is composed by several karst sites distributed over conterminous France which are located in different physiographic and climatic contexts (Mediterranean, Pyrenean, Jura mountain, western and northwestern shore near the Atlantic or the English Channel). This allows the scientific community to develop advanced research and experiments dedicated to improve understanding of the hydrological functioning of karst catchments. Here we used several sites of SNO KARST in order to assess the hydrological response of karst catchments to long-term variation of large-scale atmospheric circulation. Using NCEP reanalysis products and karst discharge, we analyzed the links between large-scale circulation and karst water resources variability. As karst hydrosystems are highly heterogeneous media, they behave differently across different time-scales : we explore the large-scale/local-scale relationships according to time-scales using a wavelet multiresolution approach of both karst hydrological variables and large-scale climate fields such as sea level pressure (SLP). The different wavelet components of karst discharge in response to the corresponding wavelet component of climate fields are either 1) compared to physico-chemical/geochemical responses at karst springs, or 2) interpreted in terms of hydrological functioning by comparing discharge wavelet components to internal components obtained from precipitation/discharge models using the KARSTMOD conceptual modeling platform of SNO KARST.

  8. Climate Dynamics and Hysteresis at Low and High Obliquity

    NASA Astrophysics Data System (ADS)

    Colose, C.; Del Genio, A. D.; Way, M.

    2017-12-01

    We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.

  9. Investigating large-scale secondary circulations within impact crater topographies in a refractive index-matched facility

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Kim, Taehoon; Bristow, Nathan; Day, Mackenzie; Kocurek, Gary; Anderson, William; Christensen, Kenneth

    2017-11-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter >10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  10. Large-Scale Atmosphere-Ocean Coupling.

    DTIC Science & Technology

    1984-05-01

    connection. between Pacific tropical diabatic heating anomalies and extratropical circulation system over the North Pacific from East Asia to the...and G. J. Boer, 1972: REFERENCES The General Circulation of the Tropical Atmosphere and Interaction with Extratropical Latitudes. Vol. 1. MIT Press...implications for the development of severe convective storms . Mom. We& Rev.. Chang, C.-P., and K. M. Lau, 1980: Northeasterly cold surges 167, 682-703. and

  11. Fast Adjustments of the Asian Summer Monsoon to Anthropogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiong; Ting, Mingfang; Lee, Dong Eun

    2018-01-01

    Anthropogenic aerosols are a major factor contributing to human-induced climate change, particularly over the densely populated Asian monsoon region. Understanding the physical processes controlling the aerosol-induced changes in monsoon rainfall is essential for reducing the uncertainties in the future projections of the hydrological cycle. Here we use multiple coupled and atmospheric general circulation models to explore the physical mechanisms for the aerosol-driven monsoon changes on different time scales. We show that anthropogenic aerosols induce an overall reduction in monsoon rainfall and circulation, which can be largely explained by the fast adjustments over land north of 20∘N. This fast response occurs before changes in sea surface temperature (SST), largely driven by aerosol-cloud interactions. However, aerosol-induced SST feedbacks (slow response) cause substantial changes in the monsoon meridional circulation over the oceanic regions. Both the land-ocean asymmetry and meridional temperature gradient are key factors in determining the overall monsoon circulation response.

  12. Aerosol Indirect effect on Stratocumulus Organization

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Heus, T.; Kollias, P.

    2015-12-01

    Large-eddy simulations are used to investigate the role of aerosol loading on organized Stratocumulus. We prescribed the cloud droplet number concentration (Nc) and considered it as the proxy for different aerosol loading. While the presence of drizzle amplifies the mesoscale variability as is in Savic-Jovcic and Stevens (JAS, 2008), two noticeable findings are discussed here: First, the scale of marine boundary layer circulation appears to be independent of aerosol loading, suggesting a major role of the turbulence. The precise role of the turbulence in stratocumulus organization is studied by modifying the large scale fluctuations from the LES domain. Second, while it is commonly thought that the whole circulation needs to be represented for robust cloud development, we find that stratocumulus dynamics, including variables like w'w' and w'w'w', are remarkably robust even if large scales are ignored by simply reducing the domain sizes. The only variable that is sensitive to the change of the scale is the amount of cloudiness. Despite their smaller cloud thickness and inhomogeneous macroscopic structure for low Nc, individual drizzling clouds have sizes that are commensurate with circulation scale. We observe an Nc threshold below which stratocumulus is thin enough so that a little decrease of Nc would lead to great change of cloud fraction. The simulated cloud albedo is more sensitive to in-cloud liquid water content than to the amount of cloudiness since the former decreases at least three times faster than the latter due to drizzle. The main impact of drizzle evaporation is observed to keep the sub-cloud layer moist and as a result to extend the lifetime of stratocumulus by a couple of hours.

  13. Fast neural network surrogates for very high dimensional physics-based models in computational oceanography.

    PubMed

    van der Merwe, Rudolph; Leen, Todd K; Lu, Zhengdong; Frolov, Sergey; Baptista, Antonio M

    2007-05-01

    We present neural network surrogates that provide extremely fast and accurate emulation of a large-scale circulation model for the coupled Columbia River, its estuary and near ocean regions. The circulation model has O(10(7)) degrees of freedom, is highly nonlinear and is driven by ocean, atmospheric and river influences at its boundaries. The surrogates provide accurate emulation of the full circulation code and run over 1000 times faster. Such fast dynamic surrogates will enable significant advances in ensemble forecasts in oceanography and weather.

  14. Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) scientific advances and future west pacific coordination

    NASA Astrophysics Data System (ADS)

    Ganachaud, A. S.; Sprintall, J.; Lin, X.; Ando, K.

    2016-02-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR (Climate Variability and Predictability). The key objectives are to understand the Southwest Pacific Ocean circulation and Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. It was designed to measure and monitor the ocean circulation, and to validate and improve numerical models. South Pacific oceanic waters are carried from the subtropical gyre centre in the westward flowing South Equatorial Current (SEC), towards the southwest Pacific-a major circulation pathway that redistributes water from the subtropics to the equator and Southern Ocean. Water transit through the Coral and Solomon Seas is potentially of great importance to tropical climate prediction because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate ENSO and produce basin-scale climate feedbacks. On average, the oceanic circulation is driven by the Trade Winds, and subject to substantial variability, related with the SPCZ position and intensity. The circulation is complex, with the SEC splitting into zonal jets upon encountering island archipelagos, before joining either the East Australian Current or the New Guinea Costal UnderCurrent towards the equator. SPICE included large, coordinated in situ measurement programs and high resolution numerical simulations of the area. After 8 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. We will review the recent advancements and discuss our current knowledge gaps and important emerging research directions. In particular we will discuss how SPICE, along with the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE) and Indonesian ThroughFlow (ITF) programs could evolve toward an integrative observing system under CLIVAR coordination.

  15. On unravelling mechanism of interplay between cloud and large scale circulation: a grey area in climate science

    NASA Astrophysics Data System (ADS)

    De, S.; Agarwal, N. K.; Hazra, Anupam; Chaudhari, Hemantkumar S.; Sahai, A. K.

    2018-04-01

    The interaction between cloud and large scale circulation is much less explored area in climate science. Unfolding the mechanism of coupling between these two parameters is imperative for improved simulation of Indian summer monsoon (ISM) and to reduce imprecision in climate sensitivity of global climate model. This work has made an effort to explore this mechanism with CFSv2 climate model experiments whose cloud has been modified by changing the critical relative humidity (CRH) profile of model during ISM. Study reveals that the variable CRH in CFSv2 has improved the nonlinear interactions between high and low frequency oscillations in wind field (revealed as internal dynamics of monsoon) and modulates realistically the spatial distribution of interactions over Indian landmass during the contrasting monsoon season compared to the existing CRH profile of CFSv2. The lower tropospheric wind error energy in the variable CRH simulation of CFSv2 appears to be minimum due to the reduced nonlinear convergence of error to the planetary scale range from long and synoptic scales (another facet of internal dynamics) compared to as observed from other CRH experiments in normal and deficient monsoons. Hence, the interplay between cloud and large scale circulation through CRH may be manifested as a change in internal dynamics of ISM revealed from scale interactive quasi-linear and nonlinear kinetic energy exchanges in frequency as well as in wavenumber domain during the monsoon period that eventually modify the internal variance of CFSv2 model. Conversely, the reduced wind bias and proper modulation of spatial distribution of scale interaction between the synoptic and low frequency oscillations improve the eastward and northward extent of water vapour flux over Indian landmass that in turn give feedback to the realistic simulation of cloud condensates attributing improved ISM rainfall in CFSv2.

  16. Understanding the West African Monsoon from the analysis of diabatic heating distributions as simulated by climate models

    NASA Astrophysics Data System (ADS)

    Martin, G. M.; Peyrillé, P.; Roehrig, R.; Rio, C.; Caian, M.; Bellon, G.; Codron, F.; Lafore, J.-P.; Poan, D. E.; Idelkadi, A.

    2017-03-01

    Vertical and horizontal distributions of diabatic heating in the West African monsoon (WAM) region as simulated by four model families are analyzed in order to assess the physical processes that affect the WAM circulation. For each model family, atmosphere-only runs of their CMIP5 configurations are compared with more recent configurations which are on the development path toward CMIP6. The various configurations of these models exhibit significant differences in their heating/moistening profiles, related to the different representation of physical processes such as boundary layer mixing, convection, large-scale condensation and radiative heating/cooling. There are also significant differences in the models' simulation of WAM rainfall patterns and circulations. The weaker the radiative cooling in the Saharan region, the larger the ascent in the rainband and the more intense the monsoon flow, while the latitude of the rainband is related to heating in the Gulf of Guinea region and on the northern side of the Saharan heat low. Overall, this work illustrates the difficulty experienced by current climate models in representing the characteristics of monsoon systems, but also that we can still use them to understand the interactions between local subgrid physical processes and the WAM circulation. Moreover, our conclusions regarding the relationship between errors in the large-scale circulation of the WAM and the structure of the heating by small-scale processes will motivate future studies and model development.

  17. Turning Ocean Mixing Upside Down

    NASA Astrophysics Data System (ADS)

    Ferrari, Raffaele; Mashayek, Ali; Campin, Jean-Michael; McDougall, Trevor; Nikurashin, Maxim

    2015-11-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that small-scale mixing is more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. It is shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and an equally large upwelling, driven by the reduced small-scale mixing along the ocean boundaries. Thus whether abyssal waters upwell or sink in the net cannot be inferred simply from the vertical profile of mixing intensity, but depends also on the ocean hypsometry, i.e. the shape of the bottom topography. The implications of this result for our understanding of the abyssal ocean circulation will be presented with a combination of numerical models and observations.

  18. Observations and Modeling of the Transient General Circulation of the North Pacific Basin

    NASA Technical Reports Server (NTRS)

    McWilliams, James C.

    2000-01-01

    Because of recent progress in satellite altimetry and numerical modeling and the accumulation and archiving of long records of hydrographic and meteorological variables, it is becoming feasible to describe and understand the transient general circulation of the ocean (i.e., variations with spatial scales larger than a few hundred kilometers and time scales of seasonal and longer-beyond the mesoscale). We have carried out various studies in investigation of the transient general circulation of the Pacific Ocean from a coordinated analysis of satellite altimeter data, historical hydrographic gauge data, scatterometer wind observations, reanalyzed operational wind fields, and a variety of ocean circulation models. Broadly stated, our goal was to achieve a phenomenological catalogue of different possible types of large-scale, low-frequency variability, as a context for understanding the observational record. The approach is to identify the simplest possible model from which particular observed phenomena can be isolated and understood dynamically and then to determine how well these dynamical processes are represented in more complex Oceanic General Circulation Models (OGCMs). Research results have been obtained on Rossby wave propagation and transformation, oceanic intrinsic low-frequency variability, effects of surface gravity waves, pacific data analyses, OGCM formulation and developments, and OGCM simulations of forced variability.

  19. Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Wu, Lingyun; Huang, Gang; Notaro, Michael

    2011-02-01

    In this study, we focus on a deciduous forest in central Massachusetts and investigate the relationships between global climate indices and CO2 exchange using eddy-covariance flux measurements from 1992 to 2007. Results suggest that large-scale circulation patterns influence the annual CO2 exchange in the forest through their effects on the local surface climate. Annual gross ecosystem exchange (GEE) in the forest is closely associated with spring El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), previous fall Atlantic Multidecadal Oscillation (AMO), and previous winter East Pacific-North Pacific (EP-NP) pattern. Annual net ecosystem exchange (NEE) responds to previous fall AMO and PDO, while annual respiration (R) is impacted by previous fall ENSO and Pacific/North American Oscillation (PNA). Regressions based on these relationships are developed to simulate the annual GEE, NEE, and R. To avoid problems of multicollinearity, we compute a "Composite Index for GEE (CIGEE)" based on a linear combination of spring ENSO and PDO, fall AMO, and winter EP-NP and a "Composite Index for R (CIR)" based on a linear combination of fall ENSO and PNA. CIGEE, CIR, and fall AMO and PDO can explain 41, 27, and 40% of the variance of the annual GEE, R, and NEE, respectively. We further apply the methodology to two other northern midlatitude forests and find that interannual variabilities in NEE of the two forests are largely controlled by large-scale circulation patterns. This study suggests that global climate indices provide the potential for predicting CO2 exchange variability in the northern midlatitude forests.

  20. Circulation and multiple-scale variability in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Dong, Changming; Idica, Eileen Y.; McWilliams, James C.

    2009-09-01

    The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent ( i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).

  1. Seasonal Variability of Salt Transport During the Indian Ocean Monsoons

    DTIC Science & Technology

    2011-08-27

    Wunsch, J. Marotzkc, and J. Toolc (2000). Meridional overturning and large-scale circulation of the Indian Ocean, J. Geophvs Res., W5(C\\ 1), 26,117...and II. Hasumi (2006), Effects of model resolution on salt transport through northern high-latitude passages and Atlantic meridional overturning ...affects meridional circulation and aids the transport of salt [Sevellec et ai, 2008; Czaja, 2009]. Deep convection could be inhibited by the freshening

  2. How Large Scale Flows in the Solar Convection Zone may Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun s magnetic activity cycle. Differential rotation can amplify the magnetic field and convert poloidal fields into toroidal fields. Poleward meridional flow near the surface can carry magnetic flux that reverses the magnetic poles and can convert toroidal fields into poloidal fields. The deeper, equatorward meridional flow can carry magnetic flux toward the equator where it can reconnect with oppositely directed fields in the other hemisphere. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun s rotation on convection produce velocity correlations that can maintain the differential rotation and meridional circulation. These convective motions can influence solar activity themselves by shaping the large-scale magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  3. Relationship between climate extremes in Romania and their connection to large-scale air circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Ştefan, Sabina

    2015-04-01

    The aim of this paper is to investigate the connection between climate extremes (temperature and precipitation) in Romania and large-scale air circulation. Daily observational data of maximum air temperature and amount of precipitation for the period 1961-2010 were used to compute two seasonal indices associated with temperature and precipitation, quantifying their frequency, as follows: frequency of very warm days (FTmax90 ≥ 90th percentile), frequency of very wet days (FPp90; daily precipitation amount ≥ 90th percentile). Seasonally frequency of circulation types were calculated from daily circulation types determined by using two objective catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) from the COST733Action. Daily reanalysis data sets (sea level pressure, geopotential height at 925 and 500 hPa, u and v components of wind vector at 700 hPa and precipitable water content for the entire atmospheric column) build up by NCEP/NCAR, with 2.5°/2.5° lat/lon spatial resolution, were used to determine the circulation types. In order to select the optimal domain size related to the FTmax90 and the FPp90, the explained variance (EV) has been used. The EV determines the relation between the variance among circulation types and the total variance of the variable under consideration. This method quantifies the discriminatory power of a classification. The relationships between climate extremes in Romania and large-scale air circulation were investigated by using multiple linear regression model (MLRM), the predictands are FTmax90 and FPp90 and the circulation types were used as predictors. In order to select the independent predictors to build the MLRM the collinearity and multicollinearity analysis were performed. The study period is dividend in two periods: the period 1961-2000 is used to train the MLRM and the period 2001-2010 is used to validate the MLRM. The analytical relationship obtained by using MLRM can be used for future projection of the considered predictand. Preliminari results sows that in case of the FTmax90 the optimal domain size must by larger compared to TPp90. We have obtained some good correlation between registered and estimated values of the FTmax90 and the TPp90. Author Barbu N. work was supported by the strategic grant POSDRU/159/1.5/9.137750, "Project Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences research" co-financed by the European Social Founds within the Sectoral Operational Program Human Resources Development 2007 - 2013.

  4. A south equatorial African precipitation dipole and the associated atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Dezfuli, A. K.; Zaitchik, B.; Gnanadesikan, A.

    2013-12-01

    South Equatorial Africa (SEA) is a climatically diverse region that includes a dramatic topographic and vegetation contrast between the lowland, humid Congo basin to the west and the East African Plateau to the east. Due to lack of conventional weather data and a tendency for researchers to treat East and western Africa as separate regions, dynamics of the atmospheric water cycle across SEA have received relatively little attention, particularly at subseasonal timescales. Both western and eastern sectors of SEA are affected by large-scale drivers of the water cycle associated with Atlantic variability (western sector), Indian Ocean variability (eastern sector) and Pacific variability (both sectors). However, a specific characteristic of SEA is strong heterogeneity in interannual rainfall variability that cannot be explained by large-scale climatic phenomena. For this reason, this study examines regional climate dynamics on daily time-scale with a focus on the role that the abrupt topographic contrast between the lowland Congo and the East African highlands plays in driving rainfall behavior on short timescales. Analysis of daily precipitation data during November-March reveals a zonally-oriented dipole mode over SEA that explains the leading pattern of weather-scale precipitation variability in the region. The separating longitude of the two poles is coincident with the zonal variation of topography. An anomalous counter-clockwise atmospheric circulation associated with the dipole mode appears over the entire SEA. The circulation is triggered by its low-level westerly component, which is in turn generated by an interhemispheric pressure gradient. These enhanced westerlies hit the East African highlands and produce topographically-driven low-level convergence and convection that further intensifies the circulation. Recent studies have shown that under climate change the position and intensity of subtropical highs in both hemispheres and the intensity of precipitation over equatorial Africa are projected to change. Both of these trends have implications for the manner in which large-scale dynamics will interact with regional topography, affecting the intensity and frequency of the dipole mode characterized in this study and the occurrence of extreme wet and dry spells in the region.

  5. An analysis of the synoptic and climatological applicability of circulation type classifications for Ireland

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Fealy, Rowan

    2013-04-01

    Circulation type classifications (CTCs) compiled as part of the COST733 Action, entitled 'Harmonisation and Application of Weather Type Classifications for European Regions', are examined for their synoptic and climatological applicability to Ireland based on their ability to characterise surface temperature and precipitation. In all 16 different objective classification schemes, representative of four different methodological approaches to circulation typing (optimization algorithms, threshold based methods, eigenvector techniques and leader algorithms) are considered. Several statistical metrics which variously quantify the ability of CTCs to discretize daily data into well-defined homogeneous groups are used to evaluate and compare different approaches to synoptic typing. The records from 14 meteorological stations located across the island of Ireland are used in the study. The results indicate that while it was not possible to identify a single optimum classification or approach to circulation typing - conditional on the location and surface variables considered - a number of general assertions regarding the performance of different schemes can be made. The findings for surface temperature indicate that that those classifications based on predefined thresholds (e.g. Litynski, GrossWetterTypes and original Lamb Weather Type) perform well, as do the Kruizinga and Lund classification schemes. Similarly for precipitation predefined type classifications return high skill scores, as do those classifications derived using some optimization procedure (e.g. SANDRA, Self Organizing Maps and K-Means clustering). For both temperature and precipitation the results generally indicate that the classifications perform best for the winter season - reflecting the closer coupling between large-scale circulation and surface conditions during this period. In contrast to the findings for temperature, spatial patterns in the performance of classifications were more evident for precipitation. In the case of this variable those more westerly synoptic stations open to zonal airflow and less influenced by regional scale forcings generally exhibited a stronger link with large-scale circulation.

  6. Momentum flux measurements: Techniques and needs, part 4.5A

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1984-01-01

    The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.

  7. Seasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea

    NASA Astrophysics Data System (ADS)

    Jiang, Mingshun; Charette, Matthew A.; Measures, Christopher I.; Zhu, Yiwu; Zhou, Meng

    2013-06-01

    The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (˜2 km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 years) to investigate the sediment Fe input and its transport. The model is spun-up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.

  8. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir.

    NASA Astrophysics Data System (ADS)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean

    2017-04-01

    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and Schmittbuhl J.: two-dimensional THM modelling of the large-scale natural hydrothermal circulation at Soultz-sous-Forêts, Geothermal Energy, (2014), 2, 1-17. Rowe A.M. and Chou J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCl solutions, J. Chem. Eng. Data., (1970), 15, 61-66.

  9. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections

    NASA Astrophysics Data System (ADS)

    Coelho, Caio A. S.; de Oliveira, Cristiano Prestrelo; Ambrizzi, Tércio; Reboita, Michelle Simões; Carpenedo, Camila Bertoletti; Campos, José Leandro Pereira Silveira; Tomaziello, Ana Carolina Nóbile; Pampuch, Luana Albertani; Custódio, Maria de Souza; Dutra, Lívia Marcia Mosso; Da Rocha, Rosmeri P.; Rehbein, Amanda

    2016-06-01

    The southeast region of Brazil experienced in austral summer 2014 a major drought event leading to a number of impacts in water availability for human consumption, agricultural irrigation and hydropower production. This study aims to perform a diagnostic analysis of the observed climate conditions during this event, including an inspection of the occurred precipitation anomalies in the context of previous years, and an investigation of possible relationships with sea surface temperatures and atmospheric circulation patterns. The sea surface temperature analysis revealed that the southwestern South Atlantic Ocean region near the coast of southeast Brazil showed strong negative association with precipitation over southeast Brazil, indicating that increased sea temperatures in this ocean region are consistent with reduced precipitation as observed in summer 2014. The circulation analysis revealed prevailing anti-cyclonic anomalies at lower levels (850 hPa) with northerly anomalies to the west of southeast Brazil, channeling moisture from the Amazon towards Paraguay, northern Argentina and southern Brazil, and drier than normal air from the South Atlantic Ocean towards the southeast region of Brazil. This circulation pattern was found to be part of a large-scale teleconnection wave train linked with the subsidence branch of the Walker circulation in the tropical east Pacific, which in turn was generated by an anomalous tropical heat source in north/northeastern Australia. A regional Hadley circulation with an ascending branch to the south of the subsidence branch of the Walker circulation in the tropical east Pacific was identified as an important component connecting the tropical and extratropical circulation. The ascending branch of this Hadley circulation in the south Pacific coincided with an identified Rossby wave source region, which contributed to establishing the extratropical component of the large-scale wave train connecting the south Pacific and the Atlantic region surrounding southeast Brazil. This connection between the Pacific and the Atlantic was confirmed with Rossby ray tracing analyses. The local circulation response was associated to downward air motion (subsidence) over Southeast Brazil, contributing to the expressive negative precipitation anomalies observed during summer 2014, and leading to a major drought event in the historical context. The analysis of atmospheric and oceanic patterns of this event helped defining a schematic framework leading to the observed drought conditions in southeast Brazil, including the involved teleconnections, blocking high pressure, radiative and humidity transport effects.

  10. A perspective on the future of physical oceanography.

    PubMed

    Garabato, Alberto C Naveira

    2012-12-13

    The ocean flows because it is forced by winds, tides and exchanges of heat and freshwater with the overlying atmosphere and cryosphere. To achieve a state where the defining properties of the ocean (such as its energy and momentum) do not continuously increase, some form of dissipation or damping is required to balance the forcing. The ocean circulation is thought to be forced primarily at the large scales characteristic of ocean basins, yet to be damped at much smaller scales down to those of centimetre-sized turbulence. For decades, physical oceanographers have sought to comprehend the fundamentals of this fractal puzzle: how the ocean circulation is driven, how it is damped and how ocean dynamics connects the very different scales of forcing and dissipation. While in the last two decades significant advances have taken place on all these three fronts, the thrust of progress has been in understanding the driving mechanisms of ocean circulation and the ocean's ensuing dynamical response, with issues surrounding dissipation receiving comparatively little attention. This choice of research priorities stems not only from logistical and technological difficulties in observing and modelling the physical processes responsible for damping the circulation, but also from the untested assumption that the evolution of the ocean's state over time scales of concern to humankind is largely independent of dissipative processes. In this article, I illustrate some of the key advances in our understanding of ocean circulation that have been achieved in the last 20 years and, based on a range of evidence, contend that the field will soon reach a stage in which uncertainties surrounding the arrest of ocean circulation will pose the main challenge to further progress. It is argued that the role of the circulation in the coupled climate system will stand as a further focal point of major advances in understanding within the next two decades, supported by the drive of physical oceanography towards a more operational enterprise by contextual factors. The basic elements that a strategy for the future must have to foster progress in these two areas are discussed, with an overarching emphasis on the promotion of curiosity-driven fundamental research against opposing external pressures and on the importance of upholding fundamental research as the apex of education in the field.

  11. Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Shepherd, Theodore G.; Zappa, Giuseppe; Sandu, Irina

    2016-07-01

    State-of-the art climate models generally struggle to represent important features of the large-scale circulation. Common model deficiencies include an equatorward bias in the location of the midlatitude westerlies and an overly zonal orientation of the North Atlantic storm track. Orography is known to strongly affect the atmospheric circulation and is notoriously difficult to represent in coarse-resolution climate models. Yet how the representation of orography affects circulation biases in current climate models is not understood. Here we show that the effects of switching off the parameterization of drag from low-level orographic blocking in one climate model resemble the biases of the Coupled Model Intercomparison Project Phase 5 ensemble: An overly zonal wintertime North Atlantic storm track and less European blocking events, and an equatorward shift in the Southern Hemispheric jet and increase in the Southern Annular Mode time scale. This suggests that typical circulation biases in coarse-resolution climate models may be alleviated by improved parameterizations of low-level drag.

  12. Influence of Antarctic Oscillation on Intraseasonal Variability of Large-Scale Circulations Over the Western North Pacific

    DTIC Science & Technology

    2005-03-01

    quartiles, and thus locates the central 50% of the data. The center bar through each box represents the persistence median. The whiskers extend away from...level of tropical cyclone activity. Numerous factors (e.g., scarcity of observations over large ocean basins , various scales of motion present in the... central South Indian Ocean, South Pacific Ocean east of New Zealand, and South Atlantic Ocean near the Falkland Islands. The increased pressure gradient

  13. A global traveling wave on Venus

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Gierasch, Peter J.; Schinder, Paul J.

    1993-01-01

    The dominant large-scale pattern in the clouds of Venus has been described as a 'Y' or 'Psi' and tentatively identified by earlier workers as a Kelvin wave. A detailed calculation of linear wave modes in the Venus atmosphere verifies this identification. Cloud feedback by infrared heating fluctuations is a plausible excitation mechanism. Modulation of the large-scale pattern by the wave is a possible explanation for the Y. Momentum transfer by the wave could contribute to sustaining the general circulation.

  14. Understanding Atmospheric Anomalies Associated With Seasonal Pluvial-Drought Processes Using Southwest China as an Example

    NASA Astrophysics Data System (ADS)

    Liu, Zhenchen; Lu, Guihua; He, Hai; Wu, Zhiyong; He, Jian

    2017-11-01

    Seasonal pluvial-drought transition processes are unique natural phenomena. To explore possible mechanisms, we considered Southwest China (SWC) as the study region and comprehensively investigated the temporal evolution or spatial patterns of large-scale and regional atmospheric variables with the simple method of Standardized Anomalies (SA). Some key procedures and results include the following: (1) Because regional atmospheric variables are more directly responsible for the transition processes, we investigate it in detail. The temporal evolution of net vertical integral water vapor flux (net VIWVF) across SWC, together with vertical SA-based patterns of regional horizontal divergence (D) and vertical motion (ω), coincides well with pluvial-drought transition processes. (2) With respect to large-scale circulation patterns, a well-organized Eurasian (EU) Pattern is one important feature during the pluvial-drought transitions over SWC. (3) Based on these large-scale and regional atmospheric anomalous features, relevant SA-based indices were built, to explore the possibility of simulating drought development using previous pluvial anomalies. As a whole, simulated drought development only with SA-based indices of large-scale circulation patterns does not perform well. Further, it can be improved a lot when SA-based indices of regional D and net VIWVF are introduced. (4) In addition, the potential drought prediction using pluvial anomalies, together with the deep understanding of physical mechanisms responsible for pluvial-drought transitions, need to be further explored.

  15. Estimation and Validation of \\delta18O Global Distribution with Rayleigh-type two Dimensional Isotope Circulation Model

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.

    2004-12-01

    A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.

  16. The Role of Arctic Sea Ice in Last Millennium Climate Variability: Model-Proxy Comparisons Using Ensemble Members and Novel Model Experiments.

    NASA Astrophysics Data System (ADS)

    Gertler, C. G.; Monier, E.; Prinn, R. G.

    2016-12-01

    Variability in sea ice extent is a prominent feature of forced simulations of the last millennium and reconstructions of paleoclimate using proxy records. The rapid 20th century decline in sea ice extent is most likely due to greenhouse gas forcing, but the accuracy of future projections depend on the characterization of natural variability. Declining sea ice extent affects regional climate and society, but also plays a large role in Arctic amplification, with implications for mid-latitude circulation and even large-scale climate oscillations. To characterize the effects of natural and anthropogenic climate forcing on sea ice and the related changes in large-scale atmospheric circulation, a combination of instrumental record, paleoclimate reconstructions, and general circulation models can be employed to recreate sea ice extents and the corresponding atmosphere-ocean states. Model output from the last millennium ensemble (LME) is compared to a proxy-based sea ice reconstruction and a global proxy network using a variety of statistical and data assimilation techniques. Further model runs using the Community Earth Systems Model (CESM) are performed with the same inputs as LME but forced with experimental sea ice extents, and results are contextualized within the larger ensemble by a variety of metrics.

  17. The influence of Seychelles Dome on the large scale Tropical Variability

    NASA Astrophysics Data System (ADS)

    Manola, Iris; Selten, Frank; Hazeleger, Wilco

    2013-04-01

    The Seychelles Dome (SD) is the thermocline ridge just South of the equator in the Western Indian Ocean basin. It is characterized by strong atmospheric convection and a shallow thermocline and is associated with large intraseasonal convection and SST variability (Harrison and Vecchi 2001). The SD is influenced by surface and subsurface processes, such as air-sea fluxes, Ekman upwelling from wind stress curl, ocean dynamics (vertical mixing) and oceanic Rossby waves from southeastern Indian Ocean. The favoring season for a strong SD is the boreal winter, where the thermocline is most shallow. Then the southeasterly trade winds converge with the northwesterly monsoonal winds over the intertropical convergence zone and cause cyclonic wind stress curl that drives Ekman divergence and a ridging of the thermocline. It is found that the subseasonal and interranual variability of the SD is influenced by large scale events, such as the Indian Ocean Dipole (IOD), the ENSO and the Madden-Julian Oscillation (MJO) (Tozuka et al., 2010, Lloyd and Vecchi, 2010). The SD is enhanced by cooling events in the Western Indian Ocean and easterly winds that raise the thermocline and increase the upwelling. This can be associated with a strong Walker circulation, like negative IOD conditions or La Nina-like conditions. So far the studies focus on the origins of the SD variability, but the influence of the SD itself on regional or large scale climate is largely unknown. In this study we focus on the influence of the SD variations on the large scale tropical circulation. We analyze the covariance of the SD variations and the tropical circulation in a 200 year control imulation of the climate model EC-EARTH and perform idealized SST forced simulations to study the character of the atmospheric response and its relation to ENSO, IOD and MJO. References -Harrison, D. E. and G. A. Vecchi, 2001: January 1999 Indian Ocean cooling event. Geophys. Res. Lett., 28, 3717-3720. -Lloyd, I. D., and G. A. Vecchi, 2010: Submonthly Indian Ocean cooling events and their interaction with large-scale conditions. J. Climate, 23, 700-716. -Tozuka, T., T. Yokoi, and T. Yamagata, 2010: A modeling study of interannual variations of the Seychelles Dome. J. Geophys. Res., 115, C04005, doi:10.1029/2009JC005547.

  18. Dynamical systems proxies of atmospheric predictability and mid-latitude extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal

    2017-04-01

    Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.

  19. Numerical experiments with a general circulation model concerning the distribution of ozone in the stratosphere

    NASA Technical Reports Server (NTRS)

    Kurzeja, R. J.; Haggard, K. V.; Grose, W. L.

    1984-01-01

    The distribution of ozone below 60 km altitude has been simulated in two experiments employing a nine-layer quasi-geostrophic spectral model and linear parameterization of ozone photochemistry, the first of which included thermal and orographic forcing of the planetary scale waves, while the second omitted it. The first experiment exhibited a high latitude winter ozone buildup which was due to a Brewer-Dodson circulation forced by large amplitude (planetary scale) waves in the winter lower stratosphere. Photochemistry was also found to be important down to lower altitudes (20 km) in the summer stratosphere than had previously been supposed.

  20. Probing aerosol indirect effect on deep convection using idealized cloud-resolving simulations with parameterized large-scale dynamics.

    NASA Astrophysics Data System (ADS)

    Anber, U.; Wang, S.; Gentine, P.; Jensen, M. P.

    2017-12-01

    A framework is introduced to investigate the indirect impact of aerosol loading on tropical deep convection using 3-dimentional idealized cloud-system resolving simulations with coupled large-scale circulation. The large scale dynamics is parameterized using a spectral weak temperature gradient approximation that utilizes the dominant balance in the tropics between adiabatic cooling and diabatic heating. Aerosol loading effect is examined by varying the number concentration of nuclei (CCN) to form cloud droplets in the bulk microphysics scheme over a wide range from 30 to 5000 without including any radiative effect as the radiative cooling is prescribed at a constant rate, to isolate the microphysical effect. Increasing aerosol number concentration causes mean precipitation to decrease monotonically, despite the increase in cloud condensates. Such reduction in precipitation efficiency is attributed to reduction in the surface enthalpy fluxes, and not to the divergent circulation, as the gross moist stability remains unchanged. We drive a simple scaling argument based on the moist static energy budget, that enables a direct estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometers and microphysical properties is also examined and is consistent with the macro-physical picture.

  1. Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks.

    PubMed

    Pietarila Graham, Jonathan; Mininni, Pablo D; Pouquet, Annick

    2009-07-01

    We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics (LAMHD) alpha model reproduces well both the large-scale and the small-scale properties of turbulent flows; in particular, it displays no increased (superfilter) bottleneck effect with its ensuing enhanced energy spectrum at the onset of the subfilter scales. This is in contrast to the case of the neutral fluid in which the Lagrangian-averaged Navier-Stokes alpha model is somewhat limited in its applications because of the formation of spatial regions with no internal degrees of freedom and subsequent contamination of superfilter-scale spectral properties. We argue that, as the Lorentz force breaks the conservation of circulation and enables spectrally nonlocal energy transfer (associated with Alfvén waves), it is responsible for the absence of a viscous bottleneck in magnetohydrodynamics (MHD), as compared to the fluid case. As LAMHD preserves Alfvén waves and the circulation properties of MHD, there is also no (superfilter) bottleneck found in LAMHD, making this method capable of large reductions in required numerical degrees of freedom; specifically, we find a reduction factor of approximately 200 when compared to a direct numerical simulation on a large grid of 1536;{3} points at the same Reynolds number.

  2. Synoptic circulation and temperature pattern during severe wildland fires

    Treesearch

    Warren E. Heilman

    1996-01-01

    Large-scale changes in the atmosphere associated with a globally changed climate and changes in climatic variability may have important regional impacts on the frequency and severity of wildland fires in the future.

  3. Convection Cells in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary layers of the same depth, defined from the surface to the height at which the turbulent kinetic energy (TKE) is zero (in non-penetrative cases) or less than 10% of its maximum value (in penetrative cases). We find that with increasing filter width, the contribution of the filtered flow to the total TKE in the middle of the boundary layer decreases much more rapidly in the penetrative cases than in the non-penetrative cases. In particular, around 20-25% of the TKE at this height comes from small-scale turbulence with a length scale less than or equal to 15% of the boundary layer depth in the CBL, whereas in Rayleigh-Bénard convection, it is just 6-7%. This is consistent with visualisations, which show that entrainment creates additional small-scale mixing within the large-scale circulations in the CBL. Without entrainment, large-scale organisation predominates. Neither spatial nor temporal filtering are as successful at extracting superstructures in the penetrative cases as in the non-penetrative cases. Hence, these techniques depend not on the steadiness of the system, but rather on the presence of entrainment. We therefore intend to try other detection techniques, such as proper orthogonal decomposition, in order to make a rigorous assessment of which is most effective for isolating superstructures in all four cases.

  4. Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak

    NASA Technical Reports Server (NTRS)

    Keyser, D. A.; Johnson, D. R.

    1982-01-01

    Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.

  5. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  6. Sensitivity simulations of superparameterised convection in a general circulation model

    NASA Astrophysics Data System (ADS)

    Rybka, Harald; Tost, Holger

    2015-04-01

    Cloud Resolving Models (CRMs) covering a horizontal grid spacing from a few hundred meters up to a few kilometers have been used to explicitly resolve small-scale and mesoscale processes. Special attention has been paid to realistically represent cloud dynamics and cloud microphysics involving cloud droplets, ice crystals, graupel and aerosols. The entire variety of physical processes on the small-scale interacts with the larger-scale circulation and has to be parameterised on the coarse grid of a general circulation model (GCM). Since more than a decade an approach to connect these two types of models which act on different scales has been developed to resolve cloud processes and their interactions with the large-scale flow. The concept is to use an ensemble of CRM grid cells in a 2D or 3D configuration in each grid cell of the GCM to explicitly represent small-scale processes avoiding the use of convection and large-scale cloud parameterisations which are a major source for uncertainties regarding clouds. The idea is commonly known as superparameterisation or cloud-resolving convection parameterisation. This study presents different simulations of an adapted Earth System Model (ESM) connected to a CRM which acts as a superparameterisation. Simulations have been performed with the ECHAM/MESSy atmospheric chemistry (EMAC) model comparing conventional GCM runs (including convection and large-scale cloud parameterisations) with the improved superparameterised EMAC (SP-EMAC) modeling one year with prescribed sea surface temperatures and sea ice content. The sensitivity of atmospheric temperature, precipiation patterns, cloud amount and types is observed changing the embedded CRM represenation (orientation, width, no. of CRM cells, 2D vs. 3D). Additionally, we also evaluate the radiation balance with the new model configuration, and systematically analyse the impact of tunable parameters on the radiation budget and hydrological cycle. Furthermore, the subgrid variability (individual CRM cell output) is analysed in order to illustrate the importance of a highly varying atmospheric structure inside a single GCM grid box. Finally, the convective transport of Radon is observed comparing different transport procedures and their influence on the vertical tracer distribution.

  7. Spatio-temporal atmospheric circulation variability around the Antarctic Peninsula based on hemispheric circulation modes and weather types

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus; Höppner, Kathrin

    2017-04-01

    Large parts of the Polar Regions are affected by a warming trend associated with substantial changes in the cryosphere. In Antarctica this positive trend pattern is most dominant in the western part of the continent and on the Antarctic Peninsula (AP). An important driving mechanism of temperature variability and trends in this region is the atmospheric circulation. Changes in atmospheric circulation modes and frequencies of circulation types have major impacts on temperature characteristics at a certain station or region. We present results of a statistical downscaling study focused on AP temperature variability showing both results of large-scale atmospheric circulation modes and regional weather type classifications derived from monthly and daily gridded reanalysis data sets. In order to investigate spatial trends and variabilities of the Southern Annular Mode (SAM), we analyze spatio-temporally resolved SAM-pattern maps from 1979 to 2015. First results show dominant multi-annual to decadal pattern variabilities which can be directly linked to temperature variabilities at the Antarctic Peninsula. A sub-continental to regional view on the influence of atmospheric circulation on AP temperature variability is given by the analysis of weather type classifications (WTC). With this analysis we identify significant changes in the frequency of occurrence of highly temperature-relevant circulation patterns. The investigated characteristics of weather type frequencies can also be related to the identified changes of the SAM.

  8. Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang

    2018-05-01

    The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.

  9. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  10. On the Interactions Between Planetary and Mesoscale Dynamics in the Oceans

    NASA Astrophysics Data System (ADS)

    Grooms, I.; Julien, K. A.; Fox-Kemper, B.

    2011-12-01

    Multiple-scales asymptotic methods are used to investigate the interaction of planetary and mesoscale dynamics in the oceans. We find three regimes. In the first, the slow, large-scale planetary flow sets up a baroclinically unstable background which leads to vigorous mesoscale eddy generation, but the eddy dynamics do not affect the planetary dynamics. In the second, the planetary flow feels the effects of the eddies, but appears to be unable to generate them. The first two regimes rely on horizontally isotropic large-scale dynamics. In the third regime, large-scale anisotropy, as exists for example in the Antarctic Circumpolar Current and in western boundary currents, allows the large-scale dynamics to both generate and respond to mesoscale eddies. We also discuss how the investigation may be brought to bear on the problem of parameterization of unresolved mesoscale dynamics in ocean general circulation models.

  11. The Nature of Global Large-scale Sea Level Variability in Relation to Atmospheric Forcing: A Modeling Study

    NASA Technical Reports Server (NTRS)

    Fukumori, I.; Raghunath, R.; Fu, L. L.

    1996-01-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.

  12. Global Carbon Dioxide Transport from AIRS Data, July 2009

    NASA Image and Video Library

    2009-11-09

    Created with data acquired by JPL Atmospheric Infrared Sounder instrument during July 2009 this image shows large-scale patterns of carbon dioxide concentrations that are transported around Earth by the general circulation of the atmosphere.

  13. GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  14. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  15. The impact of resolution on the dynamics of the martian global atmosphere: Varying resolution studies with the MarsWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, Anthony D.; Lee, Christopher; Newman, Claire E.; Richardson, Mark I.

    2012-09-01

    We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted.

  16. Multi-time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France

    NASA Astrophysics Data System (ADS)

    Massei, N.; Dieppois, B.; Hannah, D. M.; Lavers, D. A.; Fossa, M.; Laignel, B.; Debret, M.

    2017-03-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating correlation between large and local scales, empirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: (i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and (ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the links between large and local scales were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach, which integrated discrete wavelet multiresolution analysis for reconstructing monthly regional hydrometeorological processes (predictand: precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector). This approach basically consisted in three steps: 1 - decomposing large-scale climate and hydrological signals (SLP field, precipitation or streamflow) using discrete wavelet multiresolution analysis, 2 - generating a statistical downscaling model per time-scale, 3 - summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either precipitation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with alternating flood and extremely low-flow/drought periods (e.g., winter/spring 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. In accordance with previous studies, the wavelet components detected in SLP, precipitation and streamflow on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation.

  17. Large-scale drivers of local precipitation extremes in convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Chan, Steven C.; Kendon, Elizabeth J.; Roberts, Nigel M.; Fowler, Hayley J.; Blenkinsop, Stephen

    2016-04-01

    The Met Office 1.5-km UKV convective-permitting models (CPM) is used to downscale present-climate and RCP8.5 60-km HadGEM3 GCM simulations. Extreme UK hourly precipitation intensities increase with local near-surface temperatures and humidity; for temperature, the simulated increase rate for the present-climate simulation is about 6.5% K**-1, which is consistent with observations and theoretical expectations. While extreme intensities are higher in the RCP8.5 simulation as higher temperatures are sampled, there is a decline at the highest temperatures due to circulation and relative humidity changes. Extending the analysis to the broader synoptic scale, it is found that circulation patterns, as diagnosed by MSLP or circulation type, play an increased role in the probability of extreme precipitation in the RCP8.5 simulation. Nevertheless for both CPM simulations, vertical instability is the principal driver for extreme precipitation.

  18. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  19. Using stroboscopic flow imaging to validate large-scale computational fluid dynamics simulations

    NASA Astrophysics Data System (ADS)

    Laurence, Ted A.; Ly, Sonny; Fong, Erika; Shusteff, Maxim; Randles, Amanda; Gounley, John; Draeger, Erik

    2017-02-01

    The utility and accuracy of computational modeling often requires direct validation against experimental measurements. The work presented here is motivated by taking a combined experimental and computational approach to determine the ability of large-scale computational fluid dynamics (CFD) simulations to understand and predict the dynamics of circulating tumor cells in clinically relevant environments. We use stroboscopic light sheet fluorescence imaging to track the paths and measure the velocities of fluorescent microspheres throughout a human aorta model. Performed over complex physiologicallyrealistic 3D geometries, large data sets are acquired with microscopic resolution over macroscopic distances.

  20. Using the Weak-Temperature Gradient Approximation to Evaluate Parameterizations: An Example of the Transition From Suppressed to Active Convection

    NASA Astrophysics Data System (ADS)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    2017-10-01

    Two single-column models are fully coupled via the weak-temperature gradient approach. The coupled-SCM is used to simulate the transition from suppressed to active convection under the influence of an interactive large-scale circulation. The sensitivity of this transition to the value of mixing entrainment within the convective parameterization is explored. The results from these simulations are compared with those from equivalent simulations using coupled cloud-resolving models. Coupled-column simulations over nonuniform surface forcing are used to initialize the simulations of the transition, in which the column with suppressed convection is forced to undergo a transition to active convection by changing the local and/or remote surface forcings. The direct contributions from the changes in surface forcing are to induce a weakening of the large-scale circulation which systematically modulates the transition. In the SCM, the contributions from the large-scale circulation are dominated by the heating effects, while in the CRM the heating and moistening effects are about equally divided. A transition time is defined as the time when the rain rate in the dry column is halfway to the value at equilibrium after the transition. For the control value of entrainment, the order of the transition times is identical to that obtained in the CRM, but the transition times are markedly faster. The locally forced transition is strongly delayed by a higher entrainment. A consequence is that for a 50% higher entrainment the transition times are reordered. The remotely forced transition remains fast while the locally forced transition becomes slow, compared to the CRM.

  1. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    NASA Astrophysics Data System (ADS)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  2. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.

  3. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of large cross-sectional eddies spanning the whole water column and contributing to vertical mixing, associated with the presence of sub-surface horizontal turbulent structures. Analysis of water renewal within the bay shows that, under the typical breeze regimes considered in the study, the residence time of water in the bay is of the order of a few days. Finally, vertical eddy viscosity has been calculated and shown to vary by a couple of orders of magnitude along the water column, with larger values near the bottom surface where density stratification is smaller.

  4. Global Carbon Dioxide Transport from AIRS Data, July 2008

    NASA Image and Video Library

    2008-09-24

    This image was created with data acquired by JPLa Atmospheric Infrared Sounder during July 2008. The image shows large scale patterns of carbon dioxide concentrations that are transported around the Earth by the general circulation of the atmosphere.

  5. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Santee, Michelle L.; Crisp, David

    1995-01-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (L(sub s) = 343-348 deg). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal mean meridional circulation and large-scale waves can be approximated by the diabatic circulation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridional and vertical components of the diabatic circulation simultaneously. We find a two-cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approx. 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approx. 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestrial diabatic circulation at the comparable season, but is more vigorous.

  6. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  7. Environmental Studies: Mathematical, Computational and Statistical Analyses

    DTIC Science & Technology

    1993-03-03

    mathematical analysis addresses the seasonally and longitudinally averaged circulation which is under the influence of a steady forcing located asymmetrically...employed, as has been suggested for some situations. A general discussion of how interfacial phenomena influence both the original contamination process...describing the large-scale advective and dispersive behaviour of contaminants transported by groundwater and the uncertainty associated with field-scale

  8. Conceiving processes in atmospheric models-General equations, subscale parameterizations, and 'superparameterizations'

    NASA Astrophysics Data System (ADS)

    Gramelsberger, Gabriele

    The scientific understanding of atmospheric processes has been rooted in the mechanical and physical view of nature ever since dynamic meteorology gained ground in the late 19th century. Conceiving the atmosphere as a giant 'air mass circulation engine' entails applying hydro- and thermodynamical theory to the subject in order to describe the atmosphere's behaviour on small scales. But when it comes to forecasting, it turns out that this view is far too complex to be computed. The limitation of analytical methods precludes an exact solution, forcing scientists to make use of numerical simulation. However, simulation introduces two prerequisites to meteorology: First, the partitioning of the theoretical view into two parts-the large-scale behaviour of the atmosphere, and the effects of smaller-scale processes on this large-scale behaviour, so-called parametrizations; and second, the dependency on computational power in order to achieve a higher resolution. The history of today's atmospheric circulation modelling can be reconstructed as the attempt to improve the handling of these basic constraints. It can be further seen as the old schism between theory and application under new circumstances, which triggers a new discussion about the question of how processes may be conceived in atmospheric modelling.

  9. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones" resulting from lateral and vertical shear in the wedge above the slab gap, produce slow transit times. These 4-D ascent pathways are being incorporated into numerical models on the thermal and melting evolution of diapirs. Models show subduction-induced circulation significantly alters diapir ascent beneath arcs.

  10. Evaluation of Heating Methods for Thermal Structural Testing of Large Structures

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Sikora, Joseph G.; Caldwell, Darrell L., Jr.

    1998-01-01

    An experimental study was conducted to evaluate different heating methods for thermal structural testing of large scale structures at temperatures up to 350 F as part of the High Speed Research program. The heating techniques evaluated included: radiative/convective, forced convective, and conductive. The radiative/convective heaters included finned strip heaters, and clear and frosted quartz lamps. The forced convective heating was accomplished by closed loop circulation of heated air. The conductive heater consisted of heating blankets. The tests were conducted on an 1/8 inch thick stainless steel plate in a custom-built oven. The criteria used for comparing the different heating methods included test specimen temperature uniformity, heater response time, and consumed power. The parameters investigated included air circulation in the oven, reflectance of oven walls, and the orientation of the test specimen and heaters (vertical and horizontal). It was found that reflectance of oven walls was not an important parameter. Air circulation was necessary to obtain uniform temperatures only for the vertically oriented specimen. Heating blankets provided unacceptably high temperature non-uniformities. Quartz lamps with internal air circulation had the lowest power consumption levels. Using frosted quartz lamps with closed loop circulation of cool air, and closed loop circulation of heated air provided the fastest response time.

  11. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the typical cloud-induced turbulent circulation, and in particular, the large flux variability for some objects can be attributed to the global-scale patterns of temperature anomaly and cloud formation caused by atmospheric waves.

  12. Final Technical Report for DE-SC0005467

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broccoli, Anthony J.

    2014-09-14

    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season,more » and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable of simulating the large-scale meteorological patterns associated with daily temperature extremes and they suggest that such models can be used to evaluate the extent to which changes in atmospheric circulation will influence future changes in temperature extremes.« less

  13. A Theory For The Variability of The Baroclinic Quasi-geostrophic Winnd Driven Circulation.

    NASA Astrophysics Data System (ADS)

    Ben Jelloul, M.; Huck, T.

    We propose a theory of the wind driven circulation based on the large scale (i.e. small Burger number) quasi-geostrophic assumptions retained in the Rhines and Young (1982) classical study of the steady baroclinic flow. We therefore use multiple time scale and asymptotic expansions to separate steady and the time dependent component of the flow. The barotropic flow is given by the Sverdrup balance. At first order in Burger number, the baroclinic flow can be decom- posed in two parts. A steady contribution ensures no flow in the deep layer which is at rest in absence of dissipative processes. Since the baroclinic instability is inhibited at large scale a spectrum of neutral modes also arises. These are of three type, classical Rossby basin modes deformed through advection by the barotropic flow, recirculating modes localized in the recirculation gyre and blocked modes corresponding to closed potential vorticity contours. At next order in Burger number, amplitude equations for baroclinic modes are derived. If dissipative processes are included at this order, the system adjusts towards Rhines and Young solution with a homogenized potential vorticity pool.

  14. Radiosonde observational evidence of the influence of extreme SST gradient upon atmospheric meso-scale circulation

    NASA Astrophysics Data System (ADS)

    Nishikawa, H.; Tachibana, Y.; Udagawa, Y.

    2012-12-01

    Although the influence of the anomalous midlatitude SST upon atmospheric local circulation has been getting common in particular over the Kuroshio and the Gulf Stream regions, observational studies on the influence of the Okhotsk Sea, which is to the north of the Kuroshio, upon the atmospheric local circulation is much less than those of the Kuroshio. The climate of the Okhotsk SST is very peculiar. Extremely cold SST spots, whose summertime SST is lower than 5 Celsius degrees, are formed around Kuril Islands. Because SSTs are generally determined by local air-sea interaction as well as temperature advection, it is very difficult to isolate only the oceanic influence upon the atmosphere. The SST in this cold spot is, however, dominated by the tidal mixing, which is independent of the atmospheric processes. This unique condition may ease the account for the oceanic influence only. Although the SST environment of the Okhotsk Sea is good for understanding the oceanic influence upon the atmosphere, only a few studies has been executed in this region because of the difficulty of observations by research vessels in this region, where territory problems between Japan and Russia is unsolved. Because of the scant of direct observation, the Okhotsk Sea was still mysterious. In 2006 August, GPS radiosonde observation was carried out by Russian research vessel Khromov in the Sea of Okhotsk by the cooperation between Japan and Russia, and strong SST gradient of about 7 Celsius degrees/10km was observed around the Kuril Islands. The purpose of this study is to demonstrate observational finding of meso-scale atmospheric anticyclonic circulation influenced by the cold oceanic spot around the Kuril Island. The summaries of the observation are as follows. Meso-scale atmospheric ageostrophic anticyclonic circulation in the atmospheric marine-boundary layer is observed in and around the cold spot. A high air pressure area as compared with other surrounding areas is also located at the area of the ageostrophic anticyclonic circulation. In addition, the location of the cold dome in the atmospheric marine-boundary layer is in accordance with that of the large SST gradient. The cold dome with denser air than the surroundings probably strengthened the high pressure associated with subsidence over the cold dome. The downward direction of the sensible heat flux estimated by surface meteorological observation suggests that the cold dome was formed by the cooling by the cold sea. During the observation period around this area, the synoptic-scale sea level pressure field hardly changed. No reanalysis data sets resolve this anticyclonic circulation in this area. Therefore, we can conclude that the meso-scale anticyclone was formed by the influence of this cold SST and its large gradient.

  15. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  16. Validation of the DRAGON score in 12 stroke centers in anterior and posterior circulation.

    PubMed

    Strbian, Daniel; Seiffge, David J; Breuer, Lorenz; Numminen, Heikki; Michel, Patrik; Meretoja, Atte; Coote, Skye; Bordet, Régis; Obach, Victor; Weder, Bruno; Jung, Simon; Caso, Valeria; Curtze, Sami; Ollikainen, Jyrki; Lyrer, Philippe A; Eskandari, Ashraf; Mattle, Heinrich P; Chamorro, Angel; Leys, Didier; Bladin, Christopher; Davis, Stephen M; Köhrmann, Martin; Engelter, Stefan T; Tatlisumak, Turgut

    2013-10-01

    The DRAGON score predicts functional outcome in the hyperacute phase of intravenous thrombolysis treatment of ischemic stroke patients. We aimed to validate the score in a large multicenter cohort in anterior and posterior circulation. Prospectively collected data of consecutive ischemic stroke patients who received intravenous thrombolysis in 12 stroke centers were merged (n=5471). We excluded patients lacking data necessary to calculate the score and patients with missing 3-month modified Rankin scale scores. The final cohort comprised 4519 eligible patients. We assessed the performance of the DRAGON score with area under the receiver operating characteristic curve in the whole cohort for both good (modified Rankin scale score, 0-2) and miserable (modified Rankin scale score, 5-6) outcomes. Area under the receiver operating characteristic curve was 0.84 (0.82-0.85) for miserable outcome and 0.82 (0.80-0.83) for good outcome. Proportions of patients with good outcome were 96%, 93%, 78%, and 0% for 0 to 1, 2, 3, and 8 to 10 score points, respectively. Proportions of patients with miserable outcome were 0%, 2%, 4%, 89%, and 97% for 0 to 1, 2, 3, 8, and 9 to 10 points, respectively. When tested separately for anterior and posterior circulation, there was no difference in performance (P=0.55); areas under the receiver operating characteristic curve were 0.84 (0.83-0.86) and 0.82 (0.78-0.87), respectively. No sex-related difference in performance was observed (P=0.25). The DRAGON score showed very good performance in the large merged cohort in both anterior and posterior circulation strokes. The DRAGON score provides rapid estimation of patient prognosis and supports clinical decision-making in the hyperacute phase of stroke care (eg, when invasive add-on strategies are considered).

  17. Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)

    NASA Astrophysics Data System (ADS)

    Rousselet, Louise; de Verneil, Alain; Doglioli, Andrea M.; Petrenko, Anne A.; Duhamel, Solange; Maes, Christophe; Blanke, Bruno

    2018-04-01

    The patterns of the large-scale, meso- and submesoscale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE cruise (February-April 2015). Multi-disciplinary original in situ observations were achieved along a zonal transect through the WTSP and their analysis was coupled with satellite data. The use of Lagrangian diagnostics allows for the identification of water mass pathways, mesoscale structures, and submesoscale features such as fronts. In particular, we confirmed the existence of a global wind-driven southward circulation of surface waters in the entire WTSP, using a new high-resolution altimetry-derived product, validated by in situ drifters, that includes cyclogeostrophy and Ekman components with geostrophy. The mesoscale activity is shown to be responsible for counter-intuitive water mass trajectories in two subregions: (i) the Coral Sea, with surface exchanges between the North Vanuatu Jet and the North Caledonian Jet, and (ii) around 170° W, with an eastward pathway, whereas a westward general direction dominates. Fronts and small-scale features, detected with finite-size Lyapunov exponents (FSLEs), are correlated with 25 % of surface tracer gradients, which reveals the significance of such structures in the generation of submesoscale surface gradients. Additionally, two high-frequency sampling transects of biogeochemical parameters and microorganism abundances demonstrate the influence of fronts in controlling the spatial distribution of bacteria and phytoplankton, and as a consequence the microbial community structure. All circulation scales play an important role that has to be taken into account not only when analysing the data from OUTPACE but also, more generally, for understanding the global distribution of biogeochemical components.

  18. Silver Hake Tracks Changes in Northwest Atlantic Circulation

    EPA Science Inventory

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic pro...

  19. A New Multiscale Model for the Madden-Julian Oscillation.

    NASA Astrophysics Data System (ADS)

    Biello, Joseph A.; Majda, Andrew J.

    2005-06-01

    A multiscale model of the MJO is developed here that accounts, in a simplified fashion, for both the upscale transfer from synoptic to planetary scales of momentum and temperature from wave trains of thermally driven equatorial synoptic-scale circulations in a moving convective envelope as well as direct mean heating on planetary scales. This model involves idealized thermally driven congestus synoptic-scale fluctuations in the eastern part of the moving wave envelope and convective superclusters in the western part of the envelope. The model self-consistently reproduces qualitatively many of the detailed structural features of the planetary circulation in the observations of the MJO, including the vertical structure in both the westerly onset region and the strong westerly wind burst region, as well as the horizontal quadrupole planetary vortex structure. The westerly midlevel inflow in the strong westerly region and the quadrupole vortex are largely produced in the model by the upscale transport of momentum to the planetary scales, while the midlevel easterly jet in the westerly onset region is substantially strengthened by this process. The role of wave trains of tilted organized synoptic-scale circulations is crucial for this fidelity with observations. The appeal of the multiscale models developed below is their firm mathematical underpinnings, simplicity, and analytic tractability while remaining self-consistent with many of the features of the observational record.

  20. Is the negative IOD during 2016 the reason for monsoon failure over southwest peninsular India?

    NASA Astrophysics Data System (ADS)

    Sreelekha, P. N.; Babu, C. A.

    2018-01-01

    The study investigates the mechanism responsible for the deficit rainfall over southwest peninsular India during the 2016 monsoon season. Analysis shows that the large-scale variation in circulation pattern due to the strong, negative Indian Ocean Dipole phenomenon was the reason for the deficit rainfall. Significant reduction in the number of northward-propagating monsoon-organized convections together with fast propagation over the southwest peninsular India resulted in reduction in rainfall. On the other hand, their persistence for longer time over the central part of India resulted in normal rainfall. It was found that the strong convection over the eastern equatorial Indian Ocean creates strong convergence over that region. The combined effect of the sinking due to the well-developed Walker circulation originated over the eastern equatorial Indian Ocean and the descending limb of the monsoon Hadley cell caused strong subsidence over the western equatorial Indian Ocean. The tail of this large-scale sinking extended up to the southern parts of India. This hinders formation of monsoon-organized convections leading to a large deficiency of rainfall during monsoon 2016 over the southwest peninsular India.

  1. Impact of lateral boundary conditions on regional analyses

    NASA Astrophysics Data System (ADS)

    Chikhar, Kamel; Gauthier, Pierre

    2017-04-01

    Regional and global climate models are usually validated by comparison to derived observations or reanalyses. Using a model in data assimilation results in a direct comparison to observations to produce its own analyses that may reveal systematic errors. In this study, regional analyses over North America are produced based on the fifth-generation Canadian Regional Climate Model (CRCM5) combined with the variational data assimilation system of the Meteorological Service of Canada (MSC). CRCM5 is driven at its boundaries by global analyses from ERA-interim or produced with the global configuration of the CRCM5. Assimilation cycles for the months of January and July 2011 revealed systematic errors in winter through large values in the mean analysis increments. This bias is attributed to the coupling of the lateral boundary conditions of the regional model with the driving data particularly over the northern boundary where a rapidly changing large scale circulation created significant cross-boundary flows. Increasing the time frequency of the lateral driving and applying a large-scale spectral nudging improved significantly the circulation through the lateral boundaries which translated in a much better agreement with observations.

  2. An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.

    1994-01-01

    In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.

  3. Physical Modeling of Flow Over Gale Crater, Mars: Laboratory Measurements of Basin Secondary Circulations

    NASA Astrophysics Data System (ADS)

    Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.

    2017-12-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  4. The interannual variability of the Haines Index over North America

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Joseph J. Charney

    2013-01-01

    The Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The...

  5. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of large-scale circulation influences on sub-regional conditions in terms of their sign, strength and the mechanisms through which it acts, the KV/KZI work substantively advances climate science in this domain. The work also thus provides a new set of criteria for assessing the skill of global circulation models in representation of western HMA climate processes.

  6. MJO: Asymptotically-Nondivergent Nonlinear Wave?: A Review

    NASA Astrophysics Data System (ADS)

    Yano, J. I.

    2014-12-01

    MJO is often considered a convectively-coupled wave. The present talk is going to argue that it is best understood primarily as a nonlinear solitary wave dominated by vorticity. Role of convection is secondary,though likely catalytic. According to Charney's (1963) scale analysis, the large-scale tropical circulations are nondivergent to the leading order, i.e., dominated by rotational flows. Yano et al (2009) demonstrate indeed that is the case for a period dominated by three MJO events. The scale analysis of Yano and Bonazzola (2009, JAS) demonstrates such an asymptotically nondivergent regime is a viable alternative to the traditionally-believed equatorial-wave regime. Wedi and Smolarkiewicz (2010, JAS) in turn, show by numerical computations of a dry system that a MJO-like oscillation for a similar period can indeed be generated by free solitary nonlinear equatorial Rossby-wave dynamicswithout any convective forcing to a system. Unfortunately, this perspective is slow to be accepted with people's mind so much fixed on the role of convection. This situation may be compared to a slow historical process of acceptance of Eady and Charney's baroclinicinstability simply because it does not invoke any convection Ironically, once the nonlinear free-wave view for MJO is accepted, interpretations can more easily be developed for a recent series of numerical model experiments under a global channel configuration overthe tropics with a high-resolution of 5-50 km with or without convection parameterization. All those experiments tend to reproduce observed large-scale circulations associated with MJO rather well, though most of time, they fail to reproduce convective coherency associated with MJO.These large-scale circulations appear to be generated by lateral forcing imposed at the latitudinal walls. These lateral boundaries are reasonably far enough (30NS) to induce any direct influence to the tropics. There is no linear dry equatorial wave that supports this period either. In Wedi and Smolarkiewicz's analysis, such a lateral forcing is essential in order to obtain their nonlinear solitary wave solution. Thus is the leading-order solution for MJO in the same sense as the linear baroclinic instability is a leading-order solution to the midlatitude synoptic-scale storm.

  7. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  8. West Florida shelf circulation and temperature budget for the 1998 fall transition

    NASA Astrophysics Data System (ADS)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  9. Local and Remote Influences on Vertical Wind Shear over the Northern Tropical Atlantic Region

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Zhu, X.

    2009-12-01

    Vertical wind shear is one of the most important parameters controlling the frequency and intensity of Atlantic hurricanes. It has been argued that in global warming scenarios, the mechanical effect of changing vertical wind shear may even trump the thermodynamic effect of increasing Atlantic sea surface temperatures, when it comes to projected trends in Atlantic hurricane activity. Despite its importance, little is known about the connection between vertical shear in the north Atlantic region and the global atmospheric circulation, apart from the well-known positive correlation with El Nino-Southern Oscillation (ENSO). In this study, we analyze the statistical relationship between vertical shear and features of the large-scale circulation such as the distribution of sea surface temperature and vertical motion. We examine whether this relationship is different on interannual timescales associated with ENSO as compared to the decadal timescales associated with the Atlantic Multidecadal Oscillation (AMO). We also investigate how well the global general circulation models manage to simulate the observed vertical shear in this region, and its relationship to the large-scale circulation. Our analyses reveal an interesting sensitivity to air-sea coupling in model simulations of vertical shear. Another interesting property of vertical shear, as defined in the context of hurricane studies, is that it is positive definite, rather like precipitation. This means that it has a very nongaussian probability distribution on short timescales. We analyze how this nongaussianity changes when averaged over longer timescales.

  10. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less

  11. Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.

    Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land–sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areasmore » of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630–3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.« less

  12. Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.

    2017-12-01

    Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.

  13. High-frequency daily temperature variability in China and its relationship to large-scale circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fu-Ting; Fu, Congbin; Qian, Yun

    Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less

  14. The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region

    NASA Astrophysics Data System (ADS)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.

  15. Large-scale connection between aerosol optical depth and summer monsoon circulation, and precipitation over northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Yoon, Soon-Chang; Choi, Suk-Jin; Choi, In-Jin

    2010-05-01

    We investigated the large-scale connection between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the large-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anti-cyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115E and 30-35N and by 120-140E and 35-40N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  16. Impacts of large-scale atmospheric circulation changes in winter on black carbon transport and deposition to the Arctic

    NASA Astrophysics Data System (ADS)

    Pozzoli, Luca; Dobricic, Srdan; Russo, Simone; Vignati, Elisabetta

    2017-10-01

    Winter warming and sea-ice retreat observed in the Arctic in the last decades may be related to changes of large-scale atmospheric circulation pattern, which may impact the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a statistical algorithm, based on the maximum likelihood estimate approach, to determine how the changes of three large-scale weather patterns associated with increasing temperatures in winter and sea-ice retreat in the Arctic impact the transport of BC to the Arctic and its deposition. We found that two atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the eastern Arctic while they increase BC deposition in the western Arctic. The increasing BC trend is mainly due to a pattern characterized by a high-pressure anomaly near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. Another pattern with a high-pressure anomaly over the Arctic and low-pressure anomaly over the North Atlantic Ocean has a smaller impact on BC deposition but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.

  17. Impact of satellite-based data on FGGE general circulation statistics

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1987-01-01

    The NASA Goddard Laboratory for Atmospheres (GLA) analysis/forecast system was run in two different parallel modes in order to evaluate the influence that data from satellites and other FGGE observation platforms can have on analyses of large scale circulation; in the first mode, data from all observation systems were used, while in the second only conventional upper air and surface reports were used. The GLA model was also integrated for the same period without insertion of any data; an independent objective analysis based only on rawinsonde and pilot balloon data is also performed. A small decrease in the vigor of the general circulation is noted to follow from the inclusion of satellite observations.

  18. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Santee, Michelle L.; Crisp, David

    1995-01-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (LS = 343-348 deg) (Santee and Crisp, 1933). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal-mean meridional circulation and large-scale waves can be approximated by the diabatic ciculation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridonal and vertical components of the diabatic circulation simultaneously. We find a two cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approximately 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approximately 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestial diabatic circulation at the comparable season, but is more vigorous.

  19. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Santee, Michelle L.; Crisp, David

    1995-03-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (LS = 343-348 deg) (Santee and Crisp, 1933). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal-mean meridional circulation and large-scale waves can be approximated by the diabatic ciculation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridonal and vertical components of the diabatic circulation simultaneously. We find a two cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approximately 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approximately 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestial diabatic circulation at the comparable season, but is more vigorous.

  20. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-11-19

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.« less

  1. Investigating the Climatic Impacts of Globally Shifted Anthropogenic Emissions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jiang, J. H.; Su, H.

    2014-12-01

    With a quasi-exponential growth in industrialization since the mid-1990s, Asia has undergone a dramatic increase in anthropogenic emissions of aerosol and precursor gases to the atmosphere. Meanwhile, such emissions have been stabilized or reduced over North America and Europe. This geographical shift of global emission sources could potentially perturb the regional and global climate due to impact of aerosols on cloud properties, precipitation, and large-scale circulation. We use an atmospheric general circulation model (AGCM) with different aerosol scenarios to investigate the radiative and microphysical effects of anthropogenic aerosols on the large-scale circulation and regional climate over the globe. We conduct experiments to simulate the continental shift of aerosol distribution by contrasting two simulations using 1970 and 2010 anthropogenic emission sources. We found the elevation of aerosol concentrations in East and South Asia results in regional surface temperature cooling of -0.10° to -0.17°C, respectively, due to the enhanced solar extinction by aerosols and cloud reflectivity. The reduction of the local aerosol loadings in Europe causes a significant warming of +0.4°C. However, despite recent decreasing in aerosol emission, North America shows a cooling of -0.13°C, likely caused by increasing of cloudiness under the influence of modulated general circulation. These aerosol induced temperature changes are consistent with the observed temperature trends from 1980 to 2013 in the reanalysis data. Our study also predicts weaker East/South Asia summer monsoons due to strong regional aerosol forcing. Moreover, the ascending motion in the northern tropics is found to be weakened by asymmetrical aerosol forcing, resulting in the cross-equatorial shift of Hadley Circulation.

  2. Precipitation Dynamical Downscaling Over the Great Plains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  3. Statistical downscaling of sub-daily (6-hour) temperature in Romania, by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Birsan, Marius-Victor; Dumitrescu, Alexandru; Cǎrbunaru, Felicia

    2016-04-01

    The role of statistical downscaling is to model the relationship between large-scale atmospheric circulation and climatic variables on a regional and sub-regional scale, making use of the predictions of future circulation generated by General Circulation Models (GCMs) in order to capture the effects of climate change on smaller areas. The study presents a statistical downscaling model based on a neural network-based approach, by means of multi-layer perceptron networks. Sub-daily temperature data series from 81 meteorological stations over Romania, with full data records are used as predictands. As large-scale predictor, the NCEP/NCAD air temperature data at 850 hPa over the domain 20-30E / 40-50N was used, at a spatial resolution of 2.5×2.5 degrees. The period 1961-1990 was used for calibration, while the validation was realized over the 1991-2010 interval. Further, in order to estimate future changes in air temperature for 2021-2050 and 2071-2100, air temperature data at 850 hPa corresponding to the IPCC A1B scenario was extracted from the CNCM33 model (Meteo-France) and used as predictor. This work has been realized within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian Executive Agency for Higher Education Research, Development and Innovation Funding (UEFISCDI).

  4. Centennial-scale links between Atlantic Ocean dynamics and hydroclimate over the last 4400 years: Insights from the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thirumalai, K.; Quinn, T. M.; Okumura, Y.; Richey, J. N.; Partin, J. W.; Poore, R. Z.

    2015-12-01

    Surface circulation in the Atlantic Ocean is an important mediator of global climate and yet its variability is poorly constrained on centennial timescales. Changes in the Atlantic meridional overturning circulation (AMOC) have been implicated in late Holocene climate variability in the Western Hemisphere, although the relationship between AMOC variability and hydroclimate is uncertain due to the lack of sufficiently highly resolved proxy records. Here we present a replicated reconstruction of sea-surface temperature (SST) and salinity (SSS) from the Garrison Basin in the northern Gulf of Mexico (NGOM) spanning the last 4,400 years to better constrain past sea-surface conditions. We generated time series of paired Mg/Ca (SST proxy) and δ18O (SST and SSS proxy) variations in planktic foraminifer Globigerinoides ruber (white variety) from three multi-cores collected in 2010. Using a Monte Carlo-based technique we produce a stacked record from the three multi-cores and constrain analytical, calibration, chronological, and sampling uncertainties. We apply this technique to existing paired Mg/Ca- δ18O studies in the Gulf of Mexico and Atlantic Ocean to facilitate comparison between time-uncertain proxy reconstructions. The Garrison Basin stack exhibits large centennial-scale variability (σSST~0.6°C; δ18Osw~0.17‰) and indicates a substantially cool (0.9±0.5°C) and fresh (0.26±0.1‰) Little Ice Age (LIA; 1450-1850 A.D.), corroborating extant records from the Gulf of Mexico. Focusing on the last millennium, we analyze a suite of oceanic and terrestrial proxy records to demonstrate a centennial-scale link between salt advection in the Atlantic Ocean, a diagnostic parameter of ocean circulation, and hydroclimate in the adjacent continents. The ensuing multiproxy relationships seem to be consistent with spatial field correlations of limited salinity and rainfall instrumental/reanalysis data, which suggest that NGOM salinity varies with large-scale Atlantic Ocean circulation and continental precipitation. Our results imply significant centennial-scale variability over the late Holocene and are consistent with limited observational analysis indicating a slowdown of AMOC during the LIA.

  5. The Seasonal Predictability of Extreme Wind Events in the Southwest United States

    NASA Astrophysics Data System (ADS)

    Seastrand, Simona Renee

    Extreme wind events are a common phenomenon in the Southwest United States. Entities such as the United States Air Force (USAF) find the Southwest appealing for many reasons, primarily for the an expansive, unpopulated, and electronically unpolluted space for large-scale training and testing. However, wind events can cause hazards for the USAF including: surface wind gusts can impact the take-off and landing of all aircraft, can tip the airframes of large wing-surface aircraft during the performance of maneuvers close to the ground, and can even impact weapons systems. This dissertation is comprised of three sections intended to further our knowledge and understanding of wind events in the Southwest. The first section builds a climatology of wind events for seven locations in the Southwest during the twelve 3-month seasons of the year. The first section further examines the wind events in relation to terrain and the large-scale flow of the atmosphere. The second section builds upon the first by taking the wind events and generating mid-level composites for each of the twelve 3-month seasons. In the third section, teleconnections identified as consistent with the large-scale circulation in the second paper were used as predictor variables to build a Poisson regression model for each of the twelve 3-month seasons. The purpose of this research is to increase our understanding of the climatology of extreme wind events, increase our understanding of how the large-scale circulation influences extreme wind events, and create a model to enhance predictability of extreme wind events in the Southwest. Knowledge from this paper will help protect personnel and property associated with not only the USAF, but all those in the Southwest.

  6. A HIERARCHIAL STOCHASTIC MODEL OF LARGE SCALE ATMOSPHERIC CIRCULATION PATTERNS AND MULTIPLE STATION DAILY PRECIPITATION

    EPA Science Inventory

    A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...

  7. Dynamics and energetics of the South Pacific convergence zone during FGGE SOP-1

    NASA Technical Reports Server (NTRS)

    Vincent, D. G.; Robertson, F. R.

    1984-01-01

    The major objectives are to: (1) diagnose the physical processes responsible for the maintenance of the South Pacific Convergence Zone (SPCZ); and (2) examine the role of the SPCZ in the large-scale circulation patterns of the Southern Hemisphere.

  8. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley.

    PubMed

    Rahul, P R C; Bhawar, R L; Ayantika, D C; Panicker, A S; Safai, P D; Tharaprabhakaran, V; Padmakumari, B; Raju, M P

    2014-01-14

    First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.

  9. Precipitable water: Its linear retrieval using leaps and bounds procedure and its global distribution from SEASAT SMMR data

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.

    1982-01-01

    Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.

  10. Evaluation of the Atlantic Multidecadal Oscillation Impact on Large-Scale Atmospheric Circulation in the Atlantic Region in Summer

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Cherenkova, E. A.

    2018-02-01

    The influence of the Atlantic Multidecadal Oscillation (AMO) on large-scale atmospheric circulation in the Atlantic region in summer for the period of 1950-2015 is investigated. It is shown that the intensification of the summer North Atlantic Oscillation (NAO) with significant changes in sea level pressure anomalies in the main centers of action (over Greenland and the British Isles) occurred while the North Atlantic was cooler. Sea surface temperature anomalies, which are linked to the AMO in the summer season, affect both the NAO index and fluctuations of the Eastern Atlantic/Western Russia (EAWR) centers of action. The positive (negative) phase of the AMO is characterized by a combination of negative (positive) values of the NAO and EAWR indices. The dominance of the opposite phases of the teleconnection indices in summer during the warm North Atlantic and in its colder period resulted in differences in the regional climate in Europe.

  11. Linking Low-Frequency Large-Scale Circulation Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Papritz, L.; Grams, C. M.

    2018-03-01

    The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.

  12. Impacts of tropical deforestation. Part II: The role of large-scale dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Henderson-Sellers, A.; McGuffie, K.

    1996-10-01

    This is the second in a pair of papers in which the possible impacts of tropical deforestation are examined using a version of the NCAR CCM1. The emphasis in this paper is on the influence of tropical deforestation on the large-scale climate system. This influence is explored through the examination of the regional moisture budget and through an analysis of the Hadley and Walker circulations. Modification of the model surface parameters to simulate tropical deforestation produces significant modifications of both Hadley and Walker circulations, which result in changes distant from the region of deforestation. A mechanism for propagation to middlemore » and high latitudes of disturbances arising form tropical deforestation is proposed based on Rossby wave propagation mechanisms. These mechanisms, which have also been associated with the extratropical influences of ENSO events, provide a pathway for the dispersion of the tropical disturbances to high latitudes. 27 refs., 20 figs., 1 tab.« less

  13. Retrieval of Latent Heating from TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.; hide

    2006-01-01

    Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.

  14. Intraseasonal and Interannual Variability of Mars Present Climate

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1996-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.

  15. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  16. Will surface winds weaken in response to global warming?

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  17. High sub-seasonal variability in water volume transports, revealed through a new ocean monitoring initiative using autonomous gliders

    NASA Astrophysics Data System (ADS)

    Heslop, E.; Ruiz, S.; Allen, J.; Tintoré, J.

    2012-04-01

    One of the clear challenges facing oceanography today is to define variability in ocean processes at a seasonal and sub-seasonal scale, in order to clearly identify the signature of both natural large-scale climatic oscillations and the long-term trends brought about by the human-induced change in atmospheric composition. Without visibility of this variance, which helps to determine the margins of significance for long-term trends and decipher cause and effect, the inferences drawn from sparse data points can be misleading. The cyclonic basin scale circulation pattern in the Western Mediterranean has long been known; the role/contribution that processes in the Balearic Basin play in modifying this is less well defined. The Balearic Channels (channels between the Balearic Islands) are constriction points on this basin scale circulation that appear to exert a controlling influence on the north/south exchange of water masses. Understanding the variability in current flows through these channels is important, not just for the transport of heat and salt, but also for ocean biology that responds to physical variability at the scale of that variability. Earlier studies at a seasonal scale identified; an interannual summer/winter variation of 1 Sv in the strength of the main circulation pattern and a high cruise-to-cruise variability in the pattern and strength of the flows through the channels brought about by mesoscale activity. Initial results using new high-resolution data from glider based monitoring missions across the Ibiza Channel (the main exchange channel in the Balearic Basin), combined with ship and contemporaneous satellite data, indicate surprisingly high and rapid changes in the flows of surface and intermediate waters imposed on the broad seasonal cycle. To date the data suggests that there are three potential 'modes' of water volume transport, generated from the interplay between basin and mesoscale circulation. We will review the concept of transport modes as seen through the earlier seasonal ship based studies and demonstrate that the scales of variability captured by the glider monitoring provides a unique view of variability in this circulation system, which is as high on a weekly timescale as the previously identified seasonal cycle.

  18. Circulation in the mesosphere and lower thermosphere during the MAP (Middle Atmosphere Program)/WINE (Winter in the Northern Europe) period

    NASA Technical Reports Server (NTRS)

    Tarasenko, D. A.

    1987-01-01

    One of the scientific programs in the MAP project, Winter in the Northern Europe (WINE) 1983 to 1984 involved an analysis of circulation processes in the middle atmosphere which characterized that winter period. Rocket soundings were conducted at many stations. In order to investigate deviations of the mean winds for the MAP/WINE period from the circulation conditions of other winters and from the climatic norm, rocket sounding data of Churchill and Barrow stations was well as the Pressure Modulated Radiometer channel 3000 data enabled the compilation of geopotential fields and the calculation of winds in the geostrophic approximation for comparison with the meteor winds. The large scale processes of the winter which determined the circulation in the period of the experiment were analyzed briefly. The analysis and results are discussed.

  19. Impact of small-scale structures on estuarine circulation

    NASA Astrophysics Data System (ADS)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  20. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    PubMed Central

    Baldini, James U.L.; Brown, Richard J.; McElwaine, Jim N.

    2015-01-01

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events. PMID:26616338

  1. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    PubMed

    Baldini, James U L; Brown, Richard J; McElwaine, Jim N

    2015-11-30

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

  2. Tropospheric transport differences between models using the same large-scale meteorological fields

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.

    2017-01-01

    The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.

  3. Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.

    Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.

  4. Numerical simulation and prediction of coastal ocean circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account formore » non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.« less

  5. Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wu, Yutian; Smith, Karen L.

    2018-01-01

    To better understand the dynamical mechanism that accounts for the observed lead-lag correlation between the early winter Barents-Kara Sea (BKS) sea ice variability and the later winter midlatitude circulation response, a series of experiments are conducted using a simplified atmospheric general circulation model with a prescribed idealized near-surface heating over the BKS. A prolonged effect is found in the idealized experiments following the near-surface heating and can be explicitly attributed to the stratospheric pathway and the long time scale in the stratosphere. The analysis of the Eliassen-Palm flux shows that, as a result of the imposed heating and linear constructive interference, anomalous upward propagating planetary-scale waves are excited and weaken the stratospheric polar vortex. This stratospheric response persists for approximately 1-2 months accompanied by downward migration to the troposphere and the surface. This downward migration largely amplifies and extends the low-level jet deceleration in the midlatitudes and cold air advection over central Asia. The idealized model experiments also suggest that the BKS region is the most effective in affecting the midlatitude circulation than other regions over the Arctic.

  6. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  7. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  8. The NASA-Goddard Multi-Scale Modeling Framework - Land Information System: Global Land/atmosphere Interaction with Resolved Convection

    NASA Technical Reports Server (NTRS)

    Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.

    2013-01-01

    The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.

  9. The Hadley circulation: assessing NCEP/NCAR reanalysis and sparse in-situ estimates

    NASA Astrophysics Data System (ADS)

    Waliser, D. E.; Shi, Zhixiong; Lanzante, J. R.; Oort, A. H.

    We present a comparison of the zonal mean meridional circulations derived from monthly in situ data (i.e. radiosondes and ship reports) and from the NCEP/NCAR reanalysis product. To facilitate the interpretation of the results, a third estimate of the mean meridional circulation is produced by subsampling the reanalysis at the locations where radiosonde and surface ship data are available for the in situ calculation. This third estimate, known as the subsampled estimate, is compared to the complete reanalysis estimate to assess biases in conventional, in situ estimates of the Hadley circulation associated with the sparseness of the data sources (i.e., radiosonde network). The subsampled estimate is also compared to the in situ estimate to assess the biases introduced into the reanalysis product by the numerical model, initialization process and/or indirect data sources such as satellite retrievals. The comparisons suggest that a number of qualitative differences between the in situ and reanalysis estimates are mainly associated with the sparse sampling and simplified interpolation schemes associated with in situ estimates. These differences include: (1) a southern Hadley cell that consistently extends up to 200 hPa in the reanalysis, whereas the bulk of the circulation for the in situ and subsampled estimates tends to be confined to the lower half of the troposphere, (2) more well-defined and consistent poleward limits of the Hadley cells in the reanalysis compared to the in-situ and subsampled estimates, and (3) considerably less variability in magnitude and latitudinal extent of the Ferrel cells and southern polar cell exhibited in the reanalysis estimate compared to the in situ and subsampled estimates. Quantitative comparison shows that the subsampled estimate, relative to the reanalysis estimate, produces a stronger northern Hadley cell ( 20%), a weaker southern Hadley cell ( 20-60%), and weaker Ferrel cells in both hemispheres. These differences stem from poorly measured oceanic regions which necessitate significant interpolation over broad regions. Moreover, they help to pinpoint specific shortcomings in the present and previous in situ estimates of the Hadley circulation. Comparisons between the subsampled and in situ estimates suggest that the subsampled estimate produces a slightly stronger Hadley circulation in both hemispheres, with the relative differences in some seasons as large as 20-30%. 6These differences suggest that the mean meridional circulation associated with the NCEP/NCAR reanalysis is more energetic than observations suggest. Examination of ENSO-related changes to the Hadley circulation suggest that the in situ and subsampled estimates significantly overestimate the effects of ENSO on the Hadley circulation due to the reliance on sparsely distributed data. While all three estimates capture the large-scale region of low-level equatorial convergence near the dateline that occurs during El Nino, the in situ and subsampled estimates fail to effectively reproduce the large-scale areas of equatorial mass divergence to the west and east of this convergence area, leading to an overestimate of the effects of ENSO on the zonal mean circulation.

  10. Supporting observation campaigns with high resolution modeling

    NASA Astrophysics Data System (ADS)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko

    2017-04-01

    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  11. South Atlantic Ocean circulation: Simulation experiments with a quasi-geostrophic model and assimilation of TOPEX/POSEIDON and ERS 1 altimeter data

    NASA Astrophysics Data System (ADS)

    Florenchie, P.; Verron, J.

    1998-10-01

    Simulation experiments of South Atlantic Ocean circulations are conducted with a 1/6°, four-layered, quasi-geostrophic model. By means of a simple nudging data assimilation procedure along satellite tracks, TOPEX/POSEIDON and ERS 1 altimeter measurements are introduced into the model to control the simulation of the basin-scale circulation for the period from October 1992 to September 1994. The model circulation appears to be strongly influenced by the introduction of altimeter data, offering a consistent picture of South Atlantic Ocean circulations. Comparisons with observations show that the assimilating model successfully simulates the kinematic behavior of a large number of surface circulation components. The assimilation procedure enables us to produce schematic diagrams of South Atlantic circulation in which patterns ranging from basin-scale currents to mesoscale eddies are portrayed in a realistic way, with respect to their complexity. The major features of the South Atlantic circulation are described and analyzed, with special emphasis on the Brazil-Malvinas Confluence region, the Subtropical Gyre with the formation of frontal structures, and the Agulhas Retroflection. The Agulhas eddy-shedding process has been studied extensively. Fourteen eddies appear to be shed during the 2-year experiment. Because of their strong surface topographic signature, Agulhas eddies have been tracked continuously during the assimilation experiment as they cross the South Atlantic basin westward. Other effects of the assimilation procedure are shown, such as the intensification of the Subtropical Gyre, the appearance of a strong seasonal cycle in the Brazil Current transport, and the increase of the mean Brazil Current transport. This last result, combined with the westward oriention of the Agulhas eddies' trajectories, leads to a southward transport of mean eddy kinetic energy across 30°S.

  12. Climate dynamics of South America during summer: Connections between the large-scale circulation and regional precipitation

    NASA Astrophysics Data System (ADS)

    Lenters, Johh Derick

    1997-05-01

    Relationships between the large-scale circulation and regional precipitation over South America during austral summer are examined using a GCM, linear model, and observational analyses. Emphasis is placed on understanding the origin of upper-tropospheric circulation features such as the Bolivian high and its effects on South American precipitation variability, particularly on the Central Andean Altiplano. Results from the linear model indicate that the Bolivian high and 'Nordeste low' are generated in response to precipitation over the Amazon basin, Central Andes, and South Atlantic convergence zone (SACZ), with African precipitation also playing a crucial role in the formation of the low. The direct mechanical and sensible heating effects of the Andes are minimal, acting only to induce a weak lee trough in midlatitudes and a shallow monsoonal circulation over the Central Andes. In the GCM the effects of the Andes include a strengthening of the Bolivian high and northward shift of the Nordeste low, primarily through changes in the precipitation field. The position of the Bolivian high is primarily determined by Amazonian precipitation and is little affected by the removal of the Andes. Strong subsidence to the west of the high is found to be important for the maintenance of the high's warm core, while large-scale convective overshooting to the east is responsible for a layer of cold air above the high. Observations from eight summer seasons reveal a close relationship between precipitation variability in the Central Andes and the position and intensity of the Bolivian high. The physical mechanisms of this connection are explored using composite, EOF, and correlation techniques. On intraseasonal to interannual timescales, rainy episodes on the Altiplano are found to be associated with warm, moist, poleward flow along the eastern flank of the Andes, often in conjunction with extratropical disturbances and a westward displacement of the SACZ. Corresponding to this northerly advection of warm air is the southward enhancement of the Bolivian high. During dry periods such as the 1987 El Nino, enhanced frontal activity and associated cool, dry, southerly flow east of the Altiplano results in a northward displacement of the Bolivian high.

  13. Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.

    PubMed

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi

    2010-07-01

    This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.

  14. How Large Scales Flows May Influence Solar Activity

    NASA Technical Reports Server (NTRS)

    Hathaway, D. H.

    2004-01-01

    Large scale flows within the solar convection zone are the primary drivers of the Sun's magnetic activity cycle and play important roles in shaping the Sun's magnetic field. Differential rotation amplifies the magnetic field through its shearing action and converts poloidal field into toroidal field. Poleward meridional flow near the surface carries magnetic flux that reverses the magnetic poles at about the time of solar maximum. The deeper, equatorward meridional flow can carry magnetic flux back toward the lower latitudes where it erupts through the surface to form tilted active regions that convert toroidal fields into oppositely directed poloidal fields. These axisymmetric flows are themselves driven by large scale convective motions. The effects of the Sun's rotation on convection produce velocity correlations that can maintain both the differential rotation and the meridional circulation. These convective motions can also influence solar activity directly by shaping the magnetic field pattern. While considerable theoretical advances have been made toward understanding these large scale flows, outstanding problems in matching theory to observations still remain.

  15. Ability of an ensemble of regional climate models to reproduce weather regimes over Europe-Atlantic during the period 1961-2000

    NASA Astrophysics Data System (ADS)

    Sanchez-Gomez, Emilia; Somot, S.; Déqué, M.

    2009-10-01

    One of the main concerns in regional climate modeling is to which extent limited-area regional climate models (RCM) reproduce the large-scale atmospheric conditions of their driving general circulation model (GCM). In this work we investigate the ability of a multi-model ensemble of regional climate simulations to reproduce the large-scale weather regimes of the driving conditions. The ensemble consists of a set of 13 RCMs on a European domain, driven at their lateral boundaries by the ERA40 reanalysis for the time period 1961-2000. Two sets of experiments have been completed with horizontal resolutions of 50 and 25 km, respectively. The spectral nudging technique has been applied to one of the models within the ensemble. The RCMs reproduce the weather regimes behavior in terms of composite pattern, mean frequency of occurrence and persistence reasonably well. The models also simulate well the long-term trends and the inter-annual variability of the frequency of occurrence. However, there is a non-negligible spread among the models which is stronger in summer than in winter. This spread is due to two reasons: (1) we are dealing with different models and (2) each RCM produces an internal variability. As far as the day-to-day weather regime history is concerned, the ensemble shows large discrepancies. At daily time scale, the model spread has also a seasonal dependence, being stronger in summer than in winter. Results also show that the spectral nudging technique improves the model performance in reproducing the large-scale of the driving field. In addition, the impact of increasing the number of grid points has been addressed by comparing the 25 and 50 km experiments. We show that the horizontal resolution does not affect significantly the model performance for large-scale circulation.

  16. How robust is the atmospheric circulation response to Arctic sea-ice loss in isolation?

    NASA Astrophysics Data System (ADS)

    Kushner, P. J.; Hay, S. E.; Blackport, R.; McCusker, K. E.; Oudar, T.

    2017-12-01

    It is now apparent that active dynamical coupling between the ocean and atmosphere determines a good deal of how Arctic sea-ice loss changes the large-scale atmospheric circulation. In coupled ocean-atmosphere models, Arctic sea-ice loss indirectly induces a 'mini' global warming and circulation changes that extend into the tropics and the Southern Hemisphere. Ocean-atmosphere coupling also amplifies by about 50% Arctic free-tropospheric warming arising from sea-ice loss (Deser et al. 2015, 2016). The mechanisms at work and how to separate the response to sea-ice loss from the rest of the global warming process remain poorly understood. Different studies have used distinctive numerical approaches and coupled ocean-atmosphere models to address this problem. We put these studies on comparable footing using pattern scaling (Blackport and Kushner 2017) to separately estimate the part of the circulation response that scales with sea-ice loss in the absence of low-latitude warming from the part that scales with low-latitude warming in the absence of sea-ice loss. We consider well-sampled simulations from three different coupled ocean-atmosphere models (CESM1, CanESM2, CNRM-CM5), in which greenhouse warming and sea-ice loss are driven in different ways (sea ice albedo reduction/transient RCP8.5 forcing for CESM1, nudged sea ice/CO2 doubling for CanESM2, heat-flux forcing/constant RCP8.5-derived forcing for CNRM-CM5). Across these different simulations, surprisingly robust influences of Arctic sea-ice loss on atmospheric circulation can be diagnosed using pattern scaling. For boreal winter, the isolated sea-ice loss effect acts to increase warming in the North American Sub-Arctic, decrease warming of the Eurasian continent, enhance precipitation over the west coast of North America, and strengthen the Aleutian Low and the Siberian High. We will also discuss how Arctic free tropospheric warming might be enhanced via midlatitude ocean surface warming induced by sea-ice loss. Less robust is the part of the response that scales with low-latitude warming, which, depending on the model, can reinforce or cancel the response to sea-ice loss. The extent to which a "tug of war" exists between tropical and high-latitude influences on the general circulation might thus be model dependent.

  17. Investigating Downscaling Methods and Evaluating Climate Models for Use in Estimating Regional Water Resources in Mountainous Regions under Changing Climatic Conditions

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Nolin, Anne W.; Serreze, Mark C.; Armstrong, Richard L.; McGinnis, David L.; Robinson, David A.

    2004-01-01

    The purpose of this three-year study is to develop and evaluate techniques to estimate the range of potential hydrological impacts of climate change in mountainous areas. Three main objectives are set out in the proposal. (1) To develop and evaluate transfer functions to link tropospheric circulation to regional snowfall. (2) To evaluate a suite of General Circulation Models (GCMs) for use in estimating synoptic scale circulation and the resultant regional snowfall. And (3) to estimate the range of potential hydrological impacts of changing climate in the two case study areas: the Upper Colorado River basin, and the Catskill Mountains of southeastern New York State. Both regions provide water to large populations.

  18. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  19. Simulation of the planetary boundary layer with the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1981-01-01

    A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.

  20. Interactions of the Cloudy Arctic Boundary Layer with Variable Surface Conditions and Large-Scale Circulations

    NASA Technical Reports Server (NTRS)

    Randell, David A.

    2001-01-01

    Our project included a variety of activities, ranging from model development to data manipulation and even participation in the SHEBA and FIRE field experiments. The following sections outline the work accomplished under these tasks. A collection of reprints is attached to this report.

  1. Large-Scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2001-01-01

    The paper discusses the following: 1. The Brewer-Dobson circulation: tropical upwelling. 2. Mixing into polar vortices. 3. The latitudinal structure of "age" in the stratosphere. 4. The subtropical "tracer edges". 5. Transport in the lower troposphere. 6. Tracer modeling during SOLVE. 7. 3D modeling of "mean age". 8. Models and measurements II.

  2. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing.

    PubMed

    Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis

    2013-07-01

    This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.

  3. The impact of large-scale circulation patterns on summer crop yields in IP

    NASA Astrophysics Data System (ADS)

    Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita

    2014-05-01

    Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance companies) sectors, to take advantage of favorable conditions or reduce the effect of adverse conditions. Acknowledgements Research by M. Capa-Morocho has been partly supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM) and MULCLIVAR project (CGL2012-38923-C02-02) References Aasa, A., Jaagus, J., Ahas, R. and Sepp, M. 2004. The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology 24, 1551-1564. Gabaldón, C. et al. 2013. Evaluation of local strategies to climate change of maize crop in Andalusia for the first half of 21st century. European Geosciences Union - General Assembly2013 Vol. 15 (Vienna - Austria, 2013). Garnett, E. R. and Khandekar, M. L. 1992. The impact of large-scale atmospheric circulations and anomalies on Indian monsoon droughts and floods and on world grain yields-a statistical analysis. Agricultural and Forest Meteorology 61, 113-128. Jones, C. and Kiniry, J. 1986. CERES-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, 194. Rozas, V. and Garcia-Gonzalez, I. 2012. Non-stationary influence of El Nino-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int J Biometeorol 56, 787-800.

  4. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan

    2004-07-01

    It is well known that regional climate simulations are sensitive to the size and position of the domain chosen for calculations. Here we study the physical mechanisms of this sensitivity. We conducted simulations with the Regional Atmospheric Modeling System (RAMS) for June 2000 over North America at 50 km horizontal resolution using a 7500 km × 5400 km grid and NCEP/NCAR reanalysis as boundary conditions. The position of the domain was displaced in several directions, always maintaining the U.S. in the interior, out of the buffer zone along the lateral boundaries. Circulation biases developed a large scale structure, organized by the Rocky Mountains, resulting from a systematic shifting of the synoptic wave trains that crossed the domain. The distortion of the large-scale circulation was produced by interaction of the modeled flow with the lateral boundaries of the nested domain and varied when the position of the grid was altered. This changed the large-scale environment among the different simulations and translated into diverse conditions for the development of the mesoscale processes that produce most of precipitation for the Great Plains in the summer season. As a consequence, precipitation results varied, sometimes greatly, among the experiments with the different grid positions. To eliminate the dependence of results on the position of the domain, we used spectral nudging of waves longer than 2500 km above the boundary layer. Moisture was not nudged at any level. This constrained the synoptic scales to follow reanalysis while allowing the model to develop the small-scale dynamics responsible for the rainfall. Nudging of the large scales successfully eliminated the variation of precipitation results when the grid was moved. We suggest that this technique is necessary for all downscaling studies with regional models with domain sizes of a few thousand kilometers and larger embedded in global models.

  5. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyllingstad, E.D.; Denbo, D.W.

    Numerical experiments were performed using a three-dimensional large-eddy simulation model of the ocean surface mixed layer that includes the Craik-Leibovich vortex force to parameterize the interaction of surface waves with mean currents. Results from the experiments show that the vortex force generates Langmuir circulations that can dominate vertical mixing. The simulated vertical velocity fields show linear, small-scale, coherent structures near the surface that extend downwind across the model domain. In the interior of the mixed layer, scales of motion increase to eddy sizes that are roughly equivalent to the mixed-layer depth. Cases with the vortex force have stronger circulations nearmore » the surface in contrast to cases with only heat flux and wind stress, particularly when the heat flux is positive. Calculations of the velocity variance and turbulence dissipation rates for cases with and without the vortex force, surface cooling, and wind stress indicate that wave-current interactions are a dominant mixing process in the upper mixed layer. Heat flux calculations show that the entrainment rate at the mixed-layer base can be up to two times greater when the vortex force is included. In a case with reduced wind stress, turbulence dissipation rates remained high near the surface because of the vortex force interaction with preexisting inertial currents. In deep mixed layers ({approximately}250 m) the simulations show that Langmuir circulations can vertically transport water 145 m during conditions of surface heating. Observations of turbulence dissipation rates and the vertical temperature structure support the model results. 42 refs., 20 figs., 21 tabs.« less

  6. West Florida shelf circulation and temperature budget for the 1999 spring transition

    USGS Publications Warehouse

    He, Ruoying; Weisberg, Robert H.

    2002-01-01

    Mid-latitude continental shelves undergo a spring transition as the net surface heat flux changes from cooling to warming. Using in situ data and a numerical circulation model we investigate the circulation and temperature budget on the West Florida Continental Shelf (WFS) for the spring transition of 1999. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind and heat flux fields and by river inflows. Based on agreements between the modeled and observed fields we use the model to draw inferences on how the surface momentum and heat fluxes affect the seasonal and synoptic scale variability. We account for a strong southeastward current at mid-shelf by the baroclinic response to combined wind and buoyancy forcing, and we show how this local forcing leads to annually occurring cold and low salinity tongues. Through term-by-term analyses of the temperature budget we describe the WFS temperature evolution in spring. Heat flux largely controls the seasonal transition, whereas ocean circulation largely controls the synoptic scale variability. These two processes, however, are closely linked. Bottom topography and coastline geometry are important in generating regions of convergence and divergence. Rivers contribute to the local hydrography and are important ecologically. Along with upwelling, river inflows facilitate frontal aggregation of nutrients and the spring formation of a high concentration chlorophyll plume near the shelf break (the so-called ‘Green River’) coinciding with the cold, low salinity tongues. These features originate by local, shelf-wide forcing; the Loop Current is not an essential ingredient.

  7. Anthropogenic Influence on the Changes of the Subtropical Gyre Circulation in the South Pacific in the 20th Century

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Pizarro, O.; Montecinos, A.

    2016-12-01

    The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.

  8. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  9. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.

    PubMed

    Wang, Qiong; Ouyang, Zhengbiao; Lin, Mi; Liu, Qiang

    2015-11-20

    A new type of compact three-port circulator with flat-top transmission band (FTTB) in a two-dimensional photonic crystal has been proposed, through coupling the cascaded magneto-optical resonance cavities to waveguides. The coupled-mode theory is applied to investigate the coupled structure and analyze the condition to achieve FTTB. According to the theoretical analysis, the structure is further optimized to ensure that the condition for achieving FTTB can be satisfied for both cavity-cavity coupling and cavity-waveguide coupling. Through the finite-element method, it is demonstrated that the design can realize a high quality, nonreciprocal circulating propagation of waves with an insertion loss of 0.023 dB and an isolation of 23.3 dB, covering a wide range of operation frequency. Such a wideband circulator has potential applications in large-scale integrated photonic circuits for guiding or isolating harmful optical reflections from load elements.

  10. A cosmic superfluid phase

    NASA Technical Reports Server (NTRS)

    Gradwohl, Ben-Ami

    1991-01-01

    The universe may have undergone a superfluid-like phase during its evolution, resulting from the injection of nontopological charge into the spontaneously broken vacuum. In the presence of vortices this charge is identified with angular momentum. This leads to turbulent domains on the scale of the correlation length. By restoring the symmetry at low temperatures, the vortices dissociate and push the charges to the boundaries of these domains. The model can be scaled (phenomenologically) to very low energies, it can be incorporated in a late time phase transition and form large scale structure in the boundary layers of the correlation volumes. The novel feature of the model lies in the fact that the dark matter is endowed with coherent motion. The possibilities of identifying this flow around superfluid vortices with the observed large scale bulk motion is discussed. If this identification is possible, then the definite prediction can be made that a more extended map of peculiar velocities would have to reveal large scale circulations in the flow pattern.

  11. Catalina Eddy as revealed by the historical downscaling of reanalysis

    NASA Astrophysics Data System (ADS)

    Kanamitsu, Masao; Yulaeva, Elena; Li, Haiqin; Hong, Song-You

    2013-08-01

    Climatological properties, dynamical and thermodynamical characteristics of the Catalina Eddy are examined from the 61 years NCEP/NCAR Reanalysis downscaled to hourly 10 km resolution. The eddy is identified as a mesoscale cyclonic circulation confined to the Southern California Bight. Pattern correlation of wind direction against the canonical Catalina Eddy is used to extract cases from the downscaled analysis. Validation against published cases and various observations confirmed that the downscaled analysis accurately reproduces Catalina Eddy events. A composite analysis of the initiation phase of the eddy indicates that no apparent large-scale cyclonic/anti-cyclonic large-scale forcing is associated with the eddy formation or decay. The source of the vorticity is located at the coast of the Santa Barbara Channel. It is generated by the convergence of the wind system crossing over the San Rafael Mountains and the large-scale northwesterly flow associated with the subtropical high. This vorticity is advected towards the southeast by the northwesterly flow, which contributes to the formation of the streak of positive vorticity. At 6 hours prior to the mature stage, there is an explosive generation of positive vorticity along the coast, coincident with the phase change of the sea breeze circulation (wind turning from onshore to offshore), resulting in the convergence all along the California coast. The generation of vorticity due to convergence along the coast together with the advection of vorticity from the north resulted in the formation of southerly flow along the coast, forming the Catalina Eddy. The importance of diurnal variation and the lack of large-scale forcing are new findings, which are in sharp contrast to prior studies. These differences are due to the inclusion of many short-lived eddy events detected in our study which have not been included in other studies.

  12. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951-2015

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohu; Wu, Xiaoqing; Gao, Meng

    2017-11-01

    Climate change is potentially challenging the sustainable development in many parts of the world, especially the semi-arid and arid regions on the earth. Northwest China (NWC) is one of the most arid areas in East Asia, and Gansu Province is located at the important climate transition zone in NWC. Spatiotemporal variability of both temperature and precipitation were analyzed based on the daily observation dataset at 29 meteorological stations over Gansu during 1951-2015. The Mann-Kendall trend test was utilized to detect monotonic trends in extreme climate indices, mean temperature, and total precipitation. The results revealed that the warming trends were statistically significant at most stations in Gansu, especially at the high altitude stations; however, the change trends in annual and seasonal precipitation over Gansu were not significant as expected. Furthermore, the 29 stations were spatially grouped using hierarchical clustering method. The regional-averaged temperature anomalies also showed a significant warming trend beginning at the end of 1970s. Spatial variations were also observed in the annual and seasonal precipitation over Gansu. In general, precipitation increased in the western part of Gansu while decreased in the eastern part. Additionally, the wavelet analyses revealed that the teleconnection between large scale circulation and summer precipitation varied not only from region to region, but also was different at different time scale and different time periods. Analysis of large-scale atmospheric circulation changes showed that a strengthening anticyclonic circulation, increasing geopotential height and rapid warming over the Eurasian continent were considered to be attributable to climate change in Gansu and even in NWC.

  13. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    NASA Astrophysics Data System (ADS)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (<1000 m) between 15° and ˜32°S, largely related to a weakening of the wind stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  14. Interannual Variation of Surface Circulation in the Japan/East Sea due to External Forcings and Intrinsic Variability

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman

    2018-03-01

    The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.

  15. Linked Extreme Weather Events during Winter 2009-2010 and 2010-2011 in the Context of Northern Hemisphere Circulation Anomalies

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Archambault, H. M.; Cordeira, J. M.

    2011-12-01

    Lance F. Bosart, Heather M. Archambault, and Jason M. Cordeira Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York The Northern Hemisphere (NH) planetary-scale circulation during winter 2009-2010 was characterized by an unusual combination of persistent high-latitude blocking and southward-displaced storm tracks, manifest by a strongly negative Arctic Oscillation (AO), in conjunction with a moderate El Nino event. The high-latitude blocking activity and southward-displaced storm tracks supported episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, eastern North America, and western Europe as well as anomalous warmth over northeastern Canada and Greenland that delayed sea ice formation and ice thickening in these areas during winter 2009-2010. Although somewhat less extreme than winter 2009-2010, the first half of winter 2010-2011 was also characterized by high-latitude blocking and southward-displaced storm tracks (manifest by negative values of the AO) while the Pacific-North American (PNA), initially negative, became neutral in late December and most of January. Winter 2010-2011 was characterized by moderate La Nina conditions in contrast to moderate El Nino conditions that prevailed during winter 2009-2010. Despite the reversal of the ENSO phase from winter 2009-2010 to winter 2010-2011, high-latitude blocking activity and the associated southward-displaced storm tracks again allowed for episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, central and eastern North America, and western Europe with delayed sea ice formation and thickening over the Davis Strait and adjacent regions during the first half of winter 2010-2011. Beginning in late January and continuing through early February 2011 the phase of the AO and the PNA reversed with the AO and PNA becoming positive and negative, respectively. This linked AO/PNA phase transition was associated with an extreme weather event that brought severe and record-setting cold to parts of the U.S. and Mexico, a powerful snow and ice storm in the Central U.S., and a subsequent and spectacular warm-up east of the Rockies. The purpose of this presentation will be to present an overview of the structure and evolution of the large-scale NH circulation anomalies during the 2009-2010 and 2010-2011 winters. Emphasis will be placed on showing how individual synoptic-scale weather events (e.g., recurving and transitioning western Pacific tropical cyclones, diabatically driven upper-level outflow from organized deep convection associated with the Madden-Julian Oscillation, and western North Atlantic storminess) contributed to the formation of significant and persistent large-scale circulation anomalies and how these large-scale circulation anomalies in turn impacted the storm tracks, regional temperature and precipitation anomalies, and the associated extreme weather.

  16. Impact of potential large-scale and medium-scale irrigation on the West African Monsoon and its dependence on location of irrigated area

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.; IM, E. S.

    2014-12-01

    This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  17. Bio-stimuli-responsive multi-scale hyaluronic acid nanoparticles for deepened tumor penetration and enhanced therapy.

    PubMed

    Huo, Mengmeng; Li, Wenyan; Chaudhuri, Arka Sen; Fan, Yuchao; Han, Xiu; Yang, Chen; Wu, Zhenghong; Qi, Xiaole

    2017-09-01

    In this study, we developed bio-stimuli-responsive multi-scale hyaluronic acid (HA) nanoparticles encapsulated with polyamidoamine (PAMAM) dendrimers as the subunits. These HA/PAMAM nanoparticles of large scale (197.10±3.00nm) were stable during systematic circulation then enriched at the tumor sites; however, they were prone to be degraded by the high expressed hyaluronidase (HAase) to release inner PAMAM dendrimers and regained a small scale (5.77±0.25nm) with positive charge. After employing tumor spheroids penetration assay on A549 3D tumor spheroids for 8h, the fluorescein isothiocyanate (FITC) labeled multi-scale HA/PAMAM-FITC nanoparticles could penetrate deeply into these tumor spheroids with the degradation of HAase. Moreover, small animal imaging technology in male nude mice bearing H22 tumor showed HA/PAMAM-FITC nanoparticles possess higher prolonged systematic circulation compared with both PAMAM-FITC nanoparticles and free FITC. In addition, after intravenous administration in mice bearing H22 tumors, methotrexate (MTX) loaded multi-scale HA/PAMAM-MTX nanoparticles exhibited a 2.68-fold greater antitumor activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Understanding thermal circulations and near-surface turbulence processes in a small mountain valley

    NASA Astrophysics Data System (ADS)

    Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.

    2017-12-01

    The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.

  19. A monsoon-like Southwest Australian circulation and its relation with rainfall in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Li, Yun

    2010-05-01

    Using the NCEP/NCAR, ERA-40 reanalysis, and precipitation data from CMAP and Australian Bureau of Meteorology, the variability and circulation features influencing the southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is termed as the southwest Australian circulation (SWAC) for its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land-sea thermal contrast. The seasonal march of the SWAC in extended winter (May to October) is demonstrated by pentad data. An index based on the dynamics normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May to July) and late (August to October) winter. In weaker winter SWAC years there is an anti-cyclonic anomaly over southern Indian Ocean resulting in weaker westerlies and northerlies which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter, but also the long term drying trend over SWWA in early winter. The well-coupled SWAC-SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the Southern Hemisphere Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA.

  20. Initialization, Prediction and Diagnosis of the Rapid Intensification of Tropical Cyclones using the Australian Community Climate and Earth System Simulator, ACCESS

    DTIC Science & Technology

    2012-10-12

    structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size

  1. Three-dimensional spherical models of convection in the earth's mantle

    NASA Technical Reports Server (NTRS)

    Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.

    1989-01-01

    Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.

  2. Optimized circulation and weather type classifications relating large-scale atmospheric conditions to local PM10 concentrations in Bavaria

    NASA Astrophysics Data System (ADS)

    Weitnauer, C.; Beck, C.; Jacobeit, J.

    2013-12-01

    In the last decades the critical increase of the emission of air pollutants like nitrogen dioxide, sulfur oxides and particulate matter especially in urban areas has become a problem for the environment as well as human health. Several studies confirm a risk of high concentration episodes of particulate matter with an aerodynamic diameter < 10 μm (PM10) for the respiratory tract or cardiovascular diseases. Furthermore it is known that local meteorological and large scale atmospheric conditions are important influencing factors on local PM10 concentrations. With climate changing rapidly, these connections need to be better understood in order to provide estimates of climate change related consequences for air quality management purposes. For quantifying the link between large-scale atmospheric conditions and local PM10 concentrations circulation- and weather type classifications are used in a number of studies by using different statistical approaches. Thus far only few systematic attempts have been made to modify consisting or to develop new weather- and circulation type classifications in order to improve their ability to resolve local PM10 concentrations. In this contribution existing weather- and circulation type classifications, performed on daily 2.5 x 2.5 gridded parameters of the NCEP/NCAR reanalysis data set, are optimized with regard to their discriminative power for local PM10 concentrations at 49 Bavarian measurement sites for the period 1980 to 2011. Most of the PM10 stations are situated in urban areas covering urban background, traffic and industry related pollution regimes. The range of regimes is extended by a few rural background stations. To characterize the correspondence between the PM10 measurements of the different stations by spatial patterns, a regionalization by an s-mode principal component analysis is realized on the high-pass filtered data. The optimization of the circulation- and weather types is implemented using two representative classification approaches, a k-means cluster analysis and an objective version of the Grosswetter types. They have been run with varying spatial and temporal settings as well as modified numbers of classes. As an evaluation metric for their performance several skill scores are used. Taking into account the outcome further attempts towards the optimization of circulation type classifications are made. These are varying meteorological input parameters (e.g. geopotential height, zonal and meridional wind, specific humidity, temperature) on several pressure levels (1000, 850 and 500 hPa) and combinations of these variables. All classification variants are again evaluated. Based on these analyses it is further intended to develop robust downscaling models for estimating possible future - climate change induced - variations of local PM10 concentrations in Bavaria from scenario runs of global CMIP5 climate models.

  3. Western Pacific Tropical Cyclone Adaptive Observing of Inner Core Life-cycle Structure and Intensity Change

    DTIC Science & Technology

    2009-09-30

    airborne radar images; develop an analysis scheme for the monsoon and storm- scale circulation features that would: a. Define large-scale context...Doppler radar observations of TC mesoscale observations. The TCS-08 field program provided unique aircraft reconnaissance (recon) data that will be...system for WC-130J, as well as developed new system for recording airborne radar video for the first time. 3. Created an archive of all WC-130J

  4. Sensitivity of local air quality to the interplay between small- and large-scale circulations: a large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim

    2017-06-01

    Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.

  5. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.

    2016-01-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  6. Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.

    2016-04-01

    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  7. A simple predictive model for the structure of the oceanic pycnocline

    PubMed

    Gnanadesikan

    1999-03-26

    A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.

  8. Global climatology of explosive cyclones

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-03-01

    Explosive cyclones, which have rapidly intensifying winds and heavy rain, can seriously threaten life and property. These "meteorological bombs" are difficult to forecast, in part because scientists need a better understanding of the physical mechanisms by which they form. In particular, the large-scale circulation conditions that may contribute to explosive cyclone formation are not well understood.

  9. On the Regulation of the Pacific Warm Pool Temperature

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.

  10. Middle Atmosphere of the Southern Hemisphere (MASH) Global meteor observations system (GLOBMET) Solar Spectral Irradiance Measurements (SSIM) Global Observations and Studies of Stratospheric Aerosols (GOSSA): Progress with the MASH project

    NASA Technical Reports Server (NTRS)

    Oneill, A.

    1989-01-01

    The aim of the MASH project is to study the dynamics of the middle atmosphere in the Southern Hemisphere, emphasizing inter-hemispheric differences. Both observational data and data from simulations with numerical models are being used. It is intended that MASH will be complemented by parallel studies on the transport and photochemistry of trace species in the Southern Hemisphere. Impetus for such studies has come from the unexpected finding of a springtime ozone hole over Antarctica. A summary of recent progress with the MASH project is given. Data from polar orbiting satellites are used to discuss the large scale circulation found in the Southern Hemisphere at extratropical latitudes. Comparisons are made with that of the Northern Hemisphere. Particular attention is paid to the springtime final warming, the most spectacular large scale phenomenon in the statosphere of the Southern Hemisphere. The circulation before and after this event has to be taken into account in theories for the formation and subsequent disappearance of the ozone hole.

  11. Cessations and reversals of the large-scale circulation in turbulent thermal convection.

    PubMed

    Xi, Heng-Dong; Xia, Ke-Qing

    2007-06-01

    We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

  12. Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.

  13. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    Experimental measurements of atmospheric turbulence energy spectra show E(k) ~ k-3 slopes at synoptic scales (~ 600 km - 2000 km) and k-5/3 slopes at the mesoscales (< 400 km). The -5/3 spectra is presumably related to 3D turbulence which is dominated by the classical Kolmogrov energy cascade. The -3 spectra is related to 2D turbulence, which is dominated by strong forward scatter of enstrophy and weak forward scatter of energy. In classical 2D turbulence theory, it is expected that a strong backward energy cascade would develop at the synoptic scale, and that circulation would grow infinitely. To limit this backward transfer, energy arrest at macroscales must be introduced. The most commonly used turbulence models developed to mimic the above energy transfer include the energy backscatter model for 2D turbulence in the horizontal plane via Large Eddy Simulation (LES) models, dissipative URANS models in the vertical plane, and Ekman friction for the energy arrest. One of the controversial issues surrounding the atmospheric turbulence spectra is the explanation of the generation of the 2D and 3D spectra and transition between them, for energy injection at the synoptic scales. Lilly (1989) proposed that the existence of 2D and 3D spectra can only be explained by the presence of an additional energy injection in the meso-scale region. A second issue is related to the observations of dual peak spectra with small variance in meso-scale, suggesting that the energy transfer occurs across a spectral gap (Van Der Hoven, 1957). Several studies have confirmed the spectral gap for the meso-scale circulations, and have suggested that they are enhanced by smaller scale vertical convection rather than by the synoptic scales. Further, the widely accepted energy arrest mechanism by boundary layer friction is closely related to the spectral gap transfer. This study proposes an energy transfer mechanism for atmospheric turbulence with synoptic scale injection, wherein the generation of 2D and 3D spectra is explained using spectral gap energy transfer. The existence of the spectral gap energy transfer is validated by performing LES for the interaction of large scale circulation with a wall, and studying the evolution of the energy spectra both near to and far from the wall. Simulations are also performed using the Advanced Weather and Research Forecasting (WRF-ARW) for moist zonal flow over Gaussian ridge, and the energy spectra close and away from the ground are studied. The energy spectra predicted by WRF-ARW are qualitatively compared with LES results to emphasize the limitations of the currently used turbulence parameterizations. Ongoing validation efforts include: (1) extending the interaction of large scale circulation with wall simulations to finer grids to capture a wider range of wavenumbers; and (2) a coupled 2D-3D simulation is planned to predict the entire atmospheric turbulence spectra at a very low computational expense. The overarching objective of this study to develop turbulence modeling capability based on the energy transfer mechanisms proposed in this study. Such a model will be implemented in WRF-ARW, and applied to atmospheric simulations, for example the prediction of moisture convergence patterns at the meso-scale in the southeast United States (Tao & Barros, 2008).

  14. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  15. Simulation of seasonal cloud forcing anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, D.A.

    1990-08-01

    One useful way to classify clouds is according to the processes that generate them. There are three main cloud-formation agencies: deep convection; surface evaporation; large-scale lifting in the absence of conditional instability. Although traditionally clouds have been viewed as influencing the atmospheric general circulation primarily through the release of latent heat, the atmospheric science literature contains abundant evidence that, in reality, clouds influence the general circulation through four more or less equally important effects: interactions with the solar and terrestrial radiation fields; condensation and evaporation; precipitation; small-scale circulations within the atmosphere. The most advanced of the current generation of GCMsmore » include parameterizations of all four effects. Until recently there has been lingering skepticism, in the general circulation modeling community, that the radiative effects of clouds significantly influence the atmospheric general circulation. GCMs have provided the proof that the radiative effects of clouds are important for the general circulation of the atmosphere. An important concept in analysis of the effects of clouds on climate is the cloud radiative forcing (CRF), which is defined as the difference between the radiative flux which actually occurs in the presence of clouds, and that which would occur if the clouds were removed but the atmospheric state were otherwise unchanged. We also use the term CRF to denote warming or cooling tendencies due to cloud-radiation interactions. Cloud feedback is the change in CRF that accompanies a climate change. The present study concentrates on the planetary CRF and its response to external forcing, i.e. seasonal change.« less

  16. Scaling and Numerical Model Evaluation of Snow-Cover Effects on the Generation and Modification of Daytime Mesoscale Circulations.

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Ye, Z.

    1991-04-01

    Consideration of the sensible heat flux characteristics over a snow surface suggests a significant diminution in the magnitude of the flux, compared to that over a snow-free surface under the same environmental conditions. Consequently, the existence of snow-covered mesoscale areas adjacent to snow-free areas produces horizontal thermal gradients in the lower atmosphere during the daytime, possibly resulting in a `snow breeze.' In addition, suppression of the daytime thermally induced upslope flow over snow-covered slopes is likely to occur. The present paper provides scaling and modeling evaluations of these situations, with quantification of the generated and modified circulations. These evaluations suggest that under ideal situations involved with uniform snow cover over large areas, particularly in late winter and early spring, a noticeable `snow breeze' is likely to develop. Additionally: suppression of the daytime thermally induced upslope flow is significant and may even result in a daytime drainage flow. The effects of bare ground patchiness in the snow cover on these circulations are also explored, both for flat terrain and slope-flow situations. A patchiness fraction greater than 0.5 is found to result in a noticeably reduced snow-breeze circulation, while a patchiness fraction of only 0.1 caused the simulated daytime drainage flow over slopes to he reversed.

  17. Large-Scale Dynamics of the Solar Convection Zone: Puzzles, Challenges, and Insights from a Modeler's Perspective

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas A.; Miesch, Mark S.

    2013-03-01

    Meridional circulations and rotational shear serve as a key ingredient in many models of the solar dynamo, likely playing an important role in the maintenance and timing of the solar cycle. These global-scale flows must themselves be driven by the large-scale overturning convection thought to pervade the outer layers of the Sun. As these deep interior motions are inaccessible to local helioseismic analyses in virtually all respects, global-scale numerical models have become a widely-used tool for probing their dynamics. Such models must confront a number of challenges, however, if they are to yield an accurate description of the convection zone. These difficulties stem in part from the Sun's location in parameter space being far removed from anything accessible to modern supercomputers, but also from questions concerning how to best capture the salient, but generally unresolvable, physics of the tachocline and near-photospheric layers. In recent years, global-scale models have made good contact with observations in spite of these challenges, presumably owing to their ability to accurately reflect the large-scale balances established throughout the convection zone. Due to their success in reproducing many aspects of the solar differential rotation and the solar cycle in particular, we might be encouraged to ask what insights numerical models can provide into phenomena that are much more difficult to observe directly. Of particular interest is the possibility that deep modeling efforts might provide some glimpses into the nature of the Sun's deep meridional circulation. I will describe the essential elements common amongst many global-scale models of the solar convection zone, with some discussion of the strengths and weaknesses associated with the assumptions inherent in a typical model setup. I will then present a class of solar convection models that demonstrate the existence of two distinct regimes of meridional circulation. These two regimes depend predominantly on the the vigor of the convective driving and possess, in one instance, a single monolithic cell of circulation in each hemisphere, and in the other instance, a single cell at high latitudes with multiple cells at low latitudes. The transition between these two regimes in the context of solar simulations serves to motivate the need for careful treatment of heat transport in the upper and lower convection zone. After discussing the nature of this transition, I will examine how thermal perturbations associated with the inclusion of a tachocline might alter this phenomenon. Finally, I will compare various strategies employed by different authors to address the nature of heat transport in the upper boundary layer, focusing on the implications of each approach for the resulting velocity amplitudes and the convective heat flux established throughout the bulk of the convection zone. Convective amplitudes associated with those regimes that produce a nearly solar-like differential rotation are in generally good agreement with those based on theoretical predictions, but are somewhat higher than those inferred through helioseismic analysis.

  18. Reorientations of the large-scale flow in turbulent convection in a cube

    NASA Astrophysics Data System (ADS)

    Foroozani, N.; Niemela, J. J.; Armenio, V.; Sreenivasan, K. R.

    2017-03-01

    Large-eddy simulations of turbulent Rayleigh-Bénard convection were conducted for a fluid of Prandtl number Pr=0.7 confined in a cube, for Rayleigh numbers of 106 and 108. The model solves the unsteady Navier-Stokes equations under the Boussinesq approximation, using a dynamic Smagorinsky model with a Lagrangian averaging technique for the subgrid terms. Under fully developed conditions the flow topology is characterized by a large-scale circulation (LSC) developing in a plane containing one of the diagonals of the cell, while two counter-rotating vortices consequently develop in the other diagonal plane, resulting in a strong inflow at the horizontal midplane. This flow structure is not static, with the LSC undergoing nonperiodic reorientations, or switching, between the two diagonal planes; hence, we supplement the observations of the three-dimensional time-averaged flow structures with single point measurements (time series) to shed light on the dynamics of the reorientations. For all observations, this switching results from a lateral rotation of the LSC in which some finite time spent in a transient state where the large-scale circulation is parallel to one set of side walls; there are, importantly, no observations consistent with so-called cessations of the LSC, in which it decays and then reforms in another plane without such a rotation. The average switching rate for the LSC is in excellent agreement with the results of Bai et al. [K. Bai, D. Ji, and E. Brown, Phys. Rev. E 93, 023117 (2016), 10.1103/PhysRevE.93.023117].

  19. Reorientations of the large-scale flow in turbulent convection in a cube.

    PubMed

    Foroozani, N; Niemela, J J; Armenio, V; Sreenivasan, K R

    2017-03-01

    Large-eddy simulations of turbulent Rayleigh-Bénard convection were conducted for a fluid of Prandtl number Pr=0.7 confined in a cube, for Rayleigh numbers of 10^{6} and 10^{8}. The model solves the unsteady Navier-Stokes equations under the Boussinesq approximation, using a dynamic Smagorinsky model with a Lagrangian averaging technique for the subgrid terms. Under fully developed conditions the flow topology is characterized by a large-scale circulation (LSC) developing in a plane containing one of the diagonals of the cell, while two counter-rotating vortices consequently develop in the other diagonal plane, resulting in a strong inflow at the horizontal midplane. This flow structure is not static, with the LSC undergoing nonperiodic reorientations, or switching, between the two diagonal planes; hence, we supplement the observations of the three-dimensional time-averaged flow structures with single point measurements (time series) to shed light on the dynamics of the reorientations. For all observations, this switching results from a lateral rotation of the LSC in which some finite time spent in a transient state where the large-scale circulation is parallel to one set of side walls; there are, importantly, no observations consistent with so-called cessations of the LSC, in which it decays and then reforms in another plane without such a rotation. The average switching rate for the LSC is in excellent agreement with the results of Bai et al. [K. Bai, D. Ji, and E. Brown, Phys. Rev. E 93, 023117 (2016)PLEEE81539-375510.1103/PhysRevE.93.023117].

  20. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.

  1. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  2. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  3. Application of hierarchical clustering method to classify of space-time rainfall patterns

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  4. Climate variations in northern North America (6000 BP to present) reconstructed from pollen and tree-ring data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, H.F.; Andrews, J.T.; Short, S.K.

    The characteristic anomaly patterns of modern surface temperature and precipitation are compared to tree-ring indices (0-300 yr) and fossil pollen (0-6000 yr) variations in northern North America. The data base consists of 245 climate stations, 55 tree-ring chronologies, 153 modern pollen collections, and 39 fossil pollen sites. A few areas exhibit relatively high climatic sensitivity, displaying generally consistent patterns during alternate warm and cold periods, regardless of time scales. The surface changes are related to the redistribution (i.e., changes in the mean position and strength) of the planetary-scale waves and to north-south shifts in the mean boundary of the Arcticmore » Front. The zone where the largest changes occur is typically located along the mean present-day boundary between Arctic and Pacific airstreams. Establishing plausible relationships between vegetation responses and concomitant changes in atmospheric circulation patterns increases our confidence that the paleoclimatic signals are indeed related to large-scale circulation changes.« less

  5. Interannual variability of cut-off low systems over the European sector: The role of blocking and the Northern Hemisphere circulation modes

    NASA Astrophysics Data System (ADS)

    Nieto, R.; Gimeno, L.; de La Torre, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.; Gordillo, A.; Redaño, A.; Lorente, J.

    2007-04-01

    An earlier developed multidecadal database of Northern Hemisphere cut-off low systems (COLs), covering a 41 years period (from 1958 to 1998) is used to study COLs interannual variability in the European sector (25°-47.5° N, 50° W-40° E) and the major factors controlling it. The study focus on the influence on COLs interannual variability, of larger scale phenomena such as blocking events and other main circulation modes defined over the Euro-Atlantic region. It is shown that there is a very large interannual variability in the COLs occurrence at the annual and seasonal scales, although without significant trends. The influence of larger scale phenomena is seasonal dependent, with the positive phase of the NAO favoring autumn COL development, while winter COL occurrence is mostly related to blocking events. During summer, the season when more COLs occur, no significant influences were found.

  6. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  7. Evaluating the fidelity of CMIP5 models in producing large-scale meteorological patterns over the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Lintner, B. R.; Loikith, P. C.; Pike, M.; Aragon, C.

    2017-12-01

    Climate change information is increasingly required at impact-relevant scales. However, most state-of-the-art climate models are not of sufficiently high spatial resolution to resolve features explicitly at such scales. This challenge is particularly acute in regions of complex topography, such as the Pacific Northwest of the United States. To address this scale mismatch problem, we consider large-scale meteorological patterns (LSMPs), which can be resolved by climate models and associated with the occurrence of local scale climate and climate extremes. In prior work, using self-organizing maps (SOMs), we computed LSMPs over the northwestern United States (NWUS) from daily reanalysis circulation fields and further related these to the occurrence of observed extreme temperatures and precipitation: SOMs were used to group LSMPs into 12 nodes or clusters spanning the continuum of synoptic variability over the regions. Here this observational foundation is utilized as an evaluation target for a suite of global climate models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Evaluation is performed in two primary ways. First, daily model circulation fields are assigned to one of the 12 reanalysis nodes based on minimization of the mean square error. From this, a bulk model skill score is computed measuring the similarity between the model and reanalysis nodes. Next, SOMs are applied directly to the model output and compared to the nodes obtained from reanalysis. Results reveal that many of the models have LSMPs analogous to the reanalysis, suggesting that the models reasonably capture observed daily synoptic states.

  8. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.

  9. Parameter studies on the energy balance closure problem using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias

    2017-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.

  10. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  11. Role of the ocean in climate changes

    NASA Technical Reports Server (NTRS)

    Gulev, Sergey K.

    1992-01-01

    The present program aimed at the study of ocean climate change is prepared by a group of scientists from State Oceanographic Institute, Academy of Science of Russia, Academy of Science of Ukraine and Moscow State University. It appears to be a natural evolution of ideas and achievements that have been developed under national and international ocean research projects such as SECTIONS, WOCE, TOGA, JGOFS and others. The two primary goals are set in the program ROCC. (1) Quantitative description of the global interoceanic 'conveyor' and it's role in formation of the large scale anomalies in the North Atlantic. The objectives on the way to this goal are: to get the reliable estimates of year-to-year variations of heat and water exchange between the Atlantic Ocean and the atmosphere; to establish and understand the physics of long period variations in meridianal heat and fresh water transport (MHT and MFWT) in the Atlantic Ocean; to analyze the general mechanisms, that form the MHT and MFWT in low latitudes (Ekman flux), middle latitudes (western boundary currents) and high latitudes (deep convection) of the North Atlantic; to establish and to give quantitative description of the realization of global changes in SST, surface salinity, sea level and sea ice data. (2) Development of the observational system pointed at tracing the climate changes in the North Atlantic. This goal merges the following objectives: to find the proper sites that form the inter annual variations of MHT; to study the deep circulation in the 'key' points; to develop the circulation models reflecting the principle features of interoceanic circulation; and to define global and local response of the atmosphere circulation to large scale processes in the Atlantic Ocean.

  12. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

    NASA Astrophysics Data System (ADS)

    Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.

    2017-02-01

    This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

  13. Mesoscale to Synoptic Scale Cloud Variability

    NASA Technical Reports Server (NTRS)

    Rossow, William B.

    1998-01-01

    The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.

  14. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.

    PubMed

    Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew

    2017-12-20

    Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.

  15. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  16. General Circulation Model Simulations of the Annual Cycle of Martian Climate

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Richardson, M.; Rodin, A.

    Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.

  17. Seasonal stratospheric photochemistry on Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Moses, Julianne I.; Fletcher, Leigh N.; Greathouse, Thomas K.; Orton, Glenn S.; Hue, Vincent

    2018-06-01

    A time-variable 1D photochemical model is used to study the distribution of stratospheric hydrocarbons as a function of altitude, latitude, and season on Uranus and Neptune. The results for Neptune indicate that in the absence of stratospheric circulation or other meridional transport processes, the hydrocarbon abundances exhibit strong seasonal and meridional variations in the upper stratosphere, but that these variations become increasingly damped with depth due to increasing dynamical and chemical time scales. At high altitudes, hydrocarbon mixing ratios are typically largest where the solar insolation is the greatest, leading to strong hemispheric dichotomies between the summer-to-fall hemisphere and winter-to-spring hemisphere. At mbar pressures and deeper, slower chemistry and diffusion lead to latitude variations that become more symmetric about the equator. On Uranus, the stagnant, poorly mixed stratosphere confines methane and its photochemical products to higher pressures, where chemistry and diffusion time scales remain large. Seasonal variations in hydrocarbons are therefore predicted to be more muted on Uranus, despite the planet's very large obliquity. Radiative-transfer simulations demonstrate that latitude variations in hydrocarbons on both planets are potentially observable with future JWST mid-infrared spectral imaging. Our seasonal model predictions for Neptune compare well with retrieved C2H2 and C2H6 abundances from spatially resolved ground-based observations (no such observations currently exist for Uranus), suggesting that stratospheric circulation - which was not included in these models - may have little influence on the large-scale meridional hydrocarbon distributions on Neptune, unlike the situation on Jupiter and Saturn.

  18. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    PubMed

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  19. The effect of aerosols on northern hemisphere wintertime stationary waves

    NASA Astrophysics Data System (ADS)

    Lewinschal, Anna; Ekman, Annica M. L.

    2010-05-01

    Aerosol particles have a considerable impact on the energy budget of the atmosphere because of their ability to scatter and absorb incoming solar radiation. Since the beginning of the industrialisation a large increase has been seen mainly in the concentrations of sulphate and black carbon as a result of combustion of fossil fuel and biomass burning. Aerosol particles have a relatively short residence time in the atmosphere why the aerosol concentration shows a large variation spatially as well as in time where high concentrations are found close to emission sources. This leads to a highly varying radiative forcing pattern which modifies temperature gradients which in turn can alter the pressure distribution and lead to changes in the circulation in the atmosphere. In this study, the effect on the wintertime planetary scale waves on the northern hemisphere is specifically considered together with the regional climate impact due to changes in the stationary waves. To investigate the effect of aerosols on the circulation a global general circulation model based on the ECMWF operational forecast model is used (EC-Earth). The aerosol description in EC-Earth consists of prescribed monthly mean mass concentration fields of five different types of aerosols: sulphate, black carbon, organic carbon, dust and sea salt. Only the direct radiative effect is considered and the different aerosol types are treated as external mixtures. Changes in the stationary wave pattern are determined by comparing model simulations using present-day and pre-industrial concentrations of aerosol particles. Since the planetary scale waves largely influence the storm tracks and are an important part of the meridional heat transport, changes in the wave pattern may have substantial impact on the climate globally and locally. By looking at changes in the model simulations globally it can be found that the aerosol radiative forcing has the potential to change the stationary wave pattern. Furthermore, it shows that regional changes in the climate occur also where the radiative forcing from aerosol particles is not particularly strong, which would indicate that the large scale dynamical response to aerosol forcing can induce changes in temperature, precipitation and wind patterns outside the region where the forcing is initially located.

  20. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.

  1. The Role of the Upper Atmosphere for Dawn-Dusk and Interhemispheric Differences in the Coupled Magnetosphere-Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Doornbos, E.; Haaland, S.

    2016-12-01

    Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.

  2. Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    2017-12-01

    An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.

  3. Orbit-spin coupling and the circulation of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2017-07-01

    The physical origins of the observed interannual variability of weather and climate on Mars are poorly understood. In this paper we introduce a deterministic physical mechanism that may account for much of the variability of the circulation of the Mars atmosphere on seasonal and longer timescales. We focus on a possible coupling between the planetary orbital angular momentum and the angular momentum of the planetary rotation. We suspect that the planetary atmosphere may participate in an exchange of momentum between these two reservoirs. Nontrivial changes in the circulation of the atmosphere are likely to occur, as the atmospheric system gains and loses angular momentum, during this exchange. We derive a coupling expression linking orbital and rotational motions that produces an acceleration field varying with position and with time on and within a subject body. The spatially and temporally varying accelerations may interfere constructively or destructively with large-scale flows of geophysical fluids that are established and maintained by other means. This physical hypothesis predicts cycles of intensification and relaxation of circulatory flows of atmospheres on seasonal and longer timescales that are largely independent of solar forcing. The predictions of this hypothesis may be tested through numerical modeling. Examples from investigations of the atmospheric circulation of Mars are provided to illustrate qualitative features and quantitative aspects of the coupling mechanism proposed.

  4. A dynamical systems approach to studying midlatitude weather extremes

    NASA Astrophysics Data System (ADS)

    Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide

    2017-04-01

    Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.

  5. Irreversible transport in the stratosphere by internal waves of short vertical wavelength

    NASA Technical Reports Server (NTRS)

    Danielsen, Edwin F.; Hipskind, R. S.; Starr, Walter L.; Vedder, James F.; Gaines, Steven E.; Kley, Dieter; Kelley, Ken K.

    1991-01-01

    Measurements performed during stratospheric flights of the U-2 aircraft confirm that cross-jet transport is dominated by waves, not by large-scale circulations. Monotonic gradients of trace constituents normal to the jet axis, with upper stratospheric tracers increasing poleward and tropospheric tracers increasing equatorward, are augmented by large-scale confluence as the jet intensifies during cyclogenesis. These gradients are rotated, intensified, and significantly increased in areas as their mixing ratio surfaces are folded by the differential transport of a very low frequency transverse wave. The quasi-horizontal transport produces a laminar structure with stable layers rich in upper stratospheric tracers alternating vertically with less stable layers rich in tropospheric tracers. The transport proceeds toward irreversibility at higher frequency, shear-gravity waves extend the folding to smaller horizontal scales.

  6. Interannual Variability of the Patagonian Shelf Circulation and Cross-Shelf Exchange

    NASA Astrophysics Data System (ADS)

    Combes, V.; Matano, R. P.

    2016-02-01

    Observational studies have already established the general mean circulation and hydrographic characteristics of the Patagonian shelf waters using data from in situ observation, altimetry and more recently from the Aquarius satellite sea surface salinity, but the paucity of those data in time or below the surface leave us with an incomplete picture of the shelf circulation and of its variability. This study discusses the variability of the Patagonian central shelf circulation and off-shelf transport using a high-resolution model experiment for the period 1979-2012. The model solution shows high skill in reproducing the best-known aspects of the shelf and deep-ocean circulations. This study links the variability of the central shelf circulation and off-shelf transport to the wind variability, southern shelf transport variability and large-scale current variability. We find that while the inner and central shelf circulation are principally wind driven, the contribution of the Brazil/Malvinas Confluence (BMC) variability becomes important in the outer shelf and along the shelf break. The model also indicates that whereas the location of the off-shelf transport is controlled by the BMC, its variability is modulated by the southern shelf transport. The variability of the subtropical shelf front, where the fresh southern shelf waters encounters the saline northern shelf waters, is also presented in this study.

  7. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    USGS Publications Warehouse

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  8. A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

    Treesearch

    M. Safeeq; G.E. Grant; S.L. Lewis; M.G. Kramer; B. Staab

    2014-01-01

    Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation...

  9. Hydrometeorological variability on a large french catchment and its relation to large-scale circulation across temporal scales

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Fritier, Nicolas; Laignel, Benoit; Debret, Maxime; Lavers, David; Hannah, David

    2015-04-01

    In the present context of global changes, considerable efforts have been deployed by the hydrological scientific community to improve our understanding of the impacts of climate fluctuations on water resources. Both observational and modeling studies have been extensively employed to characterize hydrological changes and trends, assess the impact of climate variability or provide future scenarios of water resources. In the aim of a better understanding of hydrological changes, it is of crucial importance to determine how and to what extent trends and long-term oscillations detectable in hydrological variables are linked to global climate oscillations. In this work, we develop an approach associating large-scale/local-scale correlation, enmpirical statistical downscaling and wavelet multiresolution decomposition of monthly precipitation and streamflow over the Seine river watershed, and the North Atlantic sea level pressure (SLP) in order to gain additional insights on the atmospheric patterns associated with the regional hydrology. We hypothesized that: i) atmospheric patterns may change according to the different temporal wavelengths defining the variability of the signals; and ii) definition of those hydrological/circulation relationships for each temporal wavelength may improve the determination of large-scale predictors of local variations. The results showed that the large-scale/local-scale links were not necessarily constant according to time-scale (i.e. for the different frequencies characterizing the signals), resulting in changing spatial patterns across scales. This was then taken into account by developing an empirical statistical downscaling (ESD) modeling approach which integrated discrete wavelet multiresolution analysis for reconstructing local hydrometeorological processes (predictand : precipitation and streamflow on the Seine river catchment) based on a large-scale predictor (SLP over the Euro-Atlantic sector) on a monthly time-step. This approach basically consisted in 1- decomposing both signals (SLP field and precipitation or streamflow) using discrete wavelet multiresolution analysis and synthesis, 2- generating one statistical downscaling model per time-scale, 3- summing up all scale-dependent models in order to obtain a final reconstruction of the predictand. The results obtained revealed a significant improvement of the reconstructions for both precipitation and streamflow when using the multiresolution ESD model instead of basic ESD ; in addition, the scale-dependent spatial patterns associated to the model matched quite well those obtained from scale-dependent composite analysis. In particular, the multiresolution ESD model handled very well the significant changes in variance through time observed in either prepciptation or streamflow. For instance, the post-1980 period, which had been characterized by particularly high amplitudes in interannual-to-interdecadal variability associated with flood and extremely low-flow/drought periods (e.g., winter 2001, summer 2003), could not be reconstructed without integrating wavelet multiresolution analysis into the model. Further investigations would be required to address the issue of the stationarity of the large-scale/local-scale relationships and to test the capability of the multiresolution ESD model for interannual-to-interdecadal forecasting. In terms of methodological approach, further investigations may concern a fully comprehensive sensitivity analysis of the modeling to the parameter of the multiresolution approach (different families of scaling and wavelet functions used, number of coefficients/degree of smoothness, etc.).

  10. Downscaling large-scale circulation to local winter climate using neural network techniques

    NASA Astrophysics Data System (ADS)

    Cavazos Perez, Maria Tereza

    1998-12-01

    The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The results of this research also reveal that the SOM pre-classification of days with similar atmospheric conditions succeeded in emphasizing the differences of the atmospheric variance conducive to extreme events. This resulted in a downscaling NN model that is highly sensitive to local-scale weather anomalies associated with El Nino and extreme cold events.

  11. On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Kosovichev, A. G.

    2018-02-01

    Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called Λ-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon can result from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.

  12. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia.

    PubMed

    Tian, Huaiyu; Sun, Zhe; Faria, Nuno Rodrigues; Yang, Jing; Cazelles, Bernard; Huang, Shanqian; Xu, Bo; Yang, Qiqi; Pybus, Oliver G; Xu, Bing

    2017-08-01

    The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014-2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1-3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation.

  13. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia

    PubMed Central

    Sun, Zhe; Faria, Nuno Rodrigues; Yang, Jing; Cazelles, Bernard; Huang, Shanqian; Xu, Bo; Yang, Qiqi; Pybus, Oliver G.; Xu, Bing

    2017-01-01

    The incidence of dengue has grown dramatically in recent decades worldwide, especially in Southeast Asia and the Americas with substantial transmission in 2014–2015. Yet the mechanisms underlying the spatio-temporal circulation of dengue virus (DENV) serotypes at large geographical scales remain elusive. Here we investigate the co-circulation in Asia of DENV serotypes 1–3 from 1956 to 2015, using a statistical framework that jointly estimates migration history and quantifies potential predictors of viral spatial diffusion, including socio-economic, air transportation and maritime mobility data. We find that the spread of DENV-1, -2 and -3 lineages in Asia is significantly associated with air traffic. Our analyses suggest the network centrality of air traffic hubs such as Thailand and India contribute to seeding dengue epidemics, whilst China, Cambodia, Indonesia, and Singapore may establish viral diffusion links with multiple countries in Asia. Phylogeographic reconstructions help to explain how growing air transportation networks could influence the dynamics of DENV circulation. PMID:28771468

  14. Seasonal climate information preserved within West Antarctic ice cores and its relation to large-scale atmospheric circulation and regional sea ice variations

    NASA Astrophysics Data System (ADS)

    Küttel, M.; Steig, E. J.; Ding, Q.; Battisti, D. S.

    2010-12-01

    Recent evidence suggests that West Antarctica has been warming since at least the 1950s. With the instrumental record being limited to the mid-20th century, indirect information from stable isotopes (δ18O and δD, hereafter collectively δ) preserved within ice cores have commonly been used to place this warming into a long term context. Here, using a large number of δ records obtained during the International Trans-Antarctic Scientific Expedition (ITASE), past variations in West Antarctic δ are not only investigated over time but also in space. This study therefore provides an important complement to longer records from single locations as e.g. the currently being processed West Antarctic ice sheet (WAIS) Divide ice core. Although snow accumulation rates at the ITASE sites in West Antarctica are variable, they are generally high enough to allow studies on sub-annual scale over the last 50-100 years. Here, we show that variations in δ in this region are strongly related to the state of the large-scale atmospheric circulation as well as sea ice variations in the adjacent Southern Ocean, with important seasonal changes. While a strong relationship to sea ice changes in the Ross and Amundsen Sea as well as to the atmospheric circulation offshore is found during austral fall (MAM) and winter (JJA), only modest correlations are found during spring (SON) and summer (DJF). Interestingly, the correlations with the atmospheric circulation in the latter two seasons have the strongest signal over the Antarctic continent, but not offshore - an important difference to MAM and JJA. These seasonal changes are in good agreement with the seasonally varying predominant circulation: meridional with more frequent storms in the Amundsen Sea during MAM and JJA and more zonal and stable during SON and DJF. The relationship to regional temperature is similarly seasonally variable with highest correlations found during MAM and JJA. Notably, the circulation pattern found to be strongest related to West Antarctic MAM and JJA δ variations is comparable to the tropical-polar wave train found by Ding et al. (this meeting, and in review) during JJA, a pattern which appears to be the dominant forcing behind the West Antarctic JJA temperature increase since the 1950s or earlier (Steig et al. 2009). The coupled atmosphere/sea ice influence can be observed for most of the large δ anomalies with, however, 1980 standing out as the prime example with a record-high δ anomaly of up to 3 standard deviations in the ITASE cores. While the anomalously strong northerly onshore winds certainly are a relevant factor, the spatial pattern and seasonal evolution of the δ peaks in the spatial ITASE network indicates that the record-low sea ice concentration in the Ross/Amundsen Sea during 1980 is an important contributor to this δ anomaly. Using observational evidence as well as model simulations from the ECHAM4.6 AGCM, a general framework for the atmosphere/sea ice coupling and its influence on West Antarctic δ is established and presented.

  15. Scientific goals of the Cooperative Multiscale Experiment (CME)

    NASA Technical Reports Server (NTRS)

    Cotton, William

    1993-01-01

    Mesoscale Convective Systems (MCS) form the focus of CME. Recent developments in global climate models, the urgent need to improve the representation of the physics of convection, radiation, the boundary layer, and orography, and the surge of interest in coupling hydrologic, chemistry, and atmospheric models of various scales, have emphasized the need for a broad interdisciplinary and multi-scale approach to understanding and predicting MCS's and their interactions with processes at other scales. The role of mesoscale systems in the large-scale atmospheric circulation, the representation of organized convection and other mesoscale flux sources in terms of bulk properties, and the mutually consistent treatment of water vapor, clouds, radiation, and precipitation, are all key scientific issues concerning which CME will seek to increase understanding. The manner in which convective, mesoscale, and larger scale processes interact to produce and organize MCS's, the moisture cycling properties of MCS's, and the use of coupled cloud/mesoscale models to better understand these processes, are also major objectives of CME. Particular emphasis will be placed on the multi-scale role of MCS's in the hydrological cycle and in the production and transport of chemical trace constituents. The scientific goals of the CME consist of the following: understand how the large and small scales of motion influence the location, structure, intensity, and life cycles of MCS's; understand processes and conditions that determine the relative roles of balanced (slow manifold) and unbalanced (fast manifold) circulations in the dynamics of MCS's throughout their life cycles; assess the predictability of MCS's and improve the quantitative forecasting of precipitation and severe weather events; quantify the upscale feedback of MCS's to the large-scale environment and determine interrelationships between MCS occurrence and variations in the large-scale flow and surface forcing; provide a data base for initialization and verification of coupled regional, mesoscale/hydrologic, mesoscale/chemistry, and prototype mesoscale/cloud-resolving models for prediction of severe weather, ceilings, and visibility; provide a data base for initialization and validation of cloud-resolving models, and for assisting in the fabrication, calibration, and testing of cloud and MCS parameterization schemes; and provide a data base for validation of four dimensional data assimilation schemes and algorithms for retrieving cloud and state parameters from remote sensing instrumentation.

  16. Modernization of the graphics post-processors of the Hamburg German Climate Computer Center Carbon Cycle Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, E.J.; McNeilly, G.S.

    The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.

  17. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    NASA Astrophysics Data System (ADS)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  18. Forced synchronization of large-scale circulation to increase predictability of surface states

    NASA Astrophysics Data System (ADS)

    Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory

    2016-04-01

    Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.

  19. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  20. Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing

    NASA Astrophysics Data System (ADS)

    McCusker, K. E.; Kushner, P. J.; Fyfe, J. C.; Sigmond, M.; Kharin, V. V.; Bitz, C. M.

    2017-08-01

    Arctic sea ice loss may influence midlatitude climate by changing large-scale circulation. The extent to which climate change can be understood as greenhouse gas-induced changes that are modulated by this loss depends on how additive the responses to the separate influences are. A novel sea ice nudging methodology in a fully coupled climate model reveals that the separate effects of doubled atmospheric carbon dioxide (CO2) concentrations and associated Arctic sea ice loss are remarkably additive and insensitive to the mean climate state. This separability is evident in several fields throughout most of the year, from hemispheric to synoptic scales. The extent to which the regional response to sea ice loss sometimes agrees with and sometimes cancels the response to CO2 is quantified. The separability of the responses might provide a means to better interpret the diverse array of modeling and observational studies of Arctic change and influence.

  1. Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    NASA Technical Reports Server (NTRS)

    Hart, J.; Toomre, J.

    1980-01-01

    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.

  2. The South Asian Monsoon and the Tropospheric Biennial Oscillation.

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.

    1997-08-01

    A mechanism is described that involves the south Asian monsoon as an active part of the tropospheric biennial oscillation (TBO) described in previous studies. This mechanism depends on coupled land-atmosphere-ocean interactions in the Indian sector, large-scale atmospheric east-west circulations in the Tropics, convective heating anomalies over Africa and the Pacific, and tropical-midlatitude interactions in the Northern Hemisphere. A key element for the monsoon role in the TBO is land-sea or meridional tropospheric temperature contrast, with area-averaged surface temperature anomalies over south Asia that are able to persist on a 1-yr timescale without the heat storage characteristics that contribute to this memory mechanism in the ocean. Results from a global coupled general circulation model show that soil moisture anomalies contribute to land-surface temperature anomalies (through latent heat flux anomalies) for only one season after the summer monsoon. A global atmospheric GCM in perpetual January mode is run with observed SSTs with specified convective heating anomalies to demonstrate that convective heating anomalies elsewhere in the Tropics associated with the coupled ocean-atmosphere biennial mechanism can contribute to altering seasonal midlatitude circulation. These changes in the midlatitude longwave pattern, forced by a combination of tropical convective heating anomalies over East Africa, Southeast Asia, and the western Pacific (in association with SST anomalies), are then able to maintain temperature anomalies over south Asia via advection through winter and spring to set up the land-sea meridional tropospheric temperature contrast for the subsequent monsoon. The role of the Indian Ocean, then, is to provide a moisture source and a low-amplitude coupled response component for meridional temperature contrast to help drive the south Asian monsoon. The role of the Pacific is to produce shifts in regionally coupled convection-SST anomalies. These regions are tied together and mutually interact via the large-scale east-west circulation in the atmosphere and contribute to altering midlatitude circulations as well. The coupled model results, and experiments with an atmospheric GCM that includes specified convective heating anomalies, suggest that the influence of south Asian snow cover in the monsoon is not a driving force by itself, but is symptomatic of the larger-scale shift in the midlatitude longwave pattern associated with tropical SST and convective heating anomalies.

  3. Climatic Consequences of a Large-Scale Desertification in Northeast Brazil: A GCM Simulation Study.

    NASA Astrophysics Data System (ADS)

    Oyama, Marcos Daisuke; Nobre, Carlos Afonso

    2004-08-01

    The climatic impacts of a large-scale desertification in northeast Brazil (NEB) are assessed by using the Center for Weather Forecasting and Climate Studies Center for Ocean Land Atmosphere Studies (CPTEC COLA) AGCM. Two numerical runs are performed. In the control run, NEB is covered by its natural vegetation (most of NEB is covered by a xeromorphic vegetation known as caatinga); in the desertification run, NEB vegetation is changed to desert (bare soil). Each run consists of five 1-yr numerical integrations. The results for NEB wet season (March May) are analyzed. Desertification results in hydrological cycle weakening: precipitation, evapotranspiration, moisture convergence, and runoff decrease. Surface net radiation decreases and this reduction is almost evenly divided between sensible and latent heat flux. Atmospheric diabatic heating decreases and subsidence anomalies confined at lower atmospheric levels are found. The climatic impacts result from the cooperative action of feedback processes related to albedo increase, plant transpiration suppression, and roughness length decrease. On a larger scale, desertification leads to precipitation increase in the oceanic belt close to the northernmost part of NEB (NNEB). In the NEB NNEB dipole, the anomalies of vertical motion and atmospheric circulation are confined to lower atmospheric levels, that is, 850 700 hPa. At these levels, circulation anomalies resemble the linear baroclinic response of a shallow atmospheric layer (850 700 hPa) to a tropical heat sink placed over NEB at the middle-layer level. Therefore, NEB climate does show sensitivity to a vegetation change to desert. The present work shows the possibility of significant and pronounced climate impacts, on both regional and large scales, if the environmental degradation in NEB continues unchecked.


  4. Distant and Regional Atmospheric Circulation Influences Governing Integrated Water Vapor Transport and the Occurrence of Extreme Precipitation Events

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.

    2017-12-01

    This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.

  5. Searching for Abrupt Circulation Shifts in Marine Isotope Stage 2 and 3

    NASA Astrophysics Data System (ADS)

    Henry, L. E.; Lynch-Stieglitz, J.; Schmidt, M. W.

    2008-12-01

    During Marine Isotope Stage 3, DO events were recorded in the Greenland ice cores and North Atlantic Ocean sediment records. Some cold DO stadials have been associated with massive freshwater inputs, termed Heinrich Events. These Heinrich Events are frequently associated with "drop dead" circulation periods in which the production of North Atlantic Deep Water is greatly diminished. DO events are thought to result from a restructuring of the overturning circulation. We explore these proposed changes in Atlantic Ocean circulation by examining changes in seawater density in the Florida Straits. The density is inferred from the δ18O of the benthic foraminifera C. pachyderma and P. ariminensis taken from core-sites on the Florida and Greater Bahamas Bank margins. The flow through the Florida Straits is in near- geostrophic balance. This means that the vertical shear in the current is reflected in a strong density gradient across the Straits. During the Younger Dryas and the Last Glacial Maximum the density gradient was reduced consistent with weaker flow through the Straits at these times. A weakening of the Florida Current would be expected if the large scale Atlantic Meridional Overturning Circulation weakened, as has been proposed based on other studies. The Younger Dyras event manifests itself as well-correlated decreases in δ18O from the cores on the Florida margin, while their counterparts taken from the Bahamas remain relatively stable when adjusted for global ice volume. Here, we will present data extending back 32kyr, focusing on those cores taken from the Florida Margin which can resolve millennial scale changes during Marine Isotope Stage 2 and Late Stage 3. We will examine the relationship between circulation changes, as reflected in Florida Margin density, and the three most recent Heinrich events, as well as the most recent DO events.

  6. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    NASA Technical Reports Server (NTRS)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation.

  7. Atmospheric feedbacks in North Africa from an irrigated, afforested Sahara

    NASA Astrophysics Data System (ADS)

    Kemena, Tronje Peer; Matthes, Katja; Martin, Thomas; Wahl, Sebastian; Oschlies, Andreas

    2017-09-01

    Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR's CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.

  8. Atmospheric feedbacks in North Africa from an irrigated, afforested Sahara

    NASA Astrophysics Data System (ADS)

    Kemena, Tronje Peer; Matthes, Katja; Martin, Thomas; Wahl, Sebastian; Oschlies, Andreas

    2018-06-01

    Afforestation of the Sahara has been proposed as a climate engineering method to sequester a substantial amount of carbon dioxide, potentially effective to mitigate climate change. Earlier studies predicted changes in the atmospheric circulation system. These atmospheric feedbacks raise questions about the self-sustainability of such an intervention, but have not been investigated in detail. Here, we investigate changes in precipitation and circulation in response to Saharan large-scale afforestation and irrigation with NCAR's CESM-WACCM Earth system model. Our model results show a Saharan temperature reduction by 6 K and weak precipitation enhancement by 267 mm/year over the Sahara. Only 26% of the evapotranspirated water re-precipitates over the Saharan Desert, considerably large amounts are advected southward to the Sahel zone and enhance the West African monsoon (WAM). Different processes cause circulation and precipitation changes over North Africa. The increase in atmospheric moisture leads to radiative cooling above the Sahara and increased high-level cloud coverage as well as atmospheric warming above the Sahel zone. Both lead to a circulation anomaly with descending air over the Sahara and ascending air over the Sahel zone. Together with changes in the meridional temperature gradient, this results in a southward shift of the inner-tropical front. The strengthening of the Tropical easterly jet and the northward displacement of the African easterly jet is associated with a northward displacement and strengthening of the WAM precipitation. Our results suggest complex atmospheric circulation feedbacks, which reduce the precipitation potential over an afforested Sahara and enhance WAM precipitation.

  9. Predictability of Circulation Transitions (Observed and Modeled): Non-diffusive Dynamics, Markov Chains and Error Growth.

    NASA Astrophysics Data System (ADS)

    Straus, D. M.

    2006-12-01

    The transitions between portions of the state space of the large-scale flow is studied from daily wintertime data over the Pacific North America region using the NCEP reanalysis data set (54 winters) and very large suites of hindcasts made with the COLA atmospheric GCM with observed SST (55 members for each of 18 winters). The partition of the large-scale state space is guided by cluster analysis, whose statistical significance and relationship to SST is reviewed (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). The determination of the global nature of the flow through state space is studied using Markov Chains (Crommelin, 2004). In particular the non-diffusive part of the flow is contrasted in nature (small data sample) and the AGCM (large data sample). The intrinsic error growth associated with different portions of the state space is studied through sets of identical twin AGCM simulations. The goal is to obtain realistic estimates of predictability times for large-scale transitions that should be useful in long-range forecasting.

  10. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  11. A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation

    NASA Astrophysics Data System (ADS)

    Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir

    2018-02-01

    We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.

  12. Impact of satellite data on large-scale circulation statistics as determined from GLAS analyses during FGGE-SOP-1

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1982-01-01

    A study using the analyses produced from the assimilation cycle of parallel model runs that both include and withhold satellite data was undertaken. The analyzed state of the atmosphere is performed using data from a certain test period during the first Special Observing Period (SOP) of the Global Weather Experiment (FGGE).

  13. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  14. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  15. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  16. Astronomical variation experiments with a Mars general circulation model

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.

    1992-01-01

    In time scales of a hundred thousand to a million years, the eccentricity of Mars orbit varies in a quasi-periodic manner between extremes as large as 0.14 and as small as 0 and the tilt of its axis of rotation with respect to the orbit normal also varies quasi-periodically between extremes as large as 35 deg and as small as 15 deg. In addition, the orientation of the axis precesses on comparable time scales. These astronomical variations are much more extreme than those experienced by the Earth. These variations are thought to have strongly modulated the seasonal cycles of dust, carbon dioxide, and water. One manifestation of the induced quasiperiodic climate changes may be the layered terrain of the polar regions, with individual layers perhaps recording variations in the absolute and/or relative deposition rates of dust and water in the polar regions, most likely in association with the winter time deposition of carbon dioxide ice. In an attempt to understand the manner in which atmospheric temperatures and winds respond to the astronomical forcings, we have initiated a series of numerical experiments with the NASA/Ames general circulation model of the Martian Atmosphere.

  17. Three-dimensional circulation structures leading to heavy summer rainfall over central North China

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Yu, Rucong; Li, Jian; Yuan, Weihua

    2016-04-01

    Using daily and hourly rain gauge records and Japanese 25 year reanalysis data over 30 years, this work reveals two major circulation structures leading to heavy summer rainfall events in central North China (CNC), and further analyzes the effects of the circulations on these rainfall events. One circulation structure has an extensive upper tropospheric warm anomaly (UTWA) covering North China (NC). By strengthening the upper anticyclonic anomaly and lower southerly flows around NC, the UTWA plays a positive role in forming upper level divergence and lower level moisture convergence. As a result, the warm anomalous circulation has a solid relationship with large-scale, long-duration rainfall events with a diurnal peak around midnight to early morning. The other circulation structure has an upper tropospheric cold anomaly (UTCA) located in the upper stream of NC. Contributed to by the UTCA, a cold trough appears in the upper stream of NC and an unstable configuration with upper (lower) cold (warm) anomalies forms around CNC. Consequently, CNC is covered by strong instability and high convective energy, and the cold anomalous circulation is closely connected with local, short-duration rainfall events concentrated from late afternoon to early nighttime. The close connections between circulation structures and typical rainfall events are confirmed by two independent converse analysis processes: from circulations to rainfall characteristics, and from typical rainfall events to circulations. The results presented in this work indicate that the upper tropospheric temperature has significant influences on heavy rainfall, and thus more attention should be paid to the upper tropospheric temperature in future analyses.

  18. Untangling biogeochemical processes from the impact of ocean circulation: First insight on the Mediterranean dissolved barium dynamics

    NASA Astrophysics Data System (ADS)

    Jullion, L.; Jacquet, S. H. M.; Tanhua, T.

    2017-08-01

    Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m-2 d-1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from -0.07 to -1.28 μmol m-2 d-1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m-2 d-1) and organic carbon (13 to 29 mmol C m-2 d-1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.

  19. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  20. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  1. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  2. A multitracer approach for characterizing interactions between shallow groundwater and the hydrothermal system in the Norris Geyser Basin area, Yellowstone National Park

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2011-01-01

    Multiple environmental tracers are used to investigate age distribution, evolution, and mixing in local- to regional-scale groundwater circulation around the Norris Geyser Basin area in Yellowstone National Park. Springs ranging in temperature from 3??C to 90??C in the Norris Geyser Basin area were sampled for stable isotopes of hydrogen and oxygen, major and minor element chemistry, dissolved chlorofluorocarbons, and tritium. Groundwater near Norris Geyser Basin is comprised of two distinct systems: a shallow, cool water system and a deep, high-temperature hydrothermal system. These two end-member systems mix to create springs with intermediate temperature and composition. Using multiple tracers from a large number of springs, it is possible constrain the distribution of possible flow paths and refine conceptual models of groundwater circulation in and around a large, complex hydrothermal system. Copyright 2011 by the American Geophysical Union.

  3. Azimuthal diffusion of the large-scale circulation of turbulent Rayleight-Bénard convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; van Gils, Dennis P. M.; Bodenschatz, Eberhard; Ahlers, Guenter

    2015-11-01

    We present measurements of the azimuthal orientation θ0 (t) of the large-scale circulation (LSC) of turbulent Rayleight-Bénard convection. The sample was a cylinder with height and diameter equal to 1.12 m. We used compressed SF6 gas at pressures up to 19 bars as the fluid. The measurements covered the Rayleigh-number range 1012 <= Ra <=1014 at a Prandtl number Pr ~= 0 . 80 . We found that the preferred orientation of the LSC upflow was aligned to the West, consistent with Earth's Coriolis force. The LSC azimuthal dynamics was diffusive, driven by the small-scale turbulent fluctuations. For Ra <=1013 the Reynolds number Reθ˙ based on the azimuthal diffusivity had a Ra dependence similar to that seen for 109 <= Ra <=1011 and Pr = 4 . 38 . The Pr dependence Reθ˙ ~Prα with α ~= - 1 . 2 was the same as that found for the Reynolds number based on the root-mean-square fluctuation velocity in the interior bulk flow. For Ra = Ra1* ~= 2 ×1013 Reθ˙ showed the ultimate-state transition and for Ra >= Ra2* ~= 8 ×1013 it had a Ra dependence with an exponent of 0 . 40 +/- 0 . 02 . Supported by the Max Planck Society, the Volkswagenstiftung, the DFD Sonderforschungsbereich SFB963, and NSF Grant DMR11-58514.

  4. Convectively-driven cold layer and its influences on moisture in the UTLS

    NASA Astrophysics Data System (ADS)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  5. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM

    NASA Technical Reports Server (NTRS)

    Yang, Song; Smith, Eric A.

    2004-01-01

    The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

  6. Stratiform clouds and their interaction with atmospheric motion

    NASA Technical Reports Server (NTRS)

    Clark, John H. E.; Shirer, Hampton N.

    1990-01-01

    During 1989 and 1990, the researchers saw the publication of two papers and the submission of a third for review on work supported primarily by the previous contract, NAS8-36150; the delivery of an invited talk at the SIAM Conference on Dynamical Systems in Orlando, Florida; and the start of two new projects on the radiative effects of stratocumulus on the large-scale flow. The published papers discuss aspects of stratocumulus circulations (Laufersweiler and Shirer, 1989) and the Hadley to Rossby regime transition in rotating spherical systems (Higgins and Shirer, 1990). The submitted paper (Haack and Shirer, 1990) discusses a new nonlinear model of roll circulations that are forced both dynamically and thermally. The invited paper by H. N. Shirer and R. Wells presented an objective means for determining appropriate truncation levels for low-order models of flows involving two incommensurate periods; this work has application to the Hadley to Rossby transition problem in quasi-geostrophic flows (Moroz and Holmes, 1984). The new projects involve the development of a multi-layered quasi-geostrophic channel model for study of the modulation of the large-scale flow by stratocumulus clouds that typically develop off the coasts of continents. In this model the diabatic forcing in the lowest layer will change in response to the (parameterized) development of extensive fields of stratocumulus clouds. To guide creation of this parameterization scheme, researchers are producing climatologies of stratocumulus frequency and the authors correlate these frequencies with the phasing and amplitude of the large-scale flow pattern. Researchers discuss the above topics in greater detail.

  7. Numerical investigations with WRF about atmospheric features leading to heavy precipitation and flood events over the Central Andes' complex topography

    NASA Astrophysics Data System (ADS)

    Zamuriano, Marcelo; Brönnimann, Stefan

    2017-04-01

    It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.

  8. Simulations of the north sea circulation, its variability, and its implementation as hydrodynamical forcing in ERSEM

    NASA Astrophysics Data System (ADS)

    Lenhart, Hermann J.; Radach, Günther; Backhaus, Jan O.; Pohlmann, Thomas

    The rationale is given of how the gross physical features of the circulation and the stratification of the North Sea have been aggregated for inclusion in the ecosystem box model ERSEM. As the ecosystem dynamics are to a large extent determined by small-scale physical events, the ecosystem model is forced with the circulation of a specific year rather than using the long-term mean circulation field. Especially the vertical exchange processes have been explicitly included, because the primary production strongly depends on them. Simulations with a general circulation model (GCM), forced by three-hourly meteorological fields, have been utilized to derive daily horizontal transport values driving ERSEM on boxes of sizes of a few 100 km. The daily vertical transports across a fixed 30-m interface provide the necessary short-term event character of the vertical exchange. For the years 1988 and 1989 the properties of the hydrodynamic flow fields are presented in terms of trajectories of the flow, thermocline depths, of water budgets, flushing times and diffusion rates. The results of the standard simulation with ERSEM show that the daily variability of the circulation, being smoothed by the box integration procedure, is transferred to the chemical and biological state variables to a very limited degree only.

  9. The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1993-01-01

    New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.

  10. On the stability of the Atlantic meridional overturning circulation.

    PubMed

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-12-08

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.

  11. Sediment dynamics in the Adriatic Sea investigated with coupled models

    USGS Publications Warehouse

    Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.

    2004-01-01

    Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.

  12. The evolution of misoscale circulations in a downburst-producing storm and comparison to numerical results

    NASA Technical Reports Server (NTRS)

    Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.

    1984-01-01

    Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.

  13. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    NASA Astrophysics Data System (ADS)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  14. Diagnostics of severe convection and subsynoptic scale ageostrophic circulations

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Diagnostics of severe convection and subsynoptic scale ageostrophic circulations are reported. Mesoscale circulations through forcing of ageostrophic motion by adiabatic, diabatic and frictional processes were studied. The development and application of a hybrid isentropic sigma coordinate numerical model was examined. The numerical model simulates mesoscale ageostrophic circulations associated with propagating jet streaks and severe convection. A complete list of publications and these completed through support of the NASA severe storms research project is included.

  15. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.

    PubMed

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo

    2018-01-26

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  16. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

    USGS Publications Warehouse

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo

    2018-01-01

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  17. Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  18. Predictors of Good Outcome After Endovascular Therapy for Vertebrobasilar Occlusion Stroke.

    PubMed

    Bouslama, Mehdi; Haussen, Diogo C; Aghaebrahim, Amin; Grossberg, Jonathan A; Walker, Gregory; Rangaraju, Srikant; Horev, Anat; Frankel, Michael R; Nogueira, Raul G; Jovin, Tudor G; Jadhav, Ashutosh P

    2017-12-01

    Endovascular therapy is increasingly used in acute ischemic stroke treatment and is now considered the gold standard approach for selected patient populations. Prior studies have demonstrated that eventual patient outcomes depend on both patient-specific factors and procedural considerations. However, these factors remain unclear for acute basilar artery occlusion stroke. We sought to determine prognostic factors of good outcome in acute posterior circulation large vessel occlusion strokes treated with endovascular therapy. We reviewed our prospectively collected endovascular databases at 2 US tertiary care academic institutions for patients with acute posterior circulation strokes from September 2005 to September 2015 who had 3-month modified Rankin Scale documented. Baseline characteristics, procedural data, and outcomes were evaluated. A good outcome was defined as a 90-day modified Rankin Scale score of 0 to 2. The association between clinical and procedural parameters and functional outcome was assessed. A total of 214 patients qualified for the study. Smoking status, creatinine levels, baseline National Institutes of Health Stroke Scale score, anesthesia modality (conscious sedation versus general anesthesia), procedural length, and reperfusion status were significantly associated with good outcomes in the univariate analysis. Multivariate logistic regression indicated that only smoking (odds ratio=2.61; 95% confidence interval, 1.23-5.56; P =0.013), low baseline National Institutes of Health Stroke Scale score (odds ratio=1.09; 95% confidence interval, 1.04-1.13; P <0.0001), and successful reperfusion status (odds ratio=10.80; 95% confidence interval, 1.36-85.96; P =0.025) were associated with good outcome. In our retrospective case series, only smoking, low baseline National Institutes of Health Stroke Scale score, and successful reperfusion status were associated with good outcome in patients with posterior circulation stroke treated with endovascular therapy. © 2017 American Heart Association, Inc.

  19. Role of Marine Gateways in the Paleoceanography of the Miocene Mediterranean Sea; A Model Study

    NASA Astrophysics Data System (ADS)

    de la Vara, A.; Meijer, P. T.

    2015-12-01

    During the Miocene, due to the convergence of the African plate and the Eurasian plate, the Mediterranean region was subject to profound paleogeographic changes. The evolving coastline and bathymetry of the Mediterranean Sea and, in particular, the opening and closure of the marine connections between the Mediterranean and the outside oceans, triggered important changes in Mediterranean circulation and, indirectly, also affected the global-scale ocean circulation. Until about the Middle Miocene the proto-Mediterranean Sea was open to the Indo-Pacific Ocean through the so-called Indian Gateway. Although the exact age of closure of this gateway is still debated, it is accepted that it substantially affected the paleoceanography of the Mediterranean Sea. Later in time, during the Late Miocene, the Mediterranean was only connected to the Atlantic Ocean but by two marine corridors: the Betic and Rifian corridors. Closure of these narrow passages resulted in the Messinian Salinity Crisis, during which a sequence of evaporites was deposited throughout the Mediterranean basin. In this work we use a regional-scale ocean general circulation model (the Princeton Ocean Model) to gain insight into the role of the evolving gateways. The analysis focuses on large-scale (overturning) circulation, patterns of exchange in the gateways and properties of the Mediterranean water. By comparing our model results to geological data we are able to propose new scenarios or rule out previously proposed ones, and determine the conditions evidenced by the geological observations. More specifically we investigate two different topics: (i) the effects of shoaling and closure of the Indian Gateway and (ii) the functioning of the Late Miocene double gateway to the Atlantic.

  20. Good outcome rate of 35% in IV-tPA-treated patients with computed tomography angiography confirmed severe anterior circulation occlusive stroke.

    PubMed

    González, R Gilberto; Furie, Karen L; Goldmacher, Gregory V; Smith, Wade S; Kamalian, Shervin; Payabvash, Seyedmehdi; Harris, Gordon J; Halpern, Elkan F; Koroshetz, Walter J; Camargo, Erica C S; Dillon, William P; Lev, Michael H

    2013-11-01

    To determine the effect of intravenous tissue plasminogen activator (IV-tPA) on outcomes in patients with severe major anterior circulation ischemic stroke. Prospectively, 649 patients with acute stroke had admission National Institutes of Health stroke scale (NIHSS) scores, noncontrast computed tomography (CT), CT angiography (CTA), and 6-month outcome assessed using modified Rankin scale. IV-tPA treatment decisions were made before CTA, at the time of noncontrast CT scanning, as per routine clinical protocol. Severe symptoms were defined as NIHSS>10. Poor outcome was defined as modified Rankin scale >2. Major occlusions were identified on CTA. Univariate and multivariate stepwise-forward logistic regression analyses of the full cohort were performed. Of 649 patients, 188 (29%) patients presented with NIHSS>10, and 64 out of 188 (34%) patients received IV-tPA. Admission NIHSS, large artery occlusion, and IV-tPA all independently predicted good outcomes; however, a significant interaction existed between IV-tPA and occlusion (P<0.001). Of the patients who presented with NIHSS>10 with anterior circulation occlusion, twice the percentage had good outcomes if they received IV-tPA (17 out of 49 patients, 35%) than if they did not (13 out of 77 patients, 17%; P=0.031). The number needed to treat was 7 (95% confidence interval, 3-60). IV-tPA treatment resulted in significantly better outcomes in patients with severely symptomatic stroke with major anterior circulation occlusions. The 35% good outcome rate was similar to rates found in endovascular therapy trials. Vascular imaging may help in patient selection and stratification for trials of IV-thrombolytic and endovascular therapies.

  1. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    NASA Astrophysics Data System (ADS)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower troposphere mass flux show good results in particular in the Northern Hemisphere. In the Southern Hemisphere, the model tends to produce too-weak zonal-mean zonal winds and a too-narrow Hadley circulation. We discuss possible reasons for these model biases as well as planned future model improvements and applications.

  2. Cloud/climate sensitivity experiments

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.; Remer, L.

    1982-01-01

    A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.

  3. Untangling the roles of wind, run-off and tides in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Colas, François; Wang, Xiaochun; Capet, Xavier; Chao, Yi; McWilliams, James C.

    2013-07-01

    Prince William Sound (PWS) oceanic circulation is driven by a combination of local wind, large run-off and strong tides. Using a regional oceanic model of the Gulf of Alaska, adequately resolving the mean circulation and mesoscale eddies, we configure a series of three nested domains. The inner domain zooms in on Prince William Sound with a 1-km horizontal grid resolution. We analyze a set of four experiments with different combinations of run-off, wind and tides to demonstrate the relative influence of these forcing on the central Sound mean circulation cell and its seasonal variability. The mean circulation in the central PWS region is generally characterized by a cyclonic cell. When forced only by the wind, the circulation is cyclonic in winter and fall and strongly anticyclonic in summer. The addition of freshwater run-off greatly enhances the eddy kinetic energy in PWS partly through near-surface baroclinic instabilities. This leads to a much more intermittent circulation in the central Sound, with the presence of intense small-scale turbulence and a disappearance of the summer wind-forced anticyclonic cell. The addition of tides reduces the turbulence intensity (relatively to the experiment with run-off only), particularly in the central Sound. The generation of turbulent motions by baroclinic processes is lowered by tidal mixing and by modification of the exchange at Hinchinbrook Entrance. Tides have an overall stabilizing effect on the central Sound circulation. Tidal rectification currents help maintain a mean cyclonic circulation throughout the year.

  4. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong

    2007-09-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.

  5. Determinants of pulmonary blood flow distribution.

    PubMed

    Glenny, Robb W; Robertson, H Thomas

    2011-01-01

    The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.

  6. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerovecki, Ivana; McClean, Julie; Koracin, Darko

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employedmore » in e.g. the Community Climate System Model (CCSM).« less

  7. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach), and iii) process-level evaluation at climate time-scales. The advantages and disadvantages of each approach will be identified and discussed, and some thoughts about possible future developments will be given.

  8. A study on large-scale nudging effects in regional climate model simulation

    NASA Astrophysics Data System (ADS)

    Yhang, Yoo-Bin; Hong, Song-You

    2011-05-01

    The large-scale nudging effects on the East Asian summer monsoon (EASM) are examined using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The NCEP/DOE reanalysis data is used to provide large-scale forcings for RSM simulations, configured with an approximately 50-km grid over East Asia, centered on the Korean peninsula. The RSM with a variant of spectral nudging, that is, the scale selective bias correction (SSBC), is forced by perfect boundary conditions during the summers (June-July-August) from 1979 to 2004. The two summers of 2000 and 2004 are investigated to demonstrate the impact of SSBC on precipitation in detail. It is found that the effect of SSBC on the simulated seasonal precipitation is in general neutral without a discernible advantage. Although errors in large-scale circulation for both 2000 and 2004 are reduced by using the SSBC method, the impact on simulated precipitation is found to be negative in 2000 and positive in 2004 summers. One possible reason for a different effect is that precipitation in the summer of 2004 is characterized by a strong baroclinicity, while precipitation in 2000 is caused by thermodynamic instability. The reduction of convective rainfall over the oceans by the application of the SSBC method seems to play an important role in modeled atmosphere.

  9. Circulation of the gyres of the world ocean: Observation modeling using TOPEX/Poseidon altimeter data

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Zlotnicki, V.; Holland, W. R.; Malanotte-Rizzoli, P.

    1991-01-01

    The overall objectives of the proposed investigation are to study the dynamics of the large-scale recirculating cells of water in the ocean, which are loosely defined as 'gyres' in this study. A gyre is normally composed of a swift western boundary current (e.g., the Gulf Stream and the Kuroshio), a tight recirculating cell attached to the current, and a large-scale sluggish return flow. The water, of course, is not entirely recirculating within a gyre. The exchange of water among gyres is an important process in maintaining the meridional heat transport of the ocean. The gyres constitute a major mode of water movement in the ocean and play significant roles in the global climate system.

  10. Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, Stephanie L.; Hendry, Katharine R.; Pryer, Helena V.; Kinsley, Christopher W.; Pyle, Kimberley M.; Woodward, E. Malcolm S.; Horner, Tristan J.

    2017-05-01

    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-'heavy' water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater.

  11. Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Rea, Gloria; Riccio, Angelo; Fierli, Federico; Cairo, Francesco; Cagnazzo, Chiara

    2018-03-01

    This work documents long-term changes in the Southern Hemisphere circulation in the austral spring-summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979-2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.

  12. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network (DFN) and 3D elements to simulate groundwater flow in the 3D regional fault network and in sedimentary deposits, respectively. Firstly, the geometry of the 3D fracture network and its hydraulic connections with 3D elements (sedimentary cover) is built in accordance with the tectonic history and based on geological and geophysical evidences. Secondly, data from previous studies and site-specific geological knowledge provide information on the fault zones family sets and on respective hydraulic properties. Then, from the simulated 3D groundwater flow model and based on a particle tracking methodology, groundwater flow paths are constructed. The regional groundwater flow paths results are extracted and analysed to delineate preferential zones to explore at finer scale and so to define the potential positions of the exploration wells. This work is conducted in the framework of the IMAGE project (Integrated Methods for Advanced Geothermal Exploration, grant agreement No. 608553), which aims to develop new methods for better siting of exploitation wells.

  13. Seasonally-varying mechanical impact of the Tibetan Plateau on the South Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Bordoni, S.; Park, H.

    2011-12-01

    Land-sea thermal contrast and heating of the atmosphere over the Tibetan Plateau have long been considered the main driving of the large-scale South-Asian monsoon circulation. Recent works (e.g., Bordoni and Schneider 2008, Boos and Kuang 2010) have challenged this prevailing view, by suggesting that monsoons can occur even in the absence of zonal inhomogeneities and that the Tibetan Plateau might be acting more as a mechanical obstacle to the circulation than as its main heat source. Elucidating the role of land-sea contrast and of the Tibetan Plateau on the current South Asian climate is the first step to understand how this might have evolved on geological time-scales and how it might respond to changing radiative forcing and land surface conditions in future decades. In this work, we examine the mechanical impact of the Tibetan Plateau on the South Asian monsoon in a hierarchy of atmospheric general circulations models. During the pre-monsoon season and monsoon onset (April-May-June), when westerlies over the southern Tibetan Plateau are still strong, the Tibetan Plateau triggers early monsoon rainfall downstream. The downstream moist convection is accompanied by strong monsoonal low-level winds and subsidence upstream of the Tibetan Plateau. In experiments where the Tibetan Plateau is removed, monsoon onset occurs about one month later, but the circulation becomes progressively stronger and reaches comparable strength during the mature phase. During the mature and decaying phase of the monsoon (July-August-September), when westerlies over the southern Tibetan Plateau almost disappear, the strength of the monsoon circulation is largely unaffected by the presence of the Plateau. A dry dynamical core with east-west oriented narrow mountains in the subtropics consistently simulates downstream convergence with background zonal westerlies over the mountain range. In a moist atmosphere, the mechanically-driven downstream convergence is expected to be associated with significant moisture convergence. We argue that the mechanically-driven downstream convergence in the presence of the Tibetan Plateau is responsible for the zonally asymmetric monsoon onset, particularly over the Bay of Bengal and South China.

  14. Planetary-scale circulations in the presence of climatological and wave-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.

    1994-01-01

    Interaction between the large-scale circulation and the convective pattern is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest zonal wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional wave-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical wave-CISK by rendering the gravest zonal dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional wave-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper-tropospheric easterlies and is nearly in quadrature with temperature and surface convergence. While sharing essential features with the MJO in the Eastern Hemisphere, frictional wave-CISK does not explain observed behavior in the Western Hemisphere, where the convective signal is largely absent. Comprised of Kelvin structure with the same frequency, observed behavior in the Western Hemisphere can be understood as a propagating response that is excited in and radiates away from the fluctuation of convection in the Eastern Hemisphere.

  15. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.

    PubMed

    Seinfeld, John H; Bretherton, Christopher; Carslaw, Kenneth S; Coe, Hugh; DeMott, Paul J; Dunlea, Edward J; Feingold, Graham; Ghan, Steven; Guenther, Alex B; Kahn, Ralph; Kraucunas, Ian; Kreidenweis, Sonia M; Molina, Mario J; Nenes, Athanasios; Penner, Joyce E; Prather, Kimberly A; Ramanathan, V; Ramaswamy, Venkatachalam; Rasch, Philip J; Ravishankara, A R; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  16. Improving Our Fundamental Understanding of the Role of Aerosol Cloud Interactions in the Climate System

    NASA Technical Reports Server (NTRS)

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kahn, Ralph; hide

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

  17. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system

    DOE PAGES

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; ...

    2016-05-24

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from pre-industrial time. General Circulation Models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions but significant challengesmore » exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol-cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. Lastly, we suggest strategies for improving estimates of aerosol-cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.« less

  18. Improving our fundamental understanding of the role of aerosol−cloud interactions in the climate system

    PubMed Central

    Seinfeld, John H.; Bretherton, Christopher; Carslaw, Kenneth S.; Coe, Hugh; DeMott, Paul J.; Dunlea, Edward J.; Feingold, Graham; Ghan, Steven; Guenther, Alex B.; Kraucunas, Ian; Molina, Mario J.; Nenes, Athanasios; Penner, Joyce E.; Prather, Kimberly A.; Ramanathan, V.; Ramaswamy, Venkatachalam; Rasch, Philip J.; Ravishankara, A. R.; Rosenfeld, Daniel; Stephens, Graeme; Wood, Robert

    2016-01-01

    The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty. PMID:27222566

  19. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  20. Contribution of large-scale circulation anomalies to changes in extreme precipitation frequency in the United States

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Lisi Pei; Xindi (Randy) Bian; Warren E. Heilman

    2016-01-01

    The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for...

  1. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate

    NASA Astrophysics Data System (ADS)

    Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph

    2017-05-01

    Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.

  2. Classification of mechanisms, climatic context, areal scaling, and synchronization of floods: the hydroclimatology of floods in the Upper Paraná River basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; AghaKouchak, Amir; Lall, Upmanu

    2017-12-01

    Floods are the main natural disaster in Brazil, causing substantial economic damage and loss of life. Studies suggest that some extreme floods result from a causal climate chain. Exceptional rain and floods are determined by large-scale anomalies and persistent patterns in the atmospheric and oceanic circulations, which influence the magnitude, extent, and duration of these extremes. Moreover, floods can result from different generating mechanisms. These factors contradict the assumptions of homogeneity, and often stationarity, in flood frequency analysis. Here we outline a methodological framework based on clustering using self-organizing maps (SOMs) that allows the linkage of large-scale processes to local-scale observations. The methodology is applied to flood data from several sites in the flood-prone Upper Paraná River basin (UPRB) in southern Brazil. The SOM clustering approach is employed to classify the 6-day rainfall field over the UPRB into four categories, which are then used to classify floods into four types based on the spatiotemporal dynamics of the rainfall field prior to the observed flood events. An analysis of the vertically integrated moisture fluxes, vorticity, and high-level atmospheric circulation revealed that these four clusters are related to known tropical and extratropical processes, including the South American low-level jet (SALLJ); extratropical cyclones; and the South Atlantic Convergence Zone (SACZ). Persistent anomalies in the sea surface temperature fields in the Pacific and Atlantic oceans are also found to be associated with these processes. Floods associated with each cluster present different patterns in terms of frequency, magnitude, spatial variability, scaling, and synchronization of events across the sites and subbasins. These insights suggest new directions for flood risk assessment, forecasting, and management.

  3. North-western Mediterranean sea-breeze circulation in a regional climate system model

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc

    2017-04-01

    In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.

  4. Depth of origin of ocean-circulation-induced magnetic signals

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  5. Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: results of CMIP5

    NASA Astrophysics Data System (ADS)

    Zhou, Botao; Xu, Ying; Shi, Ying

    2018-01-01

    The summer Asian-Pacific oscillation (APO), one of the major modes of climate variability over the Asian-Pacific sector, has a pronounced effect on variations of large-scale atmospheric circulations and climate. This study evaluated the capability of 30 state-of-the-art climate models among the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating its association with the atmospheric circulations over the Asian-Pacific region and the precipitation over East Asia. Furthermore, their future connections under the RCP8.5 scenario were examined. The evaluation results show that 5 out of 30 climate models can well capture the observed APO-related features in a comprehensive way, including the strengthened South Asian high (SAH), deepened North Pacific trough (NPT) and northward East Asian jet (EAJ) in the upper troposphere; an intensification of the Asian low and the North Pacific subtropical high (NPSH) as well as a northward shift of the western Pacific subtropical high (WPSH) in the lower troposphere; and a decrease in East Asian summer rainfall (EASR) under the positive APO phase. Based on the five CMIP5 models' simulations, the dynamic linkages of the APO to the SAH, NPT, AL, and NPSH are projected to maintain during the second half of the twenty-first century. However, its connection with the EASR tends to reduce significantly. Such a reduction might result from the weakening of the linkage of the APO to the meridional displacement of the EAJ and WPSH as a response to the warming scenario.

  6. Effects of the seasonal cycle on superrotation in planetary atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Jonathan L.; Vallis, Geoffrey K.; Potter, Samuel F.

    2014-05-20

    The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the absence of a seasonal cycle. This case is somewhat unrealistic as it applies only ifmore » the planet has zero obliquity or if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn) all have obliquities of ∼25° and varying degrees of seasonality due to their differing thermal inertias and orbital periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars, and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the relevant parameter regimes, our seasonal model simulations compare favorably to large-scale, seasonal phenomena observed on Earth and Mars. In the Titan-like regime the seasonal cycle in our model acts to prevent superrotation from developing, and it is necessary to increase the value of a third parameter—the atmospheric Newtonian cooling time—to achieve a superrotating climatology.« less

  7. Physically Consistent Eddy-resolving State Estimation and Prediction of the Coupled Pan-Arctic Climate System at Daily to Interannual Time Scales Using the Regional Arctic Climate Model (RACM)

    DTIC Science & Technology

    2014-09-30

    large biases aloft manifest themselves as large circulation biases at the surface (Fig. 3). Wintertime sea level pressure ( SLP ) contours align closely...extends Arctic, and the Icelandic low is very weak and shifted eastward from its proper location. Summer SLP biases in RASM_nonudg are smaller than...winter SLP biases, but are still substantial, and are again greatly improved in RASM_nudg. Although the magnitude of SLP biases is somewhat smaller

  8. On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Irrgang, C.; Thomas, M.

    2018-03-01

    Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.

  9. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    NASA Astrophysics Data System (ADS)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  10. Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.

    2016-12-01

    A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).

  11. Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    PubMed Central

    van Leeuwen, Elisabeth M; Sabo, Aniko; Bis, Joshua C; Huffman, Jennifer E; Manichaikul, Ani; Smith, Albert V; Feitosa, Mary F; Demissie, Serkalem; Joshi, Peter K; Duan, Qing; Marten, Jonathan; van Klinken, Jan B; Surakka, Ida; Nolte, Ilja M; Zhang, Weihua; Mbarek, Hamdi; Li-Gao, Ruifang; Trompet, Stella; Verweij, Niek; Evangelou, Evangelos; Lyytikäinen, Leo-Pekka; Tayo, Bamidele O; Deelen, Joris; van der Most, Peter J; van der Laan, Sander W; Arking, Dan E; Morrison, Alanna; Dehghan, Abbas; Franco, Oscar H; Hofman, Albert; Rivadeneira, Fernando; Sijbrands, Eric J; Uitterlinden, Andre G; Mychaleckyj, Josyf C; Campbell, Archie; Hocking, Lynne J; Padmanabhan, Sandosh; Brody, Jennifer A; Rice, Kenneth M; White, Charles C; Harris, Tamara; Isaacs, Aaron; Campbell, Harry; Lange, Leslie A; Rudan, Igor; Kolcic, Ivana; Navarro, Pau; Zemunik, Tatijana; Salomaa, Veikko; Kooner, Angad S; Kooner, Jaspal S; Lehne, Benjamin; Scott, William R; Tan, Sian-Tsung; de Geus, Eco J; Milaneschi, Yuri; Penninx, Brenda W J H; Willemsen, Gonneke; de Mutsert, Renée; Ford, Ian; Gansevoort, Ron T; Segura-Lepe, Marcelo P; Raitakari, Olli T; Viikari, Jorma S; Nikus, Kjell; Forrester, Terrence; McKenzie, Colin A; de Craen, Anton J M; de Ruijter, Hester M; Pasterkamp, Gerard; Snieder, Harold; Oldehinkel, Albertine J; Slagboom, P Eline; Cooper, Richard S; Kähönen, Mika; Lehtimäki, Terho; Elliott, Paul; van der Harst, Pim; Jukema, J Wouter; Mook-Kanamori, Dennis O; Boomsma, Dorret I; Chambers, John C; Swertz, Morris; Ripatti, Samuli; Willems van Dijk, Ko; Vitart, Veronique; Polasek, Ozren; Hayward, Caroline; Wilson, James G; Wilson, James F; Gudnason, Vilmundur; Rich, Stephen S; Psaty, Bruce M; Borecki, Ingrid B; Boerwinkle, Eric; Rotter, Jerome I; Cupples, L Adrienne; van Duijn, Cornelia M

    2016-01-01

    Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ∼60 000 individuals in the discovery stage and ∼90 000 samples in the replication stage. Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene. Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels. PMID:27036123

  12. Seasonal variation of the South Indian tropical gyre

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.

    2016-04-01

    The South Indian tropical gyre receives and redistributes water masses from the Indonesian Throughflow (ITF), a source of Pacific Ocean water which represents the only low-latitude connector between the world oceans and, therefore, a key component in the global ocean circulation and climate system. We investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR), based on satellite altimeter data (AVISO) and global atlases of temperature and salinity (CARS09), wind stress (SCOW) and wind-driven circulation. Two novel large-scale features governing the upper geostrophic circulation of the South Indian tropical gyre are revealed. First, the seasonal shrinkage of the ocean gyre. This occurs when the South Equatorial Countercurrent (SECC) recirculates before arrival to Sumatra from winter to spring, in apparent synchronization with the annual cycle of the ITF. Second, the open-ocean upwelling is found to vary following seasonality of the overlying geostrophic ocean gyre, a relationship that has not been previously shown for this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. Broadly speaking, the seasonal shrinkage of the ocean gyre (and the SCTR) is the one feature that differs most when the geostrophic circulation is compared to the wind-driven Sverdrup circulation. From late autumn to spring, the eastward SECC recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC at longitudes more westward than predicted from the barotropic wind-driven circulation. Because our findings are based on time-averaged seasonal fields from 22 years of satellite altimeter data and from about 60 years of non-systematic sampling of ocean temperature and salinity data (CARS09), we stress the importance of further study on the possibility that interanual variability in the seasonal ITF may cause changes in the seasonal resizing of the ocean gyre and its associated upwelling ridge.

  13. Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge?

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas

    2015-03-01

    Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As an immediate consequence, nudging tropospheric wind, temperature and moisture in WRF gives by far the best results with respect to the Big-Brother simulation. However, we noticed that a residual bias of the geopotential height persists due to a negative surface pressure anomaly which suggests that surface pressure is the missing quantity to nudge. Nudging the geopotential has no discernible effect. Finally, it should be noted that the proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best "observed" fine scale field because of the possible impact of incorrect driving large-scale field.

  14. Mechanical Thrombectomy for Minor and Mild Stroke Patients Harboring Large Vessel Occlusion in the Anterior Circulation: A Multicenter Cohort Study.

    PubMed

    Dargazanli, Cyril; Arquizan, Caroline; Gory, Benjamin; Consoli, Arturo; Labreuche, Julien; Redjem, Hocine; Eker, Omer; Decroix, Jean-Pierre; Corlobé, Astrid; Mourand, Isabelle; Gaillard, Nicolas; Ayrignac, Xavier; Charif, Mahmoud; Duhamel, Alain; Labeyrie, Paul-Emile; Riquelme, Carlos; Ciccio, Gabriele; Smajda, Stanislas; Desilles, Jean-Philippe; Gascou, Grégory; Lefèvre, Pierre-Henri; Mantilla-García, Daniel; Cagnazzo, Federico; Coskun, Oguzhan; Mazighi, Mikael; Riva, Roberto; Bourdain, Frédéric; Labauge, Pierre; Rodesch, Georges; Obadia, Michael; Bonafé, Alain; Turjman, Francis; Costalat, Vincent; Piotin, Michel; Blanc, Raphaël; Lapergue, Bertrand

    2017-12-01

    Proximal large vessel occlusion (LVO) is present in up to 30% of minor strokes. The effectiveness of mechanical thrombectomy (MT) in the subgroup of minor stroke with LVO in the anterior circulation is still open to debate. Data about MT in this subgroup of patients are sparse, and their optimal management has not yet been defined. The purpose of this multicenter cohort study was to evaluate the effectiveness of MT in patients experiencing acute ischemic stroke (AIS) because of LVO in the anterior circulation, presenting with minor-to-mild stroke symptoms (National Institutes of Health Stroke Scale score of <8). Multicenter cohort study involving 4 comprehensive stroke centers having 2 therapeutic approaches (urgent thrombectomy associated with best medical treatment [BMT] versus BMT first and MT if worsening occurs) about management of patients with minor and mild acute ischemic stroke harboring LVO in the anterior circulation. An intention-to-treat analysis was conducted. The primary end point was the rate of excellent outcome defined as the achievement of a modified Rankin Scale score of 0 to 1 at 3 months. Three hundred one patients were included, 170 with urgent MT associated with BMT, and 131 with BMT alone as first-line treatment. Patients treated with MT were younger, more often received intravenous thrombolysis, and had shorter time to imaging. Twenty-four patients (18.0%) in the medical group had rescue MT because of neurological worsening. Overall, excellent outcome was achieved in 64.5% of patients, with no difference between the 2 groups. Stratified analysis according to key subgroups did not find heterogeneity in the treatment effect size. Minor-to-mild stroke patients with LVO achieved excellent and favorable functional outcomes at 3 months in similar proportions between urgent MT versus delayed MT associated with BMT. There is thus an urgent need for randomized trials to define the effectiveness of MT in this patient subgroup. © 2017 American Heart Association, Inc.

  15. Predictors of the Aspiration Component Success of a Direct Aspiration First Pass Technique (ADAPT) for the Endovascular Treatment of Stroke Reperfusion Strategy in Anterior Circulation Acute Stroke.

    PubMed

    Blanc, Raphaël; Redjem, Hocine; Ciccio, Gabriele; Smajda, Stanislas; Desilles, Jean-Philippe; Orng, Eliane; Taylor, Guillaume; Drumez, Elodie; Fahed, Robert; Labreuche, Julien; Mazighi, Mikael; Lapergue, Bertrand; Piotin, Michel

    2017-06-01

    A direct aspiration first pass technique (ADAPT) has been reported to be fast, safe, and effective for the treatment of acute ischemic stroke. The aim of this study is to determine the preoperative factors that affect success of the aspiration component of the technique in ischemic stroke patients with large vessel occlusion in the anterior circulation. We enrolled all 347 consecutive patients with anterior circulation acute ischemic stroke admitted for mechanical thrombectomy at our institution from August 2013 to October 2015 and treated by ADAPT for the endovascular treatment of stroke. Baseline and procedural characteristics, modified thrombolysis in cerebral infarction scores, and 3-month modified Rankin Scale were captured and analyzed. Among the 347 patients (occlusion sites: middle cerebral artery=200, 58%; internal carotid artery Siphon=89, 25%; Tandem=58, 17%), aspiration component led to successful reperfusion (modified thrombolysis in cerebral infarction 2b/3 scores) in 55.6% (193/347 patients), stent retrievers were required in 40%, and a total successful final reperfusion rate of 83% (288/347) was achieved. Overall, procedural complications occurred in 13.3% of patients (48/347). Modified Rankin Scale score of 0 to 2 at 90 days was reported in 45% (144/323). Only 2 factors positively influenced the success of the aspiration component: an isolated middle cerebral artery occlusion ( P <0.001) and a shorter time from stroke onset to clot contact ( P =0.018). In this large retrospective study, ADAPT was shown to be safe and effective for anterior circulation acute ischemic stroke with a final successful reperfusion achieved in 83%. The site of arterial occlusion and delay of the procedure were predictors for reperfusion. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02523261, NCT02678169, and NCT02466893. © 2017 American Heart Association, Inc.

  16. Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

    DOE PAGES

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...

    2015-10-24

    Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less

  17. The Determination of the Large-Scale Circulation of the Pacific Ocean from Satellite Altimetry using Model Green's Functions

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Wunsch, Carl

    1996-01-01

    A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model-estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on very a large scale, where the linearization hypothesis appears to be a good one. A semi-automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or 'Green's functions' then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of 'twin experiments' and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time-mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10 deg. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.

  18. Role of the North Atlantic Ocean in Low Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.

    2017-12-01

    The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.

  19. Connectivity of the South Florida Coral Reef Ecosystem to Upstream Waters of the Western Caribbean and Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.

    2008-05-01

    The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale circulation patterns and the smaller scale biological processes is a key research objective for understanding the observed regional population connections.

  20. The Use of CASES-97 Observations to Assess and Parameterize the Impact of Land-Surface Heterogeneity on Area-Average Surface Heat Fluxes for Large-Scale Coupled Atmosphere-Hydrology Models

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Yates, David; LeMone, Margaret

    2001-01-01

    To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.

  1. Climate change and the middle atmosphere. II - The impact of volcanic aerosols

    NASA Technical Reports Server (NTRS)

    Rind, D.; Balachandran, N. K.; Suozzo, R.

    1992-01-01

    The response of the middle atmosphere to an increase in stratospheric aerosols, normally associated with increased volcanic activity, is investigated. The aerosols are found to induce a direct stratospheric response, with warming in the tropical lower stratosphere, and cooling at higher latitudes. On the shorter time scales, this radiative effect increases tropospheric static stability at low- to midlatitudes, which reduces the intensity of the Hadley cell and Ferrel cell. There is an associated increase in tropospheric standing wave energy and a decrease in midlatitude west winds, which result in additional wave energy propagation into the stratosphere at lower midlatitudes in both hemispheres. On the longer time scale, a strong hemispheric asymmetry arises. In the Northern Hemisphere eddy energy decreases, as does the middle-atmosphere residual circulation, and widespread stratospheric cooling results. In the Southern Hemisphere, the large increase in sea ice increases the tropospheric latitudinal temperature gradient, leading to increased eddy energy, an increased middle-atmosphere residual circulation, and some high-latitude stratospheric warming.

  2. Influence of ENSO on Gulf Stream cyclogenesis and the North Atlantic storm track

    NASA Astrophysics Data System (ADS)

    Li, C.; Schemm, S.; Ciasto, L.; Kvamsto, N. G.

    2015-12-01

    There is emerging evidence that climate in the North Atlantic-European sector is sensitive to vacillations of tropical Pacific sea surface temperatures, in particular, the central Pacific flavour of the El Nino Southern Oscillation (ENSO) and concomitant trends in atmospheric heating. The frequency of central Pacific ENSOs appears to have increased over the last decades and some studies suggest it may continue increasing in the future, but the precise mechanisms by which these events affect the North Atlantic synoptic scale circulation are poorly understood. Here, we show that central Pacific ENSOs influence where midlatitude cyclogenesis occurs over the Gulf Stream, producing more cyclogenesis in the jet exit region rather than in the climatologically preferred jet entrance region. The cyclones forming over the Gulf Stream in central Pacific ENSO seasons tend to veer north, penetrating deeper into the Arctic rather than into continental Europe. The shift in cyclogenesis is linked to changes in the large scale circulation, namely, the upper-level trough formed in the lee of the Rocky Mountains.

  3. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; Song, Y T; Chao, Y

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds ofmore » processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.« less

  4. The proximity of hotspots to convergent and divergent plate boundaries

    NASA Technical Reports Server (NTRS)

    Weinstein, Stuart A.; Olson, Peter L.

    1989-01-01

    An analysis of four different hotspot distributions, ranging from Morgan's (1972) original list of 19 to Vogt's (1981) list of 117 reveals that the hotspots are preferentially located near divergent plate boundaries. The probability of this proximity occurring by chance alone is quite remote, less than 0.01 for all four hotspot distributions. The same analysis also reveals that the hotspots are preferentially excluded from regions near convergent plate boundaries. The probability of this exclusion occurring by chance alone is 0.1 or less for three out of the four distributions examined. We interpret this behavior as being a consequence of the effects of large scale convective circulation on ascending mantle plumes. Mantle thermal plumes, the most probable source of hotspots, arise from instabilities in a basal thermal boundary layer. Plumes are suppressed from regions beneath convergent boundaries by descending flow and are entrained into the upwelling flow beneath spreading centers. Plate-scale convective circulation driven by subduction may also advect mantle thermal plumes toward spreading centers.

  5. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    NASA Astrophysics Data System (ADS)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  6. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  7. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  8. Bridging a possible gap of GRACE observations in the Arctic Ocean using existing GRACE data and in situ bottom pressure sensors

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J.

    2014-12-01

    Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1

  9. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    NASA Astrophysics Data System (ADS)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  10. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  11. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia

    NASA Astrophysics Data System (ADS)

    Vuille, M.; Burns, S. J.; Taylor, B. L.; Cruz, F. W.; Bird, B. W.; Abbott, M. B.; Kanner, L. C.; Cheng, H.; Novello, V. F.

    2012-08-01

    We review the history of the South American summer monsoon (SASM) over the past ~2000 yr based on high-resolution stable isotope proxies from speleothems, ice cores and lake sediments. Our review is complemented by an analysis of an isotope-enabled atmospheric general circulation model (GCM) for the past 130 yr. Proxy records from the monsoon belt in the tropical Andes and SE Brazil show a very coherent behavior over the past 2 millennia with significant decadal to multidecadal variability superimposed on large excursions during three key periods: the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the current warm period (CWP). We interpret these three periods as times when the SASM's mean state was significantly weakened (MCA and CWP) and strengthened (LIA), respectively. During the LIA each of the proxy archives considered contains the most negative δ18O values recorded during the entire record length. On the other hand, the monsoon strength is currently rather weak in a 2000-yr historical perspective, rivaled only by the low intensity during the MCA. Our climatic interpretation of these archives is consistent with our isotope-based GCM analysis, which suggests that these sites are sensitive recorders of large-scale monsoon variations. We hypothesize that these centennial-scale climate anomalies were at least partially driven by temperature changes in the Northern Hemisphere and in particular over the North Atlantic, leading to a latitudinal displacement of the ITCZ and a change in monsoon intensity (amount of rainfall upstream over the Amazon Basin). This interpretation is supported by several independent records from different proxy archives and modeling studies. Although ENSO is the main forcing for δ18O variability over tropical South America on interannual time scales, our results suggest that its influence may be significantly modulated by North Atlantic climate variability on longer time scales. Finally, our analyses indicate that isotopic proxies, because of their ability to integrate climatic information on large spatial scales, could complement more traditional proxies such as tree rings or documentary evidence. Future climate reconstruction efforts could potentially benefit from including isotopic proxies as large-scale predictors in order to better constrain past changes in the atmospheric circulation.

  12. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  13. Variability of the Bering Sea Circulation in the Period 1992-2010

    DTIC Science & Technology

    2012-06-09

    mas- sive sources of data (satellite altimetry, Argo drifters) may improve the accuracy of these estimates in the near future. Large-scale...Combining these data with in situ observations of temperature, salinity and subsurface currents allowed obtaining increasingly accurate estimates ...al. (2006) esti- mated the Kamchatka Current transport of 24 Sv (1 Sv = 106 m?/s), a value significantly higher than pre- vious estimates of

  14. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  15. Atlantic deep water circulation during the last interglacial.

    PubMed

    Luo, Yiming; Tjiputra, Jerry; Guo, Chuncheng; Zhang, Zhongshi; Lippold, Jörg

    2018-03-13

    Understanding how the Atlantic Meridional Overturning Circulation (AMOC) evolved during crucial past geological periods is important in order to decipher the interplay between ocean dynamics and global climate change. Previous research, based on geological proxies, has provided invaluable insights into past AMOC changes. However, the causes of the changes in water mass distributions in the Atlantic during different periods remain mostly elusive. Using a state-of-the-art Earth system model, we show that the bulk of NCW in the deep South Atlantic Ocean below 4000 m migrated from the western basins at 125 ka to the eastern basins at 115 ka, though the AMOC strength is only slightly reduced. These changes are consistent with proxy records, and it is mainly due to more penetration of the AABW at depth at 115 ka, as a result of a larger density of AABW formed at 115 ka. Our results show that depth changes in regional deep water pathways can result in large local changes, while the overall AMOC structure hardly changes. Future research should thus be careful when interpreting single proxy records in terms of large-scale AMOC changes, and considering variability of water-mass distributions on sub-basin scale would give more comprehensive interpretations of sediment records.

  16. Temperature oscillation and the sloshing motion of the large-scale circulation in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing

    2017-11-01

    We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).

  17. An Equation for Moist Entropy in a Precipitating and Icy Atmosphere

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Zeng, Xiping

    2003-01-01

    Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.

  18. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    NASA Astrophysics Data System (ADS)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic. Moreover, in accordance with other previous studies, the wavelet components detected in SLP and precipitation on interannual to interdecadal time-scales could be interpreted in terms of influence of the Gulf-Stream oceanic front on atmospheric circulation. Current works are now conducted including SST over the Atlantic in order to get further insights into this mechanism.

  19. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 1; Instantaneous Fields and Statistics

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.

  20. WOCE Working Group on Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Nowlin, Worth

    A U.S. WOCE (World Ocean Circulation Experiment) Working Group on Numerical Modeling has been established to serve as a forum for the discussion of progress in numerical general circulation modeling and its relationship to WOCE design and data analysis and as an advisory body on resource and manpower requirements for large-scale ocean modeling. The first meeting of this working group was held at the National Center for Atmospheric Research in Boulder, Colo., on Monday, December 10, 1984. The working group members who attended were K. Bryan, Y.-J. Han, D. Haidvogel (chairman), W. Holland, H. Hurlburt, J. O'Brien, A. Robinson, B. Semtner, and J. Sarmiento. Observers included F. Bretherton, A. Colin de Verdiere, C. Collins, L. Hua, P. Rizzoli, T. Spence, R. Wall, and S. Wilson.

  1. Groundwater-saline lakes interaction - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph

    2013-04-01

    Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these processes were observed in the declining Dead Sea system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead Sea water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major process affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead Sea system is an excellent natural field lab for studying seawater-groundwater interaction and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead Sea water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These processes affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead Sea is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching steady-state activities (~27 dpm/L) with the aquifer sediments. The decrease in 226Ra and increase in 228Ra in the circulation process provide a robust method for calculating the amount of Dead Sea water circulating in the aquifer. This process can affect trace element concentrations in the Dead Sea and emphasize the potential of long-term seawater circulation in mass balances of saline water bodies.

  2. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  3. Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.

    1981-01-01

    The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.

  4. Alternative experiments using the geophysical fluid flow cell

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1984-01-01

    This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.

  5. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    NASA Astrophysics Data System (ADS)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure gradient and Coriolis forces accelerated the meridional outflow toward the baroclinically cool side, transporting zonal momentum horizontally. The vertical (horizontal) momentum transport occurred on a convective (inertial) time scale. Taken together, the sloping convective updraft/cool side outflow represents the release of the CSI in the convectively unstable atmosphere. Further diagnostics showed that mass transports in the horizontal outflow branch ventilated the upper levels of the system, with enhanced mesoscale lifting in the core and on the leading edge of the MCS, which assisted in convective redevelopments on mesoscale time scales. Geostrophic adjustment acted to balance the convectively generated zonal momentum anomalies, thereby limiting the strength of the meridional outflow predicted by CSI theory. Circulation tendency diagnostics showed that the mesoscale circulation developed in response to thermal wind imbalances generated by the deep convection.Comparison of the BCF and BTNF simulations showed that baroclinicity enhanced mesoscale circulation growth. The BTNF circulation was more transient on mesoscale time and space scales. Overall, the BCF system produced more rainfall than the BTNF.Based on the present and past work in CSI theory, a new definition for the term `slantwise convection' is proposed.

  6. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  7. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less

  8. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.

  9. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2016-06-28

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  10. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  11. Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes

    NASA Astrophysics Data System (ADS)

    Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.

    2013-12-01

    The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about precursors of drought in the previous year. The Drought Monitor data indicated that the 2011 drought remains stronger than the 2012 one in the ';exceptional' category. This feature reflects the different scales in the atmospheric teleconnection pattern and the comparison of the two events can help determine the soil moisture (or lack of) impact on 2012's widespread drought that persisted into 2013. Our hypothesis is that even if one cannot predict the future atmospheric circulation patterns with much certainty for a given year, we may still be able to make some assessment of whether or not a drought may be likely to occur. We refer to this as anticipating drought. As precursors such as soil moisture and snowpack become important in potentially enhancing and prolonging the drought as it occurs, the actual drought that does subsequently occur will depend closely in magnitude and duration on the atmospheric circulation that unfolds.

  12. Sensitivity of Age-of-Air Calculations to the Choice of Advection Scheme

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Hemler, Richard S.; Mahlman, Jerry D.; Bruhwiler, Lori; Takacs, Lawrence L.

    2000-01-01

    The age of air has recently emerged as a diagnostic of atmospheric transport unaffected by chemical parameterizations, and the features in the age distributions computed in models have been interpreted in terms of the models' large-scale circulation field. This study shows, however, that in addition to the simulated large-scale circulation, three-dimensional age calculations can also be affected by the choice of advection scheme employed in solving the tracer continuity equation, Specifically, using the 3.0deg latitude X 3.6deg longitude and 40 vertical level version of the Geophysical Fluid Dynamics Laboratory SKYHI GCM and six online transport schemes ranging from Eulerian through semi-Lagrangian to fully Lagrangian, it will be demonstrated that the oldest ages are obtained using the nondiffusive centered-difference schemes while the youngest ages are computed with a semi-Lagrangian transport (SLT) scheme. The centered- difference schemes are capable of producing ages older than 10 years in the mesosphere, thus eliminating the "young bias" found in previous age-of-air calculations. At this stage, only limited intuitive explanations can be advanced for this sensitivity of age-of-air calculations to the choice of advection scheme, In particular, age distributions computed online with the National Center for Atmospheric Research Community Climate Model (MACCM3) using different varieties of the SLT scheme are substantially older than the SKYHI SLT distribution. The different varieties, including a noninterpolating-in-the-vertical version (which is essentially centered-difference in the vertical), also produce a narrower range of age distributions than the suite of advection schemes employed in the SKYHI model. While additional MACCM3 experiments with a wider range of schemes would be necessary to provide more definitive insights, the older and less variable MACCM3 age distributions can plausibly be interpreted as being due to the semi-implicit semi-Lagrangian dynamics employed in the MACCM3. This type of dynamical core (employed with a 60-min time step) is likely to reduce SLT's interpolation errors that are compounded by the short-term variability characteristic of the explicit centered-difference dynamics employed in the SKYHI model (time step of 3 min). In the extreme case of a very slowly varying circulation, the choice of advection scheme has no effect on two-dimensional (latitude-height) age-of-air calculations, owing to the smooth nature of the transport circulation in 2D models. These results suggest that nondiffusive schemes may be the preferred choice for multiyear simulations of tracers not overly sensitive to the requirement of monotonicity (this category includes many greenhouse gases). At the same time, age-of-air calculations offer a simple quantitative diagnostic of a scheme's long-term diffusive properties and may help in the evaluation of dynamical cores in multiyear integrations. On the other hand, the sensitivity of the computed ages to the model numerics calls for caution in using age of air as a diagnostic of a GCM's large-scale circulation field.

  13. HAPEX-Sahel: A large-scale study of land-atmosphere interactions in the semi-arid tropics

    NASA Technical Reports Server (NTRS)

    Gutorbe, J-P.; Lebel, T.; Tinga, A.; Bessemoulin, P.; Brouwer, J.; Dolman, A.J.; Engman, E. T.; Gash, J. H. C.; Hoepffner, M.; Kabat, P.

    1994-01-01

    The Hydrologic Atmospheric Pilot EXperiment in the Sahel (HAPEX-Sahel) was carried out in Niger, West Africa, during 1991-1992, with an intensive observation period (IOP) in August-October 1992. It aims at improving the parameteriztion of land surface atmospheric interactions at the Global Circulation Model (GCM) gridbox scale. The experiment combines remote sensing and ground based measurements with hydrological and meteorological modeling to develop aggregation techniques for use in large scale estimates of the hydrological and meteorological behavior of large areas in the Sahel. The experimental strategy consisted of a period of intensive measurements during the transition period of the rainy to the dry season, backed up by a series of long term measurements in a 1 by 1 deg square in Niger. Three 'supersites' were instrumented with a variety of hydrological and (micro) meteorological equipment to provide detailed information on the surface energy exchange at the local scale. Boundary layer measurements and aircraft measurements were used to provide information at scales of 100-500 sq km. All relevant remote sensing images were obtained for this period. This program of measurements is now being analyzed and an extensive modelling program is under way to aggregate the information at all scales up to the GCM grid box scale. The experimental strategy and some preliminary results of the IOP are described.

  14. The impact of oceanic heat transport on the atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Lunkeit, Frank

    2017-04-01

    A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.

  15. Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.

  16. Multi-scale ocean and climate drivers of widespread bleaching in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Drenkard, E.; Curchitser, E. N.; Kleypas, J. A.; Castruccio, F. S.

    2016-12-01

    The Maritime Continent is home to the Coral Triangle (CT): the global pinnacle of tropical coral biodiversity. Historically, extensive bleaching-induced mortality (caused by thermal stress) among corals in the CT has been associated with extremes in the El Niño Southern Oscillation (ENSO), particularly years when a strong El Niños transitions to a La Niña state (i.e., 1998 and 2010). Similarities in the spatial distribution of satellite-derived indices, and the multi-scale environmental drivers of elevated sea surface temperatures (SSTs) during the 1998 and 2010 bleaching events suggests a potential predictability that has important implications for reef conservation. Using numerical models and ocean and atmosphere reanalysis products, we discuss the roles of ENSO-associated anomalies in both large-scale atmospheric circulation patterns (e.g., South Asian Monsoon) and regional ocean-cooling mechanisms such as coastal upwelling, tropical storm activity, and divergent (i.e., upwelling) circulation patterns (e.g., the Mindanao Eddy) in determining SSTs and, consequently projected patterns of reef ecosystem vulnerability to thermal stress. Conditions associated with the recent and ongoing 2015/2016 coral bleaching and mortality will be compared/contrasted.

  17. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  18. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America

    PubMed Central

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data. PMID:27275583

  19. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    PubMed

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  20. Re-reading the IPCC Report: Aerosols, Droughts and ENSO Events

    NASA Astrophysics Data System (ADS)

    Potts, K. A.

    2008-12-01

    The Technical Summary of Working Group One in the IPCC Fourth Assessment Report states that "changes in aerosols may have affected precipitation and other aspects of the hydrologic cycle more strongly than other anthropogenic forcing agents" and that "Simulations also suggest that absorbing aerosols, particularly black carbon, can reduce the solar radiation reaching the surface and can warm the atmosphere at regional scales, affecting the vertical temperature profile and the large-scale atmospheric circulation". Taking these two statements at face value I first identify eight seasonal, anthropogenic, regional scale, aerosol plumes which now occur each year and then report the correlation of the aerosol optical depth (AOD) of some of these plumes with climate anomalies in the higher latitudes and with ENSO events. The eight identified aerosol plumes vary significantly in extent and AOD inter annually. They have also increased in geographic extent and AOD over recent decades as the population in the tropics, the origin of the majority of these plumes, has increased dramatically requiring increased levels of agriculture and commercial activity. I show that: the AOD of the South East Asian Plume, occurring from late July to November, correlates with four characteristics of drought in south eastern Australia; the aerosol index of the Middle East Plume correlates negatively with rainfall in Darfur; and the volume of tephra ejected by volcanoes in south east Asia correlates: negatively with rainfall and water inflows into the Murray River in south eastern Australia; and positively with ENSO events over the period 1890/91 to 2006. I conclude that aerosol plumes over south eastern Asia are the cause of drought in south eastern Australia and ENSO events and confirm the statements made in the IPCC Report with respect to these aerosol plumes. I propose a new component of surface aerosol radiative forcing, Regional Dimming, which interferes with the seasonal movement of the Inter Tropical Convergence Zone and forces the regional Hadley Cells into anomalous seasonal positions producing blocking high pressure systems in the higher latitudes and causing climate change by altering the wind systems. The South East Asian Plume also creates ENSO events by altering or inhibiting the circulation of the Walker Cell which changes the MSL pressure relationship between Darwin and Tahiti creating Southern Oscillation Index events and reducing the wind speed in the central Pacific Ocean causing an increase in the sea surface temperatures in the Nino 3.4 area. Finally I suggest that further research on the effects of these eight regional scale aerosol plumes on the hydrologic cycle and large-scale atmospheric circulation using a global circulation model is crucial to the understanding and attribution of climate change and is urgently required.

  1. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  2. Geologic implications and potential hazards of scour depressions on bering shelf, Alaska

    USGS Publications Warehouse

    Larsen, M.C.; Nelson, H.; Thor, D.R.

    1979-01-01

    Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daleu, C. L.; Plant, R. S.; Woolnough, S. J.

    As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less

  4. Modelling potential changes in marine biogeochemistry due to large-scale offshore tidal energy extraction

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan

    2015-04-01

    Tidal power generation through submerged turbine-type devices is in an advanced stage of testing, and large-scale applications are being planned in areas with high tidal current speeds. The potential impact of such large-scale applications on the hydrography can be investigated using hydrodynamical models. In addition, aspects of the potential impact on the marine ecosystem can be studied using biogeochemical models. In this study, the coupled hydrodynamics-biogeochemistry model GETM-ERSEM is used in a shelf-wide application to investigate the potential impact of large-scale tidal power generation in the Pentland Firth. A scenario representing the currently licensed power extraction suggested i) an average reduction in M2 tidal current velocities of several cm/s within the Pentland Firth, ii) changes in the residual circulation of several mm/s in the vicinity of the Pentland Firth, iii) an increase in M2 tidal amplitude of up to 1 cm to the west of the Pentland Firth, and iv) a reduction of several mm in M2 tidal amplitude along the east coast of the UK. A second scenario representing 10 times the currently licensed power extraction resulted in changes that were approximately 10 times as large. Simulations including the biogeochemistry model for these scenarios are currently in preparation, and first results will be presented at the the conference, aiming at impacts on primary production and benthic production.

  5. Latitudinal and Longitudinal Basin-scale Surface Salinity Contrasts and Freshwater Transport by Ocean Thermohaline Circulation

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.

    2003-12-01

    The role of sea surface salinity (SSS) contrasts in maintaining vigorous global ocean thermohaline circulation (THC) is revisited. Relative importance of different generalizations of sea surface conditions in climate studies is explored. In numerical experiments using an ocean general circulation model, we have aggregated the observed sea surface temperature (SST) and SSS in several different ways: we used observed unchanged SST with SSS taken as constant (34.25 psu) everywhere; SST unchanged, and SSS zonally averaged globally, i.e., in the whole World Ocean; SST averaged globally, and SSS unchanged; SST zonally averaged globally and SSS zonally averaged basin-wide in individual basins, i.e., in the Atlantic, Indian, Pacific, and Southern Oceans separately; and, finally, both SST and SSS zonally averaged in individual basins. Global zonal averaging removes all longitudinal differences in sea surface climatology among ocean basins. However, latitudinal profiles of zonally averaged parameters preserve the main character of large-scale equator-to-pole sea surface variability. Basin-wide zonal averaging does an even better job of preserving latitudinal distributions within each basin. The results of the experiments could hardly be anticipated a priory. Surprisingly, SST could be used as a 2-D field, or as a zonally-averaged field without much difference in the THC dynamics. Moreover, SST could be averaged either globally, or basin-wide, and it also did not change the overall character of THC. At the same time, THC responded vigorously to how the SSS has been changed. It appeared that the THC structure with the globally averaged SST and basin-wide averaged SSS was very close to the one obtained in the control run (control run operates with 2-D observed SST and SSS). Our main conclusion is that ocean-wide inter-basin sea surface salinity contrasts serve as the major controlling element in global thermohaline circulation. Thermal inter-basin contrasts, as well as longitudinal variation in SSS, are less important than latitudinal thermal gradients and inter-basin salinity contrasts. Details of SSS also decrease in importance as soon as its inter-basin contrasts are retained. This is especially important for paleoclimate and future climate simulations, as only the large-scale inter-basin contrasts of the sea surface conditions really matter.

  6. On the stability of the Atlantic meridional overturning circulation

    PubMed Central

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-01-01

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722

  7. The Impact of Low-Level Cloud Feedback on Persistent Changes in Atmospheric Circulation in the Pacific

    NASA Astrophysics Data System (ADS)

    Burgman, R.; Kirtman, B. P.; Clement, A. C.; Vazquez, H.

    2017-12-01

    Recent studies suggest that low clouds in the Pacific play an important role in the observed decadal climate variability and future climate change. In this study, we implement a novel modeling experiment designed to isolate how interactions between local and remote feedbacks associated with low cloud, SSTs, and the largescale circulation play a significant role in the observed persistence of tropical Pacific SST and associated North American drought. The modeling approach involves the incorporation of observed patterns of satellite-derived shortwave cloud radiative effect (SWCRE) into the coupled model framework and is ideally suited for examining the role of local and large-scale coupled feedbacks and ocean heat transport in Pacific decadal variability. We show that changes in SWCRE forcing in eastern subtropical Pacific alone reproduces much of the observed changes in SST and atmospheric circulation over the past 16 years, including the observed changes in precipitation over much of the Western Hemisphere.

  8. Using Reanalysis to Provide Circulation Context for Ice Cores Recovered from Mt. Hunter Plateau in Denali National Park

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Birkel, S. D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Winski, D.

    2015-12-01

    Researchers from the University of Maine, University of New Hampshire, and Dartmouth College supported by NSF recently recovered two ice cores from the Mt. Hunter Plateau in the Alaska Range of Denali National Park. Ongoing analyses of snow accumulation, snowmelt, stable isotopes, and chemistry within the core are providing proxy information for ~1000 years of regional climate variability. Broader context to link circulation across the North Pacific and western North America can be obtained by using climate reanalysis. In this vein, we are using monthly, daily, and sub-daily meteorological fields from the NCEP Climate Forecasting System Reanalysis (CFSR) to characterize large-scale circulation associated with notable events in the ice core record onward from 1979. One goal is to assess the relationship between annual snow accumulation spikes and storm frequency and magnitude. A second goal is to relate these observations to events during the Little Ice Age and Medieval Warm Period. Work is in progress, and results will be presented at the fall meeting.

  9. Seasonal prevailing surface winds in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana

    2018-02-01

    Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.

  10. The influence of topography on Titan’s atmospheric circulation and hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Faulk, Sean; Mitchell, Jonathan

    2017-10-01

    Titan’s atmospheric circulation is a dominant driver of the global methane hydrologic cycle—producing weather and a seasonal climate cycle—while interactions between the surface and the troposphere strongly constrain regional climates, and contribute to the differentiation between Titan’s low latitude deserts and high latitude lake districts. Yet the influence of surface topography on the atmospheric circulation has only been studied in a few instances, and no published work has investigated the coupling between topographical forcing and Titan’s hydrologic cycle. In this work, we examine the impacts of global topography in the Titan Atmospheric Model (TAM), which includes a robust representation of the methane cycle. We focus in particular on the influence of large-scale topographical features on the atmospheric flow, atmospheric moisture transport, and cloud formation. High latitude transient weather systems have previously been identified as important contributors to global atmospheric methane transport, and here we examine whether topographically-forced stationary or quasi-permanent systems are also important, as they are in Earth’s hydrologic cycle.

  11. The presence of bluetongue virus serotype 8 RNA in Belgian cattle since 2008.

    PubMed

    Garigliany, M; De Leeuw, I; Kleijnen, D; Vandenbussche, F; Callens, J; Van Loo, H; Lebrun, M; Saulmont, M; Desmecht, D; De Clercq, K

    2011-12-01

    After a short winter break, bluetongue virus serotype 8 was responsible in 2007 for a large-scale epidemic among ruminant populations in Western Europe. Little is known about the mechanisms allowing the virus to survive winter conditions. A yearly mass vaccination of cattle and sheep started in spring 2008, which was recognized as successful in terms of clinical protection, but occult circulation of the bluetongue virus has not been adequately addressed. We studied the carriage of bluetongue RNA in the spleen of cattle in the vector-free period and the circulation of bluetongue virus in cattle populations in Belgium since the introduction of vaccination programmes. Overall, the results presented here show evidence for the long-term carriage of bluetongue virus RNA in the spleen of cattle and demonstrated a low but significant circulation and transplacental transmission of bluetongue virus in Belgian cattle in 2009, with apparent disappearance in 2010. © 2011 Blackwell Verlag GmbH.

  12. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Skinner, L. C.; Primeau, F.; Freeman, E.; de La Fuente, M.; Goodwin, P. A.; Gottschalk, J.; Huang, E.; McCave, I. N.; Noble, T. L.; Scrivner, A. E.

    2017-07-01

    While the ocean's large-scale overturning circulation is thought to have been significantly different under the climatic conditions of the Last Glacial Maximum (LGM), the exact nature of the glacial circulation and its implications for global carbon cycling continue to be debated. Here we use a global array of ocean-atmosphere radiocarbon disequilibrium estimates to demonstrate a ~689+/-53 14C-yr increase in the average residence time of carbon in the deep ocean at the LGM. A predominantly southern-sourced abyssal overturning limb that was more isolated from its shallower northern counterparts is interpreted to have extended from the Southern Ocean, producing a widespread radiocarbon age maximum at mid-depths and depriving the deep ocean of a fast escape route for accumulating respired carbon. While the exact magnitude of the resulting carbon cycle impacts remains to be confirmed, the radiocarbon data suggest an increase in the efficiency of the biological carbon pump that could have accounted for as much as half of the glacial-interglacial CO2 change.

  13. Dynamics of Extreme Floods in Southeast and South Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; Lall, U.

    2015-12-01

    Many extreme floods result from a causal chain, where exceptional rain and floods in water basins from different sizes are related to large scale, anomalous and persistent patterns in atmospheric and oceanic circulation. Organized moisture plumes from oceanic sources are often implicated. One could use an Eulerian-Lagrangian climate model to test a causal chain hypothesis, but the parameterization and testing of such a model covering convection and transport continues to be a challenge. Consequently, empirical data based studies can be useful to establish the need to formally model such events using this approach. Here we consider two flood-prone regions in Southeast and South Brazil as case studies. A hypothesis of the causal chain of extreme floods in these regions is investigated by means of observed streamflow and reanalysis data and some machine learning tools. The signatures of the organization of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the integrated moisture flux and its divergence field and storm track data, so that a better understanding of the relations between the flood magnitude and duration, strength of moisture convergence and role of regional moisture recycling or teleconnected moisture is established. Persistent patterns and anomalies in the sea surface temperature (SST) field in the Pacific and Atlantic oceans that may be associated with disturbances in the atmospheric circulation and with the flood dynamics are investigated through composite analysis. Finally, machine learning algorithms for nonlinear dimension reduction are employed to visualize and understand some of the spatio-temporal patterns of the dominated climate variables in a reduced dimensional space. Prospects for prediction are discussed.

  14. Non-stationarities in the relationships of heavy precipitation events in the Mediterranean area and the large-scale circulation in the second half of the 20th century

    NASA Astrophysics Data System (ADS)

    Merkenschlager, Christian; Hertig, Elke; Jacobeit, Jucundus

    2017-04-01

    In the context of analyzing temporal varying relationships of heavy precipitation events in the Mediterranean area and associated anomalies of the large-scale circulation, quantile regression models were established. The models were calibrated using different circulation and thermodynamic variables at the 700 hPa and 850 hPa levels as predictors as well as daily precipitation time series at different stations in the Mediterranean area as predictand. Analyses were done for the second half of the 20th century. In the scope of assessing non-stationarities in the predictor-predictand relationships the time series were divided into calibration and validation periods. 100 randomized subsamples were used to calibrate/validate the models under stationary conditions. The highest and lowest skill score of the 100 random samples was used to determine the range of random variability. The model performance under non-stationary conditions was derived from the skill scores of cross-validated running subintervals. If the skill scores of several consecutive years are outside the range of random variability a non-stationarity was declaimed. Particularly the Iberian Peninsula and the Levant region were affected by non-stationarities, the former with significant positive deviations of the skill scores, the latter with significant negative deviations. By means of a case study for the Levant region we determined three possible reasons for non-stationary behavior in the predictor-predictand relationships. The Mediterranean Oscillation as a superordinate system affects the cyclone activity in the Mediterranean basin and the location and intensity of the Cyprus low. Overall, it is demonstrated that non-stationarities have to be taken into account within statistical downscaling model development.

  15. Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate

    NASA Astrophysics Data System (ADS)

    Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke

    2018-03-01

    The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.

  16. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.

    PubMed

    Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S

    2017-10-27

    Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.

  17. Numerical experiments on short-term meteorological effects on solar variability

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Hansen, J. E.; Stone, P. H.; Quirk, W. J.; Lacis, A. A.

    1975-01-01

    A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model.

  18. Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime.

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich

    1993-06-01

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.

  19. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    NASA Astrophysics Data System (ADS)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat transport help to provide quantitative insights into Asian monsoon variability in past climates. References cited: Donohoe, A. et al., (2013) Journal of Climate 26, 3597-3618. Heaviside, C. and Czaja, A. (2012) Quart. J. Royal Met. Soc. 139, 2181-2189. Marshall, J. et al., (2014) Climate Dynamics 42, 1967-1979.

  20. Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.

    2000-01-01

    Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.

  1. 35% Good Outcome Rate in IV-tPA treated Patients with CTA Confirmed Severe Anterior Circulation Occlusive Stroke

    PubMed Central

    González, R. Gilberto; Furie, Karen L.; Goldmacher, Gregory V.; Smith, Wade S.; Kamalian, Shervin; Payabvash, Seyedmehdi; Harris, Gordon J.; Halpern, Elkan F.; Koroshetz, Walter J.; Camargo, Erica C. S.; Dillon, William P.; Lev, Michael H.

    2015-01-01

    BACKGROUND AND PURPOSE To determine the effect of IV-tPA on outcomes in patients with severe major anterior circulation ischemic stroke. METHODS Prospectively, 649 acute stroke patients had admission NIH stroke scale scores (NIHSS), non-contrast CT, CT angiography (CTA), and 6-month outcome assessed using modified Rankin scale (mRS). IV-tPA treatment decisions were made prior to CTA, at the time of non-contrast CT scanning, as per routine clinical protocol. Severe symptoms were defined as NIHSS>10. Poor outcome was defined as mRS>2. Major occlusions were identified on CTA. Univariate and multivariate stepwise-forward logistic regression analyses of the full cohort were performed. RESULTS Of 649 patients, 188 (29%) presented with NIHSS>10, and 64/188 (34%) of these received IV-tPA. Admission NIHSS, large artery occlusion, and IV-tPA all independently predicted good outcomes, however a significant interaction existed between IV-tPA and occlusion (p<0.001). Of NIHSS>10 patients with anterior circulation occlusion, twice the percentage had good outcomes if they received IV-tPA (17/49, 35%), than if they did not (13/77, 17%; p=0.031). The “number needed to treat” was 7 (95% CI = 3–60). CONCLUSIONS IV-tPA treatment resulted in significantly more good outcomes in severely symptomatic stroke patients with major anterior circulation occlusions. The 35% good outcome rate was similar to rates found in endovascular therapy trials. Vascular imaging may help in patient selection and stratification for trials of IV-thrombolytic and endovascular therapies. PMID:24003051

  2. Statistics and Dynamics of Aircraft Encounters of Turbulence over Greenland

    DTIC Science & Technology

    2009-08-01

    America and Europe , and turbulence above Greenland is the fo- cus of this study. Turbulence derived from interactions with terrain and mountain waves can...Seasonal variations in the large- scale circulation (viz., storm tracks) will modify the frequency of occurrence of cyclones. Such variations coupled with...Greenland’s southern tip is from the southeast quadrant. The passage of extratropical cyclones to the south of the turbulent regions is one source of low

  3. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1979-09-30

    Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among

  4. Tropical Cyclone Spin-Up Revisited

    DTIC Science & Technology

    2009-05-01

    Rev. Earth Planet. Sci. 31: 75–104. Emanuel KA, Neelin JD, Bretherton CS. 1994. On large-scale circulations in convecting atmospheres . Q. J. R...cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans 40: 189–208. Smith RK, Montgomery MT, Vogl S. 2008. A critique of Emanuel’s...surface heat exchange, was first coined by Yano and Emanuel (1991) to denote the source of fluctuations in subcloud-layer entropy aris- ing from

  5. Evidence and AIDS activism: HIV scale-up and the contemporary politics of knowledge in global public health

    PubMed Central

    Colvin, Christopher J.

    2014-01-01

    The HIV epidemic is widely recognised as having prompted one of the most remarkable intersections ever of illness, science and activism. The production, circulation, use and evaluation of empirical scientific ‘evidence’ played a central part in activists’ engagement with AIDS science. Previous activist engagement with evidence focused on the social and biomedical responses to HIV in the global North as well as challenges around ensuring antiretroviral treatment (ART) was available in the global South. More recently, however, with the roll-out and scale-up of large public-sector ART programmes and new multi-dimensional prevention efforts, the relationships between evidence and activism have been changing. Scale-up of these large-scale treatment and prevention programmes represents an exciting new opportunity while bringing with it a host of new challenges. This paper examines what new forms of evidence and activism will be required to address the challenges of the scaling-up era of HIV treatment and prevention. It reviews some recent controversies around evidence and HIV scale-up and describes the different forms of evidence and activist strategies that will be necessary for a robust response to these new challenges. PMID:24498918

  6. Influence of the biosphere and circulation on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Corbett, A.; Jiang, X.; La, J.; Olsen, E. T.; Licata, S. J.; Yung, Y. L.

    2017-12-01

    Using multiple satellite CO2 retrievals (e.g., AIRS, GOSAT, and OCO-2), we have investigated seasonal changes of CO2 as a function of latitudes and altitudes. The annual cycle of atmospheric CO2 is closely related to the exchange of CO2 between the biosphere and the atmosphere, so we also examine solar-induced fluorescence (SIF). High SIF value means more CO2 uptake by photosynthesis, which will lead to lower atmospheric CO2 concentrations. The satellite data demonstrate a negative correlation between atmospheric CO2 and SIF. SIF can be influenced by precipitation and evaporation. We have found a positive correlation between SIF and the difference of precipitation and evaporation, suggesting there is more CO2 uptake by vegetation when more water is available. In addition to the annual cycle, large-scale circulation, such as South Atlantic Walker Circulation, can also modulate atmospheric CO2 concentrations. As seen from AIRS, GOSAT, and OCO-2 CO2 retrievals, there is less CO2 over the South Atlantic Ocean than over South America from December to March. Results in this study will help us better understand interactions between the biosphere, circulation, and atmospheric CO2.

  7. Abrupt drying events in the Caribbean related to large Laurentide meltwater pulses during the glacial-to-Holocene transition

    NASA Astrophysics Data System (ADS)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Scholz, Denis; Black, David; Zanchettin, Davide; Miller, Thomas E.

    2017-04-01

    At the end of the last deglaciation North Atlantic meltwater pulses from the retreating Laurentide ice sheet triggered a chain of oceanic and atmospheric responses including temporary slow-down of the thermohaline circulation and hemispheric-scale alterations of the atmospheric circulation. The 8.2 ka event (occurring about 8.2 ka BP) is the most pronounced meltwater pulse during the Holocene and serves as an analogue to understand how North Atlantic fresh water influxes can affect the ocean-atmosphere coupled system on a basin, hemispheric or global scale. This event left strong regional climate imprints, such as abrupt cooling reconstructed over the North Atlantic and Europe lasting 100 to 150 years and drying in the northern hemispheric tropics. However, there is a lack of high resolution proxies to learn about the event's temporal structure especially in the tropics. We present geochemical evidence from a stalagmite indicating sudden climate fluctuations towards drier conditions in the northeastern Caribbean possibly related to rapid cooling in the high northern latitudes and a southward shift of the Inter-Tropical Convergence Zone (ITCZ). Stalagmite PR-PA-1 was collected in Palco cave, Puerto Rico, and it is a remarkable record of the 8.2 ka event because 15 MC-ICPMS 230Th/U-dates produce a precise chronology of its Holocene period growing solely between 9.0 ka BP to 7.5 ka BP. Based on 240 trace element and stable isotope ratio measurement we reconstructed hydrological changes with sub-decadal resolution. Our proxy data show large and rapid climate variations before 8.0 ka. Pronounced peaks in the Mg/Ca and δ13C records indicate three major events of abrupt drying. These fluctuations towards drier conditions took place in less than 10 years and the climate remained drier than the natural range for 10 to 20 years, before it returned to pre-fluctuation conditions again. Our observations confirm previous studies suggesting that repeated meltwater pulses affected the thermohaline circulation leading to the temporal and spatial extension of the 8.2 ka event. Moreover, based on our results we hypothesize that three large meltwater pulses decreased the thermohaline circulation, cooled the North Atlantic region and pushed the region of ITCZ influence further southward leading to decreased rainfall in the northeastern Caribbean.

  8. Effects of Small-Scale Bathymetric Roughness on the Global Internal Wave Field

    DTIC Science & Technology

    2008-09-30

    Navy. Much of the interest stems from the suggestion by Munk and Wunsch (1998) that the strength of the meridional overturning circulation is controlled... meridional overturning circulation . Journal of Physical Oceanography 32, 3578-3595. St. Laurent, L.C., 1999. Diapycnal advection by double diffusion...waves generated by flows over the rough seafloor. On the time scales of internal waves, mesoscale eddies and the general circulation can be regarded as

  9. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  10. Ocean Hydrodynamics Numerical Model in Curvilinear Coordinates for Simulating Circulation of the Global Ocean and its Separate Basins.

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Diansky, Nikolay; Zalesny, Vladimir

    2010-05-01

    The original program complex is proposed for the ocean circulation sigma-model, developed in the Institute of Numerical Mathematics (INM), Russian Academy of Sciences (RAS). The complex can be used in various curvilinear orthogonal coordinate systems. In addition to ocean circulation model, the complex contains a sea ice dynamics and thermodynamics model, as well as the original system of the atmospheric forcing implementation on the basis of both prescribed meteodata and atmospheric model results. This complex can be used as the oceanic block of Earth climate model as well as for solving the scientific and practical problems concerning the World ocean and its separate oceans and seas. The developed program complex can be effectively used on parallel shared memory computational systems and on contemporary personal computers. On the base of the complex proposed the ocean general circulation model (OGCM) was developed. The model is realized in the curvilinear orthogonal coordinate system obtained by the conformal transformation of the standard geographical grid that allowed us to locate the system singularities outside the integration domain. The horizontal resolution of the OGCM is 1 degree on longitude, 0.5 degree on latitude, and it has 40 non-uniform sigma-levels in depth. The model was integrated for 100 years starting from the Levitus January climatology using the realistic atmospheric annual cycle calculated on the base of CORE datasets. The experimental results showed us that the model adequately reproduces the basic characteristics of large-scale World Ocean dynamics, that is in good agreement with both observational data and results of the best climatic OGCMs. This OGCM is used as the oceanic component of the new version of climatic system model (CSM) developed in INM RAS. The latter is now ready for carrying out the new numerical experiments on climate and its change modelling according to IPCC (Intergovernmental Panel on Climate Change) scenarios in the scope of the CMIP-5 (Coupled Model Intercomparison Project). On the base of the complex proposed the Pacific Ocean circulation eddy-resolving model was realized. The integration domain covers the Pacific from Equator to Bering Strait. The model horizontal resolution is 0.125 degree and it has 20 non-uniform sigma-levels in depth. The model adequately reproduces circulation large-scale structure and its variability: Kuroshio meandering, ocean synoptic eddies, frontal zones, etc. Kuroshio high variability is shown. The distribution of contaminant was simulated that is admittedly wasted near Petropavlovsk-Kamchatsky. The results demonstrate contaminant distribution structure and provide us understanding of hydrological fields formation processes in the North-West Pacific.

  11. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.

  12. A modeling study on the hydrodynamics of a coastal embayment occupied by mussel farms (Ria de Ares-Betanzos, NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Duarte, Pedro; Alvarez-Salgado, Xosé Antón; Fernández-Reiriz, Maria José; Piedracoba, Silvia; Labarta, Uxío

    2014-06-01

    The present study suggests that both under upwelling and downwelling winds, the residual circulation of Ria de Ares-Betanzos remains positive with a strong influence from river discharge and a positive feedback from wind, unlike what is generally accepted for Galician rias. Furthermore, mussel cultivation areas may reduce residual velocities by almost 40%, suggesting their potential feedbacks on food replenishment for cultivated mussels. The Ria de Ares-Betanzos is a partially stratified estuary in the NW Iberian upwelling system where blue mussels are extensively cultured on hanging ropes. This type of culture depends to a large extent on water circulation and residence times, since mussels feed on suspended particles. Therefore, understanding the role of tides, continental runoff, and winds on the circulation of this embayment has important practical applications. Furthermore, previous works have emphasized the potential importance of aquaculture leases on water circulation within coastal ecosystems, with potential negative feedbacks on production carrying capacity. Here we implemented and validated a 3D hydrodynamic numerical model for the Ria de Ares-Betanzos to (i) evaluate the relative importance of the forcing agents on the circulation within the ria and (ii) estimate the importance of culture leases on circulation patterns at the scale of the mussel farms from model simulations. The model was successfully validated with empirical current velocity data collected during July and October 2007 using an assortment of efficiency criteria. Model simulations were carried out to isolate the effects of wind and river flows on circulation patterns.

  13. Atlantic Ocean Circulation and Climate: The Current View From the Geological Record

    NASA Astrophysics Data System (ADS)

    Curry, W.

    2006-12-01

    Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.

  14. Planetary circulations in the presence of transient and self-induced heating

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1993-01-01

    The research program focuses on large-scale circulations and their interaction with the global convective pattern. An 11-year record of global cloud imagery and contemporaneous fields of motion and temperature have been used to investigate organized convection and coherent variability of the tropical circulation operating on intraseasonal time scales. This study provides a detailed portrait of tropical variability associated with the so-called Madden-Julian Oscillation (MJO). It reveals the nature, geographical distribution, and seasonality of discrete convective signal, which is a measure of feedback between the circulation and the convective pattern. That discrete spectral behavior has been evaluated in light of natural variability of the ITCZ associated with climatological convection. A composite signature of the MJO, based on cross-covariance statistics of cloud cover, motion, and temperature, has been constructed to characterize the lifecycle of the disturbance in terms of these properties. The composite behavior has also been used to investigate the influence the MJO exerts on the zonal-mean circulation and the involvement of the MJO in transfers of momentum between the atmosphere and the solid Earth. The aforementioned observational studies have led to the production of two animations. One reveals the convective signal in band-pass filtered OLR and compares it to climatological convection. The other is a 3-dimensional visualization of the composite lifecycle of the MJO. With a clear picture of the MJO in hand, feedback between the circulation and the convective pattern can be diagnosed meaningfully in numerical simulations. This process is being explored in calculations with the linearized primitive equations on the sphere in the presence of realistic stability and shear. The numerical framework represents climatological convection as a space-time stochastic process and wave-induced convection in terms of the vertically-integrated moisture flux convergence. In these calculations, frictional convergence near the equator emerges as a key to feedback between the circulation and the convective pattern. At low latitudes, nearly geostrophic balance in the boundary layer gives way to frictional balance. This shifts the wave-induced convection into phase with the temperature anomaly and allows the attending heating to feed back positively onto the circulation. The calculations successfully reproduce the salient features of the MJO. They are being used to understand the growth and decay phases of the composite lifecycle and the conditions that favor amplification of the MJO.

  15. North Atlantic Oscillation and pollutants variability in Europe: model analysis and measurements intercomparison

    NASA Astrophysics Data System (ADS)

    Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.

    2013-12-01

    Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.

  16. Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf

    DTIC Science & Technology

    2009-01-20

    circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation

  17. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    NASA Astrophysics Data System (ADS)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.

  18. Variations in the temperature and circulation of the atmosphere during the 11-year cycle of solar activity derived from the ERA-Interim reanalysis data

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2017-07-01

    Using the data of the ERA-Interim reanalysis, we have obtained estimates of changes in temperature, the geopotential and its large-scale zonal harmonics, wind velocity, and potential vorticity in the troposphere and stratosphere of the Northern and Southern hemispheres during the 11-year solar cycle. The estimates have been obtained using the method of multiple linear regression. Specific features of response of the indicated atmospheric parameters to the solar cycle have been revealed in particular regions of the atmosphere for a whole year and depending on the season. The results of the analysis indicate the existence of a reliable statistical relationship of large-scale dynamic and thermodynamic processes in the troposphere and stratosphere with the 11-year solar cycle.

  19. The simulation of influence of different coals on the circulating fluidized bed Boiler's combustion performance

    NASA Astrophysics Data System (ADS)

    Yong, Yumei; Lu, Qinggang

    2003-05-01

    The combustion performance of the boiler largely depends on the coal type. Lots of experimental research shows that different fuels have different combustion characteristics. It is obvious that fuel will change the whole operating performance of Circulating Fluidized Bed Combustion (CFBC). We know even in a pilot-scale running boiler, the measurement of some parameters is difficult and costly. Therefore, we developed the way of simulation to evaluate the combustion performance of Chinese coals in CFB. The simulation results show that, different coals will result in different coal particle diameter and comminution depending on their mineral component and the change will affect the distribution of ash in CFBC system. In a word, the computational results are in accordance with experimental results qualitatively but there are some differences quantitatively.

  20. Carbon Emission Flow in Networks

    PubMed Central

    Kang, Chongqing; Zhou, Tianrui; Chen, Qixin; Xu, Qianyao; Xia, Qing; Ji, Zhen

    2012-01-01

    As the human population increases and production expands, energy demand and anthropogenic carbon emission rates have been growing rapidly, and the need to decrease carbon emission levels has drawn increasing attention. The link between energy production and consumption has required the large-scale transport of energy within energy transmission networks. Within this energy flow, there is a virtual circulation of carbon emissions. To understand this circulation and account for the relationship between energy consumption and carbon emissions, this paper introduces the concept of “carbon emission flow in networks” and establishes a method to calculate carbon emission flow in networks. Using an actual analysis of China's energy pattern, the authors discuss the significance of this new concept, not only as a feasible approach but also as an innovative theoretical perspective. PMID:22761988

  1. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.

  2. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.

  3. Geothermal influences on the abyssal ocean

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.

  4. The nature of large-scale turbulence in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.

    1982-01-01

    The energetics and spectral characteristis of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements momentum transports associated with zonally symmetric stresses and turbulent stresses are quantified. Though a strong up-gradient flux of momentum by eddies was observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. An Oort energy budget for Jupiter's upper troposphere is formulated.

  5. Adaptive scaling model of the main pycnocline and the associated overturning circulation

    NASA Astrophysics Data System (ADS)

    Fuckar, Neven-Stjepan

    This thesis examines a number of crucial factors and processes that control the structure of the main pycnocline and the associated overturning circulation that maintains the ocean stratification. We construct an adaptive scaling model: a semi-empirical low-order theory based on the total transformation balance that linearly superimposes parameterized transformation rate terms of various mechanisms that participate in the water-mass conversion between the warm water sphere and the cold water sphere. The depth of the main pycnocline separates the light-water domain from the dense-water domain beneath the surface, hence we introduce a new definition in an integral form that is dynamically based on the large-scale potential vorticity (i.e., vertical density gradient is selected for the kernel function of the normalized vertical integral). We exclude the abyssal pycnocline from our consideration and limit our domain of interest to the top 2 km of water column. The goal is to understand the controlling mechanisms, and analytically predict and describe a wide spectrum of ocean steady states in terms of key large-scale indices relevant for understanding the ocean's role in climate. A devised polynomial equation uses the average depth of the main pycnocline as a single unknown (the key vertical scale of the upper ocean stratification) and gives us an estimate for the northern hemisphere deep water production and export across the equator from the parts of this equation. The adaptive scaling model aims to elucidate the roles of a limited number of dominant processes that determine some key upper ocean circulation and stratification properties. Additionally, we use a general circulation model in a series of simplified single-basin ocean configurations and surface forcing fields to confirm the usefulness of our analytical model and further clarify several aspects of the upper ocean structure. An idealized numerical setup, containing all the relevant physical and dynamical properties, is key to obtaining a clear understanding, uncomplicated by the effect of the real world geometry or intricacy of realistic surface radiative and turbulent fluxes. We show that wind-driven transformation processes can be decomposed into two terms separately driven by the mid-latitude westerlies and the low-latitude easterlies. Our analytical model smoothly connects all the classical limits describing different ocean regimes in a single-basin single-hemisphere geometry. The adjective "adaptive" refers to a simple and quantitatively successful adjustment to the description of a single-basin two-hemisphere ocean, with and without a circumpolar channel under the hemispherically symmetric surface buoyancy. For example, our water-mass conversion framework, unifying wind-driven and thermohaline processes, provides us with further insight into the "Drake Passage effect without Drake Passage". The modification of different transformation pathways in the Southern Hemisphere results in the equivalent net conversion changes. The introduction of hemispheric asymmetry in the surface density can lead to significant hemispheric differences in the main pycnocline structure. This demonstrates the limitations of our analytical model based on only one key vertical scale. Also, we show a strong influence of the northern hemisphere surface density change in high latitudes on the southern hemisphere stratification and circumpolar transport.

  6. Sub-scale Inverse Wind Turbine Blade Design Using Bound Circulation

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; Berg, Jonathan

    2014-11-01

    A goal of the National Rotor Testbed project at Sandia is to design a sub-scale wind turbine blade that has similitude to a modern, commercial size blade. However, a smaller diameter wind turbine operating at the same tip-speed-ratio exhibits a different range of operating Reynolds numbers across the blade span, thus changing the local lift and drag coefficients. Differences to load distribution also affect the wake dynamics and stability. An inverse wind turbine blade design tool has been implemented which uses a target, dimensionless circulation distribution from a full-scale blade to find the chord and twist along a sub-scale blade. In addition, airfoil polar data are interpolated from a few specified span stations leading to a smooth, manufacturable blade. The iterative process perturbs chord and twist, after running a blade element momentum theory code, to reduce the residual sum of the squares between the modeled sub-scale circulation and the target full-scale circulation. It is shown that the converged sub-scale design also leads to performance similarity in thrust and power coefficients. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract DE-AC04-94AL85000.

  7. Observational analysis and large-scale pattern associated with cold events moving up the equator line over South America

    NASA Astrophysics Data System (ADS)

    Viana, Liviany; Herdies, Dirceu; Muller, Gabriela

    2017-04-01

    An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.

  8. Modeling Mars Cyclogenesis and Frontal Waves: Seasonal Variations and Implications on Dust Activity

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, M. A.

    2014-01-01

    Between late autumn through early spring,middle and high latitudes onMars exhibit strong equator-to-polemean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic period waves) [1, 2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wave-like disturbances serve as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars' extratropical weather systems have significant sub-synoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  9. Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda A.

    2012-01-01

    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1).

  10. Acute effects of a large bolide impact simulated by a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Thompson, Starley L.; Crutzen, P. J.

    1988-01-01

    The goal is to use a global three-dimensional atmospheric circulation model developed for studies of atmospheric effects of nuclear war to examine the time evolution of atmospheric effects from a large bolide impact. The model allows for dust and NOx injection, atmospheric transport by winds, removal by precipitation, radiative transfer effects, stratospheric ozone chemistry, and nitric acid formation and deposition on a simulated Earth having realistic geography. Researchers assume a modest 2 km-diameter impactor of the type that could have formed the 32 km-diameter impact structure found near Manson, Iowa and dated at roughly 66 Ma. Such an impact would have created on the order of 5 x 10 to the 10th power metric tons of atmospheric dust (about 0.01 g cm(-2) if spread globally) and 1 x 10 to the 37th power molecules of NO, or two orders of magnitude more stratospheric NO than might be produced in a large nuclear war. Researchers ignore potential injections of CO2 and wildfire smoke, and assume the direct heating of the atmosphere by impact ejecta on a regional scale is not large compared to absorption of solar energy by dust. Researchers assume an impact site at 45 N in the interior of present day North America.

  11. Influence of wintertime large-scale circulation on the explosively developing cyclones over the western North Pacific and their downstream effects

    NASA Astrophysics Data System (ADS)

    Yoshiike, Satoki; Kawamura, Ryuichi

    2009-07-01

    The relationships between large-scale wintertime circulation and extratropical cyclones that develop explosively (the so-called bomb cyclones) over the western North Pacific are investigated using Japanese long-term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic-scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.

  12. Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Ayoub, N. K.; Lyard, F.; Marsaleix, P.; Allain, D. J.

    2018-04-01

    Downscaling physical processes from a large scale to a regional scale 3D model is a recurrent issue in coastal processes studies. The choice of boundary conditions will often greatly influence the solution within the 3D circulation model. In some regions, tides play a key role in coastal dynamics and must be accurately represented. The Bay of Biscay is one of these regions, with highly energetic tides influencing coastal circulation and river plume dynamics. In this study, three strategies are tested to force with barotropic tides a 3D circulation model with a variable horizontal resolution. The tidal forcings, as well as the tidal elevations and currents resulting from the 3D simulations, are compared to tidal harmonics extracted from satellite altimetry and tidal gauges, and tidal currents harmonics obtained from ADCP data. The results show a strong improvement of the M2 solution within the 3D model with a "tailored" tidal forcing generated on the same grid and bathymetry as the 3D configuration, compared to a global tidal atlas forcing. Tidal harmonics obtained from satellite altimetry data are particularly valuable to assess the performance of each simulation. Comparisons between sea surface height time series, a sea surface salinity database, and daily averaged 2D currents also show a better agreement with this tailored forcing.

  13. Sustaining observations of the unsteady ocean circulation.

    PubMed

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data (currents and wave heights, periods, and directions), sediment characterization data, and near-shore bathymetric data. In addition, the region has been under evaluation for future ocean energy projects. The modeling framework of SWAN and SNL-EFDC combined with field validation datasets allows for a robust quantitative description of the nearshore environment within which the MHK devices will be evaluated. This quantitative description can be directly incorporated into environmental impact assessments to eliminate guesswork related to the effects of the presence of large-scale arrays. These results can be used to design more efficient arrays while minimizing impacts on the nearshore environments. Further investigations into fine-scale scour near the structures will help determine if these large-scale results show that, in fact, there is deposition adjacent to the arrays, which could have design implications on anchorage and cabling systems.

  15. Passive, off-axis convection through the southern flank of the Costa Rica rift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, A.T.; Becker, K.; Narasimhan, T.N.

    1990-06-10

    Pore fluids are passively convecting through young oceanic sediments and crust around Deep Sea Drilling Project (DSDP) site 504 on the southern flank of the Costa Rica Rift, as inferred from a variety of geological, geochemical, and geothermal observations. The presence of a fluid circulation system is supported by new data collected on Ocean Drilling Program (ODP) leg 111 and a predrilling survey cruise over the heavily sedimented, 5.9 Ma site; during the latter, elongated heat flow anomalies were mapped subparallel to structural strike, with individual measurements of twice the regional mean value, and strong lateral and vertical geochemical gradientsmore » were detected in pore waters squeezed from sediment cores. Also, there is a strong correlation between heat flow, bathymetry, sediment thickness, and inferred fluid velocities up through the sediments. Although the forces which drive passive circulation are not well understood, it has generally been thought that the length scale of heat flow variations provides a good indication of the depth of hydrothermal circulation within the oceanic crust. The widely varied geothermal and hydrogeological observations near site 504 are readily explained by a model which combines (1) basement relief, (2) irregular sediment drape, (3) largely conductive heat transfer through the sediments overlying the crust, and (4) thermal and geochemical homogenization of pore fluids at the sediment/basement interface, which results from (5) topographically induced, passive hydrothermal circulation with large aspect ratio, convection cells. This convection involves mainly the permeable, upper 200-300 m of crust; the deeper crust is not involved.« less

  16. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, B. C.

    1991-01-01

    A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.

  17. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Li, Tim

    2017-02-01

    Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.

  18. Exploiting Synoptic-Scale Climate Processes to Develop Nonstationary, Probabilistic Flood Hazard Projections

    NASA Astrophysics Data System (ADS)

    Spence, C. M.; Brown, C.; Doss-Gollin, J.

    2016-12-01

    Climate model projections are commonly used for water resources management and planning under nonstationarity, but they do not reliably reproduce intense short-term precipitation and are instead more skilled at broader spatial scales. To provide a credible estimate of flood trend that reflects climate uncertainty, we present a framework that exploits the connections between synoptic-scale oceanic and atmospheric patterns and local-scale flood-producing meteorological events to develop long-term flood hazard projections. We demonstrate the method for the Iowa River, where high flow episodes have been found to correlate with tropical moisture exports that are associated with a pressure dipole across the eastern continental United States We characterize the relationship between flooding on the Iowa River and this pressure dipole through a nonstationary Pareto-Poisson peaks-over-threshold probability distribution estimated based on the historic record. We then combine the results of a trend analysis of dipole index in the historic record with the results of a trend analysis of the dipole index as simulated by General Circulation Models (GCMs) under climate change conditions through a Bayesian framework. The resulting nonstationary posterior distribution of dipole index, combined with the dipole-conditioned peaks-over-threshold flood frequency model, connects local flood hazard to changes in large-scale atmospheric pressure and circulation patterns that are related to flooding in a process-driven framework. The Iowa River example demonstrates that the resulting nonstationary, probabilistic flood hazard projection may be used to inform risk-based flood adaptation decisions.

  19. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Oudar, Thomas; Sanchez-Gomez, Emilia; Chauvin, Fabrice; Cattiaux, Julien; Terray, Laurent; Cassou, Christophe

    2017-12-01

    The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.

  20. Symbols in motion: Flexible cultural boundaries and the fast spread of the Neolithic in the western Mediterranean

    PubMed Central

    Manen, Claire; García-Martínez de Lagrán, Iñigo

    2018-01-01

    The rapid diffusion of farming technologies in the western Mediterranean raises questions about the mechanisms that drove the development of intensive contact networks and circulation routes between incoming Neolithic communities. Using a statistical method to analyze a brand-new set of cultural and chronological data, we document the large-scale processes that led to variations between Mediterranean archaeological cultures, and micro-scale processes responsible for the transmission of cultural practices within farming communities. The analysis of two symbolic productions, pottery decorations and personal ornaments, shed light on the complex interactions developed by Early Neolithic farmers in the western Mediterranean area. Pottery decoration diversity correlates with local processes of circulation and exchange, resulting in the emergence and the persistence of stylistic and symbolic boundaries between groups, while personal ornaments reflect extensive networks and the high level of mobility of Early Neolithic farmers. The two symbolic productions express different degrees of cultural interaction that may have facilitated the successful and rapid expansion of early farming societies in the western Mediterranean. PMID:29715284

  1. e-NIHSS: an Expanded National Institutes of Health Stroke Scale Weighted for Anterior and Posterior Circulation Strokes.

    PubMed

    Olivato, Silvia; Nizzoli, Silvia; Cavazzuti, Milena; Casoni, Federica; Nichelli, Paolo Frigio; Zini, Andrea

    2016-12-01

    The National Institutes of Health Stroke Scale (NIHSS) is the most widespread clinical scale used in patients presenting with acute stroke. The merits of the NIHSS include simplicity, quickness, and agreement between clinicians. The clinical evaluation on posterior circulation stroke remains still a limit of NIHSS. We assessed the application of a new version of NIHSS, the e-NIHSS (expanded NIHSS), adding specific elements in existing items to explore signs/symptoms of a posterior circulation stroke. A total of 22 consecutive patients with suspected vertebrobasilar stroke were compared with 25 patients with anterior circulation stroke using NIHSS and e-NIHSS. We compared the NIHSS and e-NIHSS scores obtained by the 2 examiners, in patients with posterior circulation infarct (POCI), using the Wilcoxon test. Patients with POCI evaluated with e-NIHSS had an average of 2 points higher than patients evaluated with classical NIHSS. The difference was statistically significant (P < .05), weighted by the new expanded items. The NIHSS is a practical scale model, with high reproducibility between trained, different examiners, focused on posterior circulation strokes, with the same total score and number of items of the existing NIHSS. The e-NHISS could improve the sensitivity of NIHSS in posterior circulation stroke and could have an impact on clinical trials, as well as on outcomes. Further studies are needed to investigate a larger number of patients and the correlation between the e-NIHSS score and neuroimaging findings. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, Isaac; V. Balaji; Fueglistaler, Stephan

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standingmore » issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.« less

  3. The Tropical Rainfall Measuring (TRMM) - What Have We Learned and What Does the Future Hold?

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Hong, Y.; Olsen, W. S.

    2000-01-01

    Rainfall is important in the hydrological cycle and to the lives and welfare of humans. In addition to being a life-giving resource, rainfall processes also plays a crucial role in the dynamics of the global atmospheric circulation. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. It varies greatly in space and time. The rain-producing cloud systems may last several hours or days. Their dimensions range from 10 km to several hundred km. This makes it difficult to incorporate rainfall directly large-scale weather and climate models. Until the end of 1997, precipitation in the global tropics was not known to within a factor of two. Regarding "global warming", the various large-scale models differed among themselves in the predicted magnitude of the warming and in the expected regional effects of these temperature and moisture changes. The Tropical Rainfall Measuring Mission (TRMM) satellite has yielded important interim results related to rainfall observations, data assimilation and model forecast skills when rainfall data is assimilated. This talk will summarize where the TRMM science team is with regards to answering some of these important scientific challenges, as well as discuss the future Global Precipitation Mission which will provide 3 hourly rainfall coverage and offers some unique collaborative potential for NOAA and NASA.

  4. Spatio-temporal characteristics of the diurnal precipitation cycle over Sweden and the linkage to large-scale circulation

    NASA Astrophysics Data System (ADS)

    Walther, A.; Jeong, J.-H.; Chen, D.

    2009-04-01

    Rainfall events exhibit diurnal cycle in both frequency and amount, of which phase and amplitude show substantial geographic and seasonal variation. Although the diurnal cycle of precipitation is one of the fundamental characteristics to determine local weather and climate, most of sophisticated climate models still have great deficiencies in reproducing it. Thus more exact understanding of the diurnal precipitation cycle and its mechanisms is thought to be very important to improve climate models and their prediction results. In this work we investigate the diurnal cycle of precipitation in Sweden using ground based hourly observations for 1996-2008. For the precipitation amount and frequency, mean diurnal cycles are computed, and the peak timing and amplitude of the diurnal and semi-diurnal cycle of precipitation are estimated by the harmonic analysis method. Clear mean diurnal precipitation cycles as well as distinct spatial patterns for all seasons are derived. In summer, showing the most distinct pattern, the majority of the stations show a clear rainfall maximum in the afternoon (12-18 LST) except for the coastal part of Central Sweden where we see an early-morning peak (00-06 LST) and the east coast of southern Sweden where we find a morning peak (06-12 LST). The clear afternoon peak may be due to high insolation accumulated during the day time in summer leading to a local convection activity later on that day. These coastal bands mostly consist of the stations closest to the Baltic Sea. Meso-scale convection connected to temperature differences between sea and land combined with a favorable wind pattern seems to play a role here. In the transition seasons, spring and autumn, the amplitude is weaker and the spatial pattern of peak timing is less distinct than in summer. In spring the westcoast stations have a morning peak and stations in southeastern Sweden show an afternoon peak. In autumn we see a zonal division with a clear afternoon peak in southern Sweden. This might be due to a steeply decreasing energy input from the solar insolation in the northern parts causing less convection activity but still enough insolation to cause an afternoon peak in southern Sweden. In both seasons, spring and autumn, north of 60 degrees the pattern is mixed showing early-morning, morning and afternoon peaks. The winter pattern is characterized by afternoon peaks along the eastcoast and central South Sweden and morning peaks over the most of the other parts of the country. However, the amplitude of the diurnal cycle is much weaker compared to that in summer or autumn. In order to examine the large scale circulation which might modulate the diurnal cycle, the Lamb weather types are computed based on sea level pressure fields from the NCEP/NCAR reanalysis 2 dataset with daily and 6-hourly resolution, respectively. The Lamb types based on 6-hourly SLP underline the high temporal variability of atmospheric conditions over the research area. Throughout all seasons, on about 45% of the days two or more circulation classes are different. In 6.3% (JJA) to 8.4% (DJF) of the days can observe 4 different Lamb classes. Using Lamb types with 6-hourly resolution leads to a somewhat finer classification. On average, for about one third of the days with precipitation the daily Lamb type and the appropriate 6-hourly one are different. The most frequent large-scale circulation classes coupled to precipitation events are of cyclonic or directional type. The atmospheric circulation patterns do not follow a diurnal cycle, whereas the local observed precipitation does. Knowledge about the timing of the rainfall is important in order to assign the right underlying circulation patterns to precipitation events.

  5. Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses

    NASA Astrophysics Data System (ADS)

    Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.

    2014-12-01

    Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.

  6. Nightside Detection of a Large-Scale Thermospheric Wave Generated by a Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Harding, B. J.; Drob, D. P.; Buriti, R. A.; Makela, J. J.

    2018-04-01

    The generation of a large-scale wave in the upper atmosphere caused by a solar eclipse was first predicted in the 1970s, but the experimental evidence remains sparse and comprises mostly indirect observations. This study presents observations of the wind component of a large-scale thermospheric wave generated by the 21 August 2017 total solar eclipse. In contrast with previous studies, the observations are made on the nightside, after the eclipse ended. A ground-based interferometer located in northeastern Brazil is used to monitor the Doppler shift of the 630.0-nm airglow emission, providing direct measurements of the wind and temperature in the thermosphere, where eclipse effects are expected to be the largest. A disturbance is seen in the zonal and meridional wind which is at or above the 90% significance level based on the measured 30-day variability. These observations are compared with a first principles numerical model calculation from the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, which predicted the propagation of a large-scale wave well into the nightside. The modeled disturbance matches well the difference between the wind measurements and the 30-day median, though the measured perturbation (˜60 m/s) is larger than the prediction (38 m/s) for the meridional wind. No clear evidence for the wave is seen in the temperature data, however.

  7. Impact of Preferred Eddy Tracks on Transport and Mixing in the Eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Belmadani, A.; Donoso, D.; Auger, P. A.; Chaigneau, A.

    2017-12-01

    Mesoscale eddies, which play a fundamental role in the transport of mass, heat, nutrients, and biota across the oceans, have been suggested to propagate preferently along specific tracks. These preferred pathways, also called eddy trains, are near-zonal due to westward drift of individual vortices, and tend to be polarized (ie alternatively dominated by anticyclonic/cyclonic eddies), coinciding with the recently discovered latent striations (quasi-zonal mesoscale jet-like features). While significant effort has been made to understand the dynamics of striations and their interplay with mesoscale eddies, the impact of repeated eddy tracks on physical (temperature, salinity), biogeochemical (oxygen, carbon, nutrients) and other tracers (e.g. chlorophyll, marine debris) has received little attention. Here we report on the results of numerical modeling experiments that simulate the impact of preferred eddy tracks on the transport and mixing of water particles in the Eastern South Pacific off Chile. A 30-year interannual simulation of the oceanic circulation in this region has been performed over 1984-2013 with the ROMS (Regional Oceanic Modeling System) at an eddy-resolving resolution (10 km). Objective tracking of mesoscale coherent vortices is obtained using automated methods, allowing to compute the contribution of eddies to the ocean circulation. Preferred eddy tracks are further isolated from the more random eddies, by comparing the distances between individual tracks and the striated pattern in long-term mean eddy polarity with a least-squares approach. The remaining non-eddying flow may also be decomposed into time-mean and anomalous circulation, and/or small- and large-scale circulation. Neutrally-buoyant Lagrangian floats are then released uniformly into the various flow components as well as the total flow, and tracked forward in time with the ARIANE software. The dispersion patterns of water particles are used to estimate the respective contributions of organized and random eddies, mean flow, large-scale perturbations etc. to mixing properties and transport pathways. Float release into the full flow inside selected vortices is also used to document the impact of eddy trains on the transformation of water masses inferred from changes in temperature/salinity along float trajectories.

  8. Regional influence of monsoons in the current and a warming climate

    NASA Astrophysics Data System (ADS)

    Saini, Roop

    Monsoon rainfall is of critical societal importance and monsoon circulations comprise an important part of global climate. Here, the thermodynamics of monsoon onsets in India and North America are considered both for observed data and for model projections with increasing greenhouse gases, in order to better understand the regional influence of monsoons in the current and warming climate. The regional influence of the monsoon onsets is analyzed in terms of the thermodynamic energy equation, regional circulation, and precipitation. For the Indian Monsoon, a Rossby-like response to the monsoon onset is clear in the observational data and is associated with horizontal temperature advection at midlevels as the westerlies intersect the warm temperature anomalies of the Rossby wave. The horizontal temperature advection is balanced by subsidence over areas of North Africa, the Mediterranean, and the Middle East, with an associated decrease in precipitation over those regions. The same processes that favor subsidence to the west of the monsoon also force rising motion over northern India and appear to be an important factor for the inland development of the monsoon. For the smaller spatial scales of the North American Monsoon, the descent to the northwest of the primary onset in Northwest Mexico is much more local and occurs directly in the path of monsoon development, apparently providing a self-limiting mechanism. For both monsoon onsets, simple Gill-Matsuno dynamics provide some qualitative understanding of the onset circulation, but do not reproduce the large spatial scales of the upper-level flow, which appear to be related to interactions with the mean westerly jets. The monsoon onsets for both regions were also analyzed for 5 models with available data from the CMIP5 project for runs with 1% per year CO2 increases. For the models considered, there is little consensus regarding changes to the strength of the monsoon onset in a warmer climate in terms of precipitation, although the upper level circulation is somewhat stronger in a warmer climate for both the monsoons, perhaps as a result of changes to the westerly jets. There is a large range in pattern and magnitude of the monsoon onsets between different models, even without greenhouse gas changes.

  9. Climate, Santa Ana Winds and Autumn Wildfires in Southern California

    NASA Astrophysics Data System (ADS)

    Westerling, Anthony L.; Cayan, Daniel R.; Brown, Timothy J.; Hall, Beth L.; Riddle, Laurence G.

    2004-08-01

    Wildfires periodically burn large areas of chaparral and adjacent woodlands in autumn and winter in southern California. These fires often occur in conjunction with Santa Ana weather events, which combine high winds and low humidity, and tend to follow a wet winter rainy season. Because conditions fostering large fall and winter wildfires in California are the result of large-scale patterns in atmospheric circulation, the same dangerous conditions are likely to occur over a wide area at the same time. Furthermore, over a century of watershed reserve management and fire suppression have promoted fuel accumulations, helping to shape one of the most conflagration-prone environments in the world. Combined with a complex topography and a large human population, southern Californian ecology and climate pose a considerable physical and societal challenge to fire management.

  10. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  11. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1993-01-01

    Full attention was now directed to the blocking case studies mentioned in previous reports. Coding and initial computational tests were completed for a North Atlantic blocking case that occurred in late October/early November 1985 and an upstream cyclone that developed rapidly 24 hours before block onset. This work is the subject of two papers accepted for presentation at the International Symposium on the Lifecycles of Extratropical Cyclones in Bergen, Norway, 27 June - 1 July 1994. This effort is currently highlighted by two features. The first is the extension of the Zwack-Okossi equation, originally formulated for the diagnosis of surface wave development, for application at any pressure level. The second is the separation of the basic large-scale analysis fields into synoptic-scale and planetary-scale components, using a two-dimensional Shapiro filter, and the corresponding partitioning of the Zwack-Okossi equation into synoptic-scale, planetary-scale, and synoptic/planetary-scale interaction terms. Preliminary tests suggest substantial contribution from the synoptic-scale and interaction terms.

  12. Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn

    2018-05-01

    The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.

  13. Modeling South Pacific Ice-Ocean Interactions in the Global Climate System

    NASA Technical Reports Server (NTRS)

    Holland, David M.; Jenkins, Adrian; Jacobs, Stanley S.

    2001-01-01

    The objective of this project has been to improve the modeling of interactions between large Antarctic ice shelves and adjacent regions of the Southern Ocean. Our larger goal is to gain a better understanding of the extent to which the ocean controls ice shelf attrition, thereby influencing the size and dynamics of the Antarctic Ice Sheet. Melting and freezing under ice shelves also impacts seawater properties, regional upwelling and sinking and the larger-scale ocean circulation. Modifying an isopycnal coordinate general circulation model for use in sub-ice shelf cavities, we found that the abrupt change in water column thickness at an ice shelf front does not form a strong barrier to buoyancy-driven circulation across the front. Outflow along the ice shelf base, driven by melting of the thickest ice, is balanced by deep inflow. Substantial effort was focused on the Filchner-Ronne cavity, where other models have been applied and time-series records are available from instruments suspended beneath the ice. A model comparison indicated that observed changes in the production of High Salinity Shelf Water could have a major impact on circulation within the cavity. This water propagates into the cavity with an asymmetric seasonal signal that has similar phasing and shape in the model and observations, and can be related to winter production at the sea surface. Even remote parts of the sub-ice shelf cavity are impacted by external forcing on sub-annual time scales. This shows that cavity circulations and products, and therefore cavity shape, will respond to interannual variability in sea ice production and longer-term climate change. The isopycnal model gives generally lower net melt rates than have been obtained from other models and oceanographic data, perhaps due to its boundary layer formulation, or the lack of tidal forcing. Work continues on a manuscript describing the Ross cavity results.

  14. 300 mm arrays and 30 nm Features: Frontiers in Sorting Biological Objects

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Comella, Brandon; D'Silva, Joseph; Sturm, James

    2014-03-01

    One of the great challenges in prediction of metastasis is determining when the metastatic process actually begins. It is presumed that this process occurs due to passage of biological objects in the blood from tumor to remote sites. We will discuss our attempts to find both very large objects (circulating tumor cell clumps) and very small (exosomes) using a combination of extremely large scale photolithography on 300 mm wafers and deep-UV lithography to produce sub-100 nm arrays to sort exosomes. These technologies push the envelope of present day academic facilities . Supported by the National Science Foundation and the National Cancer Institute.

  15. Detecting Trends in Tropical Rainfall Characteristics, 1979-2003

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Wu, H. T.

    2006-01-01

    From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.

  16. Transport on intermediate time scales in flows with cat's eye patterns

    NASA Astrophysics Data System (ADS)

    Pöschke, Patrick; Sokolov, Igor M.; Zaks, Michael A.; Nepomnyashchy, Alexander A.

    2017-12-01

    We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows where the patterns of streamlines feature regions of confined circulation in the shape of "cat's eyes," separated by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively and quantitatively different transport properties: depending on the parameter of the flow, the initial position of a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on results of extensive numerical simulations of the mean-squared displacement for different initial conditions in ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.

  17. Regional dry-season climate changes due to three decades of Amazonian deforestation

    NASA Astrophysics Data System (ADS)

    Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert

    2017-02-01

    More than 20% of the Amazon rainforest has been cleared in the past three decades, triggering important hydroclimatic changes. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately +/-25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.

  18. Regional turbulence patterns driven by meso- and submesoscale processes in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    C. Pérez, Juan G.; R. Calil, Paulo H.

    2017-09-01

    The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.

  19. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  20. Circulation and thermohaline structure of the Aral Sea in the last three years

    NASA Astrophysics Data System (ADS)

    Izhitskiy, A. S.; Zavialov, P. O.

    2012-04-01

    The results of the 3 latest expeditions (2009 - 2011) of the Shirshov Institute to the Aral Sea are reported. We analyze the interannual variability of the basin circulation together with the thermohaline structure in order to identify the underlying mechanisms. The study is based on the results of the field surveys of August, 2009, September, 2010, and November, 2011. The vertical profiles of temperature and salinity were obtained using a CTD profiler at 6 stations across the deepest part of the western basin in 2009 and 2010, and 3 stations in 2011. Additionally, during each of the surveys, mooring stations equipped with current meters and pressure gauges were deployed for 3-5 days in the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the wind stress and the principal meteorological parameters, was installed near the mooring sites. The vertical stratification exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and near the bottom, while the intermediate layer was characterized by a core of minimum salinity and temperature. Such a pattern persisted throughout the 3 years of observations. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity and surface level series versus the wind stress allowed to quantify the response of the system to the wind forcing as well as to formulate a conceptual scheme of the lake's response to wind forcing at synoptic temporal scales.

Top