Sample records for large scale moisture

  1. State of the Art in Large-Scale Soil Moisture Monitoring

    NASA Technical Reports Server (NTRS)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  2. Scale Dependence of Land Atmosphere Interactions in Wet and Dry Regions as Simulated with NU-WRF over the Southwestern and Southeast US

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo

    2016-01-01

    Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.

  3. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and

  4. Stream Flow Prediction by Remote Sensing and Genetic Programming

    NASA Technical Reports Server (NTRS)

    Chang, Ni-Bin

    2009-01-01

    A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.

  5. Generating large-scale estimates from sparse, in-situ networks: multi-scale soil moisture modeling at ARS watersheds for NASA’s soil moisture active passive (SMAP) calibration/validation mission

    USDA-ARS?s Scientific Manuscript database

    NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...

  6. The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.

    1985-01-01

    Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.

  7. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  8. A simple model of intraseasonal oscillations

    NASA Astrophysics Data System (ADS)

    Fuchs, Željka; Raymond, David J.

    2017-06-01

    The intraseasonal oscillations and in particular the MJO have been and still remain a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e., why does it prefer long wavelengths or planetary wave numbers 1-3? What is the westward moving component of the intraseasonal oscillation? Though linear WISHE has long been discounted as a plausible model for intraseasonal oscillations and the MJO, the version we have developed explains many of the observed features of those phenomena, in particular, the preference for large zonal scale. In this model version, the moisture budget and the increase of precipitation with tropospheric humidity lead to a "moisture mode." The destabilization of the large-scale moisture mode occurs via WISHE only and there is no need to postulate large-scale radiatively induced instability or negative effective gross moist stability. Our WISHE-moisture theory leads to a large-scale unstable eastward propagating mode in n = -1 case and a large-scale unstable westward propagating mode in n = 1 case. We suggest that the n = -1 case might be connected to the MJO and the observed westward moving disturbance to the observed equatorial Rossby mode.

  9. A New Approach for Validating Satellite Estimates of Soil Moisture Using Large-Scale Precipitation: Comparing AMSR-E Products

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Salvucci, G.

    2012-12-01

    Soil moisture influences many hydrological processes in the water and energy cycles, such as runoff generation, groundwater recharge, and evapotranspiration, and thus is important for climate modeling, water resources management, agriculture, and civil engineering. Large-scale estimates of soil moisture are produced almost exclusively from remote sensing, while validation of remotely sensed soil moisture has relied heavily on ground truthing, which is at an inherently smaller scale. Here we present a complementary method to determine the information content in different soil moisture products using only large-scale precipitation data (i.e. without modeling). This study builds on the work of Salvucci [2001], Saleem and Salvucci [2002], and Sun et al. [2011], in which precipitation was conditionally averaged according to soil moisture level, resulting in moisture-outflow curves that estimate the dependence of drainage, runoff, and evapotranspiration on soil moisture (i.e. sigmoidal relations that reflect stressed evapotranspiration for dry soils, roughly constant flux equal to potential evaporation minus capillary rise for moderately dry soils, and rapid drainage for very wet soils). We postulate that high quality satellite estimates of soil moisture, using large-scale precipitation data, will yield similar sigmoidal moisture-outflow curves to those that have been observed at field sites, while poor quality estimates will yield flatter, less informative curves that explain less of the precipitation variability. Following this logic, gridded ¼ degree NLDAS precipitation data were compared to three AMSR-E derived soil moisture products (VUA-NASA, or LPRM [Owe et al., 2001], NSIDC [Njoku et al., 2003], and NSIDC-LSP [Jones & Kimball, 2011]) for a period of nine years (2001-2010) across the contiguous United States. Gaps in the daily soil moisture data were filled using a multiple regression model reliant on past and future soil moisture and precipitation, and soil moisture was then converted to a ranked wetness index, in order to reconcile the wide range and magnitude of the soil moisture products. Generalized linear models were employed to fit a polynomial model to precipitation, given wetness index. Various measures of fit (e.g. log likelihood) were used to judge the amount of information in each soil moisture product, as indicated by the amount of precipitation variability explained by the fitted model. Using these methods, regional patterns appear in soil moisture product performance.

  10. Two Topics in Seasonal Streamflow Forecasting: Soil Moisture Initialization Error and Precipitation Downscaling

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf

    2012-01-01

    Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.

  11. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  12. Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood

    NASA Technical Reports Server (NTRS)

    Turato, Barbara; Reale, Oreste; Siccardi, Franco

    2003-01-01

    Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the Piedmont event. Second, water-vapor intrusions from the African Inter-Tropical Convergence Zone and evaporation from the eastern Atlantic contribute on the 2-5 day time-scale. The large-scale moist dynamics appears therefore to be one important factor enabling a moderate Mediterranean cyclone to produce heavy precipitation. Finally, local evaporation from the Mediterranean, water-vapor recycling, and orographically-induced low-level convergence enhance and concentrate the moisture over the area where heavy precipitation occurs. This happens on a 12-72 hour time-scale.

  13. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  14. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  15. Validating the BERMS in situ soil moisture network with a large scale temporary network

    USDA-ARS?s Scientific Manuscript database

    Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...

  16. Field-scale moisture estimates using COSMOS sensors: a validation study with temporary networks and leaf-area-indices

    USDA-ARS?s Scientific Manuscript database

    The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...

  17. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    NASA Astrophysics Data System (ADS)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  18. Soil moisture observations using L-, C-, and X-band microwave radiometers

    NASA Astrophysics Data System (ADS)

    Bolten, John Dennis

    The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.

  19. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  20. SMOS soil moisture validation with U.S. in situ newworks

    USDA-ARS?s Scientific Manuscript database

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...

  1. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2016-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  2. Shifts in Summertime Precipitation Accumulation Distributions over the US

    NASA Astrophysics Data System (ADS)

    Martinez-Villalobos, C.; Neelin, J. D.

    2017-12-01

    Precipitation accumulations, i.e., the amount of precipitation integrated over the course of an event, is a variable with both important physical and societal implications. Previous observational studies show that accumulation distributions have a characteristic shape, with an approximately power law decrease at first, followed by a sharp decrease at a characteristic large event cutoff scale. This cutoff scale is important as it limits the biggest accumulation events. Stochastic prototypes show that the resulting distributions, and importantly the large event cutoff scale, can be understood as a result of the interplay between moisture loss by precipitation and changes in moisture sinks/sources due to fluctuations in moisture divergence over the course of a precipitation event. The strength of this fluctuating moisture sink/source term is expected to increase under global warming, with both theory and climate model simulations predicting a concomitant increase in the large event cutoff scale. This cutoff scale increase has important consequences as it implies an approximately exponential increase for the largest accumulation events. Given its importance, in this study we characterize and track changes in the distribution of precipitation events accumulations over the contiguous US. Accumulation distributions are calculated using hourly precipitation data from 1700 stations, covering the 1974-2013 period over May-October. The resulting distributions largely follow the aforementioned shape, with individual cutoff scales depending on the local climate. An increase in the large event cutoff scale over this period is observed over several regions over the US, most notably over the eastern third of the US. In agreement with the increase in the cutoff, almost exponential increases in the highest accumulation percentiles occur over these regions, with increases in the 99.9 percentile in the Northeast of 70% for example. The relationship to changes in daily precipitation that have previously been noted and to changes in the moisture budget over this period are examined.

  3. Temporal transferability of soil moisture calibration equations

    USDA-ARS?s Scientific Manuscript database

    Several large-scale field campaigns have been conducted over the last 20 years that require accurate estimates of soil moisture conditions. These measurements are manually conducted using soil moisture probes which require calibration. The calibration process involves the collection of hundreds of...

  4. Evaluation of Ku-Band Sensitivity To Soil Moisture: Soil Moisture Change Detection Over the NAFE06 Study Area

    USDA-ARS?s Scientific Manuscript database

    A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...

  5. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  6. Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets, appendix B

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Esbensen, S.; Chu, J.

    1972-01-01

    The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.

  7. Effect of dry large-scale vertical motions on initial MJO convective onset

    NASA Astrophysics Data System (ADS)

    Powell, Scott W.; Houze, Robert A.

    2015-05-01

    Anomalies of eastward propagating large-scale vertical motion with ~30 day variability at Addu City, Maldives, move into the Indian Ocean from the west and are implicated in Madden-Julian Oscillation (MJO) convective onset. Using ground-based radar and large-scale forcing data derived from a sounding array, typical profiles of environmental heating, moisture sink, vertical motion, moisture advection, and Eulerian moisture tendency are computed for periods prior to those during which deep convection is prevalent and those during which moderately deep cumulonimbi do not form into deep clouds. Convection with 3-7 km tops is ubiquitous but present in greater numbers when tropospheric moistening occurs below 600 hPa. Vertical eddy convergence of moisture in shallow to moderately deep clouds is likely responsible for moistening during a 3-7 day long transition period between suppressed and active MJO conditions, although moistening via evaporation of cloud condensate detrained into the environment of such clouds may also be important. Reduction in large-scale subsidence, associated with a vertical velocity structure that travels with a dry eastward propagating zonal wavenumbers 1-1.5 structure in zonal wind, drives a steepening of the lapse rate below 700 hPa, which supports an increase in moderately deep moist convection. As the moderately deep cumulonimbi moisten the lower troposphere, more deep convection develops, which itself moistens the upper troposphere. Reduction in large-scale subsidence associated with the eastward propagating feature reinforces the upper tropospheric moistening, helping to then rapidly make the environment conducive to formation of large stratiform precipitation regions, whose heating is critical for MJO maintenance.

  8. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Boer, M. M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R. A.

    2016-05-01

    The occurrence of large, high-intensity wildfires requires plant biomass, or fuel, that is sufficiently dry to burn. This poses the question, what is "sufficiently dry"? Until recently, the ability to address this question has been constrained by the spatiotemporal scale of available methods to monitor the moisture contents of both dead and live fuels. Here we take advantage of recent developments in macroscale monitoring of fuel moisture through a combination of remote sensing and climatic modeling. We show there are clear thresholds of fuel moisture content associated with the occurrence of wildfires in forests and woodlands. Furthermore, we show that transformations in fuel moisture conditions across these thresholds can occur rapidly, within a month. Both the approach presented here, and our findings, can be immediately applied and may greatly improve fire risk assessments in forests and woodlands globally.

  9. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar

    PubMed Central

    Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco

    2008-01-01

    Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932

  10. A high resolution method for soil moisture mapping at large spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.

    2013-12-01

    Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.

  11. Soil Moisture Initialization Error and Subgrid Variability of Precipitation in Seasonal Streamflow Forecasting

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.

    2013-01-01

    Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.

  12. Scaling an in situ network for high resolution modeling during SMAPVEX15

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.

    2015-12-01

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.

  13. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An L-band imaging radar is being added to the complement to provide simultaneous active-passive L-band observations, for algorithm development activities in support of NASA's upcoming Soil Moisture Active Passive (.S"M) mission. This paper will describe the campaigns, their objectives, their datasets, and some of the unique advantages of working with small/light sensors and aircraft. We will also review the main scientific findings, including improvements to the SMOS retrieval algorithm enabled by NAFE observations and the evaluation of the Simpson Desert as a calibration target for L-band satellite missions. Plans for upcoming campaigns will also be discussed.

  14. Moisture source classification of heavy precipitation events in Switzerland in the last 130 years (1871-2011)

    NASA Astrophysics Data System (ADS)

    Aemisegger, Franziska; Piaget, Nicolas

    2017-04-01

    A new weather-system oriented classification framework of extreme precipitation events leading to large-scale floods in Switzerland is presented on this poster. Thirty-six high impact floods in the last 130 years are assigned to three representative categories of atmospheric moisture origin and transport patterns. The methodology underlying this moisture source classification combines information of the airmass history in the twenty days preceding the precipitation event with humidity variations along the large-scale atmospheric transport systems in a Lagrangian approach. The classification scheme is defined using the 33-year ERA-Interim reanalysis dataset (1979-2011) and is then applied to the Twentieth Century Reanalysis (1871-2011) extreme precipitation events as well as the 36 selected floods. The three defined categories are characterised by different dominant moisture uptake regions including the North Atlantic, the Mediterranean and continental Europe. Furthermore, distinct anomalies in the large-scale atmospheric flow are associated with the different categories. The temporal variations in the relative importance of the three categories over the last 130 years provides new insights into the impact of changing climate conditions on the dynamical mechanisms leading to heavy precipitation in Switzerland.

  15. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  16. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  17. Hydrological Storage Length Scales Represented by Remote Sensing Estimates of Soil Moisture and Precipitation

    NASA Astrophysics Data System (ADS)

    Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara

    2018-03-01

    The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.

  18. Assimilation of Satellite Data in Regional Air Quality Models

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Norris, William B.; Casey, Daniel; Pleim, Jonathan E.; Roselle, Shawn J.; Lapenta, William M.

    1997-01-01

    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry.

  19. Hydrologic data assimilation with a hillslope-scale-resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Flores, Alejandro N.; Bras, Rafael L.; Entekhabi, Dara

    2012-08-01

    Soil moisture information is critical for applications like landslide susceptibility analysis and military trafficability assessment. Existing technologies cannot observe soil moisture at spatial scales of hillslopes (e.g., 100 to 102 m) and over large areas (e.g., 102 to 105 km2) with sufficiently high temporal coverage (e.g., days). Physics-based hydrologic models can simulate soil moisture at the necessary spatial and temporal scales, albeit with error. We develop and test a data assimilation framework based on the ensemble Kalman filter for constraining uncertain simulated high-resolution soil moisture fields to anticipated remote sensing products, specifically NASA's Soil Moisture Active-Passive (SMAP) mission, which will provide global L band microwave observation approximately every 2-3 days. The framework directly assimilates SMAP synthetic 3 km radar backscatter observations to update hillslope-scale bare soil moisture estimates from a physics-based model. Downscaling from 3 km observations to hillslope scales is achieved through the data assimilation algorithm. Assimilation reduces bias in near-surface soil moisture (e.g., top 10 cm) by approximately 0.05 m3/m3and expected root-mean-square errors by at least 60% in much of the watershed, relative to an open loop simulation. However, near-surface moisture estimates in channel and valley bottoms do not improve, and estimates of profile-integrated moisture throughout the watershed do not substantially improve. We discuss the implications of this work, focusing on ongoing efforts to improve soil moisture estimation in the entire soil profile through joint assimilation of other satellite (e.g., vegetation) and in situ soil moisture measurements.

  20. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  1. A novel representation of groundwater dynamics in large-scale land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan

    2017-04-01

    Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.

  2. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  3. Idealized modeling of convective organization with changing sea surface temperatures using multiple equilibria in weak temperature gradient simulations

    NASA Astrophysics Data System (ADS)

    Sentić, Stipo; Sessions, Sharon L.

    2017-06-01

    The weak temperature gradient (WTG) approximation is a method of parameterizing the influences of the large scale on local convection in limited domain simulations. WTG simulations exhibit multiple equilibria in precipitation; depending on the initial moisture content, simulations can precipitate or remain dry for otherwise identical boundary conditions. We use a hypothesized analogy between multiple equilibria in precipitation in WTG simulations, and dry and moist regions of organized convection to study tropical convective organization. We find that the range of wind speeds that support multiple equilibria depends on sea surface temperature (SST). Compared to the present SST, low SSTs support a narrower range of multiple equilibria at higher wind speeds. In contrast, high SSTs exhibit a narrower range of multiple equilibria at low wind speeds. This suggests that at high SSTs, organized convection might occur with lower surface forcing. To characterize convection at different SSTs, we analyze the change in relationships between precipitation rate, atmospheric stability, moisture content, and the large-scale transport of moist entropy and moisture with increasing SSTs. We find an increase in large-scale export of moisture and moist entropy from dry simulations with increasing SST, which is consistent with a strengthening of the up-gradient transport of moisture from dry regions to moist regions in organized convection. Furthermore, the changes in diagnostic relationships with SST are consistent with more intense convection in precipitating regions of organized convection for higher SSTs.

  4. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    NASA Astrophysics Data System (ADS)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  5. Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale

    NASA Astrophysics Data System (ADS)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-03-01

    The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  6. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).

  7. On the dominant impact of vertical moisture gradient on mesoscale cloud cellular organization of stratocumulus

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.

    2016-12-01

    Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.

  8. SMOS L1C and L2 Validation in Australia

    NASA Technical Reports Server (NTRS)

    Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.

    2012-01-01

    Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.

  9. Lamellar ichthyosis

    MedlinePlus

    ... with LI may have these symptoms: Very large scales that cover most of the body Decreased ability ... skin moist to minimize the thickness of the scales. Measures include: Moisturizers applied to the skin Medicines ...

  10. Role of moisture transport for Central American precipitation

    NASA Astrophysics Data System (ADS)

    María Durán-Quesada, Ana; Gimeno, Luis; Amador, Jorge

    2017-02-01

    A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980-2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.

  11. Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns

    NASA Astrophysics Data System (ADS)

    Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah

    2018-05-01

    Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.

  12. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.

  13. Modeling the MJO rain rates using parameterized large scale dynamics: vertical structure, radiation, and horizontal advection of dry air

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sobel, A. H.; Nie, J.

    2015-12-01

    Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.

  14. Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang; Magnusdottir, Gudrun

    2017-05-01

    Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.

  15. Using Large-Scale Precipitation to Validate AMSR-E Satellite Soil Moisture Estimates by Means of Mutual Information

    NASA Astrophysics Data System (ADS)

    Tuttle, S. E.; Salvucci, G.

    2013-12-01

    Validation of remotely sensed soil moisture is complicated by the difference in scale between remote sensing footprints and traditional ground-based soil moisture measurements. To address this issue, a new method was developed to evaluate the useful information content of remotely sensed soil moisture data using only large-scale precipitation (i.e. without modeling). Under statistically stationary conditions [Salvucci, 2001], precipitation conditionally averaged according to soil moisture (denoted E[P|S]) results in a sigmoidal shape in a manner that reflects the dependence of drainage, runoff, and evapotranspiration on soil moisture. However, errors in satellite measurement and algorithmic conversion of satellite data to soil moisture can degrade this relationship. Thus, remotely sensed soil moisture products can be assessed by the degree to which the natural sigmoidal relationship is preserved. The metric of mutual information was used as an error-dependent measure of the strength of the sigmoidal relationship, calculated from a two-dimensional histogram of soil moisture versus precipitation estimated using Gaussian mixture models. Three AMSR-E algorithms (VUA-NASA [Owe et al., 2001], NASA [Njoku et al., 2003], and U. Montana [Jones & Kimball, 2010]) were evaluated with the method for a nine-year period (2002-2011) over the contiguous United States at ¼° latitude-longitude resolution, using precipitation from the North American Land Data Assimilation System (NLDAS). The U. Montana product resulted in the highest mutual information for 57% of the region, followed by VUA-NASA and NASA at 40% and 3%, respectively. Areas where the U. Montana product yielded the maximum mutual information generally coincided with low vegetation biomass and flatter terrain, while the VUA-NASA product contained more useful information in more rugged and highly vegetated areas. Additionally, E[P|S] curves resulting from the Gaussian mixture method can potentially be decomposed into their conditional evapotranspiration and drainage plus runoff components using matrix factorization methods, allowing for time-averaged mapping of these fluxes over the study area.

  16. Multi-profile analysis of soil moisture within the U.S. Climate Reference Network

    USDA-ARS?s Scientific Manuscript database

    Soil moisture estimates are crucial for hydrologic modeling and agricultural decision-support efforts. These measurements are also pivotal for long-term inquiries regarding the impacts of climate change and the resulting droughts over large spatial and temporal scales. However, it has only been t...

  17. Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.

    2000-01-01

    Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.

  18. Quantifying Seasonal Dynamic Water Storage in a Fractured Bedrock Vadose Zone With Borehole Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Schmidt, L.; Minton, B.; Soto-Kerans, N.; Rempe, D.; Heidari, Z.

    2017-12-01

    In many uplands landscapes, water is transiently stored in the weathered and fractured bedrock that underlies soils. The timing and spatial pattern of this "rock moisture" has strong implications for ecological and biogeochemical processes that influence global cycling of water and solutes. However, available technologies for direct monitoring of rock moisture are limited. Here, we quantify temporal and spatial changes in rock moisture at the field scale across thick (up to 20 m) fractured vadose zone profiles using a novel narrow diameter borehole nuclear magnetic resonance system (BNMR). Successive BNMR surveys were performed using the Vista Clara Inc. Dart system in a network of boreholes within two steep, intensively hydrologically monitored hillslopes associated with the Eel River Critical Zone Observatory (ERCZO) in Northern California. BNMR data showed agreement with estimates of the temporal and spatial pattern of rock moisture depletion over the dry season via downhole neutron and gamma density surveys, as well as permanently installed continuous time domain reflectometry. Observable shifts in the BNMR-derived T2 distribution over time provide a direct measure of changes in the amount of water held within different pore sizes (large vs. small) in fractured rock. Analysis of both BNMR and laboratory-scale NMR (using a 2MHz benchtop NMR spectrometer) measurements of ERCZO core samples at variable saturation suggest that rock moisture changes associated with summer depletion occur within both large (fracture) and small (matrix) pore sizes. Collectively, our multi-method field- and laboratory- scale measurements highlight the potential for BNMR to improve quantification of rock moisture storage for better understanding of the biogeochemical and ecohydrological implications of rock moisture circulation in the Critical Zone.

  19. Prediction of near-surface soil moisture at large scale by digital terrain modeling and neural networks.

    PubMed

    Lavado Contador, J F; Maneta, M; Schnabel, S

    2006-10-01

    The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.

  20. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  1. Interactive initialization of heat flux parameters for numerical models using satellite temperature measurements. [Kansas and Indiana

    NASA Technical Reports Server (NTRS)

    Carlson, T. N. (Principal Investigator)

    1982-01-01

    A method for obtaining patterns of moisture availability (and net evaporation) from satellite infrared measurements employs Carlson's boundary layer model and a variety of image processing routines executed by a minicomputer. To test the method with regard to regional scale moisture analyses, two case studies were chosen because of the availability of HCMM data and because of the presence of a large horizontal gradient in antecedent precipitation and crp moisture index. Results show some correlation in both cases between antecedent precipitation and derived moisture availability. Apparently, regional-scale moisture availability patterns can be determined with some degree of fidelity but the values themselves may be useful only in the relative sense and significant to within plus or minus one category of dryness over a range of 4 or 5 categories between absolutely dry and field saturation. Preliminary results suggest that the derived moisture values correlate best with longer-term precipitation totals, suggesting that the infrared temperatures respond more sensitively to a relatively deep substrate layer.

  2. What water isotopes tell us about water cycle responses to climate change

    NASA Astrophysics Data System (ADS)

    Raudzens Bailey, A.; Singh, H. A.; Nusbaumer, J. M.; Dee, S.; Blossey, P. N.; Posmentier, E. S.

    2017-12-01

    The water cycle is expected to respond strongly to rising global temperatures. Models predict regional imbalances in evaporation and precipitation will intensify, resulting in a slowing of the large-scale circulation. This slowing will extend the moisture length scale by increasing the amount of time water resides in the atmosphere. However, verifying these changes observationally is challenging. Isotope ratios in water vapor and precipitation represent an integrated record of moisture's journey from evaporative source to precipitation sink. Consequently, they provide a unique opportunity to identify changes in moisture length scale associated with shifts in regional hydrologic balance. Leveraging satellite retrievals, box models, climate simulations, and in situ data, this presentation demonstrates how water isotope ratios can be used to estimate water cycle changes over the historical period and into the future. These changes are closely linked to variations in the divergence of atmospheric moisture fluxes, which result from variations in specific humidity, wind direction, and wind speed. This presentation highlights the extent to which isotopic measurements allow us to track changes in the dynamic, or wind-driven, component of moisture transport and to investigate whether remote moisture contributions are becoming increasingly important in augmenting local precipitation.

  3. Calibration of Noah soil hydraulic property parameters using surface soil moisture from SMOS and basin-wide in situ observations

    USDA-ARS?s Scientific Manuscript database

    Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....

  4. A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status.

    PubMed

    Milne, Stephen D; Seoudi, Ihab; Al Hamad, Hanadi; Talal, Talal K; Anoop, Anzila A; Allahverdi, Niloofar; Zakaria, Zain; Menzies, Robert; Connolly, Patricia

    2016-12-01

    Wound moisture is known to be a key parameter to ensure optimum healing conditions in wound care. This study tests the moisture content of wounds in normal practice in order to observe the moisture condition of the wound at the point of dressing change. This study is also the first large-scale observational study that investigates wound moisture status at dressing change. The WoundSense sensor is a commercially available moisture sensor which sits directly on the wound in order to find the moisture status of the wound without disturbing or removing the dressing. The results show that of the 588 dressing changes recorded, 44·9% were made when the moisture reading was in the optimum moisture zone. Of the 30 patients recruited for this study, 11 patients had an optimum moisture reading for at least 50% of the measurements before dressing change. These results suggest that a large number of unnecessary dressing changes are being made. This is a significant finding of the study as it suggests that the protocols currently followed can be modified to allow fewer dressing changes and less disturbance of the healing wound bed. © 2015 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Lessons Learned From Large-Scale Evapotranspiration and Root Zone Soil Moisture Mapping Using Ground Measurements (meteorological, LAS, EC) and Remote Sensing (METRIC)

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Allen, R. G.; Myint, S. W.; Ogden, F. L.

    2015-12-01

    Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.

  6. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: Insight from a cross-site study

    USDA-ARS?s Scientific Manuscript database

    Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. Responses of communities of mites and nematodes to changes in moisture availability are not well known, yet these organisms play ...

  7. Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.

  8. Large scale meteorological patterns and moisture sources during precipitation extremes over South Asia

    NASA Astrophysics Data System (ADS)

    Mehmood, S.; Ashfaq, M.; Evans, K. J.; Black, R. X.; Hsu, H. H.

    2017-12-01

    Extreme precipitation during summer season has shown an increasing trend across South Asia in recent decades, causing an exponential increase in weather related losses. Here we combine a cluster analyses technique (Agglomerative Hierarchical Clustering) with a Lagrangian based moisture analyses technique to investigate potential commonalities in the characteristics of the large scale meteorological patterns (LSMP) and moisture anomalies associated with the observed extreme precipitation events, and their representation in the Department of Energy model ACME. Using precipitation observations from the Indian Meteorological Department (IMD) and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE), and atmospheric variables from Era-Interim Reanalysis, we first identify LSMP both in upper and lower troposphere that are responsible for wide spread precipitation extreme events during 1980-2015 period. For each of the selected extreme event, we perform moisture source analyses to identify major evaporative sources that sustain anomalous moisture supply during the course of the event, with a particular focus on local terrestrial moisture recycling. Further, we perform similar analyses on two sets of five-member ensemble of ACME model (1-degree and ¼ degree) to investigate the ability of ACME model in simulating precipitation extremes associated with each of the LSMP patterns and associated anomalous moisture sourcing from each of the terrestrial and oceanic evaporative region. Comparison of low and high-resolution model configurations provides insight about the influence of horizontal grid spacing in the simulation of extreme precipitation and the governing mechanisms.

  9. Impact of Extensive Urbanization on Summertime Rainfall in the Beijing Region and the Role of Local Precipitation Recycling

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei

    2018-04-01

    In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.

  10. Scaling an in situ network for high resolution modeling during SMAPVEX15

    USDA-ARS?s Scientific Manuscript database

    Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in si...

  11. Effective control parameters in a deep convection scheme for improved simulation of the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Seo, Kyong-Hwan

    2017-06-01

    This work seeks to find the most effective parameters in a deep convection scheme (relaxed Arakawa-Schubert scheme) of the National Centers of Environmental Prediction Climate Forecast System model for improved simulation of the Madden-Julian Oscillation (MJO). A suite of sensitivity experiments are performed by changing physical components such as the relaxation parameter of mass flux for adjustment of the environment, the evaporation rate from large-scale precipitation, the moisture trigger threshold using relative humidity of the boundary layer, and the fraction of re-evaporation of convective (subgrid-scale) rainfall. Among them, the last two parameters are found to produce a significant improvement. Increasing the strength of these two parameters reduces light rainfall that inhibits complete formation of the tropical convective system or supplies more moisture that help increase a potential energy to large-scale environment in the lower troposphere (especially at 700 hPa), leading to moisture preconditioning favorable for further development and eastward propagation of the MJO. In a more humid environment, more organized MJO structure (i.e., space-time spectral signal, eastward propagation, and tilted vertical structure) is produced.

  12. Assimilation of Passive and Active Microwave Soil Moisture Retrievals

    NASA Technical Reports Server (NTRS)

    Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.

    2012-01-01

    Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.

  13. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    NASA Astrophysics Data System (ADS)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  14. Investigation of Hydrological Response of Three Identical Artificial Hillslopes at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Matos, K.; Alves Meira Neto, A.; Troch, P. A. A.; Volkmann, T.

    2017-12-01

    Hydrological processes at the hillslope scale are complex and heterogeneous, but monitoring hillslopes with a large number of sensors or replicate experimental designs is rarely feasible. The Landscape Evolution Observatory (LEO) at Biosphere 2 consists of three replicated, large (330 m2) artificial hillslopes (East, Center and West) packed with 1-m depth of initially homogeneous, basaltic soil. Each landscape contains a spatially dense network of sensors capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture content and water potential, as well as the hillslope-integrated water balance components. A sophisticated irrigation system allows performing controlled forcing experiments. The three hillslopes are thought to be nearly identical, however recent data showed significant differences in discharge and storage behavior. A 45-day periodic-steady-state tracer experiment was conducted in November and December of 2016, where a 3.5-day long, identical irrigation sequence was repeated 15 times. Each sequence's rainfall, runoff, and storage dynamics were recorded, and distributed moisture characteristics were derived using paired moisture content and matric potential data from 496 positions in each hillslope. In order to understand why the three hillslopes behave hydrologically different, we analyzed soil water retention characteristics at various scales ranging from individually paired moisture and matric potential to whole-hillslope soil water retention characteristics. The results confirm the distinct hydrological behavior between the three hillslopes. The East and West hillslopes behave more similar with respect to the release of water. In contrast, the East and Center hillslopes are more similar with respect to their storage behavior. The differences in hillslope behavior arising from three identically built hillslopes are a surprising and beneficial opportunity to explore how differences in small-scale heterogeneity can impact hydrological dynamics at the hillslope scale.

  15. Spatial variation and driving factors of soil moisture at multi-scales: a case study in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.

    2017-12-01

    Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration

  16. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    In recent years, increasing attention has been given to cloud resolving models (CRMs or cloud ensemble models-CEMs) for their ability to simulate the radiative-convective system, which plays a significant role in determining the regional heat and moisture budgets in the Tropics. The growing popularity of CRM usage can be credited to its inclusion of crucial and physically relatively realistic features such as explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit cloud-radiation interaction. On the other hand, impacts of the environmental conditions (for example, the large-scale wind fields, heat and moisture advections as well as sea surface temperature) on the convective system can also be plausibly investigated using the CRMs with imposed explicit forcing. In this paper, by basically using a Goddard Cumulus Ensemble (GCE) model, three different studies on tropical convective systems are briefly presented. Each of these studies serves a different goal as well as uses a different approach. In the first study, which uses more of an idealized approach, the respective impacts of the large-scale horizontal wind shear and surface fluxes on the modeled tropical quasi-equilibrium states of temperature and water vapor are examined. In this 2-D study, the imposed large-scale horizontal wind shear is ideally either nudged (wind shear maintained strong) or mixed (wind shear weakened), while the minimum surface wind speed used for computing surface fluxes varies among various numerical experiments. For the second study, a handful of real tropical episodes (TRMM Kwajalein Experiment - KWAJEX, 1999; TRMM South China Sea Monsoon Experiment - SCSMEX, 1998) have been simulated such that several major atmospheric characteristics such as the rainfall amount and its associated stratiform contribution, the Qlheat and Q2/moisture budgets are investigated. In this study, the observed large-scale heat and moisture advections are continuously applied to the 2-D model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  17. Northern Hemisphere moisture variability during the Last Glacial period

    NASA Astrophysics Data System (ADS)

    Asmerom, Y.; Polyak, V. J.; Lachniet, M. S.

    2013-12-01

    It was previously shown that large oxygen isotope variability related to changing moisture sources in the southwestern United States (SW) match the Greenland ice core temperature record. The variations were attributed to changes in the ratio of winter to summer precipitation delivered to the SW, with lighter winter δ18O values compared to summer monsoon rainfall, due to meridonial shifts in the position of the polar jet stream, which directs winter storm tracks. Cold stadial δ18O excursions are associated with strongly negative values, while interstadials have higher than average δ18O values. Although these data documented moisture source variability to the SW, the question of effective moisture variability remains unanswered. Here we present new high-resolution δ18O and δ13C isotopic data from a precisely dated speleothem, FS-AH1, from Fort Stanton Cave, New Mexico USA. The sample grew continuously between 47.6 and 11.1 kyr. The new chronology is more precise than previous work due to high sample growth rate, new gains in efficiency provided by our upgraded Neptune MC-ICPMS and new more precise determinations of the half-lives of 230Th and 234U. The FS-AH1 δ18O and the Greenland δ18O data (on the GICC05 time scale) show a remarkable match, both with respect to stadials/interstadial amplitudes and variability, and in the overall long-term trend. Our interpretation of the δ18O data remains the same, an indicator of moisture source variability. The δ18O and δ13C isotopic data show no correlation (R2 <0.0001) because the δ18O primarily reflects differences in moisture sources and temperature (at least during large-scale excursions), while δ13C variability reflects the amount of effective moisture in the soil zone overlying the cave, with low δ13C attributed to high soil productivity, high effective moisture, and wet conditions. The stadial and interstadial events are expressed mutely, if at all, in the δ13C data, while the secular variation follows the change in Northern Hemisphere summer insolation (insolation), similar to other Northern Hemisphere data, such as the strength of the East Asian summer monsoon as recorded in the Hulu speleothem, although the match to the East Asian monsoon is inverse. The much diminished expression of stadials and interstadials and secular variations in the effective moisture proxy data that match insolation seem to be hemispherical in scale. In humid settings, such as east Asia monsoon regions, warm temperatures lead to northward shift of the ITCZ and increase in the strength of the Asian monsoon, while in the desert SW any increase in the strength in the North American monsoon is counterbalanced by decrease in winter moisture due to the northward shift of the polar jet stream and more importantly, the onset of more evaporative conditions. In contrast to the large and rapid shifts seen in the Greenland ice core data and the apparent shift in position in air masses, as indicated by our δ18O data, large-scale changes in moisture regimes in the Northern Hemisphere seem to be driven by changes in insolation. Locations that are sensitive to small changes in atmospheric pressure and/or sea surface temperature gradients may be the exception.

  18. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture conditions. CAD is used both for controlled drainage practices and for sub-irrigation. The DSS has a core of the plot-scale SWAP model (soil-water-atmosphere-plant), extended with a process-based module for the simulation of oxygen stress for plant roots. This module involves macro-scale and micro-scale gas diffusion, as well as the plant physiological demand of oxygen, to simulate transpiration reduction due to limited oxygen availability. Continuous measurements of soil moisture content, groundwater level, and drainage level are used to calibrate the SWAP model each day. This leads to an optimal reproduction of the actual soil moisture conditions by data assimilation in the first step in the DSS process. During the next step, near-future (+10 days) soil moisture conditions and drought and oxygen stress are predicted using weather forecasts. Finally, optimal drainage levels to minimize stress are simulated, which can be established by CAD. Linkage to a grid-based hydrological simulation model (SPHY) facilitates studying the spatial dynamics of soil moisture and associated implications for management at the regional scale. Thus, by using local-scale measurements, process-based models and weather forecasts to anticipate on near-future conditions, not only field-scale water management but also regional surface water management can be optimized both in space and time.

  19. Where did my wifi go? Measuring soil moisture using wifi signal strength

    NASA Astrophysics Data System (ADS)

    Hut, Rolf; de Jeu, Richard

    2015-04-01

    Soil moisture is tricky to measure. Currently soil moisture is measured at small footprints using probes and other field devices, or at large footprints using satellites. Promising developments in measuring soil moisture are using fiber optic cables for measurements along a line, or using cosmos rays for field scale measurements. In this demonstration we present a low cost alternative to measure soil moisture at footprints of a few square meters. We use a wifi hotspot and a wifi dongle, both mounted in a cantenna for beam forming. We aim the hotspot on a piece of soil and put the dongle in the path of the reflection. By logging the signal strength of the wifi netwerk, we have a proxy for soil moisture. A first proof of concept is presented.

  20. Evaluation of GE-167 Silicone Rubber (RTV) For Possible Service As A Moisture-Barrier For Certain Strain Gage Applications

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The Langley Research Center uses strain gages in a wide variety of demanding test environments. Strain gage installations, depending on the testing scenario, may see high temperatures, cryogenic temperature, moisture accumulation, mechanical abuse, or any combination of these conditions. At Langley, there is often a need to provide protection for strain gages against moisture and mechanical abuse, especially when large-scale, harsh environment testing is to be encountered. This technical memorandum discusses the evaluation of a room temperature curing silicone rubber sealant manufactured by the General Electric Company for consideration as a moisture-barrier for certain strain gage installations.

  1. A wireless soil moisture sensor powered by solar energy.

    PubMed

    Jiang, Mingliang; Lv, Mouchao; Deng, Zhong; Zhai, Guoliang

    2017-01-01

    In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  2. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    NASA Astrophysics Data System (ADS)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.

  3. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  4. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jinlei; Wen, Jun; Tian, Hui

    2016-02-01

    Soil moisture plays an increasingly important role in the cycle of energy-water exchange, climate change, and hydrologic processes. It is usually measured at a point site, but regional soil moisture is essential for validating remote sensing products and numerical modeling results. In the study reported in this paper, the minimal number of required sites (NRS) for establishing a research observational network and the representative single sites for regional soil moisture estimation are discussed using the soil moisture data derived from the ;Maqu soil moisture observational network; (101°40‧-102°40‧E, 33°30‧-35°45‧N), which is supported by Chinese Academy of Science. Furthermore, the best up-scaling method suitable for this network has been studied by evaluating four commonly used up-scaling methods. The results showed that (1) Under a given accuracy requirement R ⩾ 0.99, RMSD ⩽ 0.02 m3/m3, NRS at both 5 and 10 cm depth is 10. (2) Representativeness of the sites has been validated by time stability analysis (TSA), time sliding correlation analysis (TSCA) and optimal combination of sites (OCS). NST01 is the most representative site at 5 cm depth for the first two methods; NST07 and NST02 are the most representative sites at 10 cm depth. The optimum combination sites at 5 cm depth are NST01, NST02, and NST07. NST05, NST08, and NST13 are the best group at 10 cm depth. (3) Linear fitting, compared with other three methods, is the best up-scaling method for all types of representative sites obtained above, and linear regression equations between a single site and regional soil moisture are established hereafter. ;Single site; obtained by OCS has the greatest up-scaling effect, and TSCA takes the second place. (4) Linear fitting equations show good practicability in estimating the variation of regional soil moisture from July 3, 2013 to July 3, 2014, when a large number of observed soil moisture data are lost.

  5. Vegetation Response to Rainfall and Soil Moisture Variability in Botswana

    DTIC Science & Technology

    1991-01-01

    Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.

  6. Can biochar be used as a seed coating to improve native plant germination and growth in arid conditions?

    Treesearch

    Mary I. Williams; R. Kasten Dumroese; Deborah S. Page-Dumroese; Stuart P. Hardegree

    2016-01-01

    Direct seeding is a common large-scale restoration practice for revegetating arid and semi-arid lands, but success can be limited by moisture and temperature. Seed coating technologies that use biochar may have the potential to overcome moisture and temperature limitations on native plant germination and growth. Biochar is a popular agronomic tool for improving soil...

  7. Can the normalized soil moisture index improve the prediction of soil organic carbon based on hyperspectral remote sensing data?

    NASA Astrophysics Data System (ADS)

    van Wesemael, Bas; Nocita, Marco

    2016-04-01

    One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.

  8. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  9. Trends in soil moisture and real evapotranspiration in Douro River for the period 1980-2010

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the evolution of different hydrological variables, such as soil moisture and real evapotranspiration, for the last 30 years, in the Douro Basin, the most extensive basin in the Iberian Peninsula. The different components of the real evaporation, connected to the soil moisture content, can be important when analyzing the intensity of droughts and heat waves, and particularly relevant for the study of the climate change impacts. The real evapotranspiration and soil moisture data are provided by simulations obtained using the Variable Infiltration Capacity (VIC) hydrological model. This model is a large-scale hydrologic model and allows estimates of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cells and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset are used as input variables for VIC model. The simulations have a spatial resolution of about 9 km, and the analysis is carried out on a seasonal time-scale. Additionally, we compare these results with those obtained from a dynamical downscaling driven by ERA-Interim data using the Weather Research and Forecasting (WRF) model, with the same spatial resolution. The results obtained from Spain02 data show a decrease in soil moisture at different parts of the basin during spring and summer, meanwhile soil moisture seems to be increased for autumn. No significant changes are found for real evapotranspiration. Keywords: real evapotranspiration, soil moisture, Douro Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  10. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.

    2017-04-01

    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land surface models forced by observed meteorology. This approach provides insight into a fundamental process that affects predictions on multiple time scales, and which has an important impact for society.

  11. Coupling of Clouds and Moisture Transport in Extratropical Cyclonic Systems and the Associated Atmospheric Heating (Q1) and Moisture Sink (Q2)

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Wu, L.; Fetzer, E. J.

    2017-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit various patterns in atmospheric moisture transport and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric moisture transport diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phase) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Atmospheric diabatic heating rates (Q1) and moisture sinks (Q2) are also inferred from the reanalysis winds, temperature, and specific humidity. Across the warm fronts, elevated convection in the pre-warm front regime is associated with frequent stratiform clouds with middle-to-upper tropospheric heating and lower tropospheric cooling, while upright convection in the warm front regime has frequent deep convective clouds with free-tropospheric heating and strong boundary layer cooling. Thinner stratiform and cirrus clouds are evident in the warm sector with top-heavy profiles of rising motion and diabatic heating. Moisture advection exhibits a sharp gradient across the cold fronts, with convection in the pre-cold front regime highly dependent on the stage of the ETC development. Heating in the boundary layers of the cold sector, polar-air intrusion, and pre-warm sector regimes depends on the amount of low-level clouds, which is again modulated by the stage of the ETC development.

  12. Improving irrigation and groundwater parameterizations in the Community Land Model (CLM) using in-situ observations and satellite data

    NASA Astrophysics Data System (ADS)

    Felfelani, F.; Pokhrel, Y. N.

    2017-12-01

    In this study, we use in-situ observations and satellite data of soil moisture and groundwater to improve irrigation and groundwater parameterizations in the version 4.5 of the Community Land Model (CLM). The irrigation application trigger, which is based on the soil moisture deficit mechanism, is enhanced by integrating soil moisture observations and the data from the Soil Moisture Active Passive (SMAP) mission which is available since 2015. Further, we incorporate different irrigation application mechanisms based on schemes used in various other land surface models (LSMs) and carry out a sensitivity analysis using point simulations at two different irrigated sites in Mead, Nebraska where data from the AmeriFlux observational network are available. We then conduct regional simulations over the entire High Plains region and evaluate model results with the available irrigation water use data at the county-scale. Finally, we present results of groundwater simulations by implementing a simple pumping scheme based on our previous studies. Results from the implementation of current irrigation parameterization used in various LSMs show relatively large difference in vertical soil moisture content profile (e.g., 0.2 mm3/mm3) at point scale which is mostly decreased when averaged over relatively large regions (e.g., 0.04 mm3/mm3 in the High Plains region). It is found that original irrigation module in CLM 4.5 tends to overestimate the soil moisture content compared to both point observations and SMAP, and the results from the improved scheme linked with the groundwater pumping scheme show better agreement with the observations.

  13. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.

    2016-01-01

    Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.

  14. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.

    2005-10-01

    This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be driven by the dynamics of the CBL. Both lidar observations and LES evidence that dry downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature and vertical velocity. In particular, intrusions of drier free-troposphere air from above the growing CBL impose a marked negative skewness on the water-vapour distribution within it, both as observed and in the simulation.

  15. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    NASA Astrophysics Data System (ADS)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  16. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  17. Distant and Regional Atmospheric Circulation Influences Governing Integrated Water Vapor Transport and the Occurrence of Extreme Precipitation Events

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.

    2017-12-01

    This presentation will show how the evolution of the large-scale and regional-scale atmospheric circulation contributes to the occurrence of extreme precipitation events (EPEs). An EPE requires that tropospheric moisture flux convergence (MFC) and the associated removal of hydrometeors be balanced by moisture replenishment via integrated (water) vapor transport (IVT) to continuously replenish condensed moisture. Moisture source regions may be distant or regional. Distant moisture sources may require the interaction of lower- and upper-level jet streams with a pre-existing mobile atmospheric disturbance to produce sufficient lift to condense moisture. Pre-existing regional moisture sources may require frontal lifting the presence of MFC to condense moisture. In cases of long-range IVT, such as moisture from a western North Pacific typhoon being drawn poleward along an atmospheric river (AR) toward the west coast of North America, moisture may be transported 1000s of kilometers along a low-level jet before a combination of dynamic and orographic lift results in an EPE. Alternatively, in the case of a typical summer warm and humid air mass over the continental United States, unused moisture may exist for several days in this air mass before sufficient MFC associated with a thermally direct mesoscale frontal circulation can concentrate and condense the moisture. In this case, there may be no long-range IVT via ARs. Instead, the atmospheric circulations may evolve to produce sustained MFC associated with mesoscale frontal circulations, especially in the presence of complex terrain, to produce an EPE. During this presentation, examples of EPEs associated with long-range IVT and distant MFC versus EPEs associated with regional MFC and mesoscale frontal circulations will be illustrated.

  18. Confronting weather and climate models with observational data from soil moisture networks over the United States

    PubMed Central

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal D.; Balsamo, Gianpaolo; Lawrence, David M.

    2018-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison. PMID:29645013

  19. Confronting Weather and Climate Models with Observational Data from Soil Moisture Networks over the United States

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean; hide

    2016-01-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  20. Confronting weather and climate models with observational data from soil moisture networks over the United States.

    PubMed

    Dirmeyer, Paul A; Wu, Jiexia; Norton, Holly E; Dorigo, Wouter A; Quiring, Steven M; Ford, Trenton W; Santanello, Joseph A; Bosilovich, Michael G; Ek, Michael B; Koster, Randal D; Balsamo, Gianpaolo; Lawrence, David M

    2016-04-01

    Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

  1. Precipitation Efficiency in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.

  2. Revisiting Gill's Circulation. Dynamic Response to Diabatic Heating of Different Horizontal Extents

    NASA Astrophysics Data System (ADS)

    Reboredo, B.; Bellon, G.

    2017-12-01

    The horizontal extent of diabatic heating associated with the MJO is thought to be crucial to its development, and the inability of GCMs to simulate the spatial, horizontal organization of clouds is considered a leading hypothesis to explain their limited capacity to simulate MJO events. This prevents the MJO large-circulation response from developing and feeding back on the development of clouds. We apply mid-tropospheric heating of different size in simple linear and non-linear models of the tropical atmosphere following Gill's seminal work on heat-induced tropical circulations. Results show that there is a scale for which the characteristic circulation {Γ c} for the vertical advection of moisture to produce the latent heat mean {Q} gives a rough estimate of the real world MJO scale. Overturning circulation flow rates above {Γ c} account for a circulation that transports more moisture than necessary to be maintained, and below {Γ c}, circulation would not transport enough moisture to maintain circulation. This dynamic scale might constrain the size of the spatially-organised convection necessary to the development of an MJO event. However, other effects are expected to modulate this scale, such as vertical advection of moisture anomalies, horizontal advection, evaporation, radiative heating, and sensible heat fluxes.

  3. Coupled Land-Atmosphere Dynamics Govern Long Duration Floods: A Pilot Study in Missouri River Basin Using a Bayesian Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Najibi, N.; Lu, M.; Devineni, N.

    2017-12-01

    Long duration floods cause substantial damages and prolonged interruptions to water resource facilities and critical infrastructure. We present a novel generalized statistical and physical based model for flood duration with a deeper understanding of dynamically coupled nexus of the land surface wetness, effective atmospheric circulation and moisture transport/release. We applied the model on large reservoirs in the Missouri River Basin. The results indicate that the flood duration is not only a function of available moisture in the air, but also the antecedent condition of the blocking system of atmospheric pressure, resulting in enhanced moisture convergence, as well as the effectiveness of moisture condensation process leading to release. Quantifying these dynamics with a two-layer climate informed Bayesian multilevel model, we explain more than 80% variations in flood duration. The model considers the complex interaction between moisture transport, synoptic-to-large-scale atmospheric circulation pattern, and the antecedent wetness condition in the basin. Our findings suggest that synergy between a large low-pressure blocking system and a higher rate of divergent wind often triggers a long duration flood, and the prerequisite for moisture supply to trigger such event is moderate, which is more associated with magnitude than duration. In turn, this condition causes an extremely long duration flood if the surface wetness rate advancing to the flood event was already increased.

  4. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array

    DOE PAGES

    Xie, Shaocheng; Zhang, Yunyan; Giangrande, Scott E.; ...

    2014-10-27

    This study attempts to understand interactions between midlatitude convective systems and their environments through a heat and moisture budget analysis using the sounding data collected from the Midlatitude Continental Convective Clouds Experiment (MC3E) in central Oklahoma. Distinct large-scale structures and diabatic heating and drying profiles are presented for cases of weaker and elevated thunderstorms as well as intense squall line and supercell thunderstorm events during the campaign. The elevated cell events were nocturnal convective systems occurring in an environment having low convective available potential energy (CAPE) and a very dry boundary layer. In contrast, deeper convective events happened during themore » morning into early afternoon within an environment associated with large CAPE and a near-saturated boundary layer. As the systems reached maturity, the diagnosed diabatic heating in the latter deep convective cases was much stronger and of greater vertical extent than the former. Both groups showed considerable diabatic cooling in the lower troposphere, associated with the evaporation of precipitation and low-level clouds. The horizontal advection of moisture also played a dominant role in moistening the lower troposphere, particularly for the deeper convective events, wherein the near surface southeasterly flow allows persistent low-level moisture return from the Gulf of Mexico to support convection. The moisture convergence often was present before these systems develop, suggesting a strong correlation between the large-scale moisture convergence and convection. As a result, sensitivity tests indicated that the uncertainty in the surface precipitation and the size of analysis domain mainly affected the magnitude of these analyzed fields rather than their vertical structures.« less

  5. Smap: A Hydrologist Goes Crazy with a New High-Quality Dataset

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2018-01-01

    By providing global measurements of near-surface soil moisture (down to about 5 cm) with unprecedented accuracy, the Soil Moisture Active/Passive (SMAP) satellite mission has opened the door to new and (in my opinion) exciting hydrological science. In this seminar, I present the results of a recent series of analyses performed with SMAP soil moisture data, covering a wide range of topics: (a) the characterization of the dynamics of near-surface soil moisture, with implications for forecasting soil moisture days into the future; (b) the multi-faceted character of the SMAP data, in the sense that different, established analysis approaches can extract information from the data that is largely (and perhaps unexpectedly) complementary; and (c) the interpretation of the data in the context of large-scale water fluxes. This final analysis is particularly exciting to me because it shows that, once the relevant algorithms are calibrated, precipitation and streamflow rates in hydrological basins can be estimated from the SMAP data alone - a reflection of the fact that the near-surface soil is a critical gateway between the atmospheric and subsurface branches of the hydrological cycle.

  6. Patterns of soil community structure differ by scale and ecosystem type along a large-scale precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...

  7. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources.

    PubMed

    Mika, K B; Imamura, G; Chang, C; Conway, V; Fernandez, G; Griffith, J F; Kampalath, R A; Lee, C M; Lin, C-C; Moreno, R; Thompson, S; Whitman, R L; Jay, J A

    2009-07-01

    Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0.23 and -1.02 per day, and for enterococci between -0.5 and -1.0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent.

  8. An Analysis of Moisture Fluxes into the Gulf of California

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.; Schubert, Siegfried D.; Suarez, Max J.; Huang, Norden E.

    2009-01-01

    This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980-2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3-8 day) time scales, the Madden-Julian oscillation (MJO) at intraseasonal time scales (20-90 day), and intermediate (10-15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea-western Atlantic Ocean. In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10-15 day) time-scale systems have zonal wavelengths roughly twice that of the easterly waves, and their initiation appears to be linked to an extratropical U.S. East Coast ridge and associated northeasterly winds that extend well into the Caribbean Sea during their development phase. The short (3-8 day) and, to a lesser extent, the intermediate (10-15 day) time-scale fluxes tend to be enhanced when the convectively active phase of the MJO is situated over the Americas.

  9. A Geosynchronous Lidar System for Atmospheric Winds and Moisture Measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    2001-01-01

    An observing system comprised of two lidars in geosychronous orbit would enable the synoptic and meso-scale measurement of atmospheric winds and moisture both of which are key first-order variables of the Earth's weather equation. Simultaneous measurement of these parameters at fast revisit rates promises large advancements in our weather prediction skills. Such capabilities would be unprecedented and a) yield greatly improved and finer resolution initial conditions for models, b) make existing costly and cumbersome measurement approaches obsolete, and c) obviate the use of numerical techniques needed to correct data obtained using present observing systems. Additionally, simultaneous synoptic wind and moisture observations would lead to improvements in model parameterizations, and in our knowledge of small-scale weather processes. Technology and science data product assessments are ongoing. Results will be presented during the conference.

  10. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  11. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    NASA Astrophysics Data System (ADS)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.

  12. A study of the influence of soil moisture on future precipitation

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Sud, Y. C.

    1983-01-01

    Forty years of precipitation and surface temperature data observed over 261 Local Climatic Data (LCD) stations in the Continental United States was utilized in a ground hydrology model to yield soil moisture time series at each station. A month-by-month soil moisture dataset was constructed for each year. The monthly precipitation was correlated with antecedent monthly precipitation, soil moisture and vapotranspiration separately. The maximum positive correlation is found to be in the drought prone western Great Plains region during the latter part of summer. There is also some negative correlation in coastal regions. The correlations between soil moisture and precipitation particularly in the latter part of summer, suggest that large scale droughts over extended periods may be partially maintained by the feedback influence of soil moisture on rainfall. In many other regions the lack of positive correlation shows that there is no simple answer such as higher land-surface evapotranspiration leads to more precipitation, and points out the complexity of the influence of soil moisture on the ensuring precipitation.

  13. Review: Moisture loading—the hidden information in groundwater observation well records

    NASA Astrophysics Data System (ADS)

    van der Kamp, Garth; Schmidt, Randy

    2017-12-01

    Changes of total moisture mass above an aquifer such as snow accumulation, soil moisture, and storage at the water table, represent changes of mechanical load acting on the aquifer. The resulting moisture-loading effects occur in all observation well records for confined aquifers. Deep observation wells therefore act as large-scale geological weighing lysimeters, referred to as "geolysimeters". Barometric pressure effects on groundwater levels are a similar response to surface loading and are familiar to every hydrogeologist dealing with the "barometric efficiency" of observation wells. Moisture-loading effects are small and generally not recognized because they are obscured by hydraulic head fluctuations due to other causes, primarily barometric pressure changes. For semiconfined aquifers, long-term moisture-loading effects may be dissipated and obscured by transient flow through overlying aquitards. Removal of barometric and earth tide effects from observation well records allows identification of moisture loading and comparison with hydrological observations, and also comparison with the results of numerical models that can account for transient groundwater flow.

  14. The Contribution of Soil Moisture Information to Forecast Skill: Two Studies

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2010-01-01

    This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these studies.

  15. COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States

    NASA Astrophysics Data System (ADS)

    Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.

    2008-12-01

    Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.

  16. Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Reichle, R. H.

    2010-01-01

    Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

  17. Improving Assimilated Global Data Sets using TMI Rainfall and Columnar Moisture Observations

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    A global analysis that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data products contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. In this study, we show that assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM Microwave Imager (TMI) improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI rain improves clouds and radiation in areas of active convection, as well as the latent heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. The improved analysis also improves short-range forecasts in the tropics. Ensemble forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height forecasts up to 5 days. Results of this study demonstrate the potential of using high-quality space-borne rainfall and moisture observations to improve the quality of assimilated global data for climate analysis and weather forecasting applications

  18. Spatial Covariability of Temperature and Hydroclimate as a Function of Timescale During the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.

    2017-12-01

    As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.

  19. Representing soil moisture - precipitation feedbacks in the Sahel: spatial scale and parameterisation

    NASA Astrophysics Data System (ADS)

    Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.

    2013-12-01

    Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  20. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    Treesearch

    Jayne Belnap; John M. Stark; Benjamin M. Rau; Edith B. Allen; Susan Phillips

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromus occurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan...

  1. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  2. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.; Hannachi, A.

    2017-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  3. Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow

    NASA Astrophysics Data System (ADS)

    Ji, Xinye; Shen, Chaopeng; Riley, William J.

    2015-12-01

    Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.

  4. The impact of using area-averaged land surface properties —topography, vegetation condition, soil wetness—in calculations of intermediate scale (approximately 10 km 2) surface-atmosphere heat and moisture fluxes

    NASA Astrophysics Data System (ADS)

    Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.

    1997-03-01

    It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.

  5. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    NASA Astrophysics Data System (ADS)

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.

    2016-05-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.

  6. The need for enhanced initial moisture information in simulations of a complex summertime precipitation event

    NASA Technical Reports Server (NTRS)

    Waight, Kenneth T., III; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Initial simulations of the June 28, 1986 Cooperative Huntsville Meteorological Experiment case illustrate the need for mesoscale moisture information in a summertime situation in which deep convection is organized by weak large scale forcing. A methodology is presented for enhancing the initial moisture field from a combination of IR satellite imagery, surface-based cloud observations, and manually digitized radar data. The Mesoscale Atmospheric Simulation Model is utilized to simulate the events of June 28-29. This procedure insures that areas known to have precipitation at the time of initialization will be nearly saturated on the grid scale, which should decrease the time needed by the model to produce the observed Bonnie (a relatively weak hurricane that moved on shore two days before) convection. This method will also result in an initial distribution of model cloudiness (transmissivity) that is very similar to that of the IR satellite image.

  7. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  8. Land-Climate Feedbacks in Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Asharaf, Shakeel; Ahrens, Bodo

    2016-04-01

    In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.

  9. Two types of flash drought over China and their connections with sub-seasonal to seasonal soil moisture drought

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yuan, X.; Xie, Z.

    2017-12-01

    Flash drought has been receiving attention recently due to its rapid development and vast damage on crops in the growing season. Accompanied with heatwave and rainfall deficit, the soil moisture decreased rapidly in a short time and may lead to the failure of root water uptake and large-scale crops wither. There are two types of flash droughts according to the causes (Mo and Lettenmaier, 2016), i.e., heat wave flash drought and rainfall deficit flash drought. Here, based on pentad-mean surface air temperature and precipitation observations from over two thousand meteorological stations as well as soil moisture and ET estimations from three global reanalysis products, the characteristics and evolution of the two types of flash droughts over China are being explored. Heat wave flash drought is more likely to occur in humid and semi-humid areas, such as southern China, while rainfall deficit flash drought is more likely to occur in northern China. Unlike the traditional drought that persists for a few months to decades, the mean durations of both types of flash droughts are very short. We use monthly mean soil moisture to calculate sub-seasonal to seasonal (S2S) soil moisture drought, and compare its characteristics and preferred conditions such as the large-scale atmospheric circulation and oceanic anomaly for both types of flash droughts. The percentages of flash drought in different periods of S2S drought are also being explored to see the potential relationship between flash drought and S2S drought over different regions.

  10. Case studies using GOES infrared data and a planetary boundary layer model to infer regional scale variations in soil moisture. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rose, F. G.

    1983-01-01

    Modeled temperature data from a one-dimensional, time-dependent, initial value, planetary boundary layer model for 16 separate model runs with varying initial values of moisture availability are applied, by the use of a regression equation, to longwave infrared GOES satellite data to infer moisture availability over a regional area in the central U.S. This was done for several days during the summers of 1978 and 1980 where a large gradient in the antecedent precipitation index (API) represented the boundary between a drought area and a region of near normal precipitation. Correlations between satellite derived moisture availability and API were found to exist. Errors from the presence of clouds, water vapor and other spatial inhomogeneities made the use of the measurement for anything except the relative degree of moisture availability dubious.

  11. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    NASA Astrophysics Data System (ADS)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally, Bornim sunflower parameters were transferred to Schaefertal catchment for further evaluation. This study proves GANS potential to close the measurement gap between point scale and remote sensing scale; however, its calibration needs to be adapted for vegetation in cropped fields.

  12. Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China.

    PubMed

    Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo

    2015-12-01

    Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.

  13. Utilization of point soil moisture measurements for field scale soil moisture averages and variances in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key variable in understanding the hydrologic processes and energy fluxes at the land surface. In spite of new technologies for in-situ soil moisture measurements and increased availability of remotely sensed soil moisture data, scaling issues between soil moisture observations and...

  14. SoilNet - A Zigbee based soil moisture sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.

    2007-12-01

    Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25 end devices each consisting of 6 vertically arranged soil moisture sensors. The next step will be the instrumentation of two small catchments (~30 ha) with a 30 m spacing of the end devices. juelich.de/icg/icg-4/index.php?index=739

  15. Simultaneous Assimilation of AMSR-E Brightness Temperature and MODIS LST to Improve Soil Moisture with Dual Ensemble Kalman Smoother

    NASA Astrophysics Data System (ADS)

    Huang, Chunlin; Chen, Weijin; Wang, Weizhen; Gu, Juan

    2017-04-01

    Uncertainties in model parameters can easily cause systematic differences between model states and observations from ground or satellites, which significantly affect the accuracy of soil moisture estimation in data assimilation systems. In this paper, a novel soil moisture assimilation scheme is developed to simultaneously assimilate AMSR-E brightness temperature (TB) and MODIS Land Surface Temperature (LST), which can correct model bias by simultaneously updating model states and parameters with dual ensemble Kalman filter (DEnKS). The Common Land Model (CoLM) and a Q-h Radiative Transfer Model (RTM) are adopted as model operator and observation operator, respectively. The assimilation experiment is conducted in Naqu, Tibet Plateau, from May 31 to September 27, 2011. Compared with in-situ measurements, the accuracy of soil moisture estimation is tremendously improved in terms of a variety of scales. The updated soil temperature by assimilating MODIS LST as input of RTM can reduce the differences between the simulated and observed brightness temperatures to a certain degree, which helps to improve the estimation of soil moisture and model parameters. The updated parameters show large discrepancy with the default ones and the former effectively reduces the states bias of CoLM. Results demonstrate the potential of assimilating both microwave TB and MODIS LST to improve the estimation of soil moisture and related parameters. Furthermore, this study also indicates that the developed scheme is an effective soil moisture downscaling approach for coarse-scale microwave TB.

  16. Estimating Root Mean Square Errors in Remotely Sensed Soil Moisture over Continental Scale Domains

    NASA Technical Reports Server (NTRS)

    Draper, Clara S.; Reichle, Rolf; de Jeu, Richard; Naeimi, Vahid; Parinussa, Robert; Wagner, Wolfgang

    2013-01-01

    Root Mean Square Errors (RMSE) in the soil moisture anomaly time series obtained from the Advanced Scatterometer (ASCAT) and the Advanced Microwave Scanning Radiometer (AMSR-E; using the Land Parameter Retrieval Model) are estimated over a continental scale domain centered on North America, using two methods: triple colocation (RMSETC ) and error propagation through the soil moisture retrieval models (RMSEEP ). In the absence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in soil moisture units requires that it be specified relative to a selected reference data set. To avoid the complications that arise from the use of a reference, the RMSE is presented as a fraction of the time series standard deviation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively highlow errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Comparing the ASCAT and AMSR-E fRMSETC shows that both data sets have very similar accuracy across a range of land cover classes, although the AMSR-E accuracy is more directly related to vegetation cover. In general, both data sets have good skill up to moderate vegetation conditions.

  17. Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.

    2016-01-01

    Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRNS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower, and runoff flumes used to close the water balance. We found a very good agreement between the CRNS method and the distributed sensor network (root mean square error (RMSE) of 0.009 and 0.013 m3 m-3 at SRER and JER, respectively) at the hourly timescale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was also obtained in soil moisture changes estimated from the CRNS and watershed water balance methods (RMSE of 0.001 and 0.082 m3 m-3 at SRER and JER, respectively), with deviations due to bypassing of the CRNS measurement depth during large rainfall events. Once validated, the CRNS soil moisture estimates were used to investigate hydrological processes at the footprint scale at each site. Through the computation of the water balance, we showed that drier-than-average conditions at SRER promoted plant water uptake from deeper soil layers, while the wetter-than-average period at JER resulted in percolation towards deeper soils. The CRNS measurements were then used to quantify the link between evapotranspiration and soil moisture at a commensurate scale, finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US.

  18. Pilot- and bench-scale testing of faecal indicator bacteria survival in marine beach sand near point sources

    USGS Publications Warehouse

    Mika, K.B.; Imamura, G.; Chang, C.; Conway, V.; Fernandez, G.; Griffith, J.F.; Kampalath, R.A.; Lee, C.M.; Lin, C.-C.; Moreno, R.; Thompson, S.; Whitman, R.L.; Jay, J.A.

    2009-01-01

    Aim: Factors affecting faecal indicator bacteria (FIB) and pathogen survival/persistence in sand remain largely unstudied. This work elucidates how biological and physical factors affect die-off in beach sand following sewage spills. Methods and Results: Solar disinfection with mechanical mixing was pilot-tested as a disinfection procedure after a large sewage spill in Los Angeles. Effects of solar exposure, mechanical mixing, predation and/or competition, season, and moisture were tested at bench scale. First-order decay constants for Escherichia coli ranged between -0??23 and -1??02 per day, and for enterococci between -0??5 and -1??0 per day. Desiccation was a dominant factor for E. coli but not enterococci inactivation. Effects of season were investigated through a comparison of experimental results from winter, spring, and fall. Conclusions: Moisture was the dominant factor controlling E. coli inactivation kinetics. Initial microbial community and sand temperature were also important factors. Mechanical mixing, common in beach grooming, did not consistently reduce bacterial levels. Significance and Impact of the Study: Inactivation rates are mainly dependent on moisture and high sand temperature. Chlorination was an effective disinfection treatment in sand microcosms inoculated with raw influent. ?? 2009 The Society for Applied Microbiology.

  19. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    USDA-ARS?s Scientific Manuscript database

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  20. Impact of the assimilation of satellite soil moisture and LST on the hydrological cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Delogu, Fabio; Silvestro, Francesco; Rudari, Roberto; Campo, Lorenzo; Boni, Giorgio

    2014-05-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce ground based data. The aim of this work is to investigate the impacts on the performances of a distributed hydrological model (Continuum) of the assimilation of satellite-derived soil moisture products and Land Surface (LST). In this work three different soil moisture (SM) products, derived by ASCAT sensor, are used. These data are provided by the EUMETSAT's H-SAF (Satellite Application Facility on Support to Operational Hydrology and Water Management) program. The considered soil moisture products are: large scale surface soil moisture (SM OBS 1 - H07), small scale surface soil moisture (SM OBS 2 - H08) and profile index in the roots region (SM DAS 2 - H14). These data are compared with soil moisture estimated by Continuum model on the Orba catchment (800 km2), in the northern part of Italy, for the period July 2012-June 2013. Different assimilation experiments have been performed. The first experiment consists in the assimilation of the SM products by using a simple Nudging technique; the second one is the assimilation of only LST data, derived from MSG satellite, and the third is the assimilation of both SM products and LST. The benefits on the model predictions of discharge, LST and soil moisture dynamics were tested.

  1. A soil moisture index derived from thermal infrared sensor on-board geostationary satellites over Europe, Africa and Australia

    NASA Astrophysics Data System (ADS)

    Ghilain, Nicolas; Trigo, Isabel; Arboleda, Alirio; Barrios, Jose-Miguel; Batelaan, Okke; Gellens-Meulenberghs, Françoise

    2017-04-01

    Soil moisture plays a central role in the water cycle. In particular, it is a major component which variability controls the evapotranspiration process. Over the past years, there has been a large commitment of the remote sensing research community to develop satellites and retrieval algorithm for soil moisture monitoring over continents. Most of those rely on the observation in the microwave lengths, making use either of passive, active or both methods combined. However, the available derived products are given at a relatively low spatial resolution for applications at the kilometer scale over entire continents, and with a revisit time that may not be adequate for all applications, as for example agriculture. Thermal infrared observations from a combination of geostationary satellites offer a global view of continents every hour (or even at higher frequency) at a few kilometers resolution, which makes them attractive as another, and potentially complementary, source of information of surface soil moisture. In this study, the Copernicus LST and the LSA-SAF LST are used to derive soil moisture over entire continents (Europe, Africa, Australia). The derived soil moisture is validated against in-situ observations and compared to other available products from remote sensing (SMOS, ASCAT) and from numerical weather prediction (ECMWF). We will present the result of this validation, and will show how it could be used in continental scale evapotranspiration monitoring.

  2. Comparing soil moisture memory in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the latter in the deepest layer. From this we conclude that the seasonal soil moisture variations dominate the memory close to the surface but these are dampened in lower layers where the memory is mainly affected by longer term variations.

  3. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  4. Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology

    NASA Astrophysics Data System (ADS)

    Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.

    2013-04-01

    The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.

  5. Response of deep and shallow tropical maritime cumuli to large-scale processes

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.

    1976-01-01

    The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.

  6. Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal

    2011-01-01

    Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).

  7. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain)

    NASA Astrophysics Data System (ADS)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.

  8. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review

    PubMed Central

    Zhang, Dianjun; Zhou, Guoqing

    2016-01-01

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168

  9. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.

    PubMed

    Zhang, Dianjun; Zhou, Guoqing

    2016-08-17

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.

  10. A Global Survey of Oceanic Mesoscale Convective Systems in Association with the Large-scale Water Vapor and Vertical Wind Shear

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Zhan, T.

    2017-12-01

    Sizes and organizations of mesoscale scale convective systems (MCSs) usually are related to both their precipitation characteristics and anvil productivity, which are crucial but not well-represented in current climate models. This study aims to further our knowledge about MCSs by documenting the relationship between MCSs and their associated large-scale environmental moisture and wind shear in different phases of large-scale convection. A dataset derived from MODIS and AMSR-E and TRMM, CMOPH and ERA-Interim reanalysis are used. Larger and merged systems tend to occur more frequently when the large-scale convection is stronger. At the occurrence time of MCSs, the middle troposphere relative humidity (MRH, 800-400hPa) shows large increases ( 15%) from the suppressed to the active phases. Differences of the MRH across phases appear in a large area and reaches its maximum at 650 850 km away from the center of MCSs. Higher MRH is found within 650 km around the center of merged and large MCSs in all phases. This distance is much larger than the size of any single MCSs. The MRH shows larger spatial gradients around merged MCSs, indicating that moisture tends to cluster around merged systems. Similar spatial differences of MRH appear at all phases 1-3 days before the MCSs occur. In lower troposphere (1000-850hPa), differences in the relative humidity are much smaller than that of MRH. In all phases around all MCSs the oceanic boundary layer is always effectively moisturized (RH>92%). Temporally the lower troposphere relative humidity is dominated by diurnal variations. No clear difference across systems of the wind shear is found when the domain-wide upward motion is dominated. In all cases there are always large low-level (1000-750hPa) wind shear (7-9m/s) and middle level (1000-750hPa) wind shear (11-15m/s) occurring at large distances (>500km) away from MCSs. However, both the low-level and the middle level wind shear closely around the MCSs converge to moderate values of 3-4.2m/s and 5-7m/s, respectively. Indicating that weak or moderate wind shear conditions favor developments of MCSs. Small but systematical differences in wind shear across phases are found. This study provides an observational reference for both cloud resovling or climate models to diagnose and improve their representaions of organized convection.

  11. Spatial distribution of soil moisture obtained from gravimetric and TDR methods for SMOS validation, at the Polesie test site SVRT 3275, in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.

    2009-04-01

    The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).

  12. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  13. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  14. Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing

    NASA Astrophysics Data System (ADS)

    Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.

    2015-04-01

    In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a valuable method for the application on agricultural sites to assess and improve irrigation management.

  15. Assimilation of Satellite-Derived Precipitation into the Regional Atmospheric Model System (RAMS): Its Impacts on the Weather and Hydrology in the Southwest United States

    NASA Astrophysics Data System (ADS)

    Yi, H.; Gao, X.; Sorooshian, S.

    2002-05-01

    As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.

  16. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  17. Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Jin, Jonghun; Lee, Ji-Woo; Cha, Dong-Hyun; Suh, Myoung-Seok; Ahn, Joong-Bae; Hong, Song-You; Kang, Hyun-Suk; Joh, Minsu

    2017-12-01

    This study examines future changes in precipitation over Northeast Asia and Korea using five regional climate model (RCM) simulations driven by single global climate model (GCM) under two representative concentration pathway (RCP) emission scenarios. Focusing on summer season (June-July-August) when heavy rains dominate in this region, future changes in precipitation and associated variables including temperature, moisture, and winds are analyzed by comparing future conditions (2071-2100) with a present climate (1981-2005). Physical mechanisms are examined by analyzing moisture flux convergence at 850 hPa level, which is found to have a close relationship to precipitation and by assessing contribution of thermodynamic effect (TH, moisture increase due to warming) and dynamic effect (DY, atmospheric circulation change) to changes in the moisture flux convergence. Overall background warming and moistening are projected over the Northeast Asia with a good inter-RCM agreement, indicating dominant influence of the driving GCM. Also, RCMs consistently project increases in the frequency of heavy rains and the intensification of extreme precipitation over South Korea. Analysis of moisture flux convergence reveals competing impacts between TH and DY. The TH effect contributes to the overall increases in mean precipitation over Northeast Asia and in extreme precipitation over South Korea, irrespective of models and scenarios. However, DY effect is found to induce local-scale precipitation decreases over the central part of the Korean Peninsula with large inter-RCM and inter-scenario differences. Composite analysis of daily anomaly synoptic patterns indicates that extreme precipitation events are mainly associated with the southwest to northeast evolution of large-scale low-pressure system in both present and future climates.

  18. Dynamics of Extreme Floods in Southeast and South Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; Lall, U.

    2015-12-01

    Many extreme floods result from a causal chain, where exceptional rain and floods in water basins from different sizes are related to large scale, anomalous and persistent patterns in atmospheric and oceanic circulation. Organized moisture plumes from oceanic sources are often implicated. One could use an Eulerian-Lagrangian climate model to test a causal chain hypothesis, but the parameterization and testing of such a model covering convection and transport continues to be a challenge. Consequently, empirical data based studies can be useful to establish the need to formally model such events using this approach. Here we consider two flood-prone regions in Southeast and South Brazil as case studies. A hypothesis of the causal chain of extreme floods in these regions is investigated by means of observed streamflow and reanalysis data and some machine learning tools. The signatures of the organization of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the integrated moisture flux and its divergence field and storm track data, so that a better understanding of the relations between the flood magnitude and duration, strength of moisture convergence and role of regional moisture recycling or teleconnected moisture is established. Persistent patterns and anomalies in the sea surface temperature (SST) field in the Pacific and Atlantic oceans that may be associated with disturbances in the atmospheric circulation and with the flood dynamics are investigated through composite analysis. Finally, machine learning algorithms for nonlinear dimension reduction are employed to visualize and understand some of the spatio-temporal patterns of the dominated climate variables in a reduced dimensional space. Prospects for prediction are discussed.

  19. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    NASA Astrophysics Data System (ADS)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  20. Super Clausius-Clapeyron scaling of extreme hourly precipitation and its relation to large-scale atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley

    2017-04-01

    Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.

  1. Downscaling soil moisture over East Asia through multi-sensor data fusion and optimization of regression trees

    NASA Astrophysics Data System (ADS)

    Park, Seonyoung; Im, Jungho; Park, Sumin; Rhee, Jinyoung

    2017-04-01

    Soil moisture is one of the most important keys for understanding regional and global climate systems. Soil moisture is directly related to agricultural processes as well as hydrological processes because soil moisture highly influences vegetation growth and determines water supply in the agroecosystem. Accurate monitoring of the spatiotemporal pattern of soil moisture is important. Soil moisture has been generally provided through in situ measurements at stations. Although field survey from in situ measurements provides accurate soil moisture with high temporal resolution, it requires high cost and does not provide the spatial distribution of soil moisture over large areas. Microwave satellite (e.g., advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR2), the Advanced Scatterometer (ASCAT), and Soil Moisture Active Passive (SMAP)) -based approaches and numerical models such as Global Land Data Assimilation System (GLDAS) and Modern- Era Retrospective Analysis for Research and Applications (MERRA) provide spatial-temporalspatiotemporally continuous soil moisture products at global scale. However, since those global soil moisture products have coarse spatial resolution ( 25-40 km), their applications for agriculture and water resources at local and regional scales are very limited. Thus, soil moisture downscaling is needed to overcome the limitation of the spatial resolution of soil moisture products. In this study, GLDAS soil moisture data were downscaled up to 1 km spatial resolution through the integration of AMSR2 and ASCAT soil moisture data, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and Moderate Resolution Imaging Spectroradiometer (MODIS) data—Land Surface Temperature, Normalized Difference Vegetation Index, and Land cover—using modified regression trees over East Asia from 2013 to 2015. Modified regression trees were implemented using Cubist, a commercial software tool based on machine learning. An optimization based on pruning of rules derived from the modified regression trees was conducted. Root Mean Square Error (RMSE) and Correlation coefficients (r) were used to optimize the rules, and finally 59 rules from modified regression trees were produced. The results show high validation r (0.79) and low validation RMSE (0.0556m3/m3). The 1 km downscaled soil moisture was evaluated using ground soil moisture data at 14 stations, and both soil moisture data showed similar temporal patterns (average r=0.51 and average RMSE=0.041). The spatial distribution of the 1 km downscaled soil moisture well corresponded with GLDAS soil moisture that caught both extremely dry and wet regions. Correlation between GLDAS and the 1 km downscaled soil moisture during growing season was positive (mean r=0.35) in most regions.

  2. Understanding moisture stress on light-use efficiency based on MODIS and global flux tower data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Song, C.; Sun, G.

    2014-12-01

    Gross primary productivity (GPP) is a key indicator of terrestrial ecosystem functions and global carbon balance. However, accurately estimating GPP is still one of the major challenges in global change study. Compared with other prognostic models, remote-sensing-based light-use efficiency (LUE) modes are considered to have the most potential to characterize the spatial-temporal dynamics of GPP. However, the environmental regulations on LUE, especially from water stress, have relatively large uncertainties, which reversely constrained the applications of LUE models. Here, we used MODIS and global flux tower data to investigate the moisture stress on LUE for different biomes on daily, 8-day and monthly scales. Three groups of moisture stress indicators were adopted in our study, including atmosphere (i.e. precipitation and daytime vapor pressure deficit (VPD)), soil (i.e. soil water content (SWC) and scaled SWC (SWCs) by field capacity and wilting point) , and plant indicators (i.e. land surface wetness index (LSWI) and the ratio of latent heat to the sum of latent and sensible heat (L/(L+H)). We applied a series of steps to eliminate the effects of high/low temperature and diffuse radiation effects on observed LUE. Our analysis showed that there were great variations in moisture stress effects on LUE between and within biomes. Generally, the moisture stress effects on LUE are ranked as plant indicator (i.e. L/(L+H) & LSWI) > atmosphere indicator (i.e. VPD) > soil indicator (i.e. SWC/SWCs). Precipitation has the poorest relationship with observed LUE and doesn't show any significant lag effects. For deep-root biomes (e.g. forest), LUE shows higher sensitivity in VPD than SWC; but for short-root biomes (e.g. grass), LUE is more sensitive to SWC than VPD. Most indicators (except SWC/SWCs) are more effective in affecting LUE at the daily/8-day scale than at the monthly scale probably because the observed LUE becomes more stable as temporal scale increases. SWC do not show close relationship with LUE, suggesting that the current measured SWC in the top-soil layer may not be sufficient to capture the moisture effects on LUE for biomes with different root distributions. Our study highlights the complexity of moisture stress on observed LUE, and provides useful guidance for developing more reliable LUE models to estimate GPP.

  3. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Malbéteau, Yoann; Merlin, Olivier; Molero, Beatriz; Rüdiger, Christoph; Bacon, Stephan

    2016-03-01

    Validating coarse-scale satellite soil moisture data still represents a big challenge, notably due to the large mismatch existing between the spatial resolution (> 10 km) of microwave radiometers and the representativeness scale (several m) of localized in situ measurements. This study aims to examine the potential of DisPATCh (Disaggregation based on Physical and Theoretical scale Change) for validating SMOS (Soil Moisture and Ocean Salinity) and AMSR-E (Advanced Microwave Scanning Radiometer-Earth observation system) level-3 soil moisture products. The ∽40-50 km resolution SMOS and AMSR-E data are disaggregated at 1 km resolution over the Murrumbidgee catchment in Southeastern Australia during a one year period in 2010-2011, and the satellite products are compared with the in situ measurements of 38 stations distributed within the study area. It is found that disaggregation improves the mean difference, correlation coefficient and slope of the linear regression between satellite and in situ data in 77%, 92% and 94% of cases, respectively. Nevertheless, the downscaling efficiency is lower in winter than during the hotter months when DisPATCh performance is optimal. Consistently, better results are obtained in the semi-arid than in a temperate zone of the catchment. In the semi-arid Yanco region, disaggregation in summer increases the correlation coefficient from 0.63 to 0.78 and from 0.42 to 0.71 for SMOS and AMSR-E in morning overpasses and from 0.37 to 0.63 and from 0.47 to 0.73 for SMOS and AMSR-E in afternoon overpasses, respectively. DisPATCh has strong potential in low vegetated semi-arid areas where it can be used as a tool to evaluate coarse-scale remotely sensed soil moisture by explicitly representing the sub-pixel variability.

  4. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].

    PubMed

    Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing

    2015-08-01

    A pot experiment was carried out to study the effects of soil moisture on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the soil moisture was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the soil moisture to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that soil moisture played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the moisture management measures in engineering application.

  5. New DEMs may stimulate significant advancements in remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Nolan, Matt; Fatland, Dennis R.

    From Napoleon's defeat at Waterloo to increasing corn yields in Kansas to greenhouse gas flux in the Arctic, the importance of soil moisture is endemic to world affairs and merits the considerable attention it receives from the scientific community. This importance can hardly be overstated, though it often goes unstated.Soil moisture is one of the key variables in a variety of broad areas critical to the conduct of societies' economic and political affairs and their well-being; these include the health of agricultural crops, global climate dynamics, military trafficability planning, and hazards such as flooding and forest fires. Unfortunately the in situ measurement of the spatial distribution of soil moisture on a watershed-scale is practically impossible. And despite decades of international effort, a satellite remote sensing technique that can reliably measure soil moisture with a spatial resolution of meters has not yet been identified or implemented. Due to the lack of suitable measurement techniques and, until recently digital elevation models (DEMs), our ability to understand and predict soil moisture dynamics through modeling has largely remained crippled from birth [Grayson and Bloschl, 200l].

  6. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Jinbao; Shi, Jiangfeng; Zhang, David D.; Yang, Bao; Fang, Keyan; Yue, Pak Hong

    2017-01-01

    Rapid warming has been observed in the high-altitude areas around the globe, but the implications on moisture change are not fully understood. Here we use tree-rings to reveal common moisture change on the southeastern Tibetan Plateau (TP) during the past five centuries, and show that regional moisture change in late spring to early summer (April-June) is closely related to large-scale temperature anomaly over the TP, with increased moisture coincident with periods of high temperature. The most recent pluvial during the 1990s-2000s is likely the wettest for the past five centuries, which coincides with the warmest period on the TP during the past millennium. Dynamic analysis reveals that vertical air convection is enhanced in response to anomalous TP surface warming, leading to an increase in lower-tropospheric humidity and effective precipitation over the southeastern TP. The coherent warm-wet relationship identified in both tree-rings and dynamic analysis implies a generally wetter condition on the southeastern TP under future warming.

  7. Preliminary assessment of soil moisture over vegetation

    NASA Technical Reports Server (NTRS)

    Carlson, T. N.

    1986-01-01

    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.

  8. Remote Sensing of Soil Moisture: A Comparison of Optical and Thermal Methods

    NASA Astrophysics Data System (ADS)

    Foroughi, H.; Naseri, A. A.; Boroomandnasab, S.; Sadeghi, M.; Jones, S. B.; Tuller, M.; Babaeian, E.

    2017-12-01

    Recent technological advances in satellite and airborne remote sensing have provided new means for large-scale soil moisture monitoring. Traditional methods for soil moisture retrieval require thermal and optical RS observations. In this study we compared the traditional trapezoid model parameterized based on the land surface temperature - normalized difference vegetation index (LST-NDVI) space with the recently developed optical trapezoid model OPTRAM parameterized based on the shortwave infrared transformed reflectance (STR)-NDVI space for an extensive sugarcane field located in Southwestern Iran. Twelve Landsat-8 satellite images were acquired during the sugarcane growth season (April to October 2016). Reference in situ soil moisture data were obtained at 22 locations at different depths via core sampling and oven-drying. The obtained results indicate that the thermal/optical and optical prediction methods are comparable, both with volumetric moisture content estimation errors of about 0.04 cm3 cm-3. However, the OPTRAM model is more efficient because it does not require thermal data and can be universally parameterized for a specific location, because unlike the LST-soil moisture relationship, the reflectance-soil moisture relationship does not significantly vary with environmental variables (e.g., air temperature, wind speed, etc.).

  9. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  10. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  11. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGES

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ≳50 gm –2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. Here, we find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. Furthermore, the total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.« less

  12. A Round Robin evaluation of AMSR-E soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Mittelbach, Heidi; Hirschi, Martin; Nicolai-Shaw, Nadine; Gruber, Alexander; Dorigo, Wouter; de Jeu, Richard; Parinussa, Robert; Jones, Lucas A.; Wagner, Wolfgang; Seneviratne, Sonia I.

    2014-05-01

    Large-scale and long-term soil moisture observations based on remote sensing are promising data sets to investigate and understand various processes of the climate system including the water and biochemical cycles. Currently, the ESA Climate Change Initiative for soil moisture develops and evaluates a consistent global long-term soil moisture data set, which is based on merging passive and active remotely sensed soil moisture. Within this project an inter-comparison of algorithms for AMSR-E and ASCAT Level 2 products was conducted separately to assess the performance of different retrieval algorithms. Here we present the inter-comparison of AMSR-E Level 2 soil moisture products. These include the public data sets from University of Montana (UMT), Japan Aerospace and Space Exploration Agency (JAXA), VU University of Amsterdam (VUA; two algorithms) and National Aeronautics and Space Administration (NASA). All participating algorithms are applied to the same AMSR-E Level 1 data set. Ascending and descending paths of scaled surface soil moisture are considered and evaluated separately in daily and monthly resolution over the 2007-2011 time period. Absolute values of soil moisture as well as their long-term anomalies (i.e. removing the mean seasonal cycle) and short-term anomalies (i.e. removing a five weeks moving average) are evaluated. The evaluation is based on conventional measures like correlation and unbiased root-mean-square differences as well as on the application of the triple collocation method. As reference data set, surface soil moisture of 75 quality controlled soil moisture sites from the International Soil Moisture Network (ISMN) are used, which cover a wide range of vegetation density and climate conditions. For the application of the triple collocation method, surface soil moisture estimates from the Global Land Data Assimilation System are used as third independent data set. We find that the participating algorithms generally display a better performance for the descending compared to the ascending paths. A first classification of the sites defined by geographical locations show that the algorithms have a very similar average performance. Further classifications of the sites by land cover types and climate regions will be conducted which might result in a more diverse performance of the algorithms.

  13. Seasonal-to-Interannual Variability and Land Surface Processes

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    2004-01-01

    Atmospheric chaos severely limits the predictability of precipitation on subseasonal to interannual timescales. Hope for accurate long-term precipitation forecasts lies with simulating atmospheric response to components of the Earth system, such as the ocean, that can be predicted beyond a couple of weeks. Indeed, seasonal forecasts centers now rely heavily on forecasts of ocean circulation. Soil moisture, another slow component of the Earth system, is relatively ignored by the operational seasonal forecasting community. It is starting, however, to garner more attention. Soil moisture anomalies can persist for months. Because these anomalies can have a strong impact on evaporation and other surface energy fluxes, and because the atmosphere may respond consistently to anomalies in the surface fluxes, an accurate soil moisture initialization in a forecast system has the potential to provide additional forecast skill. This potential has motivated a number of atmospheric general circulation model (AGCM) studies of soil moisture and its contribution to variability in the climate system. Some of these studies even suggest that in continental midlatitudes during summer, oceanic impacts on precipitation are quite small relative to soil moisture impacts. The model results, though, are strongly model-dependent, with some models showing large impacts and others showing almost none at all. A validation of the model results with observations thus naturally suggests itself, but this is exceedingly difficult. The necessary contemporaneous soil moisture, evaporation, and precipitation measurements at the large scale are virtually non-existent, and even if they did exist, showing statistically that soil moisture affects rainfall would be difficult because the other direction of causality - wherein rainfall affects soil moisture - is unquestionably active and is almost certainly dominant. Nevertheless, joint analyses of observations and AGCM results do reveal some suggestions of land-atmosphere feedback in the observational record, suggestions that soil moisture can affect precipitation over seasonal timescales and across certain large continental areas. The strength of this observed feedback in nature is not large but is still significant enough to be potentially useful, e.g., for forecasts. This talk will address all of these issues. It will begin with a brief overview of land surface modeling in atmospheric models but will then focus on recent research - using both observations and models - into the impact of land surface processes on variability in the climate system.

  14. Evaluating Remotely-Sensed Soil Moisture Retrievals Using Triple Collocation Techniques

    USDA-ARS?s Scientific Manuscript database

    The validation is footprint-scale (~40 km) surface soil moisture retrievals from space is complicated by a lack of ground-based soil moisture instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...

  15. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. 3; Disaggregation

    NASA Technical Reports Server (NTRS)

    Caulfield, John; Crosson, William L.; Inguva, Ramarao; Laymon, Charles A.; Schamschula, Marius

    1998-01-01

    This is a followup on the preceding presentation by Crosson and Schamschula. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to disaggregate the microwave measurements to allow comparison with outputs from the hydrological models. Weighted interpolation and Bayesian methods are proposed to facilitate the comparison. While remote measurements occur at a large scale, they reflect underlying small-scale features. We can give continuing estimates of the small scale features by correcting the simple 0th-order, starting with each small-scale model with each large-scale measurement using a straightforward method based on Kalman filtering.

  16. Field scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in situ networks

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. From a hydrologic viewpoint, soil moisture controls runoff, infiltration, storage and drainage. Soil moisture determines the partitioning of the incoming radiation between latent and sensible heat fluxes. Althou...

  17. Benchmarking a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...

  18. Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning

    USDA-ARS?s Scientific Manuscript database

    The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...

  19. Studies and Application of Remote Sensing Retrieval Method of Soil Moisture Content in Land Parcel Units in Irrigation Area

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.

    2018-05-01

    Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.

  20. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  1. Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale

    NASA Astrophysics Data System (ADS)

    Tromp-van Meerveld, H. J.; McDonnell, J. J.

    2009-04-01

    SummaryHillslopes are fundamental landscape units, yet represent a difficult scale for measurements as they are well-beyond our traditional point-scale techniques. Here we present an assessment of electromagnetic induction (EM) as a potential rapid and non-invasive method to map soil moisture patterns at the hillslope scale. We test the new multi-frequency GEM-300 for spatially distributed soil moisture measurements at the well-instrumented Panola hillslope. EM-based apparent conductivity measurements were linearly related to soil moisture measured with the Aqua-pro capacitance sensor below a threshold conductivity and represented the temporal patterns in soil moisture well. During spring rainfall events that wetted only the surface soil layers the apparent conductivity measurements explained the soil moisture dynamics at depth better than the surface soil moisture dynamics. All four EM frequencies (7.290, 9.090, 11.250, and 14.010 kHz) were highly correlated and linearly related to each other and could be used to predict soil moisture. This limited our ability to use the four different EM frequencies to obtain a soil moisture profile with depth. The apparent conductivity patterns represented the observed spatial soil moisture patterns well when the individually fitted relationships between measured soil moisture and apparent conductivity were used for each measurement point. However, when the same (master) relationship was used for all measurement locations, the soil moisture patterns were smoothed and did not resemble the observed soil moisture patterns very well. In addition the range in calculated soil moisture values was reduced compared to observed soil moisture. Part of the smoothing was likely due to the much larger measurement area of the GEM-300 compared to the soil moisture measurements.

  2. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    NASA Astrophysics Data System (ADS)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  3. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    NASA Technical Reports Server (NTRS)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; hide

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  4. Use of modeled and satelite soil moisture to estimate soil erosion in central and southern Italy.

    NASA Astrophysics Data System (ADS)

    Termite, Loris Francesco; Massari, Christian; Todisco, Francesca; Brocca, Luca; Ferro, Vito; Bagarello, Vincenzo; Pampalone, Vincenzo; Wagner, Wolfgang

    2016-04-01

    This study presents an accurate comparison between two different approaches aimed to enhance accuracy of the Universal Soil Loss Equation (USLE) in estimating the soil loss at the single event time scale. Indeed it is well known that including the observed event runoff in the USLE improves its soil loss estimation ability at the event scale. In particular, the USLE-M and USLE-MM models use the observed runoff coefficient to correct the rainfall erosivity factor. In the first case, the soil loss is linearly dependent on rainfall erosivity, in the second case soil loss and erosivity are related by a power law. However, the measurement of the event runoff is not straightforward or, in some cases, possible. For this reason, the first approach used in this study is the use of Soil Moisture For Erosion (SM4E), a recent USLE-derived model in which the event runoff is replaced by the antecedent soil moisture. Three kinds of soil moisture datasets have been separately used: the ERA-Interim/Land reanalysis data of the European Centre for Medium-range Weather Forecasts (ECMWF); satellite retrievals from the European Space Agency - Climate Change Initiative (ESA-CCI); modeled data using a Soil Water Balance Model (SWBM). The second approach is the use of an estimated runoff rather than the observed. Specifically, the Simplified Continuous Rainfall-Runoff Model (SCRRM) is used to derive the runoff estimates. SCRMM requires soil moisture data as input and at this aim the same three soil moisture datasets used for the SM4E have been separately used. All the examined models have been calibrated and tested at the plot scale, using data from the experimental stations for the monitoring of the erosive processes "Masse" (Central Italy) and "Sparacia" (Southern Italy). Climatic data and runoff and soil loss measures at the event time scale are available for the period 2008-2013 at Masse and for the period 2002-2013 at Sparacia. The results show that both the approaches can provide better results than the USLE. Specifically, the SM4E model has proven to be particularly effective at Masse, providing the best soil loss estimations, especially when the modeled soil moisture is used. In this case, the RSR index (ratio between the Root Mean Square Error and the Observed Standard deviation) is equal to 0.94. Instead, the SCRRM is able to better estimate the event runoff at Sparacia than at Masse, thus resulting in good performances of the USLE-derived models using the estimated runoff; however, even at Sparacia the SM4E with modeled soil moisture gives the better soil loss estimates, with RSR = 0.54. These results open an interesting scenario in the use of empirical models to determine soil loss at a large scale, since soil moisture is a not only a simple in situ measurement, but only a widely available information on a global scale from remote sensing.

  5. On the Choice of Variable for Atmospheric Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; DaSilva, Arlindo M.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudorelative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent covariances. In the presence of multivariate (temperature-moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity-temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity-temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis is easily implemented in an existing moisture analysis system, by simply scaling observed-minus background moisture residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.

  6. Closing the water balance with cosmic-ray soil moisture measurements and assessing their spatial variability within two semiarid watersheds

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.

    2015-06-01

    Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate scale soil moisture estimates from the cosmic-ray sensing (CRS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower and runoff flumes used to close the water balance. We found an excellent agreement between the CRS method and the distributed sensor network (RMSE of 0.009 and 0.013 m3 m-3 at SRER and JER) at the hourly time scale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was obtained in soil moisture changes estimated from the CRS and watershed water balance methods (RMSE = 0.001 and 0.038 m3 m-3 at SRER and JER), with deviations due to bypassing of the CRS measurement depth during large rainfall events. This limitation, however, was used to show that drier-than-average conditions at SRER promoted plant water uptake from deeper layers, while the wetter-than-average period at JER resulted in leakage towards deeper soils. Using the distributed sensor network, we quantified the spatial variability of soil moisture in the CRS footprint and the relation between evapotranspiration and soil moisture, in both cases finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US. Furthermore, soil moisture spatial variability was related to evapotranspiration in a manner consistent with analytical relations derived using the CRS method, opening up new possibilities for understanding land-atmosphere interactions.

  7. Application of triple collocation in ground-based validation of soil moisture active/passive (SMAP) level 2 data products

    USDA-ARS?s Scientific Manuscript database

    The validation of the soil moisture retrievals from the recently-launched NASA Soil Moisture Active/Passive (SMAP) satellite is important prior to their full public release. Uncertainty in attempts to characterize footprint-scale surface-layer soil moisture using point-scale ground observations has ...

  8. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semi-arid forests of the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.

    2017-12-01

    Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on the Kaibab Plateau, AZ. Our results predicted that climate-induced vegetation changes will result in annual runoff declines of 2%-10% in the next century, but that restoration reversed these declines. We also predict that restoration treatments will protect water quality by reducing the incidence of high severity fire and the associated erosion.

  9. A new methodology for determination of macroscopic transport parameters in drying porous media

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  10. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    PubMed

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  11. Synoptic moisture pathways associated with mean and extreme precipitation over Canada for winter and spring

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y. Y.; Chen, Y. D.

    2017-12-01

    Dominant synoptic moisture pathway patterns of vertically integrated water vapor transport (IVT) in winter and spring over Canada West and East were identified using the self-organizing map method. Large-scale meteorological patterns (LSMPs) were related to the variability in seasonal precipitation totals and occurrences of precipitation extremes. Changes in both occurrences of LSMPs and seasonal precipitation occurred under those LSMPs were evaluated to attribute observed changes in seasonal precipitation totals and occurrences of precipitation extremes. Effects of large-scale climate anomalies on occurrences of LSMPs were also examined. Results show that synoptic moisture pathways and LSMPs exhibit the propagation of jet streams as the location and direction of ridges and troughs, and the strength and center of pressure lows and highs varied considerably between LSMPs. Significant decreases in occurrences of synoptic moisture pathway patterns that are favorable with positive precipitation anomalies and more precipitation extremes in winter over Canada West resulted in decreases in seasonal precipitation and occurrences of precipitation extremes. LSMPs resulting in a hot and dry climate and less (more) frequent precipitation extremes over the Canadian Prairies in winter and northwestern Canada in spring are more likely to occur in years with a negative phase of PNA. Occurrences of LSMPs for a wet climate and frequent occurrences of extreme precipitation events over southeastern Canada are associated with a positive phase of NAO. In El Niño years or negative PDO years, LSMPs associated with a dry climate and less frequent precipitation extremes over western Canada tend to occur.

  12. Observations of increased tropical rainfall preceded by air passage over forests.

    PubMed

    Spracklen, D V; Arnold, S R; Taylor, C M

    2012-09-13

    Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.

  13. Spatial-temporal variability of soil moisture and its estimation across scales

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.

    2010-02-01

    The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.

  14. A spatial scaling relationship for soil moisture in a semiarid landscape, using spatial scaling relationships for pedology

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.

    2013-12-01

    In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.

  15. Evaluating the performance of a soil moisture data assimilation system for agricultural drought monitoring

    USDA-ARS?s Scientific Manuscript database

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this ...

  16. Evidence for Tropopause Layer Moistening by Convection During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Ackerman, A.; Fridlind, A.; Jensen, E.; Miloshevich, L.; Heymsfield, G.; McGill, M.

    2003-01-01

    Measurements and analysis of the impact of deep convection on tropopause layer moisture are easily confounded by difficulties making precise observations with sufficient spatial coverage before and after convective events and difficulties distinguishing between changes due to local convection versus large-scale advection. The interactions between cloud microphysics and dynamics in the convective transport of moisture into the tropopause layer also result in a sufficiently complex and poorly characterized system to allow for considerable freedom in theoretical models of stratosphere-troposphere exchange. In this work we perform detailed large-eddy simulations with an explicit cloud microphysics model to study the impact of deep convection on tropopause layer moisture profiles observed over southern Florida during CRYSTALFACE. For four days during the campaign (July 11, 16, 28, and 29) we initialize a 100-km square domain with temperature and moisture profiles measured prior to convection at the PARSL ground site, and initiate convection with a warm bubble that produces an anvil at peak elevations in agreement with lidar and radar observations on that day. Comparing the moisture field after the anvils decay with the initial state, we find that convection predominantly moistens the tropopause layer (as defined by minimum temperature and minimum potential temperature lapse rate), although some drying is also predicted in localized layers. We will also present results of sensitivity tests designed to separate the roles of cloud microphysics and dynamics.

  17. Eco-hydrological Controls on Litter Moisture Dynamics in Complex Terrain: Implications for Fuel Moisture and Fire Regimes in Temperate Forests

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Duff, T. J.; Sheridan, G. J.

    2016-12-01

    Moisture content in litter on the forest floor can control ignition and spread of forest fires. The micrometeorological factors driving variation in litter moisture at the landscape scale are poorly understood, particularly in areas with heterogeneous vegetation and complex terrain. In this research we seek to quantify how climate, vegetation and eco-hydrological feedbacks contribute to variation in net radiation and potential evaporation at the forest floor. Research sites were established at 12 locations in southeast Australia with variable precipitation, solar exposure, and drainage areas. Forests ranged from open woodland to tall temperate forests. We measured solar radiation, air temperature, relative humidity, litter moisture, soil moisture, and litter temperature. Forest structure was characterised using hemispherical photos and LIDAR. Using these data on microclimate and vegetation structure we parameterise a model of daily potential evaporation at the forest floor. Results show that variation in evaporation rates from litter is driven by net radiation and the role of vapour pressure deficit is almost negligible due to high aerodynamic resistance. In open woodlands the net radiation is directly related to short-wave radiation and evaporation remains high despite low temperatures. In the tall wet forests, commonly found along drainage lines and on slopes with polar-facing aspects, the long-wave radiation was just as important as the shortwave radiation. Air temperature is therefore important in determining the flammability of these more productive forests. By implication, in complex terrain with heterogeneous forests, the temperature in the wet parts of the landscape is important in controlling connectivity of fuels and large-scale fire activity.

  18. Characterization of Moist Processes Associated With Changes in the Propagation of the MJO With Increasing CO2

    PubMed Central

    Kim, Daehyun; Sobel, Adam H.; Del Genio, Anthony; Wu, Jingbo

    2017-01-01

    Abstract The processes that lead to changes in the propagation and maintenance of the Madden‐Julian Oscillation (MJO) as a response to increasing CO2 are examined by analyzing moist static energy budget of the MJO in a series of NASA GISS model simulations. It is found changes in MJO propagation is dominated by several key processes. Horizontal moisture advection, a key process for MJO propagation, is found to enhance predominantly due to an increase in the mean horizontal moisture gradients. The terms that determine the strength of the advecting wind anomalies, the MJO horizontal scale and the dry static stability, are found to exhibit opposing trends that largely cancel out. Furthermore, reduced sensitivity of precipitation to changes in column moisture, i.e., a lengthening in the convective moisture adjustment time scale, also opposes enhanced propagation. The dispersion relationship of Adames and Kim, which accounts for all these processes, predicts an acceleration of the MJO at a rate of ∼3.5% K−1, which is consistent with the actual phase speed changes in the simulation. For the processes that contribute to MJO maintenance, it is found that damping by vertical MSE advection is reduced due to the increasing vertical moisture gradient. This weaker damping is nearly canceled by weaker maintenance by cloud‐radiative feedbacks, yielding the growth rate from the linear moisture mode theory nearly unchanged with the warming. Furthermore, the estimated growth rates are found to be a small, negative values, suggesting that the MJO in the simulation is a weakly damped mode. PMID:29497477

  19. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Ruessink, Gerben; Brakenhoff, Laura B.; Donker, Jasper J. A.

    2018-04-01

    Wind-alone predictions of aeolian sand deposition on the most seaward coastal dune ridge often exceed measured deposition substantially. Surface moisture is a major factor limiting aeolian transport on sandy beaches, but existing measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content. Here, we present a new method for detecting surface moisture at high temporal and spatial resolution using a near-infrared terrestrial laser scanner (TLS), the RIEGL VZ-400. Because this TLS operates at a wavelength (1550 nm) near a water absorption band, TLS reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric surface moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0%-25%), with a correlation-coefficient squared of 0.85 and a root-mean-square error of 2.7%. This relation holds between 20 and 60 m from the TLS. Within this distance the TLS typically produces O (106-107) data points, which we averaged into surface moisture maps with a 1 × 1 m resolution. This grid size largely removes small reflectance disturbances induced by, for example, footprints or tire tracks, while retaining larger scale moisture trends.

  20. Estimation of hectare-scale soil-moisture characteristics from aquifer-test data

    USGS Publications Warehouse

    Moench, A.F.

    2003-01-01

    Analysis of a 72-h, constant-rate aquifer test conducted in a coarse-grained and highly permeable, glacial outwash deposit on Cape Cod, Massachusetts revealed that drawdowns measured in 20 piezometers located at various depths below the water table and distances from the pumped well were significantly influenced by effects of drainage from the vadose zone. The influence was greatest in piezometers located close to the water table and diminished with increasing depth. The influence of the vadose zone was evident from a gap, in the intermediate-time zone, between measured drawdowns and drawdowns computed under the assumption that drainage from the vadose zone occurred instantaneously in response to a decline in the elevation of the water table. By means of an analytical model that was designed to account for time-varying drainage, simulated drawdowns could be closely fitted to measured drawdowns regardless of the piezometer locations. Because of the exceptional quality and quantity of the data and the relatively small aquifer heterogeneity, it was possible by inverse modeling to estimate all relevant aquifer parameters and a set of three empirical constants used in the upper-boundary condition to account for the dynamic drainage process. The empirical constants were used to define a one-dimensional (ID) drainage versus time curve that is assumed to be representative of the bulk material overlying the water table. The curve was inverted with a parameter estimation algorithm and a ID numerical model for variably saturated flow to obtain soil-moisture retention curves and unsaturated hydraulic conductivity relationships defined by the Brooks and Corey equations. Direct analysis of the aquifer-test data using a parameter estimation algorithm and a two-dimensional, axisymmetric numerical model for variably saturated flow yielded similar soil-moisture characteristics. Results suggest that hectare-scale soil-moisture characteristics are different from core-scale predictions and even relatively small amounts of fine-grained material and heterogeneity can dominate the large-scale soil-moisture characteristics and aquifer response. ?? 2003 Elsevier B.V. All rights reserved.

  1. Cosmic ray soil moisture observing systems comos in cap fields at El Reno Oklahoma

    USDA-ARS?s Scientific Manuscript database

    Soil water content (SWC) partitions rainfall into runoff and infiltration, modulates surface and atmospheric exchanges of water and energy, affects plant growth and crop yields, and impacts chemical and biological activities of soil, among other things. Thus, SWC, especially over large scales, is a...

  2. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  3. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  4. Historical climate controls soil respiration responses to current soil moisture

    PubMed Central

    Waring, Bonnie G.; Rocca, Jennifer D.; Kivlin, Stephanie N.

    2017-01-01

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall. PMID:28559315

  5. Drivers of leaf carbon exchange capacity across biomes at the continental scale.

    PubMed

    Smith, Nicholas G; Dukes, Jeffrey S

    2018-04-29

    Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the Neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a data set to benchmark such models. © 2018 by the Ecological Society of America.

  6. Analysis of Atmospheric Moisture Transport over the Himalaya-Karakoram-Hindukush Region

    NASA Astrophysics Data System (ADS)

    Minallah, S.; Ivanov, V. Y.

    2017-12-01

    The high-altitude region of the Himalaya-Karakoram-Hindukush (HKH) ranges is susceptible to natural disasters due to their extreme topographic features and climatic conditions. The region, where large population resides in deep valleys and mountain foothills, is prone to riverine flooding, flash floods, and extreme precipitation events whose frequency is perceived to be increasing, often with attribution to climate change. It is thus imperative to study the causation using modern hydrometeorological products. In this study, we identify regions with documented trends in extreme flooding and precipitation and carry out a statistical analysis of the atmospheric moisture transport at the synoptic scale for these regions using ERA-Interim and NASA MERRA-2 reanalysis products. We focus on the two main sources for the atmospheric moisture in the region: the summer South-East Asian Monsoon and the winter Westerlies, and explore how variations in these systems affect the moisture convergence and divergence over the region. Our findings indicate that the Monsoon precipitation has been intensifying in the western Himalayas over the past decade and a half and that these changes are likely related to moisture advection into the region.

  7. Soil temperature and moisture dynamics after experimental irrigation on two contrasting soils on the Santa Rita Experimental Range: Implications for mesquite establishment

    Treesearch

    Nathan B. English; David G. Williams; Jake F. Weltzin

    2003-01-01

    We established a large-scale manipulative experiment in a semidesert grassland on the Santa Rita Experimental Range to determine how the recruitment and physiology of woody plants (Prosopis velutina Woot.) are affected by invasive grasses, seasonal precipitation regimes, and underlying soil characteristics. We established 72 2.8-m2 plots beneath six large rainout...

  8. Devastating Carolina Floods Viewed by NASA SMAP

    NASA Image and Video Library

    2015-10-08

    Surface soil moisture in the Southeastern United States as retrieved from NASA's Soil Moisture Active Passive (SMAP) satellite observatory at around 6 a.m. on Oct. 5, 2015. Large parts of South Carolina appear blue, representing the impact of heavy localized rains and flooding. Regions in blue indicate areas with saturated soil conditions and possible standing water. Large-scale flooding was experienced all over South Carolina on Oct. 5-6, 2015. As of Oct. 7, 17 deaths had been attributed to these floods, with heavy economic losses. In some regions, the intensity of these floods was described as a 1,000-year storm (1-in-1,000 chance of happening in any given year). At least 14 dams have already failed as a result of these floods. http://photojournal.jpl.nasa.gov/catalog/PIA20001

  9. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  10. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    USGS Publications Warehouse

    Belnap, Jayne; Stark, John Thomas; Rau, Benjamin; Allen, Edith B.; Phillips, Sue

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromusoccurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan), little or noBromus is found, likely due to timing or amount of soil moisture relative to Bromus phenology. In hot, winter-rainfall-dominated deserts (parts of the Mojave Desert), Bromus rubens is widespread and correlated with high phosphorus availability. It also responds positively to additions of nitrogen alone or with phosphorus. On the Colorado Plateau, with higher soil moisture availability, factors limiting Bromus tectorum populations vary with life stage: phosphorus and water limit germination, potassium and the potassium/magnesium ratio affect winter performance, and water and potassium/magnesium affect spring performance. Controlling nutrients also change with elevation. In cooler deserts with winter precipitation (Great Basin, Columbia Plateau) and thus even greater soil moisture availability, B. tectorum populations are controlled by nitrogen, phosphorus, or potassium. Experimental nitrogen additions stimulate Bromus performance. The reason for different nutrients limiting in dissimilar climatic regions is not known, but it is likely that site conditions such as soil texture (as it affects water and nutrient availability), organic matter, and/or chemistry interact in a manner that regulates nutrient availability and limitations. Under future drier, hotter conditions,Bromus distribution is likely to change due to changes in the interaction between moisture and nutrient availability.

  11. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    Knowledge of the amount of water in the soil is of great importance to many earth science disciplines. Soil moisture is a key variable in controlling the exchange of water and energy between the land surface and the atmosphere. Thus, soil moisture information is valuable in a wide range of applications including weather and climate, runoff potential and flood control, early warning of droughts, irrigation, crop yield forecasting, soil erosion, reservoir management, geotechnical engineering, and water quality. Despite the importance of soil moisture information, widespread and continuous measurements of soil moisture are not possible today. Although many earth surface conditions can be measured from satellites, we still cannot adequately measure soil moisture from space. Research in soil moisture remote sensing began in the mid 1970s shortly after the surge in satellite development. Recent advances in remote sensing have shown that soil moisture can be measured, at least qualitatively, by several methods. Quantitative measurements of moisture in the soil surface layer have been most successful using both passive and active microwave remote sensing, although complications arise from surface roughness and vegetation type and density. Early attempts to measure soil moisture from space-borne microwave instruments were hindered by what is now considered sub-optimal wavelengths (shorter than 5 cm) and the coarse spatial resolution of the measurements. L-band frequencies between 1 and 3 GHz (10-30 cm) have been deemed optimal for detection of soil moisture in the upper few centimeters of soil. The Electronically Steered Thinned Array Radiometer (ESTAR), an aircraft-based instrument operating a 1,4 GHz, has shown great promise for soil moisture determination. Initiatives are underway to develop a similar instrument for space. Existing space-borne synthetic aperture radars (SARS) operating at C- and L-band have also shown some potential to detect surface wetness. The advantage of radar is its much higher resolution than passive microwave systems, but it is currently hampered by surface roughness effects and the lack of a good algorithm based on a single frequency and single polarization. In addition, its repeat frequency is generally low (about 40 days). In the meantime, two new radiometers offer some hope for remote sensing of soil moisture from space. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), launched in November 1997, possesses a 10.65 GHz channel and the Advanced Microwave Scanning Radiometer (AMSR) on both the ADEOS-11 and Earth Observing System AM-1 platforms to be launched in 1999 possesses a 6.9 GHz channel. Aside from issues about interference from vegetation, the coarse resolution of these data will provide considerable challenges pertaining to their application. The resolution of TMI is about 45 km and that of AMSR is about 70 km. These resolutions are grossly inconsistent with the scale of soil moisture processes and the spatial variability of factors that control soil moisture. Scale disparities such as these are forcing us to rethink how we assimilate data of various scales in hydrologic models. Of particular interest is how to assimilate soil moisture data by reconciling the scale disparity between what we can expect from present and future remote sensing measurements of soil moisture and modeling soil moisture processes. It is because of this disparity between the resolution of space-based sensors and the scale of data needed for capturing the spatial variability of soil moisture and related properties that remote sensing of soil moisture has not met with more widespread success. Within a single footprint of current sensors at the wavelengths optimal for this application, in most cases there is enormous heterogeneity in soil moisture created by differences in landcover, soils and topography, as well as variability in antecedent precipitation. It is difficult to interpret the meaning of 'mean' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  12. Hydrological characterization of Guadalquivir River Basin for the period 1980-2010 using VIC model

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the changes of soil moisture and real evapotranspiration (ETR), during the last 30 years, in the Guadalquivir River Basin, located in the south of the Iberian Peninsula. Soil moisture content is related with the different components of the real evaporation, it is a relevant factor when analyzing the intensity of droughts and heat waves, and particularly, for the impact study of the climate change. The soil moisture and real evapotranspiration data consist of simulations obtained by using the Variable Infiltration Capacity (VIC) hydrological model. This is a large-scale hydrologic model and allows the estimations of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cell and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset have been used as input variables for VIC model. Additionally, estimates of actual evapotranspiration and soil moisture are also analyzed using temperature, precipitation, wind, humidity and radiation as input variables for VIC. These variables are obtained from a dynamical downscaling from ERA-Interim data by the Weather Research and Forecasting (WRF) model. The simulations have a spatial resolution about 9 km and the analysis is done on a seasonal time-scale. Preliminary results show that ETR presents very low values for autumn from WRF simulations compared with VIC simulations. Only significant positive trends are found during autumn for the western part of the basin for the ETR obtained with VIC model, meanwhile no significant trends are found for the ETR WRF simulations. Keywords: Soil moisture, Real evapotranspiration, Guadalquivir Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  13. Upscaling of soil moisture measurements in NW Italy

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Canone, Davide; Previati, Maurizio; Brunod, Christian; Ratto, Sara; Cauduro, Marco

    2015-04-01

    There is large mismatch in spatial scale between the climate and meteorological model grid, and the scale of soil and vegetation measurements. Remote sensing data can help to fit the model scale, but they cannot provide rootzone data. In this work some soil moisture datasets are analysed for the sake of providing larger scale estimation of soil moisture and water and energy fluxes. The first dataset refers to a plain site near Torino, where measurements are taken since 1997 (Baudena et al., 2012), and a mountain site close to the town. The second one is a dataset in the mountains of Valle d'Aosta (Brocca et al., 2013), where 4 years of data are available. The use of digital elevation models and vegetation maps is shown in this work. Some soil processes (e.g. Whalley et al., 2012) are usually disregarded, but in this work their possible impact is considered. References L. Brocca, A. Tarpanelli, T. Moramarco, F. Melone, S.M. Ratto, M. Cauduro, S. Ferraris, N. Berni, F. Ponziani, W. Wagner, T. Melzer (2013). Soil Moisture Estimation in Alpine Catchments through Modeling and Satellite Observations VADOSE ZONE JOURNAL, vol. 8-2, p. 1-10, doi:10.2136/vzj2012.0102 M. Baudena, I. Bevilacqua, D. Canone, S. Ferraris, M. Previati, A. Provenzale (2012). Soil water dynamics at a midlatitude test site: Field measurements and box modeling approaches. JOURNAL OF HYDROLOGY, vol. 414-415, p. 329-340, ISSN: 0022-1694, doi: 10.1016/j.jhydrol.2011.11.009 W.R. Whalley, G.P. Matthews, S. Ferraris (2012). The effect of compaction and shear deformation of saturated soil on hydraulic conductivity. SOIL & TILLAGE RESEARCH, vol. 125, p. 23-29, ISSN: 0167-1987

  14. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    NASA Astrophysics Data System (ADS)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the globe, this study may have important applications in aiding water resources management in different regions.

  15. Ecosystem-scale plant hydraulic strategies inferred from remotely-sensed soil moisture

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Good, S. P.; Higgins, C. W.

    2017-12-01

    Characterizing plant hydraulic strategies at the ecosystem scale is important to improve estimates of evapotranspiration and to understand ecosystem productivity and resilience. However, quantifying plant hydraulic traits beyond the species level is a challenge. The probability density function of soil moisture observations provides key information about the soil moisture states at which evapotranspiration is reduced by water stress. Here, an inverse Bayesian approach is applied to a standard bucket model of soil column hydrology forced with stochastic precipitation inputs. Through this approach, we are able to determine the soil moisture thresholds at which stomata are open or closed that are most consistent with observed soil moisture probability density functions. This research utilizes remotely-sensed soil moisture data to explore global patterns of ecosystem-scale plant hydraulic strategies. Results are complementary to literature values of measured hydraulic traits of various species in different climates and previous estimates of ecosystem-scale plant isohydricity. The presented approach provides a novel relation between plant physiological behavior and soil-water dynamics.

  16. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  17. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  18. Estimation of effective soil hydraulic properties at field scale via ground albedo neutron sensing

    NASA Astrophysics Data System (ADS)

    Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.

    2012-04-01

    Upscaling of soil hydraulic parameters is a big challenge in hydrological research, especially in model applications of water and solute transport processes. In this contest, numerous attempts have been made to optimize soil hydraulic properties using observations of state variables such as soil moisture. However, in most of the cases the observations are limited at the point-scale and then transferred to the model scale. In this way inherent small-scale soil heterogeneities and non-linearity of dominate processes introduce sources of error that can produce significant misinterpretation of hydrological scenarios and unrealistic predictions. On the other hand, remote-sensed soil moisture over large areas is also a new promising approach to derive effective soil hydraulic properties over its observation footprint, but it is still limited to the soil surface. In this study we present a new methodology to derive soil moisture at the intermediate scale between point-scale observations and estimations at the remote-sensed scale. The data are then used for the estimation of effective soil hydraulic parameters. In particular, ground albedo neutron sensing (GANS) was used to derive non-invasive soil water content in a footprint of ca. 600 m diameter and a depth of few decimeters. This approach is based on the crucial role of hydrogen compared to other landscape materials as neutron moderator. As natural neutron measured aboveground depends on soil water content, the vertical footprint of the GANS method, i.e. its penetration depth, does also. Firstly, this study was designed to evaluate the dynamics of GANS vertical footprint and derive a mathematical model for its prediction. To test GANS-soil moisture and its penetration depth, it was accompanied by other soil moisture measurements (FDR) located at 5, 20 and 40 cm depths over the GANS horizontal footprint in a sunflower field (Brandenburg, Germany). Secondly, a HYDRUS-1D model was set up with monitored values of crop height and meteorological variables as input during a four-month period. Parameter estimation (PEST) software was coupled to HYDRUS-1D in order to calibrate soil hydraulic properties based on soil water content data. Thirdly, effective soil hydraulic properties were derived from GANS-soil moisture. Our observations show the potential of GANS to compensate the lack of information at the intermediate scale, soil water content estimation and effective soil properties. Despite measurement volumes, GANS-derived soil water content compared quantitatively to FDRs at several depths. For one-hour estimations, root mean square error was estimated as 0.019, 0.029 and 0.036 m3/m3 for 5 cm, 20 cm and 40 cm depths, respectively. In the context of soil hydraulic properties, this first application of GANS method succeed and its estimations were comparable to those derived by other approaches.

  19. Ground-Based Passive Microwave Remote Sensing Observations of Soil Moisture at S and L Band with Insight into Measurement Accuracy

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Crosson, William L.; Jackson, Thomas J.; Manu, Andrew; Tsegaye, Teferi D.; Soman, V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Accurate estimates of spatially heterogeneous algorithm variables and parameters are required in determining the spatial distribution of soil moisture using radiometer data from aircraft and satellites. A ground-based experiment in passive microwave remote sensing of soil moisture was conducted in Huntsville, Alabama from July 1-14, 1996 to study retrieval algorithms and their sensitivity to variable and parameter specification. With high temporal frequency observations at S and L band, we were able to observe large scale moisture changes following irrigation and rainfall events, as well as diurnal behavior of surface moisture among three plots, one bare, one covered with short grass and another covered with alfalfa. The L band emitting depth was determined to be on the order of 0-3 or 0-5 cm below 0.30 cubic centimeter/cubic centimeter with an indication of a shallower emitting depth at higher moisture values. Surface moisture behavior was less apparent on the vegetated plots than it was on the bare plot because there was less moisture gradient and because of difficulty in determining vegetation water content and estimating the vegetation b parameter. Discrepancies between remotely sensed and gravimetric, soil moisture estimates on the vegetated plots point to an incomplete understanding of the requirements needed to correct for the effects of vegetation attenuation. Quantifying the uncertainty in moisture estimates is vital if applications are to utilize remotely-sensed soil moisture data. Computations based only on the real part of the complex dielectric constant and/or an alternative dielectric mixing model contribute a relatively insignificant amount of uncertainty to estimates of soil moisture. Rather, the retrieval algorithm is much more sensitive to soil properties, surface roughness and biomass.

  20. Prediction of Hydrological Drought: What Can We Learn From Continental-Scale Offline Simulations?

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Mahanama, Sarith; Livneh, Ben; Lettenmaier, Dennis; Reichle, Rolf

    2011-01-01

    Land surface model experiments are used to quantify, across the coterminous United States, the contributions (isolated and combined) of soil moisture and snowpack initialization to the skill of seasonal streamflow forecasts at multiple leads and for different start dates. Forecasted streamflows are compared to naturalized streamflow observations where available and to synthetic (model-generated) streamflow data elsewhere. We find that snow initialization has a major impact on skill in the mountainous western U.S. and in a portion of the northern Great Plains; a mid-winter (January 1) initialization of snow in these areas leads to significant skill in the spring melting season. Soil moisture initialization also contributes to skill, and although the maximum contributions are not as large as those seen for snow initialization, the soil moisture contributions extend across a much broader geographical area. Soil moisture initialization can contribute to skill at long leads (up to 5 or 6 months), particularly for forecasts issued during winter.

  1. Potential of collocated radiometer and wind profiler observations for monsoon studies

    NASA Astrophysics Data System (ADS)

    Balaji, B.; Prabha, Thara V.; Jaya Rao, Y.; Kiran, T.; Dinesh, G.; Chakravarty, Kaustav; Sonbawne, S. M.; Rajeevan, M.

    2017-09-01

    Collocated observations from microwave radiometer and wind profiler are used in a pilot study during the monsoon period to derive information on the thermodynamics and winds and association with rainfall characteristics. These instruments were operated throughout the monsoon season of 2015. Continuous vertical profiles of winds, temperature and humidity show significant promise for understanding the low-level jet, its periodicity and its association with moisture transport, clouds and precipitation embedded within the monsoon large-scale convection. Observations showed mutually beneficial in explaining variability that are part of the low frequency oscillations and the diurnal variability during monsoon. These observations highlight the importance of locally driven convective systems, in the presence of weak moisture transport over the area. The episodic moisture convergence showed a periodicity of 9 days which matches with the subsequent convection and precipitation and thermodynamic regimes. Inferences from the diurnal cycle of moisture transport and the convective activity, relationship with the low-level jet characteristics and thermodynamics are also illustrated.

  2. Effect of soil moisture on diurnal convection and precipitation in Large-Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Cioni, Guido; Hohenegger, Cathy

    2017-04-01

    Soil moisture and convective precipitation are generally thought to be strongly coupled, although limitations in the modeling set-up of past studies due to coarse resolutions, and thus poorly resolved convective processes, have prevented a trustful determination of the strength and sign of this coupling. In this work the soil moisture-precipitation feedback is investigated by means of high-resolution simulations where convection is explicitly resolved. To that aim we use the LES (Large Eddy Simulation) version of the ICON model with a grid spacing of 250 m, coupled to the TERRA-ML soil model. We use homogeneous initial soil moisture conditions and focus on the precipitation response to increase/decrease of the initial soil moisture for various atmospheric profiles. The experimental framework proposed by Findell and Eltahir (2003) is revisited by using the same atmospheric soundings as initial condition but allowing a full interaction of the atmosphere with the land-surface over a complete diurnal cycle. In agreement with Findell and Eltahir (2003) the triggering of convection can be favoured over dry soils or over wet soils depending on the initial atmospheric sounding. However, total accumulated precipitation is found to always decrease over dry soils regardless of the employed sounding, thus highlighting a positive soil moisture-precipitation feedback (more rain over wetter soils) for the considered cases. To understand these differences and to infer under which conditions a negative feedback may occur, the total accumulated precipitation is split into its magnitude and duration component. While the latter can exhibit a dry soil advantage, the precipitation magnitude strongly correlates with the surface latent heat flux and thus always exhibits a wet soil advantage. The dependency is so strong that changes in duration cannot offset it. This simple argument shows that, in our idealised setup, a negative feedback is unlikely to be observed. The effects of other factors on the soil moisture-precipitation coupling, namely cloud radiative effects, large-scale forcing, winds, and plants are investigated by conducting further sensitivity experiments. All the experiments support a positive soil moisture-precipitation feedback. References: -Findell, K. L., and E. A. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. part I: Framework development. Journal of Hydrometeorology, 4 (3), 552-569.

  3. Cirrus cloud development in a mobile upper tropospheric trough: The November 26th FIRE cirrus case study

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Ackerman, Thomas P.

    1993-01-01

    The period from 18 UTC 26 Nov. 1991 to roughly 23 UTC 26 Nov. 1991 is one of the study periods of the FIRE (First International Satellite Cloud Climatology Regional Experiment) 2 field campaign. The middle and upper tropospheric cloud data that was collected during this time allowed FIRE scientists to learn a great deal about the detailed structure, microphysics, and radiative characteristics of the mid latitude cirrus that occurred during that time. Modeling studies that range from the microphysical to the mesoscale are now underway attempting to piece the detailed knowledge of this cloud system into a coherent picture of the atmospheric processes important to cirrus cloud development and maintenance. An important component of the modeling work, either as an input parameter in the case of cloud-scale models, or as output in the case of meso and larger scale models, is the large scale forcing of the cloud system. By forcing we mean the synoptic scale vertical motions and moisture budget that initially send air parcels ascending and supply the water vapor to allow condensation during ascent. Defining this forcing from the synoptic scale to the cloud scale is one of the stated scientific objectives of the FIRE program. From the standpoint of model validation, it is also necessary that the vertical motions and large scale moisture budget of the case studies be derived from observations. It is considered important that the models used to simulate the observed cloud fields begin with the correct dynamics and that the dynamics be in the right place for the right reasons.

  4. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    USDA-ARS?s Scientific Manuscript database

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  5. Climatic and weather factors affecting fire occurrence and behavior

    Treesearch

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  6. Predicting Southern Appalachian overstory vegetation with digital terrain data

    Treesearch

    Paul V. Bolstad; Wayne Swank; James Vose

    1998-01-01

    Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and...

  7. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  8. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  9. Numerical prediction of the Mid-Atlantic states cyclone of 18-19 February 1979

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Rosenberg, R.

    1982-01-01

    A series of forecast experiments was conducted to assess the accuracy of the GLAS model, and to determine the importance of large scale dynamical processes and diabatic heating to the cyclogenesis. The GLAS model correctly predicted intense coastal cyclogenesis and heavy precipitation. Repeated without surface heat and moisture fluxes, the model failed to predict any cyclone development. An extended range forecast, a forecast from the NMC analysis interpolated to the GLAS grid, and a forecast from the GLAS analysis with the surface moisture flux excluded predicted weak coastal low development. Diabatic heating resulting from oceanic fluxes significantly contributed to the generation of low level cyclonic vorticity and the intensification and slow rate of movement of an upper level ridge over the western Atlantic. As an upper level short wave trough approached this ridge, diabatic heating associated with the release of latent heat intensified, and the gradient of vorticity, vorticity advection and upper level divergence in advance of the trough were greatly increased, providing strong large scale forcing for the surface cyclogenesis.

  10. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    NASA Astrophysics Data System (ADS)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  11. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  12. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    PubMed

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  13. Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao

    2018-05-01

    In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.

  14. Representation of physiological drought at ecosystem level based on model and eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Novick, K. A.; Song, C.; Zhang, Q.; Hwang, T.

    2017-12-01

    Drought and heat waves are expected to increase both in frequency and amplitude, exhibiting a major disturbance to global carbon and water cycles under future climate change. However, how these climate anomalies translate into physiological drought, or ecosystem moisture stress are still not clear, especially under the co-limitations from soil moisture supply and atmospheric demand for water. In this study, we characterized the ecosystem-level moisture stress in a deciduous forest in the southeastern United States using the Coupled Carbon and Water (CCW) model and in-situ eddy covariance measurements. Physiologically, vapor pressure deficit (VPD) as an atmospheric water demand indicator largely controls the openness of leaf stomata, and regulates atmospheric carbon and water exchanges during periods of hydrological stress. Here, we tested three forms of VPD-related moisture scalars, i.e. exponent (K2), hyperbola (K3), and logarithm (K4) to quantify the sensitivity of light-use efficiency to VPD along different soil moisture conditions. The sensitivity indicators of K values were calibrated based on the framework of CCW using Monte Carlo simulations on the hourly scale, in which VPD and soil water content (SWC) are largely decoupled and the full carbon and water exchanging information are held. We found that three K values show similar performances in the predictions of ecosystem-level photosynthesis and transpiration after calibration. However, all K values show consistent gradient changes along SWC, indicating that this deciduous forest is less responsive to VPD as soil moisture decreases, a phenomena of isohydricity in which plants tend to close stomata to keep the leaf water potential constant and reduce the risk of hydraulic failure. Our study suggests that accounting for such isohydric information, or spectrum of moisture stress along different soil moisture conditions in models can significantly improve our ability to predict ecosystem responses to future drought.

  15. Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Kędzior, Mateusz

    2016-03-01

    Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries - Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe. This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual comparisons. The results obtained using various statistical tools unveil high scientific potential of CATDS SMOS data to study soil moisture over the Odra river watershed. This was also confirmed by reasonable agreement between results derived from CATDS SMOS Ascending and GLDAS data sets. This agreement was achieved mainly by using these data spatially averaged over the whole watershed area, and for observations performed in the period longer than three-day averaging time. Comparisons of separate three-day data in a given pixel position, or at smaller areas would be difficult because of data gaps. Hence, the results of the work suggest that despite of RFI interferences, SMOS observations can provide effective input for analysis of soil moisture at regional scales. Moreover, it was shown that CATDS SMOS soil moisture data are better correlated with rainfall rate than GLDAS ones.

  16. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  17. Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Kathuria, D.; Mohanty, B.; Katzfuss, M.

    2017-12-01

    Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.

  18. Atmospheric Rivers across Multi-scales of the Hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Hu, H.

    2017-12-01

    Atmospheric Rivers (ARs) are defined as filamentary structures with strong water vapor transport in the atmosphere, moving as much water as is discharged by the Amazon River. As a large-scale phenomenon, ARs are embedded in the planetary-scale Rossby waves and account for the majority of poleward moisture transport in the midlatitudes. On the other hand, AR is the fundamental physical mechanism leading to extreme basin-scale precipitation and flooding over the U.S. West Coast in the winter season. The moisture transported by ARs is forced to rise and generate precipitation when it impinges on the mountainous coastal lands. My goal is to build the connection between the multi-scale features associated with ARs with their impacts on local hydrology, with particular focus on the U.S. West Coast. Moving across the different scales I have: (1) examined the planetary-scale dynamics in the upper-troposphere, and established a robust relationship between the two regimes of Rossby wave breaking and AR-precipitation and streamflow along the West Coast; (2) quantified the contribution from the tropics/subtropics to AR-related precipitation intensity and found a significant modulation from the large-scale thermodynamics; (3) developed a water tracer tool in a land surface model to track the lifecycle of the water collected from AR precipitation over the terrestrial system, so that the role of catchment-scale factors in modulating ARs' hydrological consequences could be examined. Ultimately, the information gather from these studies will indicate how the dynamic and thermodynamic changes as a response to climate change could affect the local flooding and water resource, which would be helpful in decision making.

  19. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soilmoisture Model Intercomparison Project – aims, setup and expected outcome

    DOE PAGES

    van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; ...

    2016-08-24

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less

  20. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soilmoisture Model Intercomparison Project – aims, setup and expected outcome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). Furthermore, the solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both stronglymore » affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. But, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (“LMIP”, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (“LFMIP”, building upon the GLACE-CMIP blueprint).« less

  1. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  2. Implementation of surface soil moisture data assimilation with watershed scale distributed hydrological model

    USDA-ARS?s Scientific Manuscript database

    This paper aims to investigate how surface soil moisture data assimilation affects each hydrologic process and how spatially varying inputs affect the potential capability of surface soil moisture assimilation at the watershed scale. The Ensemble Kalman Filter (EnKF) is coupled with a watershed scal...

  3. Assessing the uncertainty of soil moisture impacts on convective precipitation using a new ensemble approach

    NASA Astrophysics Data System (ADS)

    Henneberg, Olga; Ament, Felix; Grützun, Verena

    2018-05-01

    Soil moisture amount and distribution control evapotranspiration and thus impact the occurrence of convective precipitation. Many recent model studies demonstrate that changes in initial soil moisture content result in modified convective precipitation. However, to quantify the resulting precipitation changes, the chaotic behavior of the atmospheric system needs to be considered. Slight changes in the simulation setup, such as the chosen model domain, also result in modifications to the simulated precipitation field. This causes an uncertainty due to stochastic variability, which can be large compared to effects caused by soil moisture variations. By shifting the model domain, we estimate the uncertainty of the model results. Our novel uncertainty estimate includes 10 simulations with shifted model boundaries and is compared to the effects on precipitation caused by variations in soil moisture amount and local distribution. With this approach, the influence of soil moisture amount and distribution on convective precipitation is quantified. Deviations in simulated precipitation can only be attributed to soil moisture impacts if the systematic effects of soil moisture modifications are larger than the inherent simulation uncertainty at the convection-resolving scale. We performed seven experiments with modified soil moisture amount or distribution to address the effect of soil moisture on precipitation. Each of the experiments consists of 10 ensemble members using the deep convection-resolving COSMO model with a grid spacing of 2.8 km. Only in experiments with very strong modification in soil moisture do precipitation changes exceed the model spread in amplitude, location or structure. These changes are caused by a 50 % soil moisture increase in either the whole or part of the model domain or by drying the whole model domain. Increasing or decreasing soil moisture both predominantly results in reduced precipitation rates. Replacing the soil moisture with realistic fields from different days has an insignificant influence on precipitation. The findings of this study underline the need for uncertainty estimates in soil moisture studies based on convection-resolving models.

  4. Tropical atmospheric circulations with humidity effects.

    PubMed

    Hsia, Chun-Hsiung; Lin, Chang-Shou; Ma, Tian; Wang, Shouhong

    2015-01-08

    The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26 , 1399-1417. (doi:10.3934/dcds.2010.26.1399); 2011 Adv. Atmos. Sci. 28 , 612-622. (doi:10.1007/s00376-010-9089-0)). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system.

  5. Evaluation of WRF Model Against Satellite and Field Measurements During ARM March 2000 IOP

    NASA Astrophysics Data System (ADS)

    Wu, J.; Zhang, M.

    2003-12-01

    Meso-scale WRF model is employed to simulate the organization of clouds related with the cyclogenesis occurred during March 1-4, 2000 over ARM SGP CART site. Qualitative comparisons of simulated clouds with GOES8 satellite images show that the WRF model can capture the main features of clouds related with the cyclogenesis. The simulated precipitation patterns also match the Radar reflectivity images well. Further evaluation of the simulated features on GCM grid-scale is conducted against ARM field measurements. The evaluation shows that the evolutions of the simulated state fields such as temperature and moisture, the simulated wind fields and the derived large-scale temperature and moisture tendencies closely follow the observed patterns. These results encourages us to use meso-scale WRF model as a tool to verify the performance of GCMs in simulating cloud feedback processes related with the frontal clouds such that we can test and validate the current cloud parameterizations in climate models, and make possible improvements to different components of current cloud parameterizations in GCMs.

  6. Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto

    2012-07-01

    SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.

  7. Assessment of groundwater recharge in an ash-fall mantled karst aquifer of southern Italy

    NASA Astrophysics Data System (ADS)

    Manna, F.; Nimmo, J. R.; De Vita, P.; Allocca, V.

    2014-12-01

    In southern Italy, Mesozoic carbonate formations, covered by ash-fall pyroclastic soils, are large karst aquifers and major groundwater resources. For these aquifers, even though Allocca et al., 2014 estimated a mean annual groundwater recharge coefficient at regional scale, a more complete understanding of the recharge processes at small spatio-temporal scale is a primary scientific target. In this paper, we study groundwater recharge processes in the Acqua della Madonna test site (Allocca et al., 2008) through the integrated analysis of piezometric levels, rainfall, soil moisture and air temperature data. These were gathered with hourly frequency by a monitoring station in 2008. We applied the Episodic Master Recharge method (Nimmo et al., 2014) to identify episodes of recharge and estimate the Recharge to Precipitation Ratio (RPR) at both the individual-episode and annual time scales. For different episodes of recharge observed, RPR ranges from 97% to 37%, with an annual mean around 73%. This result has been confirmed by a soil water balance and the application of the Thornthwaite-Mather method to estimate actual evapotranspiration. Even though it seems higher than RPRs typical of some parts of the world, it is very close to the mean annual groundwater recharge coefficient estimated at the regional scale for the karst aquifers of southern Italy. In addition, the RPR is affected at the daily scale by both antecedent soil moisture and rainfall intensity, as demonstrated by a statistically significant multiple linear regression among such hydrological variables. In particular, the recharge magnitude is great for low storm intensity and high antecedent soil moisture value. The results advance the comprehension of groundwater recharge processes in karst aquifers, and the sensitivity of RPR to antecedent soil moisture and rainfall intensity facilitates the prediction of the influence of climate and precipitation regime change on the groundwater recharge process.

  8. Examinations of Linkages Between the Northwest Mexican Monsoon and Great Plains Precipitation

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Cotton, W. R.

    2001-12-01

    The Regional Atmospheric Modeling System (RAMS) is being used to examine linkages between the Mexican monsoon and precipitation in the Great Plains region of the United States. Currently, available datasets have allowed for seasonal runs for July and August of the 1993 flood year in the midwest US and the 1997 El Nino year. There is also a plan to perform a full monsoon season simulation of the drought summer of 1988 once precipitation data becomes available. Preliminary results of this ongoing study are presented here. The model configuration consists of a 120km resolution coarse grid that covers a region from west of Hawaii to Bermuda and from south of the equator up into Canada. Two 40km resolution nested grids exist, with one covering the western two-thirds of the United States and Mexico and the other covering the Pacific ITCZ. A 10km fine grid and 2.5km cloud resolving grid are spawned over the region of monsoon surges to explicitly resolve convection. The model is initialized with NCEP reanalysis data, surface obs, rawinsonde data, variable soil moisture, and weekly averaged SST's. RAMS is running with two-stream Harrington radiation, one moment microphysics, and Kuo cumulus parameterization. The completed 1993 and 1997 seasonal simulations are now being examined and verified again NCEP reanalysis data and high resolution precipitation data. Initial model results look promising when verified against the NCEP upper level fields, such that the model is able to capture the large scale dynamics. For the duration of both seasonal runs, RAMS successfully simulates the mid and upper level geopotential heights, the temperature, and winds. The large scale 700mb and 500mb anti-cyclone over the US and Mexico is resolved, as well as the easterly flow over Mexico. Model fields are also being examined to isolate monsoon surge events which are characterized by increased precipitation over the Sierra Madres and a northward moisture surge into the northern extent of the Gulf of California and southern Arizona. Within the coarse grids, the RAMS model has successfully resolved the low-level jet that persists in the Gulf of California and the local maximum in mixing ratio that persists over the gulf. It has also captured the upslope flow over the Sierra Madres that forces the moist air into the higher elevation to the east. This provides the necessary lifting and moisture for the development of intense convection and resulting large amounts of precipitation that occur along the Sierra Madre mountain range. Examination of model-predicted low-level moisture transport reveals that moisture advected from the Gulf of California is the primary monsoon moisture source, rather than the Gulf of Mexico. Time averages of moisture transport, mixing ratio, winds, and precipitation for July 1993 reveal the prominent diurnal cycle variations that exist due to radiative effects and land-sea interactions; the maximum in convection, precipitation rate, and moisture transport occurs around 00Z. Seasonal accumulated precipitation amounts in the model are successful in predicting the placement of precipitation and relative amounts for most of the 40km continental grid, but there is an overestimation of precipitation along the northern Sierra Madre Occidental and an underestimation in the US mid-west. During the 1993 flood summer, much of the mid-west US precipitation fell in association with mesoscale convective systems; it is suspected that other cumulus parameterizations may provide better prediction of sub-grid scale convective precipitation. >http://hugo.atmos.colostate.edu/www/monsoon/monsoon.html

  9. Influence of the Biosphere on Precipitation: July 1995 Studies with the ARM-CART Data

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, D. M.; Walker, G. K.; Koster, Randal D.

    2000-01-01

    Ensemble sets of simulation experiments were conducted with a single column model (SCM) using the Goddard GEOS II GCM physics containing a recent version of the Cumulus Scheme (McRAS) and a biosphere based land-fluxes scheme (SSiB). The study used the 18 July to 5 August 1995 ARM-CART (Atmospheric Radiation Measurement-Cloud Atmospheric Radiation Test-bed) data, which was collected at the ARM-CART site in the mid-western United States and analyzed for single column modeling (SCM) studies. The new findings affirm the earlier findings that the vegetation, which increases the solar energy absorption at the surface together with soil and soil-moisture dependent processes, which modulate the surface, fluxes (particularly evapotranspiration) together help to increase the local rainfall. In addition, the results also show that for the particular study period roughly 50% of the increased evaporation over the ARM-CART site would be converted into rainfall with the Column, while the remainder would be advected out to the large-scale. Notwithstanding the limitations of only one-way interaction (i.e., the large-scale influencing the regional physics and not vice versa), the current SCM simulations show a very robust relationship. The evaporation-precipitation relationship turns out to be independent of the soil types, and soil moisture; however, it is weakly dependent on the vegetation cover because of its surface-albedo effect. Clearly, these inferences are prone to weaknesses of the SCM physics, the assumptions of the large-scale being unaffected by gridscale (SCM-scale) changes in moist processes, and other limitations of the evaluation procedures.

  10. Tropical Convection's Roles in Tropical Tropopause Cirrus

    NASA Technical Reports Server (NTRS)

    Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung

    2002-01-01

    The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.

  11. Soil Moisture Retrieval During a Corn Growth Cycle using L-band (1.6 GHz) Radar Observations

    NASA Technical Reports Server (NTRS)

    Joseph, Alicia T.; vanderVelde, Rogier; O'Neill, Peggy E.; Lang, Roger; Gish, Tim

    2007-01-01

    New opportunities for large-scale soil moisture monitoring will emerge with the launch of two low frequency (L-band 1.4 GHz) radiometers: the Aquarius mission in 2009 and the Soil Moisture and Ocean Salinity (SMOS) mission in 2008. Soil moisture is an important land surface variable affecting water and heat exchanges between atmosphere, land surface and deeper ground water reservoirs. The data products from these sensors provide valuable information in a range of climate and hydrologic applications (e.g., numecal weather prediction, drought monitoring, flood forecasting, water resources management, etc.). This paper describes a unique data set that was collected during a field campaign at OPE^ (Optimizing Production Inputs for Economic and Environmental Enhancements) site in Beltsville, Maryland throughout the eompj2ete corn growing in 2002. This investigation describes a simple methodology to correct active microwave observations for vegetation effects, which could potentially be implemented in a global soil moisture monitoring algorithm. The methodology has been applied to radar observation collected during the entire corn growth season and validation against ground measurements showed that the top 5-cm soil moisture can be retrieved with an accuracy up to 0.033 [cu cm/cu cm] depending on the sensing configuration.

  12. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  13. Root traits predict decomposition across a landscape-scale grazing experiment

    PubMed Central

    Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René

    2014-01-01

    Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886

  14. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.

    2015-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the soil moisture mapping with different resolution which is of order the Tempest altitude.

  15. Moisture Limitations Dominate the Seasonality of Heterotrophic Respiration in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Konings, A. G.; Bloom, A. A.; Liu, J.; Parazoo, N.; Schimel, D.; Bowman, K. W.

    2016-12-01

    Heterotrophic respiration is the dominant process causing the loss of soil organic carbon, the largest stock of carbon on earth. Temperature, soil moisture, substrate availability, and soil microbial composition can all affect the rate of heterotrophic respiration. Without isotopic or root-specific measurements, it can be difficult to separate the total soil respiration into autotrophic and heterotrophic respiration. As a result, the large-scale variability and seasonality of heterotrophic respiration remains unknown, especially outside the mid-latitudes. In this study, we use remote-sensing based observational constraints to estimate heterotrophic respiration at large scales. We combine net ecosystem exchange estimates from atmospheric inversions of the Carbon Monitoring System-Flux project (CMS-Flux) with a recently derived optimally-scaled GPP dataset based on satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a spatially-varying carbon use efficiency retrieved in a model-data fusion framework (CARDAMOM). The three datasets are combined into a Bayesian framework to derive the uncertainty distribution of global heterotrophic respiration allowing only physically realistic solutions (appropriate signs for all fluxes), In most Southern Hemisphere regions where precipitation and temperature are anti-correlated (e.g. dry African woodlands, Sahel, Southern India, etc..), the seasonality of heterotrophic respiration follows precipitation, not temperature. This results in an apparent anti-correlation between heterotrophic respiration and temperature. By comparison, a data-constrained terrestrial ecosystem model that does not simulate an effect of soil moisture on heterotrophic respiration did not show this anti-correlation. Data-driven heterotrophic respiration estimates such as those presented here may be used to benchmark model predictions of heterotrophic respiration in the future.

  16. An inversion method for retrieving soil moisture information from satellite altimetry observations

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Forootan, Ehsan; Kusche, Jürgen; Braakmann-Folgmann, Anne

    2016-04-01

    Soil moisture represents an important component of the terrestrial water cycle that controls., evapotranspiration and vegetation growth. Consequently, knowledge on soil moisture variability is essential to understand the interactions between land and atmosphere. Yet, terrestrial measurements are sparse and their information content is limited due to the large spatial variability of soil moisture. Therefore, over the last two decades, several active and passive radar and satellite missions such as ERS/SCAT, AMSR, SMOS or SMAP have been providing backscatter information that can be used to estimate surface conditions including soil moisture which is proportional to the dielectric constant of the upper (few cm) soil layers . Another source of soil moisture information are satellite radar altimeters, originally designed to measure sea surface height over the oceans. Measurements of Jason-1/2 (Ku- and C-Band) or Envisat (Ku- and S-Band) nadir radar backscatter provide high-resolution along-track information (~ 300m along-track resolution) on backscatter every ~10 days (Jason-1/2) or ~35 days (Envisat). Recent studies found good correlation between backscatter and soil moisture in upper layers, especially in arid and semi-arid regions, indicating the potential of satellite altimetry both to reconstruct and to monitor soil moisture variability. However, measuring soil moisture using altimetry has some drawbacks that include: (1) the noisy behavior of the altimetry-derived backscatter (due to e.g., existence of surface water in the radar foot-print), (2) the strong assumptions for converting altimetry backscatters to the soil moisture storage changes, and (3) the need for interpolating between the tracks. In this study, we suggest a new inversion framework that allows to retrieve soil moisture information from along-track Jason-2 and Envisat satellite altimetry data, and we test this scheme over the Australian arid and semi-arid regions. Our method consists of: (i) deriving time-invariant spatial patterns (base-functions) by applying principal component analysis (PCA) to simulated soil moisture from a large-scale land surface model. (ii) Estimating time-variable soil moisture evolution by fitting these base functions of (i) to the along-track retracked backscatter coefficients in a least squares sense. (iii) Combining the estimated time-variable amplitudes and the pre-computed base-functions, which results in reconstructed (spatio-temporal) soil moisture information. We will show preliminary results that are compared to available high-resolution soil moisture model data over the region (the Australian Water Resource Assessment, AWRA model). We discuss the possibility of using altimetry-derived soil moisture estimations to improve the simulation skill of soil moisture in the Global Land Data Assimilation System (GLDAS) over Australia.

  17. Comparing AMSR-E soil moisture estimates to the extended record of the U.S. Climate Reference Network (USCRN)

    USDA-ARS?s Scientific Manuscript database

    Soil moisture plays an integral role in various aspects ranging from multi-scale hydrologic modeling to agricultural decision analysis to multi-scale hydrologic modeling, from climate change assessments to drought prediction and prevention. The broad availability of soil moisture estimates has only...

  18. Monitoring soil water dynamics at 0.1-1000 m scales using active DTS: the MOISST experience

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Moreno, D.; Legrand, C.; Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Selker, J. S.

    2014-12-01

    The Actively Heated Fiber Optics (AHFO) method can measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. As observed by Sayde et al. 2014, this unprecedented density of measurements captures soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m), bridging the gap between point scale measurements and large scale remote sensing. 4900 m of FO sensing cables were installed at the MOISST experimental site in Stillwater, Ok. The FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. Six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the AHFO data. Gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. In this work we present the preliminary results of this experiment. We will also address the experience learned from this large scale deployment of the AHFO method. In particular, we will present the in-situ soil moisture calibration method developed to tackle the calibration challenges associated with the high spatial heterogeneity of the soil physical and thermal properties. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation. Sayde, C., J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, and J.S. Selker (2014). Mapping Variability of Soil Water Content and Flux across 1-1,000 m scales using the Actively Heated Fiber Optic Method, Accepted for publication in Water Resour. Res.

  19. Permeability and compression characteristics of municipal solid waste samples

    NASA Astrophysics Data System (ADS)

    Durmusoglu, Ertan; Sanchez, Itza M.; Corapcioglu, M. Yavuz

    2006-08-01

    Four series of laboratory tests were conducted to evaluate the permeability and compression characteristics of municipal solid waste (MSW) samples. While the two series of tests were conducted using a conventional small-scale consolidometer, the two others were conducted in a large-scale consolidometer specially constructed for this study. In each consolidometer, the MSW samples were tested at two different moisture contents, i.e., original moisture content and field capacity. A scale effect between the two consolidometers with different sizes was investigated. The tests were carried out on samples reconsolidated to pressures of 123, 246, and 369 kPa. Time settlement data gathered from each load increment were employed to plot strain versus log-time graphs. The data acquired from the compression tests were used to back calculate primary and secondary compression indices. The consolidometers were later adapted for permeability experiments. The values of indices and the coefficient of compressibility for the MSW samples tested were within a relatively narrow range despite the size of the consolidometer and the different moisture contents of the specimens tested. The values of the coefficient of permeability were within a band of two orders of magnitude (10-6-10-4 m/s). The data presented in this paper agreed very well with the data reported by previous researchers. It was concluded that the scale effect in the compression behavior was significant. However, there was usually no linear relationship between the results obtained in the tests.

  20. Understanding the impact of ENSO on the variability and sources of moisture for precipitation in mainland southeast Asia during the onset of the Indian summer monsoon.

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jones, D. B. A.; Dyer, E.; Nusbaumer, J. M.; Noone, D.

    2017-12-01

    Seasonal variation of precipitation in mainland southeast Asia (SEA) is dominated by the Indian summer monsoon system and the western Pacific winter monsoon system, while the interannual variability of precipitation in this region can be related to remote variability, such as variations in sea surface temperatures in the Pacific Ocean associated with El Niño Southern Oscillation (ENSO) events. Here we use a version of the Community Earth System Model (CESM1.2) with water tagging capability, to examine the impact of ENSO on precipitation in mainland Southeast Asia during the onset of the Indian summer monsoon. In the model, water is tagged as it is evaporated from geographically defined regions and tracked through phase changes in the atmosphere until it is precipitated. The model simulates well the seasonal variability in SEA precipitation as captured by multiple observational data sets, and the variations in precipitation during the monsoon onset is well correlated with the Oceanic Niño Index. We examine the changes in the large-scale atmospheric circulation associated with El Niño and La Niña conditions, and the implication of these changes for moisture transport to SEA. In particular, we quantify the relative ENSO-induced changes in the local and Pacific and Indian Ocean moisture sources for SEA precipitation. We also assess the changes in the moisture source regions over the seasonal cycle to obtain an understanding of the variability in the moisture sources for SEA precipitation from seasonal to interannual time scales.

  1. Connecting Observations and Reanalysis of the MJO with Theory

    NASA Astrophysics Data System (ADS)

    Powell, S. W.

    2017-12-01

    Over the past few years, refined theories have been advanced the explain the onset and/or propagation of the Madden-Julian Oscillation over the tropical warm pool. For example, Adames and Kim (2016) built on Sobel and Maloney (2012, 2013) to describe the MJO as a dispersive moisture wave whose instability mechanism is a radiative-convective instability supported by anvils of large mesoscale systems. Wang and Chen (2016) describe a similar frictionally coupled moisture mode that captures many basic features of the canonically observed MJO. Arnold and Randall (2015) hypothesize that the MJO might be described as self-aggregation of convection over the Indian Ocean. Fuchs and Raymond (2017) describe the MJO as a first baroclinic dispersive mode in a simplified model with a linear WISHE instability that shows decreased propagation speeds for lower wavelengths. Not all of these theories can be correct, and quite possibly none of them are fully. Intelligent use of observations and reanalysis of past MJO events can help guide development of MJO theory. For example, Powell (2017) shows that in MERRA-2 reanalysis, the MJO propagates as a convectively coupled Kelvin wave over the Western Hemisphere then transitions abruptly into a slower moving mode over the Indian Ocean. A complete MJO theory must account for both forms as, and when, the MJO circumnavigates. Observations (like TRMM and GPM data) and reanalysis can reveal the relative roles of cloud-scale processes and large-scale free tropospheric horizontal advection in "pre-moistening" the troposphere in the location of MJO initiation where subsequent propagation of an existing MJO occurs. This can, for example, help validate or refute aspects of moisture mode theory that require large-scale dynamics to moisten an area ahead of an active envelope of MJO-related convection before the MJO can propagate eastward. Radar and satellite observations might yield some insight into whether convective self-aggregation is a real phenomenon or if upscale growth of cloud elements into mesoscale systems is actually more responsible for the apparent large-scale organization of convection in the tropics, let alone within the MJO. I will present a few such examples of how careful exploration of observations and reanalysis might help guide MJO theory during the next several years.

  2. Two-dimensional analysis of coupled heat and moisture transport in masonry structures

    NASA Astrophysics Data System (ADS)

    Krejčí, Tomáš

    2016-06-01

    Reconstruction and maintenance of historical buildings and bridges require good knowledge of temperature and moisture distribution. Sharp changes in the temperature and moisture can lead to damage. This paper describes analysis of coupled heat and moisture transfer in masonry based on two-level approach. Macro-scale level describes the whole structure while meso-scale level takes into account detailed composition of the masonry. The two-level approach is very computationally demanding and it was implemented in parallel. The two-level approach was used in analysis of temperature and moisture distribution in Charles bridge in Prague, Czech Republic.

  3. Constraints on Cumulus Parameterization from Simulations of Observed MJO Events

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Wu, Jingbo; Wolf, Audrey B.; Chen, Yonghua; Yao, Mao-Sung; Kim, Daehyun

    2015-01-01

    Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden-Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

  4. Large-scale drought-induced vegetation die-off: expanding the ecohydrological emphasis more explicitly on atmospheric demand. (Invited)

    NASA Astrophysics Data System (ADS)

    Breshears, D. D.; Adams, H. D.; Eamus, D.; McDowell, N. G.; Law, D. J.; Will, R. E.; Williams, P.; Zou, C.

    2013-12-01

    Ecohydrology focuses on the interactions of water availability, ecosystem productivity, and biogeochemical cycles via ecological-hydrological connections. These connections can be particularly pronounced and socially relevant when there are large-scale rapid changes in vegetation. One such key change, vegetation mortality, can be triggered by drought and is projected to become more frequent and/or extensive in the future under changing climate. Recent research on drought-induced vegetation die-off has focused primarily on direct drought effects, such as soil moisture deficit, and, to a much lesser degree, the potential for warmer temperatures to exacerbate stress and accelerate mortality. However, temperature is tightly interrelated with atmospheric demand (vapor pressure deficit, VPD) but the latter has rarely been considered explicitly relative to die-off events. Here we highlight the importance of VPD in addition to soil moisture deficit and warmer temperature as an important driver of future die-off. Recent examples highlighting the importance of VPD include mortality patterns corresponding to VPD drivers, a strong dependence of forest growth on VPD, patterns of observed mortality along an environmental gradient, an experimentally-determined climate envelope for mortality, and a suite of modeling simulations segregating the drought effects of VPD from those of temperature. The vast bulk of evidence suggests that atmospheric demand needs to be considered in addition to temperature and soil moisture deficit in predicting risk of future vegetation die-off and associated ecohydrological transformations.

  5. Cloud Microphysics Budget in the Tropical Deep Convective Regime

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.

  6. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the influence of the air mass transport over the TP on the budget of global atmosphere compositions.

  7. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Treesearch

    Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick

    2018-01-01

    In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...

  8. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis

    Treesearch

    Jorge A. Ramirez; Michael T. Hobbins; Thomas C. Brown

    2005-01-01

    Using independent observations of actual and potential evapotranspiration at a wide range of spatial scales, we provide direct observational evidence of the complementary relationship in regional evapotranspiration hypothesized by Bouchet in 1963. Bouchet proposed that, for large homogeneous surfaces with minimal advection of heat and moisture, potential and actual...

  9. The divining root: moisture-driven responses of roots at the micro- and macro-scale.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2015-04-01

    Water is fundamental to plant life, but the mechanisms by which plant roots sense and respond to variations in water availability in the soil are poorly understood. Many studies of responses to water deficit have focused on large-scale effects of this stress, but have overlooked responses at the sub-organ or cellular level that give rise to emergent whole-plant phenotypes. We have recently discovered hydropatterning, an adaptive environmental response in which roots position new lateral branches according to the spatial distribution of available water across the circumferential axis. This discovery illustrates that roots are capable of sensing and responding to water availability at spatial scales far lower than those normally studied for such processes. This review will explore how roots respond to water availability with an emphasis on what is currently known at different spatial scales. Beginning at the micro-scale, there is a discussion of water physiology at the cellular level and proposed sensory mechanisms cells use to detect osmotic status. The implications of these principles are then explored in the context of cell and organ growth under non-stress and water-deficit conditions. Following this, several adaptive responses employed by roots to tailor their functionality to the local moisture environment are discussed, including patterning of lateral root development and generation of hydraulic barriers to limit water loss. We speculate that these micro-scale responses are necessary for optimal functionality of the root system in a heterogeneous moisture environment, allowing for efficient water uptake with minimal water loss during periods of drought. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. SMOS data and extreme events

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Wigneron, Jean-Pierre; Ferrazzoli, Paolo; Mahmoodi, Ali; Al-Yaari, Amen; Parrens, Marie; Bitar, Ahmad Al; Rodriguez-Fernandez, Nemesio; Bircher, Simone; Molero-rodenas, Beatriz; Drusch, Matthias; Mecklenburg, Susanne

    2017-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. The whole data set has been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented.

  11. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data

    NASA Astrophysics Data System (ADS)

    Leng, Pei; Li, Zhao-Liang; Duan, Si-Bo; Gao, Mao-Fang; Huo, Hong-Yuan

    2017-09-01

    Soil moisture has long been recognized as one of the essential variables in the water cycle and energy budget between Earth's surface and atmosphere. The present study develops a practical approach for deriving all-weather soil moisture using combined satellite images and gridded meteorological products. In this approach, soil moisture over the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky pixels are estimated from the Vegetation Index/Temperature (VIT) trapezoid scheme in which theoretical dry and wet edges were determined pixel to pixel by China Meteorological Administration Land Data Assimilation System (CLDAS) meteorological products, including air temperature, solar radiation, wind speed and specific humidity. For cloudy pixels, soil moisture values are derived by the calculation of surface and aerodynamic resistances from wind speed. The approach is capable of filling the soil moisture gaps over remaining cloudy pixels by traditional optical/thermal infrared methods, allowing for a spatially complete soil moisture map over large areas. Evaluation over agricultural fields indicates that the proposed approach can produce an overall generally reasonable distribution of all-weather soil moisture. An acceptable accuracy between the estimated all-weather soil moisture and in-situ measurements at different depths could be found with an Root Mean Square Error (RMSE) varying from 0.067 m3/m3 to 0.079 m3/m3 and a slight bias ranging from 0.004 m3/m3 to -0.011 m3/m3. The proposed approach reveals significant potential to derive all-weather soil moisture using currently available satellite images and meteorological products at a regional or global scale in future developments.

  12. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  13. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2009-07-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  14. Pore-scale water dynamics during drying and the impacts of structure and surface wettability

    NASA Astrophysics Data System (ADS)

    Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.

    2017-07-01

    Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.

  15. Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Han, Z.

    2016-12-01

    Reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau Yaokui Cui, Di Long, Yang Hong, Chao Zeng, and Zhongying Han State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China Abstract: Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the world's third pole. Large-scale consistent and continuous soil moisture datasets are of importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is one of relatively new passive microwave products. The FY-3B/MWRI soil moisture product is reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo using different gap-filling methods. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and the NDVI, LST, and albedo, but also the relationship between the soil moisture and the four-dimensional variation using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 larger than 0.63, and RMSE less than 0.1 cm3 cm-3 and bias less than 0.07 cm3 cm-3 for both frozen and unfrozen periods, compared with in-situ measurements in the central TP. The reconstruction method is subsequently applied to generate spatially consistent and temporally continuous surface soil moisture over the TP. The reconstructed FY-3B/MWRI soil moisture product could be valuable in studying meteorology, hydrology, and agriculture over the TP. Keywords: FY-3B/MWRI; Soil moisture; Reconstruction; Tibetan Plateau

  16. Modeling soil moisture memory in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants, as these can maintain transpiration for a longer time even through the top soil layer dries out.

  17. New Physical Algorithms for Downscaling SMAP Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Ghafari, E.; Babaeian, E.; Davary, K.; Farid, A.; Jones, S. B.; Tuller, M.

    2017-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission provides new means for estimation of surface soil moisture at the global scale. However, for many hydrological and agricultural applications the spatial SMAP resolution is too low. To address this scale issue we fused SMAP data with MODIS observations to generate soil moisture maps at 1-km spatial resolution. In course of this study we have improved several existing empirical algorithms and introduced a new physical approach for downscaling SMAP data. The universal triangle/trapezoid model was applied to relate soil moisture to optical/thermal observations such as NDVI, land surface temperature and surface reflectance. These algorithms were evaluated with in situ data measured at 5-cm depth. Our results demonstrate that downscaling SMAP soil moisture data based on physical indicators of soil moisture derived from the MODIS satellite leads to higher accuracy than that achievable with empirical downscaling algorithms. Keywords: Soil moisture, microwave data, downscaling, MODIS, triangle/trapezoid model.

  18. Untangling the contribution of aspect, drainage position and elevation to the spatial variability of fine surface fuels in south east Australian forests

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; nyman, petter; Duff, Tom; Baillie, Craig; Bovill, William; Lane, Patrick; Tolhurst, Kevin

    2015-04-01

    The prediction of fuel moisture content is important for estimating the rate of spread of wildfires, the ignition probability of firebrands, and for the efficient scheduling of prescribed fire. The moisture content of fine surface fuels varies spatially at large scales (10's to 100's km) due to variation in meteorological variables (eg. temperature, relative humidity, precipitation). At smaller scales (100's of metres) in steep topography spatial variability is attributed to topographic influences that include differences in radiation due to aspect and slope, differences in precipitation, temperature and relative humidity due to elevation, and differences in soil moisture due to hillslope drainage position. Variable forest structure and canopy shading adds further to the spatial variability in surface fuel moisture. In this study we aim to combine daily 5km resolution gridded weather data with 20m resolution DEM and vegetation structure data to predict the spatial variability of fine surface fuels in steep topography. Microclimate stations were established in south east Australia to monitor surface fine fuel moisture continuously (every 15 minutes) using newly developed instrumented litter packs, in addition to temperature and relative humidity measurements inside the litter pack, and measurement of precipitation and energy inputs above and below the forest canopy. Microclimate stations were established across a gradient of aspect (5 stations), drainage position (7 stations), elevation (15 stations), and canopy cover conditions (6 stations). The data from this extensive network of microclimate stations across a broad spectrum of topographic conditions is being analysed to enable the downscaling of gridded weather data to spatial scales that are relevant to the connectivity of wildfire fuels and to the scheduling and outcome of prescribed fires. The initial results from the first year of this study are presented here.

  19. Improving Evapotranspiration Estimates Using Multi-Platform Remote Sensing

    NASA Astrophysics Data System (ADS)

    Knipper, Kyle; Hogue, Terri; Franz, Kristie; Scott, Russell

    2016-04-01

    Understanding the linkages between energy and water cycles through evapotranspiration (ET) is uniquely challenging given its dependence on a range of climatological parameters and surface/atmospheric heterogeneity. A number of methods have been developed to estimate ET either from primarily remote-sensing observations, in-situ measurements, or a combination of the two. However, the scale of many of these methods may be too large to provide needed information about the spatial and temporal variability of ET that can occur over regions with acute or chronic land cover change and precipitation driven fluxes. The current study aims to improve the spatial and temporal variability of ET utilizing only satellite-based observations by incorporating a potential evapotranspiration (PET) methodology with satellite-based down-scaled soil moisture estimates in southern Arizona, USA. Initially, soil moisture estimates from AMSR2 and SMOS are downscaled to 1km through a triangular relationship between MODIS land surface temperature (MYD11A1), vegetation indices (MOD13Q1/MYD13Q1), and brightness temperature. Downscaled soil moisture values are then used to scale PET to actual ET (AET) at a daily, 1km resolution. Derived AET estimates are compared to observed flux tower estimates, the North American Land Data Assimilation System (NLDAS) model output (i.e. Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model, Mosiac Model, and Noah Model simulations), the Operational Simplified Surface Energy Balance Model (SSEBop), and a calibrated empirical ET model created specifically for the region. Preliminary results indicate a strong increase in correlation when incorporating the downscaling technique to original AMSR2 and SMOS soil moisture values, with the added benefit of being able to decipher small scale heterogeneity in soil moisture (riparian versus desert grassland). AET results show strong correlations with relatively low error and bias when compared to flux tower estimates. In addition, AET results show improved bias to those reported by SSEBop, with similar correlations and errors when compared to the empirical ET model. Spatial patterns of estimated AET display patterns representative of the basin's elevation and vegetation characteristics, with improved spatial resolution and temporal heterogeneity when compared to previous models.

  20. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Norris, Jesse

    2016-07-01

    Extratropical cyclones, including winter westerly disturbances (WWD) over central Asia, are fundamental features of the atmosphere that maintain energy, momentum, and moisture at global scales while intimately linking large-scale circulation to regional-scale meteorology. Within high mountain Asia, WWD are the primary contributor to regional precipitation during winter. In this work, we present a novel WWD tracking methodology, which provides an inventory of location, timing, intensity, and duration of events, allowing for a comprehensive study of the factors that relate WWD to orographic precipitation, on an individual event basis and in the aggregate. We identify the relationship between the strength of disturbances, the state of the background environment during their propagation, and precipitation totals in the Karakoram/western Himalaya. We observe significant differences in convective and mechanical instability contributions to orographic precipitation as a function of the relationship between the intensity of WWD and the background temperature and moisture fields, which exhibit strong intraseasonal variability. Precipitation is primarily orographically forced during intense WWD with strong cross-barrier winds, while weaker WWD with similar precipitation totals are observed to benefit from enhanced instability due to high moisture content and temperature at low levels, occurring primarily in the late winter/premonsoon. The contribution of these factors is observed to fluctuate on a per-case basis, indicating important influences of intraseasonal oscillations and tropical-extratropical interactions on regional precipitation.

  1. Prediction of Root Zone Soil Moisture using Remote Sensing Products and In-Situ Observation under Climate Change Scenario

    NASA Astrophysics Data System (ADS)

    Singh, G.; Panda, R. K.; Mohanty, B.

    2015-12-01

    Prediction of root zone soil moisture status at field level is vital for developing efficient agricultural water management schemes. In this study, root zone soil moisture was estimated across the Rana watershed in Eastern India, by assimilation of near-surface soil moisture estimate from SMOS satellite into a physically-based Soil-Water-Atmosphere-Plant (SWAP) model. An ensemble Kalman filter (EnKF) technique coupled with SWAP model was used for assimilating the satellite soil moisture observation at different spatial scales. The universal triangle concept and artificial intelligence techniques were applied to disaggregate the SMOS satellite monitored near-surface soil moisture at a 40 km resolution to finer scale (1 km resolution), using higher spatial resolution of MODIS derived vegetation indices (NDVI) and land surface temperature (Ts). The disaggregated surface soil moisture were compared to ground-based measurements in diverse landscape using portable impedance probe and gravimetric samples. Simulated root zone soil moisture were compared with continuous soil moisture profile measurements at three monitoring stations. In addition, the impact of projected climate change on root zone soil moisture were also evaluated. The climate change projections of rainfall were analyzed for the Rana watershed from statistically downscaled Global Circulation Models (GCMs). The long-term root zone soil moisture dynamics were estimated by including a rainfall generator of likely scenarios. The predicted long term root zone soil moisture status at finer scale can help in developing efficient agricultural water management schemes to increase crop production, which lead to enhance the water use efficiency.

  2. Field-Scale Soil Moisture Observations in Irrigated Agriculture Fields Using the Cosmic-ray Neutron Rover

    NASA Astrophysics Data System (ADS)

    Franz, T. E.; Avery, W. A.; Finkenbiner, C. E.; Wang, T.; Brocca, L.

    2014-12-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 11 x11 km study domain also contained 3 stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong inverted parabolic relationship between the mean and variance of soil moisture. The relationship between the mean and higher order moments were not as strong. Geostatistical analysis indicated the range of the soil moisture semi-variogram was significantly shorter during periods of heavy irrigation as compared to non-irrigated periods. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. Statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  3. Wetlands as large-scale nature-based solutions: status and future challenges for research and management

    NASA Astrophysics Data System (ADS)

    Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia

    2017-04-01

    Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.

  4. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  5. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints

    NASA Astrophysics Data System (ADS)

    Rasmijn, L. M.; van der Schrier, G.; Bintanja, R.; Barkmeijer, J.; Sterl, A.; Hazeleger, W.

    2018-05-01

    The 2010 heatwave in eastern Europe and Russia ranks among the hottest events ever recorded in the region1,2. The excessive summer warmth was related to an anomalously widespread and intense quasi-stationary anticyclonic circulation anomaly over western Russia, reinforced by depletion of spring soil moisture1,3-5. At present, high soil moisture levels and strong surface evaporation generally tend to cap maximum summer temperatures6-8, but these constraints may weaken under future warming9,10. Here, we use a data assimilation technique in which future climate model simulations are nudged to realistically represent the persistence and strength of the 2010 blocked atmospheric flow. In the future, synoptically driven extreme warming under favourable large-scale atmospheric conditions will no longer be suppressed by abundant soil moisture, leading to a disproportional intensification of future heatwaves. This implies that future mid-latitude heatwaves analogous to the 2010 event will become even more extreme than previously thought, with temperature extremes increasing by 8.4 °C over western Russia. Thus, the socioeconomic impacts of future heatwaves will probably be amplified beyond current estimates.

  6. 1km Soil Moisture from Downsampled Sentinel-1 SAR Data: Harnessing Assets and Overcoming Obstacles.

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, Bernhard; Cao, Senmao; Schaufler, Stefan; Paulik, Christoph; Naeimi, Vahid; Wagner, Wolfgang

    2017-04-01

    Radars onboard Earth observing satellites allow estimating Surface Soil Moisture (SSM) regularly and globally. The use of coarse-scale measurements from active or passive radars for SSM retrieval is well established and in operational use. Thanks to the Sentinel-1 mission, launched in 2014 and deploying Synthetic Aperture Radars (SAR), high-resolution radar imagery is routinely available at the scale of 20 meters, with a high revisit frequency of 3-6 days and with unprecedented radiometric accuracy. However, the direct exploitation of high-resolution SAR data for SSM retrieval is complicated by several problems: Small-scaled contributions to the radar backscatter from individual ground features often obscure the soil moisture signal, rendering common algorithms insensitive to SSM. Furthermore, the influence of vegetation dynamics on the radar signal is less understood than in the coarse-scale case, leading to biases during the vegetation period. Finally, the large data volumes of high-resolution remote sensing data present a great load on hardware systems. Consequently, a spatial resampling of the high-resolution SAR data to a 500 meters sampling is done, allowing the exploitation of information at 10 meter sampling, but reducing effectively the inherent uncertainties. The thereof retrieved 1km SSM product aims to describe the soil moisture dynamics at medium scale with high quality. We adopted the TU-Wien Change Detection algorithm to the Sentinel-1 data, which was already successfully used for retrieving SSM from ERS-1/2 and Envisat-ASAR observations. The adoption entails a new method for SAR image resampling, including a masking for pixels that do not carry soil moisture signals, preventing them to spread during downsampling. Furthermore, the observation angle between the radar sensors and the ground is treated in a different way, as Sentinel-1 sensors observe from fixed orbit paths (in contrast to other radar sensors). Here, a regression model is developed that successfully estimates the dependency of radar backscatter to observation angle with statistical parameters from the Sentinel-1 SAR time series archive. We present the Sentinel-1 1km-SSM product generated by the adopted change detection algorithm. The dataset covers the European continent and holds data from October 2014 ongoing. In addition to a validation of the SSM product, the statistical SAR parameters used during SSM retrieval are examined.

  7. Use of soil moisture dynamics and patterns for the investigation of runoff generation processes with emphasis on preferential flow

    NASA Astrophysics Data System (ADS)

    Blume, T.; Zehe, E.; Bronstert, A.

    2007-08-01

    Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.

  8. Social-ecological resilience to changes in moisture recycling

    NASA Astrophysics Data System (ADS)

    Gordon, Line; Wang-Erlandsson, Lan; Keys, Patrick

    2015-04-01

    Scientists from the biophysical and social sciences often define resilience substantially different. Biophysical scientists primarily use resilience to understand how a system can return to an equilibrium following a perturbation, and social scientists use resilience to understand what enables, or disable, human development. In the Anthropocene, where social changes are causing both linear and nonlinear biophysical changes, with local or distant feedbacks on society, it is important to develop integrated definitions and analytical methods to analyze combined social-ecological interactions. There has been a growing amount of research in this field over the last decade, but with a primary focus on relatively small-scale regions or specific ecosystems. In this paper we review literature dealing with interdisciplinary aspects of resilience to global change and develop a conceptual framework for analyzing social-ecological resilience in relation to moisture recycling (i.e. where evaporation from land returns as precipitation on land). We first identify current social drivers of changes in evaporation (including e.g. large scale land and water acquisitions, and REDD+ programs). We then identify geographic regions where the effects of altered evaporation on moisture recycling can risk a) causing thresholds in specific biomes (such as between forests and savannas), or b) shifts in social systems (such as collapse of rainfed farming systems). We also identify institutional structures that enhance the capacity to enhance resilience through either dealing directly with drivers, or building adaptive capacity to changes in moisture recycling. We particularly stress the difference between regional feedbacks (where the consequences are felt in the same regions where decisions are made), and teleconnections, i.e. where local decision in one place is altering important drivers for distant social-ecological systems. Through this review we identify the characteristics of interlinked biophysical and social systems that enhance or undermine resilience as related to moisture recycling. We use these characteristics to identify critical geographic regions globally where social-ecological resilience to moisture recycling is low, currently being undermined, or where there might be large risks in the future. We illustrate that some of these regions are well-studied, while others have been neglected in previous research. We end with a list of research priorities for understanding implication land-atmosphere interactions for resilience of interlinked social-biophysical in the Anthropocene.

  9. Assessing topographic patterns in moisture use and stress using a water balance approach

    Treesearch

    James M. Dyer

    2009-01-01

    Through its control on soil moisture patterns, topography's role in influencing forest composition is widely recognized. This study addresses shortcomings in traditional moisture indices by employing a water balance approach, incorporating topographic and edaphic variability to assess fine-scale moisture demand and moisture availability. Using GIS and readily...

  10. Moving water to South America as observed from space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2006-01-01

    The approximate balance of the mass change rate measured by the Gravity Recovery and Climate Experiment (GRACE) with the moisture influx across the entire coastline less climatological river discharge for South America (SA), in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The moisture transport integrated over the depth of the atmosphere is estimated using measurements by QuikSCAT and Special Sensor Microwave/Imager. The large-scale geographic patterns of precipitation from the Tropical Rain Measuring Mission (TRMM) and the mass change rate were found to follow similar annual changes over South America.

  11. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    NASA Technical Reports Server (NTRS)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  12. Madden-Julian Oscillation: Western Pacific and Indian Ocean

    NASA Astrophysics Data System (ADS)

    Fuchs, Z.; Raymond, D. J.

    2016-12-01

    The MJO has been and still remains a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e. why does it prefer long wavelengths or planetary wavenumbers 1-3? The MJO has the strongest signal in the Indian ocean and in the West Pacific, but the average vertical structure is very different in each of those basins. We look at the reanalysis/analysis FNL, ERAI vertical structure of temperature and moisture as well as the surface zonal winds for two ocean basins. We also look at data from DYNAMO and TOGA_COARE in great detail (saturation fraction, temperature, entropy, surface zonal winds, gross moist stability, etc). The findings from observations and field projects for the two ocean basins are then compared to a linear WISHE model on an equatorial beta plane. Though linear WISHE has long been discounted as a plausible model for the MJO, the version we have developed explains many of the observed features of this phenomenon, in particular, the preference for large zonal scale, the eastward propagation, the westward group velocity, and the thermodynamic structure. There is no need to postulate large-scale negative gross moist stability, as destabilization occurs via WISHE at long wavelengths only. This differs from early WISHE models because we take a moisture adjustment time scale of order one day in comparison to the much shorter time scales assumed in earlier models. Linear modeling cannot capture all of the features of the MJO, so we are in the process of adding nonlinearity.

  13. Watershed-Scale Heterogeneity of the Biophysical Controls on Soil Respiration

    NASA Astrophysics Data System (ADS)

    Riveros, D. A.; Pacific, V. J.; McGlynn, B. L.; Welsch, D. L.; Epstein, H. E.; Muth, D. J.; Marshall, L.; Wraith, J.

    2006-12-01

    Large gaps exist in our understanding of the variability of soil respiration response to changing hydrologic conditions across spatial and temporal scales. Determining the linkages between the hydrologic cycle and the biophysical controls of soil respiration from the local point, to the plot, to the watershed scale is critical to understanding the dynamics of net ecosystem CO2 exchange (NEE). To study the biophysical controls of soil respiration, we measured soil CO2 concentration, soil CO2 flux, dissolved CO2 in stream water, soil moisture, soil temperature, groundwater dynamics, and precipitation at 20-minute intervals throughout the growing season at 4 sites and at weekly intervals at 62 sites covering the range of topographic position, slope, aspect, land cover, and upslope accumulated area conditions in a 555-ha subalpine watershed in central Montana. Our goal was to quantify watershed-scale heterogeneity in soil CO2 concentrations and surface efflux and gain understanding of the biophysical controls on soil respiration. We seek to improve our ability to evaluate and predict soil respiration responses to a dynamic hydrologic cycle across multiple temporal and spatial scales. We found that time lags between biophysical controls and soil respiration can occur from hourly to daily scales. The sensitivity of soil respiration to changes in environmental conditions is controlled by the antecedent soil moisture and by topographic position. At the watershed scale, significant differences in soil respiration exist between upland (dry) and lowland (wet) sites. However, differences in the magnitude and timing of soil respiration also exist within upland settings due to heterogeneity in soil temperature, soil moisture, and soil organic matter. Finally, we used a process-based model to simulate respiration at different times of the year across spatial locations. Our simulations highlight the importance of autotrophic and heterotrophic respiration (production) over diffusivity and soil physical properties (transport). Our work begins to address the disconnect between point, footprint, watershed scale estimates of ecosystem respiration and the role of a dynamic hydrologic cycle.

  14. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR)

    PubMed Central

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-01-01

    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759

  15. Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns

    NASA Astrophysics Data System (ADS)

    Dong, Jingnuo; Ochsner, Tyson E.

    2018-03-01

    Soil moisture patterns are commonly thought to be dominated by land surface characteristics, such as soil texture, at small scales and by atmospheric processes, such as precipitation, at larger scales. However, a growing body of evidence challenges this conceptual model. We investigated the structural similarity and spatial correlations between mesoscale (˜1-100 km) soil moisture patterns and land surface and atmospheric factors along a 150 km transect using 4 km multisensor precipitation data and a cosmic-ray neutron rover, with a 400 m diameter footprint. The rover was used to measure soil moisture along the transect 18 times over 13 months. Spatial structures of soil moisture, soil texture (sand content), and antecedent precipitation index (API) were characterized using autocorrelation functions and fitted with exponential models. Relative importance of land surface characteristics and atmospheric processes were compared using correlation coefficients (r) between soil moisture and sand content or API. The correlation lengths of soil moisture, sand content, and API ranged from 12-32 km, 13-20 km, and 14-45 km, respectively. Soil moisture was more strongly correlated with sand content (r = -0.536 to -0.704) than with API for all but one date. Thus, land surface characteristics exhibit coherent spatial patterns at scales up to 20 km, and those patterns often exert a stronger influence than do precipitation patterns on mesoscale spatial patterns of soil moisture.

  16. Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

    Treesearch

    Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang

    2005-01-01

    We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...

  17. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    PubMed

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain. © 2016 John Wiley & Sons Ltd.

  18. Towards soil property retrieval from space: Proof of concept using in situ observations

    NASA Astrophysics Data System (ADS)

    Bandara, Ranmalee; Walker, Jeffrey P.; Rüdiger, Christoph

    2014-05-01

    Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure nor monitor at large scales because of its high spatial variability. This is mainly a result of the local variation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the evolution of soil moisture and yet, despite their importance, these models are based on low-resolution soil property information or typical values. Therefore, the availability of more accurate and detailed soil parameter data than are currently available is vital, if regional or global soil moisture predictions are to be made with the accuracy required for environmental applications. The proposed solution is to estimate the soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using parameters that were retrieved using soil moisture observations, the root zone soil moisture was predicted to within an accuracy of 0.04 m3/m3, which is an improvement of ∼0.025 m3/m3 on predictions that used published values or pedo-transfer functions.

  19. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    PubMed

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  20. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    PubMed Central

    2017-01-01

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect. PMID:29027979

  1. Impact of Soil Moisture Initialization on Seasonal Weather Prediction

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Houser, Paul (Technical Monitor)

    2002-01-01

    The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.

  2. Effects of land preparation and artificial vegetation on soil moisture variation in a loess hilly catchment of China

    NASA Astrophysics Data System (ADS)

    Feng, Tianjiao; Wei, Wei; Chen, Liding; Yu, Yang

    2017-04-01

    In the dryland regions, soil moisture is the main factor to determine vegetation growth and ecosystem restoration. Land preparation and vegetation restoration are the principal means for improving soil water content(SWC). Thus, it is important to analyze the coupling role of these two means on soil moisture. In this study, soil moisture were monitored at a semi-arid loess hilly catchment of China, during the growing season of 2014 and 2015. Four different land preparation methods (level ditches, fish-scale pits, adverse grade tablelands and level benches)and vegetation types(Prunus armeniaca, Platycladus orientalis, Platycladus orientalis and Caragana microphylla) were included in the experimental design. Our results showed that: (1)Soil moisture content differed across land preparation types, which is higher for fish-scale pits and decreased in the order of level ditches and adverse grade tablelands.(2) Rainwater harvesting capacity of fish-scale pits is greater than adverse grade tablelands. However the water holding capacity is much higher at soils prepared with the adverse grade tablelands method than the ones prepared by fish-scale pits methods. (3) When land preparation method is similar, vegetation play a key role in soil moisture variation. For example, the mean soil moisture under a Platycladus orientalis field is 26.72% higher than a Pinus tabulaeformis field, with the same land preparation methods. (4)Soil moisture in deeper soil layers is more affected by changes in the vegetation cover while soil moisture in the shallower layers is more affected by the variation in the land preparation methods. Therefore, we suggest that vegetation types such as: Platycladus orientalisor as well as soil preparation methods such as level ditch and fish-scale pit are the most appropriate vegetation cover and land preparation methods for landscape restoration in semi-arid loess hilly area. This conclusion was made based on the vegetation type and land preparation with the best water-holding capacity.

  3. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation and/or that shifting circulation patterns overwhelmed any multi-centennial-scale co-variability.

  4. The moisture budget in relation to convection

    NASA Technical Reports Server (NTRS)

    Scott, R. W.; Scoggins, J. R.

    1977-01-01

    An evaluation of the moisture budget in the environment of convective storms is presented by using the unique 3- to 6-h rawinsonde data. Net horizontal and vertical boundary fluxes accounted for most of the large amounts of moisture which were concentrated into convective regions associated with two squall lines that moved through the area during the experiment. The largest values of moisture accumulations were located slightly downwind of the most intense convective activity. Relationships between computed moisture quantities of the moisture budget and radar-observed convection improved when lagging the radar data by 3 h. The residual of moisture which represents all sources and sinks of moisture in the budget equation was largely accounted for by measurements of precipitation.

  5. Surface soil moisture retrieval over a Mediterranean semi-arid region using X-band TerraSAR-X SAR data

    NASA Astrophysics Data System (ADS)

    Azza, Gorrab; Zribi, Mehrez; Baghdadi, Nicolas; Mougenot, Bernard; Boulet, Gilles; Lili-Chabaane, Zohra

    2015-04-01

    Mapping surface soil moisture with meter-scale spatial resolution is appropriate for multi- domains particularly hydrology and agronomy. It allows water resources and irrigation management decisions, drought monitoring and validation of multi-hydrological water balance models. In the last years, various studies have demonstrated the large potential of radar remote sensing data, mainly from C frequency band, to retrieve soil moisture. However, the accuracy of the soil moisture estimation, by inversing backscattering radar coefficients (σ°), is affected by the influence of surface roughness and vegetation biomass contributions. In recent years, different empirical, semi empirical and physical approaches are developed for bare soil conditions, to estimate accurately spatial soil moisture variability. In this study, we propose an approach based on the change detection method for the retrieval of surface soil moisture at a higher spatial resolution. The proposal algorithm combines multi-temporal X-band SAR images (TerraSAR-X) with different continuous thetaprobe measurements. Seven thetaprobe stations are installed at different depths over the central semi arid region of Tunisia (9°23' - 10°17' E, 35° 1'-35°55' N). They cover approximately the entire of our study site and provide regional scale information. Ground data were collected over agricultural bare soil fields simultaneously to various TerraSAR-X data acquired during 2013-2014 and 2014-2015. More than fourteen test fields were selected for each spatial acquisition campaign, with variations in soil texture and in surface soil roughness. For each date, we considered the volumetric water content with thetaprobe instrument and gravimetric sampling; we measured also the roughness parameters with pin profilor. To retrieve soil moisture from X-band SAR data, we analyzed statistically the sensitivity between radar measurements and ground soil moisture derived from permanent thetaprobe stations. Our analyses are applied over bare soil class identified from an optical image SPOT / HRV acquired in the same period of the measurements. Results have shown linear relationship for the radar signals as a function of volumetric soil moisture with high sensitivity about 0.21 dB/vol%. For estimation of change in soil moisture, we considered two options: On the first one, we applied the change detection approach between successive radar images (∆σ°) assuming unchanged soil roughness effects. Our soil moisture retrieval algorithm was validated on the basis of comparisons between estimated and in situ soil moisture measurements over test fields. Using this option, results have shown an accuracy (RMSE) of about 4.8 %. Secondly, we corrected the sensitivity of the radar backscatter images to the surface roughness variability. Results have shown a reduction of the difference between the retrieved soil moisture and ground measurements with an RMSE about 3.7%.

  6. The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1993-01-01

    New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.

  7. Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.

    2017-12-01

    A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.

  8. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    PubMed

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  9. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient

    PubMed Central

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  10. Spatiotemporal characterization of soil moisture fields in agricultural areas using cosmic-ray neutron probes and data fusion

    NASA Astrophysics Data System (ADS)

    Franz, Trenton; Wang, Tiejun

    2015-04-01

    Approximately 40% of global food production comes from irrigated agriculture. With the increasing demand for food even greater pressures will be placed on water resources within these systems. In this work we aimed to characterize the spatial and temporal patterns of soil moisture at the field-scale (~500 m) using the newly developed cosmic-ray neutron rover near Waco, NE USA. Here we mapped soil moisture of 144 quarter section fields (a mix of maize, soybean, and natural areas) each week during the 2014 growing season (May to September). The 12 by 12 km study domain also contained three stationary cosmic-ray neutron probes for independent validation of the rover surveys. Basic statistical analysis of the domain indicated a strong relationship between the mean and variance of soil moisture at several averaging scales. The relationships between the mean and higher order moments were not significant. Scaling analysis indicated strong power law behavior between the variance of soil moisture and averaging area with minimal dependence of mean soil moisture on the slope of the power law function. In addition, we combined the data from the three stationary cosmic-ray neutron probes and mobile surveys using linear regression to derive a daily soil moisture product at 1, 3, and 12 km spatial resolutions for the entire growing season. The statistical relationships derived from the rover dataset offer a novel set of observations that will be useful in: 1) calibrating and validating land surface models, 2) calibrating and validating crop models, 3) soil moisture covariance estimates for statistical downscaling of remote sensing products such as SMOS and SMAP, and 4) provide daily center-pivot scale mean soil moisture data for optimal irrigation timing and volume amounts.

  11. The potential of remotely sensed soil moisture for operational flood forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Nowadays, remotely sensed soil moisture is readily available from multiple space born sensors. The high temporal resolution and global coverage make these products very suitable for large-scale land-surface applications. The potential to use these products in operational flood forecasting has thus far not been extensively studied. In this study, we evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the timing and height of the flood peak and low flows. EFAS is used for operational flood forecasting in Europe and uses a distributed hydrological model for flood predictions for lead times up to 10 days. Satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of only discharge observations. Discharge observations are available at the outlet and at six additional locations throughout the catchment. To assimilate soil moisture data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, derived from a detailed model-satellite soil moisture comparison study, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are used in that the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 10-15% on average, compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.

  12. Assessing Northern Hemisphere Land-Atmosphere Hotspots Using Dynamical Adjustment

    NASA Astrophysics Data System (ADS)

    Merrifield, Anna; Lehner, Flavio; Deser, Clara; Xie, Shang-Ping

    2017-04-01

    Understanding the influence of soil moisture on surface air temperature (SAT) is made more challenging by large-scale, internal atmospheric variability present in the midlatitude summer atmosphere. In this study, dynamical adjustment is used to characterize and remove summer SAT variability associated with large-scale circulation patterns in the Community Earth System Model large ensemble (CESM-LE). The adjustment is performed over North America and Europe with two different circulation indicators: sea level pressure (SLP) and 500mb height (Z500). The removal of dynamical "noise" leaves residual SAT variability in the central U.S. and Mediterranean regions identified as hotspots of land-atmosphere interaction (e.g. Koster et al. 2004, Seneviratne et al. 2006). The residual SAT variability "signal" is not clearly related to modes of sea surface temperature (SST) variability, but is related to local soil moisture, evaporative fraction, and radiation availability. These local relationships suggest that residual SAT variability is representative of the aggregate land surface signal. SLP dynamical adjustment removes ˜15% more variability in the central U.S. hotspot region than Z500 dynamical adjustment. Similar amounts of variability are removed by SLP and Z500 in the Mediterranean region. Differences in SLP and Z500 signal magnitude in the central U.S. are likely due to the modification of SLP by local land surface conditions, while the proximity of European hotspots to the Mediterranean sea mitigates the land surface influence. Variations in the Z500 field more closely resemble large-scale midlatitude circulation patterns and therefore Z500 may be a more suitable circulation indicator for summer dynamical adjustment. Changes in the residual SAT variability signal under increased greenhouse gas forcing will also be explored.

  13. Space-time modeling of soil moisture

    NASA Astrophysics Data System (ADS)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  14. Synergistic soil moisture observation - an interdisciplinary multi-sensor approach to yield improved estimates across scales

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Fersch, B.; Jagdhuber, T.

    2017-12-01

    The representative determination of soil moisture across different spatial ranges and scales is still an important challenge in hydrology. While in situ measurements are trusted methods at the profile- or point-scale, cosmic-ray neutron sensors (CRNS) are renowned for providing volume averages for several hectares and tens of decimeters depth. On the other hand, airborne remote-sensing enables the coverage of regional scales, however limited to the top few centimeters of the soil.Common to all of these methods is a challenging data processing part, often requiring calibration with independent data. We investigated the performance and potential of three complementary observational methods for the determination of soil moisture below grassland in an alpine front-range river catchment (Rott, 55 km2) of southern Germany.We employ the TERENO preAlpine soil moisture monitoring network, along with additional soil samples taken throughout the catchment. Spatial soil moisture products have been generated using surveys of a car-mounted mobile CRNS (rover), and an aerial acquisition of the polarimetric synthetic aperture radar (F-SAR) of DLR.The study assesses (1) the viability of the different methods to estimate soil moisture for their respective scales and extents, and (2) how either method could support an improvement of the others. We found that in situ data can provide valuable information to calibrate the CRNS rover and to train the vegetation removal part of the polarimetric SAR (PolSAR) retrieval algorithm. Vegetation correction is mandatory to obtain the sub-canopy soil moisture patterns. While CRNS rover surveys can be used to evaluate the F-SAR product across scales, vegetation-related PolSAR products in turn can support the spatial correction of CRNS products for biomass water. Despite the different physical principles, the synthesis of the methods can provide reasonable soil moisture information by integrating from the plot to the landscape scale. The combination of in situ, CRNS, and remote-sensing data leads to substantial improvement, especially for the latter two. The study shows how interdisciplinary research can greatly advance the methodology and processing algorithms for individual geoscientific instruments and their hydrologically relevant products.

  15. Measuring the spatial variation in surface moisture on a coastal beach with an infra-red terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Smit, Yvonne; Donker, Jasper; Ruessink, Gerben

    2016-04-01

    Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and temporal surface-moisture variability.

  16. Multiscale soil moisture measurement for mapping surface runoff generation on torrential headwater catchments (Draix-Bléone field observatory, South Alps, France)

    NASA Astrophysics Data System (ADS)

    Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance

    2015-04-01

    Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.

  17. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    NASA Technical Reports Server (NTRS)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  18. Moisture Sources and Large-Scale Dynamics Associated with a Flash Flood Event in Portugal

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Ramos, Alexandre M.; Trigo, Ricardo M.; Trigo, Isabel F.; María Durán-Quesada, Ana; Nieto, Raquel; Gimeno, Luis

    2013-04-01

    On 18-19 November 1983, the region of Lisbon, in Portugal, was affected by a heavy precipitation event, soon followed by flash flooding, urban inundations and a burst of landslides around Lisbon [Zêzere et al., 2005] causing considerable infrastructure damage and human fatalities. With a total of 95.6 mm in 24 h observed at the longest serving station in Portugal (Lisbon's Dom Luiz Observatory), this was the rainiest day during the twentieth century and one of the rainiest registered since 1864. We found that this event was triggered by the transport of tropical and subtropical moisture associated with an extratropical cyclone. The low favored a large stream of (sub) tropical air that extended over more than 10° of latitude and across the North Atlantic Ocean, carrying a large amount of moisture originally from lower latitudes, a so-called atmospheric river. The stationary position of the jet stream along the East Atlantic Ocean through Iberia caused a strong enhancement of the precipitation associated with the moist air. A Lagrangian analysis of the transport of moisture in the Euro-Atlantic sector was performed based on the methodology developed by Stohl and James [2004, 2005], using the FLEXPART model. This Lagrangian methodology was employed to show that the evaporative sources for the precipitation falling over the area of Lisbon were distributed over large sectors of the tropical-subtropical North Atlantic Ocean and included a significant contribution from the (sub) tropics. This study [Liberato et al., 2012] aims to provide an example of the application of distinct Lagrangian techniques to achieve a better understanding of the relation between extratropical cyclones and the occurrence of a heavy precipitation event on the Iberian Peninsula. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010). Margarida L. R. Liberato was also supported by a FCT grant (SFRH/BPD/45080/2008). Liberato M. L. R., A. M. Ramos, R. M. Trigo, I. F. Trigo, A. M. Durán-Quesada, R. Nieto, and L. Gimeno (2012) Moisture Sources and Large-scale Dynamics Associated with a Flash Flood Event. Lagrangian Modeling of the Atmosphere, Geophysical Monograph Series (in press). Stohl, A., and P. James (2004), A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe, J. Hydrometeorol., 5, 656-678. Stohl, A., and P. James (2005), A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Earth's river catchments, ocean basins, and moisture transports between them, J. Hydrometeorol., 6, 961-984. Zêzere, J. L., R. M. Trigo, and I. F. Trigo (2005), Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation, Nat. Hazards Earth Syst. Sci., 5, 331-344.

  19. North-western Mediterranean sea-breeze circulation in a regional climate system model

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc

    2017-04-01

    In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.

  20. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation.

    PubMed

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T J

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term.

  1. Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture

    NASA Astrophysics Data System (ADS)

    Kim, Joowan; Randel, William J.; Birner, Thomas

    2018-01-01

    Characteristics of the tropopause-level cooling associated with tropical deep convection are examined using CloudSat radar and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Extreme deep convection is sampled based on the cloud top height (>17 km) from CloudSat, and colocated temperature profiles from COSMIC are composited around the deep convection. Response of moisture to the tropopause-level cooling is also examined in the upper troposphere and lower stratosphere using microwave limb sounder measurements. The composite temperature shows an anomalous warming in the troposphere and a significant cooling near the tropopause (at 16-19 km) when deep convection occurs over the western Pacific, particularly during periods with active Madden-Julian Oscillation (MJO). The composite of the tropopause cooling has a large horizontal scale ( 6,000 km in longitude) with minimum temperature anomaly of -2 K, and it lasts more than 2 weeks with support of mesoscale convective clusters embedded within the envelope of the MJO. The water vapor anomalies show strong correlation with the temperature anomalies (i.e., dry anomaly in the cold anomaly), showing that the convectively driven tropopause cooling actively dehydrate the lower stratosphere in the western Pacific region. The moisture is also affected by anomalous Matsuno-Gill-type circulation associated with the cold anomaly, in which dry air spreads over a wide range in the tropical tropopause layer (TTL). These results suggest that convectively driven tropopause cooling and associated transient circulation play an important role in the large-scale dehydration process in the TTL.

  2. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation

    PubMed Central

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T. J.

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term. PMID:27018998

  3. Convection Fingerprints on the Vertical Profiles of Q1 and Q2

    NASA Astrophysics Data System (ADS)

    Chang, C.; Lin, H.; Chou, C.

    2013-12-01

    Different types of tropical convection left their fingerprints on vertical structures of apparent heat source (Q1) and apparent moisture sink (Q2). Profile of deep convection on condensation heating and drying has been well-documented, yet direct assessment of shallow convection remains to be explored. Shallow convection prevails over subtropical ocean, where large-scale subsidence is primarily balanced by radiative cooling and moistening due to surface evaporation instead of moist convection. In this study a united framework is designed to investigate the vertical structures of tropical marine convections in three reanalysis data, including ERA-Interim, MERRA, and CFSR. It starts by sorting and binning data from the lightest to the heaviest rain. Then the differences between two neighboring bins are used to examine the direct effects for precipitation change, in light of the fact that non-convective processes would change slowly from bin to bin. It is shown that all three reanalyses reveal the shallow convective processes in light rain bins, featured by re-evaporating and detraining at the top of boundary layer and lower free troposphere. For heavy rain bins, three reanalyses mainly differ in their numbers and altitudes of heating and drying peaks, implying no universal agreement has been reached on partitioning of cloud populations. Coherent variations in temperature, moisture, and vertical motion are also discussed. This approach permits a systematical survey and comparison of tropical convection in GCM-type models, and preliminary studies of three reanalyses suggest certain degree of inconsistency in simulated convective feedback to large-scale heat and moisture budgets.

  4. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However, adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for thermal barrier coatings (TBCs), culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  5. Enigmatic Moisture Effects on Al2O3 Scale and TBC Adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    Alumina scale adhesion to high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for TBC s, culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylation of aluminum from the alloy interface appears to be the relevant basic reaction.

  6. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    NASA Astrophysics Data System (ADS)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  7. Validation of SMAP Root Zone Soil Moisture Estimates with Improved Cosmic-Ray Neutron Probe Observations

    NASA Astrophysics Data System (ADS)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Franz, T.; Jones, S. B.

    2017-12-01

    Soil Moisture Active Passive (SMAP) soil moisture products are commonly validated based on point-scale reference measurements, despite the exorbitant spatial scale disparity. The difference between the measurement depth of point-scale sensors and the penetration depth of SMAP further complicates evaluation efforts. Cosmic-ray neutron probes (CRNP) with an approximately 500-m radius footprint provide an appealing alternative for SMAP validation. This study is focused on the validation of SMAP level-4 root zone soil moisture products with 9-km spatial resolution based on CRNP observations at twenty U.S. reference sites with climatic conditions ranging from semiarid to humid. The CRNP measurements are often biased by additional hydrogen sources such as surface water, atmospheric vapor, or mineral lattice water, which sometimes yield unrealistic moisture values in excess of the soil water storage capacity. These effects were removed during CRNP data analysis. Comparison of SMAP data with corrected CRNP observations revealed a very high correlation for most of the investigated sites, which opens new avenues for validation of current and future satellite soil moisture products.

  8. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation

    PubMed Central

    Verstraeten, Willem W.; Veroustraete, Frank; Feyen, Jan

    2008-01-01

    The proper assessment of evapotranspiration and soil moisture content are fundamental in food security research, land management, pollution detection, nutrient flows, (wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc. This paper takes an extensive, though not exhaustive sample of international scientific literature to discuss different approaches to estimate land surface and ecosystem related evapotranspiration and soil moisture content. This review presents: (i)a summary of the generally accepted cohesion theory of plant water uptake and transport including a shortlist of meteorological and plant factors influencing plant transpiration;(ii)a summary on evapotranspiration assessment at different scales of observation (sap-flow, porometer, lysimeter, field and catchment water balance, Bowen ratio, scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii)a summary on data assimilation schemes conceived to estimate evapotranspiration using optical and thermal remote sensing; and(iv)for soil moisture content, a summary on soil moisture retrieval techniques at different spatial and temporal scales is presented. Concluding remarks on the best available approaches to assess evapotranspiration and soil moisture content with and emphasis on remote sensing data assimilation, are provided. PMID:27879697

  9. Convectively-driven cold layer and its influences on moisture in the UTLS

    NASA Astrophysics Data System (ADS)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  10. Global-scale assessment and combination of SMAP with ASCAT (Active) and AMSR2 (Passive) soil moisture products

    USDA-ARS?s Scientific Manuscript database

    Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...

  11. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  12. Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio

    2018-02-01

    Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently correlated to a climate indicator such as the aridity index.

  13. A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Laura; Jakob, Christian; Cheung, K.

    2013-06-27

    Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimatemore » simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.« less

  14. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    NASA Astrophysics Data System (ADS)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture intrusion events. A total of 298 events are objectively identified between 1990 and 2010 in the reanalysis dataset, an average of 14 per season, accounting for 28% of the total poleward moisture transport across 70N. Composites of sea level pressure and potential temperature on the 2 potential vorticity unit surface during intrusions show a large-scale blocking pattern to the east of each basin, deflecting midlatitude cyclones and their associated moisture poleward. The interannual variability of intrusions is strongly correlated with variability in winter-mean surface downward longwave radiation and skin temperature averaged over the Arctic. The 16 CMIP5 models are validated with respect to the reanalysis dataset and a subset of 7 models is chosen as best representing intrusions. Intrusions in the representative concentration pathway 8.5 scenario (RCP8.5) from these 7 models are analyzed between 2060 and 2100. Positive trends in the moisture transported by intrusions are noted. The mechanisms behind these trends are examined in each of the models, dynamically and thermodynamically, with regard to the positioning of the storm track and climatological jets in a moistening atmosphere.

  15. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    NASA Astrophysics Data System (ADS)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many scales. The method has a great potential to improve spatial performance of hydrological models, and help to assess regional soil moisture states for agriculture and flood risk management.

  16. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    NASA Astrophysics Data System (ADS)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used. Additionally, neutron transport modeling, using the extended version of the Monte Carlo N-Particle Transport Code, was conducted. The responses of the reference condition, different amounts of biomass, soil moisture and canopy interception on the cosmic-ray neutron intensity were simulated and compared to the measurements.

  17. Upscaling sparse ground-based soil moisture observations for the validation of satellite surface soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the footprint resolution (typically >100 square kilometers) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from satellite missions suc...

  18. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  19. Estimation of Key Parameters of the Coupled Energy and Water Model by Assimilating Land Surface Data

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2017-12-01

    Accurate estimation of land surface heat and moisture fluxes, as well as root zone soil moisture, is crucial in various hydrological, meteorological, and agricultural applications. Field measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state observations that are widely available from remote sensing across a range of scale. In this work, we applies the variational data assimilation approach to estimate land surface fluxes and soil moisture profile from the implicit information contained Land Surface Temperature (LST) and Soil Moisture (SM) (hereafter the VDA model). The VDA model is focused on the estimation of three key parameters: 1- neutral bulk heat transfer coefficient (CHN), 2- evaporative fraction from soil and canopy (EF), and 3- saturated hydraulic conductivity (Ksat). CHN and EF regulate the partitioning of available energy between sensible and latent heat fluxes. Ksat is one of the main parameters used in determining infiltration, runoff, groundwater recharge, and in simulating hydrological processes. In this study, a system of coupled parsimonious energy and water model will constrain the estimation of three unknown parameters in the VDA model. The profile of SM (LST) at multiple depths is estimated using moisture diffusion (heat diffusion) equation. In this study, the uncertainties of retrieved unknown parameters and fluxes are estimated from the inverse of Hesian matrix of cost function which is computed using the Lagrangian methodology. Analysis of uncertainty provides valuable information about the accuracy of estimated parameters and their correlation and guide the formulation of a well-posed estimation problem. The results of proposed algorithm are validated with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. In addition, the feasibility of extending this algorithm to use remote sensing observations that have low temporal resolution is examined by assimilating the limited number of land surface moisture and temperature observations.

  20. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less

  1. Evaluation of uncertainty in field soil moisture estimations by cosmic-ray neutron sensing

    NASA Astrophysics Data System (ADS)

    Scheiffele, Lena Maria; Baroni, Gabriele; Schrön, Martin; Ingwersen, Joachim; Oswald, Sascha E.

    2017-04-01

    Cosmic-ray neutron sensing (CRNS) has developed into a valuable, indirect and non-invasive method to estimate soil moisture at the field scale. It provides continuous temporal data (hours to days), relatively large depth (10-70 cm), and intermediate spatial scale measurements (hundreds of meters), thereby overcoming some of the limitations in point measurements (e.g., TDR/FDR) and of remote sensing products. All these characteristics make CRNS a favorable approach for soil moisture estimation, especially for applications in cropped fields and agricultural water management. Various studies compare CRNS measurements to soil sensor networks and show a good agreement. However, CRNS is sensitive to more characteristics of the land-surface, e.g. additional hydrogen pools, soil bulk density, and biomass. Prior to calibration the standard atmospheric corrections are accounting for the effects of air pressure, humidity and variations in incoming neutrons. In addition, the standard calibration approach was further extended to account for hydrogen in lattice water and soil organic material. Some corrections were also proposed to account for water in biomass. Moreover, the sensitivity of the probe was found to decrease with distance and a weighting procedure for the calibration datasets was introduced to account for the sensors' radial sensitivity. On the one hand, all the mentioned corrections showed to improve the accuracy in estimated soil moisture values. On the other hand, they require substantial additional efforts in monitoring activities and they could inherently contribute to the overall uncertainty of the CRNS product. In this study we aim (i) to quantify the uncertainty in the field soil moisture estimated by CRNS and (ii) to understand the role of the different sources of uncertainty. To this end, two experimental sites in Germany were equipped with a CRNS probe and compared to values of a soil moisture network. The agricultural fields were cropped with winter wheat (Pforzheim, 2013) and maize (Braunschweig, 2014) and differ in soil type and management. The results confirm a general good agreement between soil moisture estimated by CRNS and the soil moisture network. However, several sources of uncertainty were identified i.e., overestimation of dry conditions, strong effects of the additional hydrogen pools and an influence of the vertical soil moisture profile. Based on that, a global sensitivity analysis based on Monte Carlo sampling can be performed and evaluated in terms of soil moisture and footprint characteristics. The results allow quantifying the role of the different factors and identifying further improvements in the method.

  2. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.

  3. Assessing seasonal backscatter variations with respect to uncertainties in soil moisture retrieval in Siberian tundra regions

    NASA Astrophysics Data System (ADS)

    Högström, Elin; Trofaier, Anna Maria; Gouttevin, Isabella; Bartsch, Annett

    2015-04-01

    Data from the Advanced Scatterometer (ASCAT) instrument provide the basis of a near real-time, coarse scale, global soil moisture product. Numerous studies have shown the applicability of this product, including recent operational use for numerical weather forecasts. Soil moisture is a key element in the global cycles of water, energy and carbon. Among many application areas, it is essential for the understanding of permafrost development in a future climate change scenario. Dramatic climate changes are expected in the Arctic, where ca 25% of the land is underlain by permafrost, and it is to a large extent remote and inaccessible. The availability and applicability of satellite derived land-surface data relevant for permafrost studies, such as surface soil moisture, is thus crucial to landscape-scale analyses of climate-induced change. However, there are challenges in the soil moisture retrieval that are specific to the Arctic. This study investigates backscatter variability unrelated to soil moisture variations in order to understand the possible impact on the soil moisture retrieval. The focus is on tundra lakes, which are a common feature in the Arctic and are expected to affect the retrieval. ENVISAT Advanced Synthetic Aperture Radar (ASAR) Wide Swath (120 m) data are used to resolve lakes and later understand and quantify their impacts on Metop ASCAT (25 km) soil moisture retrieval during the snow free period. Sites of interest are chosen according to high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. The results show that in most cases low model agreement is related to high water fraction. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image) within the ASCAT footprint areas (R = 0.91-0.97). Backscatter deviations of up to 5 dB can occur in areas with less than 50% water fraction and an assumed soil moisture related range (sensitivity) of 7 dB in the ASCAT data. The study demonstrates that the usage of higher spatial resolution data than currently available for SSM is required in lowland permafrost environments. Furthermore, the results show that in the flat and open Arctic tundra areas, wind likely affects the soil moisture retrieval procedure rather than rain or remaining ice cover on the water surface. Therefore, the potential of a wind correction method is explored for sites where meteorological field data are available.

  4. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less

  5. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  6. Soil moisture dynamics and dominant controls at different spatial scales over semiarid and semi-humid areas

    NASA Astrophysics Data System (ADS)

    Suo, Lizhu; Huang, Mingbin; Zhang, Yongkun; Duan, Liangxia; Shan, Yan

    2018-07-01

    Soil moisture dynamics plays an active role in ecological and hydrological processes, and it depends on a large number of environmental factors, such as topographic attributes, soil properties, land use types, and precipitation. However, studies must still clarify the relative significance of these environmental factors at different soil depths and at different spatial scales. This study aimed: (1) to characterize temporal and spatial variations in soil moisture content (SMC) at four soil layers (0-40, 40-100, 100-200, and 200-500 cm) and three spatial scales (plot, hillslope, and region); and (2) to determine their dominant controls in diverse soil layers at different spatial scales over semiarid and semi-humid areas of the Loess Plateau, China. Given the high co-dependence of environmental factors, partial least squares regression (PLSR) was used to detect relative significance among 15 selected environmental factors that affect SMC. Temporal variation in SMC decreased with increasing soil depth, and vertical changes in the 0-500 cm soil profile were divided into a fast-changing layer (0-40 cm), an active layer (40-100 cm), a sub-active layer (100-200 cm), and a relatively stable layer (200-500 cm). PLSR models simulated SMC accurately in diverse soil layers at different scales; almost all values for variation in response (R2) and goodness of prediction (Q2) were >0.5 and >0.0975, respectively. Upper and lower layer SMCs were the two most important factors that influenced diverse soil layers at three scales, and these SMC variables exhibited the highest importance in projection (VIP) values. The 7-day antecedent precipitation and 7-day antecedent potential evapotranspiration contributed significantly to SMC only at the 0-40 cm soil layer. VIP of soil properties, especially sand and silt content, which influenced SMC strongly, increased significantly after increasing the measured scale. Mean annual precipitation and potential evapotranspiration also influenced SMC at the regional scale significantly. Overall, this study indicated that dominant controls of SMC varied among three spatial scales on the Loess Plateau, and VIP was a function of spatial scale and soil depth.

  7. Analysis of spatiotemporal soil moisture patterns at the catchment scale using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Bogena, Heye R.; Huisman, Johan A.; Rosenbaum, Ulrike; Weuthen, Ansgar; Vereecken, Harry

    2010-05-01

    Soil water content plays a key role in partitioning water and energy fluxes and controlling the pattern of groundwater recharge. Despite the importance of soil water content, it is not yet measured in an operational way at larger scales. The aim of this paper is to present the potential of real-time monitoring for the analysis of soil moisture patterns at the catchment scale using the recently developed wireless sensor network SoilNet [1], [2]. SoilNet is designed to measure soil moisture, salinity and temperature in several depths (e.g. 5, 20 and 50 cm). Recently, a small forest catchment Wüstebach (~27 ha) has been instrumented with 150 sensor nodes and more than 1200 soil sensors in the framework of the Transregio32 and the Helmholtz initiative TERENO (Terrestrial Environmental Observatories). From August to November 2009, more than 6 million soil moisture measurements have been performed. We will present first results from a statistical and geostatistical analysis of the data. The observed spatial variability of soil moisture corresponds well with the 800-m scale variability described in [3]. The very low scattering of the standard deviation versus mean soil moisture plots indicates that sensor network data shows less artificial soil moisture variations than soil moisture data originated from measurement campaigns. The variograms showed more or less the same nugget effect, which indicates that the sum of the sub-scale variability and the measurement error is rather time-invariant. Wet situations showed smaller spatial variability, which is attributed to saturated soil water content, which poses an upper limit and is typically not strongly variable in headwater catchments with relatively homogeneous soil. The spatiotemporal variability in soil moisture at 50 cm depth was significantly lower than at 5 and 20 cm. This finding indicates that the considerable variability of the top soil is buffered deeper in the soil due to lateral and vertical water fluxes. Topographic features showed the strongest correlation with soil moisture during dry periods, indicating that the control of topography on the soil moisture pattern depends on the soil water status. Interpolation using the external drift kriging method demonstrated that the high sampling density allows capturing the key patterns of soil moisture variation in the Wüstebach catchment. References: [1] Bogena, H.R., J.A. Huisman, C. Oberdörster, H. Vereecken (2007): Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology: 344, 32- 42. [2] Rosenbaum, U., Huisman, J.A., Weuthen, A., Vereecken, H. and Bogena, H.R. (2010): Quantification of sensor-to-sensor variability of the ECH2O EC-5, TE and 5TE sensors in dielectric liquids. Accepted for publication in Vadose Zone Journal (09/2009). [3] Famiglietti J.S., D. Ryu, A. A. Berg, M. Rodell and T. J. Jackson (2008), Field observations of soil moisture variability across scales, Water Resour. Res. 44, W01423, doi:10.1029/2006WR005804.

  8. Global analyses of water vapor, cloud and precipitation derived from a diagnostic assimilation of SSM/I geophysical retrievals

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Cohen, Charles

    1990-01-01

    An analytical approach is described for diagnostically assimilating moisture data from Special Sensor Microwave Imager (SSM/I) into a global analysis of water vapor, cloud content, and precipitation. In this method, 3D fields of wind and temperature values taken from ECMWF gridded analysis are used to drive moisture conservation equations with parameterized microphysical treatment of vapor, liquid, and ice; the evolving field of water vapor is periodically updated or constrained by SSM/I retrievals of precipitable water. Initial results indicate that this diagnostic model can produce realistic large-scale fields of cloud and precipitation. The resulting water vapor analyses agree well with SSM/I and have an additional advantage of being synoptic.

  9. Hazardous thunderstorm intensification over Lake Victoria

    PubMed Central

    Thiery, Wim; Davin, Edouard L.; Seneviratne, Sonia I.; Bedka, Kristopher; Lhermitte, Stef; van Lipzig, Nicole P. M.

    2016-01-01

    Weather extremes have harmful impacts on communities around Lake Victoria, where thousands of fishermen die every year because of intense night-time thunderstorms. Yet how these thunderstorms will evolve in a future warmer climate is still unknown. Here we show that Lake Victoria is projected to be a hotspot of future extreme precipitation intensification by using new satellite-based observations, a high-resolution climate projection for the African Great Lakes and coarser-scale ensemble projections. Land precipitation on the previous day exerts a control on night-time occurrence of extremes on the lake by enhancing atmospheric convergence (74%) and moisture availability (26%). The future increase in extremes over Lake Victoria is about twice as large relative to surrounding land under a high-emission scenario, as only over-lake moisture advection is high enough to sustain Clausius–Clapeyron scaling. Our results highlight a major hazard associated with climate change over East Africa and underline the need for high-resolution projections to assess local climate change. PMID:27658848

  10. A design study for the use of a multiple aperture deployable antenna for soil moisture remote sensing satellite applications

    NASA Technical Reports Server (NTRS)

    Foldes, P.

    1986-01-01

    The instrumentation problems associated with the measurement of soil moisture with a meaningful spatial and temperature resolution at a global scale are addressed. For this goal only medium term available affordable technology will be considered. The study while limited in scope, will utilize a large scale antenna structure, which is being developed presently as an experimental model. The interface constraints presented by a singel Space Transportation System (STS) flight will be assumed. Methodology consists of the following steps: review of science requirements; analyze effects of these requirements; present basic system engineering considerations and trade-offs related to orbit parameters, number of spacecraft and their lifetime, observation angles, beamwidth, crossover and swath, coverage percentage, beam quality and resolution, instrument quantities, and integration time; bracket the key system characteristics and develop an electromagnetic design of the antenna-passive radiometer system. Several aperture division combinations and feed array concepts are investigated to achieve maximum feasible performacne within the stated STS constraints.

  11. The effect of coherent stirring on the advection–condensation of water vapour

    PubMed Central

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  12. The effect of coherent stirring on the advection-condensation of water vapour

    NASA Astrophysics Data System (ADS)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  13. The effect of coherent stirring on the advection-condensation of water vapour.

    PubMed

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  14. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.

  15. Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric

    2016-04-01

    SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.

  16. Impact of Variable SST on Simulated Warm Season Precipitation

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Cotton, W. R.

    2007-05-01

    The Colorado State University - Regional Atmospheric Modeling System (CSU-RAMS) is being used to examine the variability in monsoon-related warm season precipitation over Mexico and the United States due to variability in SST. Given recent improvements and increased resolution in satellite derived SSTs it is pertinent to examine the sensitivity of the RAMS model to the variety of SST data sources that are available. In particular, we are examining this dependence across continental scales over the full warm season, as well as across the regional scale centered around the Gulf of California on time scales of individual surge events. In this study we performed an ensemble of simulations that include the 2002, 2003, and 2004 warm seasons with use of the Climatology, Reynold's, AVHRR, and MODIS SSTs. From the seasonal 90-day simulations with 30km grid spacing, it was found that variations in surface latent heat flux are directly linked to differences in SST. Regions with cooler (warmer) SST have decreased (increased) moisture flux from the ocean which is in proportion to the magnitude of the SST difference. Over the eastern Pacific, differences in low-level horizontal moisture flux show a general trend toward reduced fluxes over cooler waters and very little inland impact. Over the Gulf of Mexico, however, there is substantial variability for each dataset comparison, despite having only limited variability among the SST data. Causes of this unexpected variability are not straight-forward. Precipitation impacts are greatest near the southern coast of Mexico and along the Sierra Madres. Precipitation variability over the CONUS is rather chaotic and is limited to areas impacted by the Gulf of Mexico or monsoon convection. Another unexpected outcome is the lack of variability in areas near the northern Gulf of California where SST and latent heat flux variability is a maximum. From the 7-day surge period simulations at 7km grid spacing, we found that SST differences on the higher resolution nested grid reveal fine scale variability that is otherwise smoothed out or unapparent on the coarser grid. Unlike the coarse grid, the latent heat flux, temperature, and moisture transport differences on the fine grid reveal an inland impact. This is likely due to fine scale variability in onshore moisture transport and sea- breeze circulations which may alter monsoonal convection and precipitation. However, only the largest SST differences (spatially and in magnitude) tend to invoke large, coherent responses in moisture flux. The SST variability at high resolution produces relatively large differences in precipitation that are focused along the slopes of the SMO, with a tendency toward greater variability along the western slope adjacent to the coast. The precipitation differences are of fine resolution, with variability of +/- 30 mm (over 5 days) along the length of the SMO. Variability on the fine grid also invokes precipitation changes over AZ/NM that are not resolved on the coarse grid. Vertical cross-sections examined along the GoC during the surge episode revealed variations in the moisture and temperature structure of the surge. The cooler SSTs in the climatological dataset produced the greatest variability compared to the other datasets. The surge produced from climatology SSTs was nearly 5g/kg drier and up to 4°C cooler compared to surges influenced by the SST datasets. The overall northward propagation of the surge appeared unaffected by the SSTs.

  17. The Utility of the Real-Time NASA Land Information System Data for Drought Monitoring Applications

    NASA Technical Reports Server (NTRS)

    White, Kristopher D.; Case, Jonathan L.

    2013-01-01

    Measurements of soil moisture are a crucial component for the proper monitoring of drought conditions. The large spatial variability of soil moisture complicates the problem. Unfortunately, in situ soil moisture observing networks typically consist of sparse point observations, and conventional numerical model analyses of soil moisture used to diagnose drought are of coarse spatial resolution. Decision support systems such as the U.S. Drought Monitor contain drought impact resolution on sub-county scales, which may not be supported by the existing soil moisture networks or analyses. The NASA Land Information System, which is run with 3 km grid spacing over the eastern United States, has demonstrated utility for monitoring soil moisture. Some of the more useful output fields from the Land Information System are volumetric soil moisture in the 0-10 cm and 40-100 cm layers, column-integrated relative soil moisture, and the real-time green vegetation fraction derived from MODIS (Moderate Resolution Imaging Spectroradiometer) swath data that are run within the Land Information System in place of the monthly climatological vegetation fraction. While these and other variables have primarily been used in local weather models and other operational forecasting applications at National Weather Service offices, the use of the Land Information System for drought monitoring has demonstrated utility for feedback to the Drought Monitor. Output from the Land Information System is currently being used at NWS Huntsville to assess soil moisture, and to provide input to the Drought Monitor. Since feedback to the Drought Monitor takes place on a weekly basis, weekly difference plots of column-integrated relative soil moisture are being produced by the NASA Short-term Prediction Research and Transition Center and analyzed to facilitate the process. In addition to the Drought Monitor, these data are used to assess drought conditions for monthly feedback to the Alabama Drought Monitoring and Impact Group and the Tennessee Drought Task Force, which are comprised of federal, state, and local agencies and other water resources professionals.

  18. Using a terrestrial laser scanner to measure spatiotemporal surface moisture dynamics

    NASA Astrophysics Data System (ADS)

    Smit, Y.; Donker, J.; Ruessink, G.

    2017-12-01

    A terrestrial laser scanner (TLS) is an active remote sensing technique that utilizes the round trip time of an emitted laser beam to provide the range between the laser scanner and the backscattering object. It is routinely used for topographic mapping, forest measurements or 3D city models since it derives useful object representations by means of a dense three-dimensional (3D) point cloud. Here, we present a novel application using the returned intensity of the emitted beam to detect surface moisture with the RIEGL VZ-400. Because this TLS operates at a wavelength near a water absorption band (1550 nm), reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Concurrent gravimetric surface moisture samples were collected to calibrate the relation between reflectance and surface moisture. Results reveal the reflectance output is a robust parameter to measure surface moisture from the thin upper layer over its full range from 0% to 25%. The obtained calibration curve of the presented TLS, describing the relationship between reflectance and surface moisture, has a root-mean-square error of 2.7% and a correlation coefficient squared of 0.85. This relation holds to about 60 m from the TLS. Within this distance the TLS typically produces O(10^6-10^7) data points, which we averaged into surface moisture maps with a 1 x 1 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. Concluding, TLS (RIEGL-VZ 400) is a highly suited technique to accurately and robustly measure spatiotemporal surface moisture variations on a coastal beach with high spatial ( 1 x 1 m) and temporal ( 15-30min.) resolution.

  19. Soil moisture at local scale: Measurements and simulations

    NASA Astrophysics Data System (ADS)

    Romano, Nunzio

    2014-08-01

    Soil moisture refers to the water present in the uppermost part of a field soil and is a state variable controlling a wide array of ecological, hydrological, geotechnical, and meteorological processes. The literature on soil moisture is very extensive and is developing so rapidly that it might be considered ambitious to seek to present the state of the art concerning research into this key variable. Even when covering investigations about only one aspect of the problem, there is a risk of some inevitable omission. A specific feature of the present essay, which may make this overview if not comprehensive at least of particular interest, is that the reader is guided through the various traditional and more up-to-date methods by the central thread of techniques developed to measure soil moisture interwoven with applications of modeling tools that exploit the observed datasets. This paper restricts its analysis to the evolution of soil moisture at the local (spatial) scale. Though a somewhat loosely defined term, it is linked here to a characteristic length of the soil volume investigated by the soil moisture sensing probe. After presenting the most common concepts and definitions about the amount of water stored in a certain volume of soil close to the land surface, this paper proceeds to review ground-based methods for monitoring soil moisture and evaluates modeling tools for the analysis of the gathered information in various applications. Concluding remarks address questions of monitoring and modeling of soil moisture at scales larger than the local scale with the related issue of data aggregation. An extensive, but not exhaustive, list of references is provided, enabling the reader to gain further insights into this subject.

  20. Forecasting the forest and the trees: consequences of drought in competitive forests

    NASA Astrophysics Data System (ADS)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional climate change.

  1. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  2. Spatio-Temporal Analysis of Surface Soil Moisture in Evaluating Ground Truth Monitoring Sites for Remotely Sensed Observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is an intrinsic state variable that varies considerably in space and time. Although soil moisture is highly variable, repeated measurements of soil moisture at the field or small watershed scale can often reveal certain locations as being temporally stable and representative of the are...

  3. Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.

    1998-01-01

    The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.

  4. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.; Gasiewski, A. J.; Stachura, M.; Elston, J.; Venkitasubramony, A.

    2016-12-01

    1. IntroductionSoil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform). Compared with various other proposed methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling scale studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site on September 8th and 9th, 2015 and Yuma Colorado Irrigation Research Foundation (IRF) site from June to August, 2016. These tests were flown at 25-50 m altitude to obtain differing spatial resolutions. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. 2. References[1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.

  5. Impact of rainfall on the moisture content of large woody fuels

    Treesearch

    Helen H. Mohr; Thomas A. Waldrop

    2013-01-01

    This unreplicated case study evaluates the impact of rainfall on large woody fuels over time. We know that one rainfall event may decrease the Keetch-Byram Drought Index, but this study shows no real increase in fuel moisture in 1,000- hour fuels after just one rainfall. Several rain events over time are required for the moisture content of large woody fuels to...

  6. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  7. Observed Local Soil Moisture-Atmosphere Feedbacks within the Context of Remote SST Anomalies: Lessons From Recent Droughts

    NASA Astrophysics Data System (ADS)

    Tawfik, A. B.; Dirmeyer, P.; Lawrence, D. M.

    2015-12-01

    The existence and possible transition from positive to negative soil moisture-atmosphere feedbacks is explored in this presentation using collocated flux tower measurements (Ameriflux) and atmospheric profiles from reanalysis. The focus is on the series of physical processes that lead to these local feedbacks connecting remote sea surface temperature changes (SST anomalies) to local soil moisture and boundary layer responses. Seasonal and Agricultural droughts are particularly useful test beds for examining these feedback processes because they are typically characterized by prolonged stretches of rain-free days followed by some termination condition. To quantify the full process-chain across these distinct spatial scales, complimentary information from several well-established land-atmosphere coupling metrics are used including, but not limited to, Mixing Diagram approaches, Soil Moisture Memory, and the Heated Condensation Framework. Preliminary analysis shows that there may be transitions from negative and positive soil moisture-atmosphere feedbacks as droughts develop. This is largely instigated by persistent atmospheric forcing that initially promotes increased surface latent heat flux, which limits boundary layer depth and dry air entrainment. However, if stagnant synoptic conditions continue eventually soil moisture is depleted to the point of shutting off surface latent heat flux producing deep boundary layers and increased dry air entrainment thus deepening drought stress. A package of standardized Fortran 90 modules called the Coupling Metrics Toolkit (CoMeT; https://github.com/abtawfik/coupling-metrics) used to calculate these land-atmosphere coupling metrics is also briefly presented.

  8. Numerical Study of Winter Diurnal Convection Over the City of Krasnoyarsk: Effects of Non-freezing River, Undulating Fog and Steam Devils

    NASA Astrophysics Data System (ADS)

    Hrebtov, M.; Hanjalić, K.

    2017-06-01

    We performed a numerical simulation of penetrative convection of an inversion-topped weakly stratified atmospheric boundary layer over urban terrain with a strong localized source of heat and moisture. With some simplifications, the case mimics the real environment of the Krasnoyarsk region in Russia where the non-freezing river Yenisei acts as a thermal and humidity source during winter, generating an undulating fog pattern along the river accompanied with scattered `steam devils'. An idealized full diurnal cycle was simulated using an unsteady Reynolds-averaged Navier-Stokes (RANS) three-equation algebraic flux model and the novel buoyancy-accounting functions for treating the ground boundary conditions. The results show a significant effect of the river on the net temperature and moisture distribution. The localized heat and moisture source leads to strong horizontal convection and marked non-uniformity of humidity concentration in the air. An interplay of several distinct large-scale vortex systems leads to a wavy pattern of moisture plumes over the river. The simulations deal with rare natural phenomena and show the capability of the RANS turbulence closure to capture the main features of flow and scalar fields on an affordable, relatively coarse, computational grid.

  9. Comparison of Three Soil Moisture Sensor Types Under Field Conditions Based on the Marena, Oklahoma, In Situ Sensor Testbed (MOISST)

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Quiring, S. M.; Ochsner, T. E.

    2017-12-01

    Each soil moisture monitoring network commonly adopts different sensor technologies. This results in different measurement units, depths and impedes large-scale soil moisture applications that seek to integrate data from multiple networks. Therefore, a comprehensive comparison of different sensors to identify the best approach for integrating and homogenizing measurements from different sensors is required. This study compares three commonly used sensors, including Stevens Water Hydra Probes, Campbell Scientific CS616 TDR and CS 229-L heat dissipation sensors based on data from May 2010 to December 2012 from the Marena, Oklahoma, In Situ Sensor Testbed (MOISST). All sensors are installed at common depths of 5, 10, 20, 50, 100 cm. The results reveal that the differences between the three sensors tends to increase with depth. The CDF plots showed CS 229 is most sensitive to moisture variation in dry condition and most easily saturated in wet condition, followed by Hydra probe and CS616. Our results show that calculating percentiles is a good normalization method for standardizing measurements from different sensors. Our preliminary results demonstrate that CDF matching can be used to convert measurements from one sensor to another.

  10. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More specifically the analysis was focused on the evaluation of the effectiveness of coupling modeled or satellite-derived soil moisture with USLE-derived models in predicting event unit soil loss at the plot scale in a silty-clay soil in Central Italy. To this end was used the database of the Masse experimental station developed considering for a given erosive event (an event yielding a measurable soil loss) the simultaneous measures of the total runoff amount, Qe (mm), and soil loss per unit area, Ae (Mg-ha-1) at plot scale and of the rainfall data required to derive the erosivity factor Re according to Wischmeiser and Smith (1978), with a MIT=6 h (Bagarello et al., 2013; Todisco et al., 2012). To the purpose of this investigation only data collected on the λ = 22 m long plots were considered: 63 erosive events in the period 2008-2013, 18 occurred during the dry period (from June to September) and the other 45 in the complementary period (wet period). The models tested are the USLE/RUSLE and some USLE-derived formulations in which the event erosivity factor, Re, is corrected by the antecedent soil moisture, θ, and powered to an exponent α > 0 (α =1: linear model; α ≠ 1: power model). Both soil moisture data the satellite retrieved (θ = θsat) and the estimates (θ = θest) of Soil Water Balance model (Brocca et al., 2011) were tested. The results have been compared with those obtained by the USLE/RUSLE, USLE-M and USLE-MM models coupled with a parsimonious rainfall-runoff model, MILc, (Brocca et al. 2011) for the prediction of runoff volume (that in these models is the term used to correct the erosivity factor Re). The results showed that: including direct consideration of antecedent soil moisture and runoff in the event rainfall-runoff factor of the RUSLE/USLE enhanced the capacity of the model to account for variations in event soil loss when soil moisture and runoff volume are measured or predicted reasonably well; the accuracy of the original USLE/RUSLE model was always the lowest; the accuracy in estimating the event soil loss of a models with erosivity factor that includes the estimated runoff is always overcome by at least one model that uses the antecedent soil moisture θ in the erosivity index; the power models generally, at Masse, work better than the linear. The more accurate models are that with the estimated antecedent soil moisture, θest, when all the database is used and with the satellite retrieved soil moisture, θsat, when only the wet periods' events are considered. In fact it was also verified that much of the inaccuracy of the tested models is due to summer rainfall events, probably because of the particular characteristics that the soil assumes in the dry period (superficial crusts causing higher runoff): in this cases, high soil losses are observed in association to low values of soil moisture, while the simulated runoff assume low values too, since they are based on the antecedent wetness conditions. Thus, the analyses were repeated excluding the summer events. As expected, the performance of all the models increases, but still the use of θ provides the best results. The results of the analysis open interesting scenarios in the use of USLE-derived models for the unit event soil loss estimation at large scale. In particular the use of the soil moisture to correct the rainfall erosivity factor acquires a great practical importance, since it is a relatively simple measurable data and moreover because remote sensing soil moisture data are widely available and useful in large-scale erosion assessment. Bagarello, V., Di Piazza, G. V., Ferro, V., Giordano, G., 2008. Predicting unit soil loss in Sicily, south Italy. Hydrol. Process. 22, 586-595. Bagarello, V., Ferro, V., Giordano, G., Mannocchi, F., Todisco, F., Vergni, L., 2013. Predicting event soil loss form bare plots at two Italian sites. Catena 109, 96-102. Brocca, L., Melone, F., Moramarco, T., 2011. Distributed rainfall-runoff modeling for flood frequency estimation and flood forecasting. Hydrol. Process. 25, 2801-2813. Kinnell, P. I. A., Risse, L. M., 1998. USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci. Soc. Am. J. 62, 1667-1672. Todisco, F., Vergni, L., Mannocchi, F., Bomba, C., 2012. Calibration of the soil loss measurement at the Masse experimental station. Catena 91, 4-9. Wischmeier, W. H., Smith, D. D., 1978. Predicting rainfall-erosion losses - A guide to conservation planning. Agriculture Handbook 537, United Stated Department of Agriculture.

  11. Linking playa surface dust emission potential to feedbacks between surface moisture and salt crust expansion through high resolution terrestrial laser scanning measurements

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Wiggs, G.

    2012-12-01

    The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.

  12. Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, H.; Choi, M.; Kim, K.

    2016-12-01

    Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.

  13. From Sub-basin to Grid Scale Soil Moisture Disaggregation in SMART, A Semi-distributed Hydrologic Modeling Framework

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.

    2016-12-01

    A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.

  14. Soil moisture - precipitation feedbacks in observations and models (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, C.

    2013-12-01

    There is considerable uncertainty about the strength, geographical extent, and even the sign of feedbacks between soil moisture and precipitation. Whilst precipitation trivially increases soil moisture, the impact of soil moisture, via surface fluxes, on convective rainfall is far from straight-forward, and likely depends on space and time scale, soil and synoptic conditions, and the nature of the convection itself. In considering how daytime convection responds to surface fluxes, large-scale models based on convective parameterisations may not necessarily provide reliable depictions, particularly given their long-standing inability to reproduce a realistic diurnal cycle of convection. On the other hand, long-term satellite data provide the potential to establish robust relationships between soil moisture and precipitation across the world, notwithstanding some fundamental weaknesses and uncertainties in the datasets. Here, results from regional and global satellite-based analyses are presented. Globally, using 3-hourly precipitation and daily soil moisture datasets, a methodology has been developed to compare the statistics of antecedent soil moisture in the region of localised afternoon rain events (Taylor et al 2012). Specifically the analysis tests whether there are any significant differences in pre-event soil moisture between rainfall maxima and nearby (50-100km) minima. The results reveal a clear signal across a number of semi-arid regions, most notably North Africa, indicating a preference for afternoon rain over drier soil. Analysis by continent and by climatic zone reveals that this signal (locally a negative feedback) is evident in other continents and climatic zones, but is somewhat weaker. This may be linked to the inherent geographical differences across the world, as detection of a feedback requires water-stressed surfaces coincident with frequent active convective initiations. The differences also reflect the quality and utility of the soil moisture datasets outside of sparsely-vegetated regions. No evidence is found for afternoon convection developing preferentially above locally moister soils. Higher resolution datasets are used to provide a clearer relationship between soil moisture patterns and convective initiation in both the Sahel (Taylor et al 2011) and Europe. The observations indicate a preference for convection to initiate on soil moisture gradients, consistent with many high resolution numerical studies. The ability of models to capture the observed relationships between soil moisture and rainfall in the Sahel has been evaluated. This focuses on models run at different resolutions, and with convective parameterisations switched on or off, and highlights issues associated with the parameterisation of convection. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  15. Examination of Soil Moisture Retrieval Using SIR-C Radar Data and a Distributed Hydrological Model

    NASA Technical Reports Server (NTRS)

    Hsu, A. Y.; ONeill, P. E.; Wood, E. F.; Zion, M.

    1997-01-01

    A major objective of soil moisture-related hydrological-research during NASA's SIR-C/X-SAR mission was to determine and compare soil moisture patterns within humid watersheds using SAR data, ground-based measurements, and hydrologic modeling. Currently available soil moisture-inversion methods using active microwave data are only accurate when applied to bare and slightly vegetated surfaces. Moreover, as the surface dries down, the number of pixels that can provide estimated soil moisture by these radar inversion methods decreases, leading to less accuracy and, confidence in the retrieved soil moisture fields at the watershed scale. The impact of these errors in microwave- derived soil moisture on hydrological modeling of vegetated watersheds has yet to be addressed. In this study a coupled water and energy balance model operating within a topographic framework is used to predict surface soil moisture for both bare and vegetated areas. In the first model run, the hydrological model is initialized using a standard baseflow approach, while in the second model run, soil moisture values derived from SIR-C radar data are used for initialization. The results, which compare favorably with ground measurements, demonstrate the utility of combining radar-derived surface soil moisture information with basin-scale hydrological modeling.

  16. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  17. Regional Evapotranspiration Estimation by Using Wireless Sap Flow and Soil Moisture Measurement Systems

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Yu, P.; Yang, T.; Davis, T. W.; Liang, X.; Tseng, C.; Cheng, C.

    2011-12-01

    The objective of this study proposed herein is to estimate regional evapotranspiration via sap flow and soil moisture measurements associated with wireless sensor network in the field. Evapotranspiration is one of the important factors in water balance computation. Pan evaporation collected from the meteorological station can only be accounted as a single-point scale measurement rather than the water loss of the entire region. Thus, we need a multiple-site measurement for understanding the regional evapotranspiration. Applying sap flow method with self-made probes, we could calculate transpiration. Soil moisture measurement was used to monitor the daily soil moisture variety for evaporation. Sap flow and soil moisture measurements in multiple sites are integrated by using wireless sensor network (WSN). Then, the measurement results of each site were scaled up and combined into the regional evapotranspiration. This study used thermal dissipation method to measure sap flow in trees to represent the plant transpiration. Sap flow was measured by using the self-made sap probes which needed to be calibrated before setting up at the observation field. Regional transpiration was scaled up through the Leaf Area Index (LAI). The LAI of regional scale was from the MODIS image calculated at 1km X 1km grid size. The soil moistures collected from areas outside the distributing area of tree roots and tree canopy were used to represent the evaporation. The observation was undertaken to collect soil moisture variety from five different soil depths of 10, 20, 30, 40 and 50 cm respectively. The regional evaporation can be estimated by averaging the variation of soil moisture from each site within the region. The result data measured by both sap flow and soil moisture measurements of each site were collected through the wireless sensor network. The WSN performs the functions of P2P and mesh networking. That can collect data in multiple locations simultaneously and has less power consumption. WSN is the best way for collecting sap flow and soil moisture data in this study. Since the data were collected through the radio in the field, there may have some noise randomly. The weighted least-squares method was used to filter the raw data. Through collecting the observation data by WSN and transferring them into regional scale, we could get regional evapotranspiration.

  18. Anticipating U.S. severe droughts - A NASA NEWS initiative on extremes

    NASA Astrophysics Data System (ADS)

    Wang, S.; Oglesby, R. J.; Hilburn, K. A.; Barandiaran, D.; Pan, M.; Pinker, R. T.; Wang, H.; Santanello, J. A.

    2013-12-01

    The 2012-2013 drought may not have been predictable as based on current schemes employed for such purposes, but it may have been anticipatable due to knowledge of key precursors such as favorable (remote) SST patterns, and reduced regional soil moisture and winter snow packs. A working group was assembled under the NASA Energy and Water cycle Study (NEWS) to examine the extent to which the 2012 drought could be anticipated and to put recent severe droughts in perspective. A recent NOAA report analyzing the drought of 2012 in the central US has concluded that the drought was not inherently predictable, representing a very anomalous atmospheric circulation pattern. This ';predictability' is based on what happened in the atmosphere, and further, depends on the capabilities of the predictive schemes currently employed. The current prediction schemes emphasize the role of the large-scale atmospheric circulation, but the extent to which the long wave patterns and subsequent short wave effects can be predicted in advance remains unclear. These schemes generally lack full consideration of the local surface state, especially the effect of precursor anomalies in key elements such as soil moisture and snow pack. It is also not clear how well they account for the effects of either interannual or lower-frequency oceanic anomaly patterns. The role of the aforesaid precursors, combined with knowledge of their state, allow some assessment of the ';likelihood' of drought that is not currently being considered. For example, by late winter of 2012 much of the central US was already experiencing dry conditions, including reduced soil moisture, and the snowpack in the Rockies was well below normal. SST patterns appear to have been largely neutral. While the manifestation of the resultant drought also critically dependent on the large-scale atmospheric circulation that subsequently developed, it is clear that the region was preconditioned towards being dry. The other factor about precursors of drought in the previous year. The Drought Monitor data indicated that the 2011 drought remains stronger than the 2012 one in the ';exceptional' category. This feature reflects the different scales in the atmospheric teleconnection pattern and the comparison of the two events can help determine the soil moisture (or lack of) impact on 2012's widespread drought that persisted into 2013. Our hypothesis is that even if one cannot predict the future atmospheric circulation patterns with much certainty for a given year, we may still be able to make some assessment of whether or not a drought may be likely to occur. We refer to this as anticipating drought. As precursors such as soil moisture and snowpack become important in potentially enhancing and prolonging the drought as it occurs, the actual drought that does subsequently occur will depend closely in magnitude and duration on the atmospheric circulation that unfolds.

  19. A Study of the Response of Deep Tropical Clouds to Mesoscale Processes. Part 1; Modeling Strategies and Simulations of TOGA-COARE Convective Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.

  20. Large-scale weather dynamics during the 2015 haze event in Singapore

    NASA Astrophysics Data System (ADS)

    Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori

    2017-04-01

    The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical column moisture flux trajectory around Singapore region. Some of its phases are identified to be responsible in transporting the haze from its source to Singapore. The haze source was identified by compositing number of hotspots in grid-space based on the three time scales of PSI. Further discussion about equatorial waves during the haze event will also be presented.

  1. ERT to aid in WSN based early warning system for landslides

    NASA Astrophysics Data System (ADS)

    T, H.

    2017-12-01

    Amrita University's landslide monitoring and early warning system using Wireless Sensor Networks (WSN) consists of heterogeneous sensors like rain gauge, moisture sensor, piezometer, geophone, inclinometer, tilt meter etc. The information from the sensors are accurate and limited to that point. In order to monitor a large area, ERT can be used in conjunction with WSN technology. To accomplish the feasibility of ERT in landslide early warning along with WSN technology, we have conducted experiments in Amrita's landslide laboratory setup. The experiment was aimed to simulate landslide, and monitor the changes happening in the soil using moisture sensor and ERT. Simulating moisture values from resistivity measurements to a greater accuracy can help in landslide monitoring for large areas. For accomplishing the same we have adapted two mathematical approaches, 1) Regression analysis between resistivity measurements and actual moisture values from moisture sensor, and 2) Using Waxman Smith model to simulate moisture values from resistivity measurements. The simulated moisture values from Waxman Smith model is compared with the actual moisture values and the Mean Square Error (MSE) is found to be 46.33. Regression curve is drawn for the resistivity vs simulated moisture values from Waxman model, and it is compared with the regression curve of actual model, which is shown in figure-1. From figure-1, it is clear that there the regression curve from actual moisture values and the regression curve from simulated moisture values, follow the similar pattern and there is a small difference between them. Moisture values can be simulated to a greater accuracy using actual regression equation, but the limitation is that, regression curves will differ for different sites and different soils. Regression equation from actual moisture values can be used, if we have conducted experiment in the laboratory for a particular soil sample, otherwise with the knowledge of soil properties, Waxman model can be used to simulate moisture values. The promising results assure that, ERT measurements when used in conjunction with WSN technique, vital paramters triggering landslides like moisture can be simulated for a large area, which will help in providing early warning for large areas.

  2. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    USDA-ARS?s Scientific Manuscript database

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  3. Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)

    NASA Astrophysics Data System (ADS)

    Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles

    2016-04-01

    The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows combining multiple independent measurements (performed nearly simultaneously) to one consistent soil moisture map. Spatial statistics helps with correcting blind spots or distortions causes by assembly elements, especially on corners of ELBARA's tower. Moreover, using this technique we can observe distribution of soil moisture with time dependency. In order to validate our data, the results were compared with measurements obtained by means of the TDR method. The presented approach enables better understanding the soil moisture spatial distribution over a particular local area of interests, before extending soil water assessments on larger areas. The work was partially funded under two ESA projects: 1) "ELBARA_PD (Penetration Depth)" No. 4000107897/13/NL/KML, funded by the Government of Poland through an ESA-PECS contract (Plan for European Cooperating States) 2) "Technical Support for the fabrication and deployment of the radiometer ELBARA-III in Bubnow, Poland" No. 4000113360/15/NL/FF/gp

  4. Towards Hydrological Applications of Stationary and Roving Cosmic-Ray Neutron Sensors in the Light of Spatial Sensitivity

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Köhli, M.; Rosolem, R.; Baroni, G.; Bogena, H. R.; Brenner, J.; Zink, M.; Rebmann, C.; Oswald, S. E.; Dietrich, P.; Samaniego, L. E.; Zacharias, S.

    2017-12-01

    Cosmic-Ray Neutron Sensing (CRNS) has become a promising and unique method to monitor water content at an effective scale of tens of hectares in area and tens of centimeters in depth. The large footprint is particularly beneficial for hydrological models that operate at these scales.However, reliable estimates of average soil moisture require a detailed knowledge about the sensitivity of the signal to spatial inhomogeneity within the footprint. From this perspective, the large integrating volume challenges data interpretation, validation, and calibration of the sensor. Can we still generate reliable data for hydrological applications? One of the top challenges in the last years was to find out where the signal comes from, and how sensitive it is to spatial variabilities of moisture. Neutron physics simulations have shown that the neutron signal represents a non-linearly weighted average of soil water in the footprint. With the help of the so-called spatial sensitivity functions it is now possible to quantify the contribution of certain regions to the neutron signal. We present examples of how this knowledge can help (1) to understand the contribution of irrigated and sealed areas in the footprint, (2) to improve calibration and validation of the method, and (3) to even reveal excess water storages, e.g. from ponding or rain interception.The spatial sensitivity concept can also explain the influence of dry roads on the neutron signal. Mobile surveys with the CRNS rover have been a common practice to measure soil moisture patterns at the kilometer scale. However, dedicated experiments across agricultural fields in Germany and England have revealed that field soil moisture is significantly underestimated when moving the sensor on roads. We show that knowledge about the spatial sensitivity helps to correct survey data for these effects, depending on road material, width, and distance from the road. The recent methodological advances allow for improved signal interpretability and for more accurate derivation of hydrologically relevant features from the CRNS data. By this, the presented methods are an essential contribution to generate reliable CRNS products and an example how combined efforts from the CRNS community contribute to turn the instrument to a highly capable tool for hydrological applications.

  5. Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.

    2017-12-01

    The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.

  6. Tropical Oceanic Precipitation Processes Over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Johnson, D.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle as well as the primary heat source for the atmosphere. The vertical distribution of convective latent-heat release modulates the large-scale circulations of the topics. Furthermore, changes in the moisture distribution at middle and upper levels of the troposphere can affect cloud distributions and cloud liquid water and ice contents. How the incoming solar and outgoing longwave radiation respond to these changes in clouds is a major factor in assessing climate change. Present large-scale weather and climate model simulate processes only crudely, reducing confidence in their predictions on both global and regional scales. One of the most promising methods to test physical parameterizations used in General Circulation Models (GCMs) and climate models is to use field observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and physically realistic parameterizations of cloud microphysical processes, and allow for their complex interactions with solar and infrared radiative transfer processes. The CRMs can reasonably well resolve the evolution, structure, and life cycles of individual clouds and clouds systems. The major objective of this paper is to investigate the latent heating, moisture and momentum budgets associated with several convective systems developed during the TOGA COARE IFA - westerly wind burst event (late December, 1992). The tool for this study is the Goddard Cumulus Ensemble (GCE) model which includes a 3-class ice-phase microphysics scheme.

  7. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  8. Results from SMAP Validation Experiments 2015 and 2016

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W.; Powers, J.; Wood, E. F.; Mohanty, B.; Judge, J.; Drewry, D.; McNairn, H.; Bullock, P.; Berg, A. A.; Magagi, R.; O'Neill, P. E.; Yueh, S. H.

    2017-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Well-characterized sites with calibrated in situ soil moisture measurements are used to determine the quality of the soil moisture data products; these sites are designated as core validation sites (CVS). To support the CVS-based validation, airborne field experiments are used to provide high-fidelity validation data and to improve the SMAP retrieval algorithms. The SMAP project and NASA coordinated airborne field experiments at three CVS locations in 2015 and 2016. SMAP Validation Experiment 2015 (SMAPVEX15) was conducted around the Walnut Gulch CVS in Arizona in August, 2015. SMAPVEX16 was conducted at the South Fork CVS in Iowa and Carman CVS in Manitoba, Canada from May to August 2016. The airborne PALS (Passive Active L-band Sensor) instrument mapped all experiment areas several times resulting in 30 coincidental measurements with SMAP. The experiments included intensive ground sampling regime consisting of manual sampling and augmentation of the CVS soil moisture measurements with temporary networks of soil moisture sensors. Analyses using the data from these experiments have produced various results regarding the SMAP validation and related science questions. The SMAPVEX15 data set has been used for calibration of a hyper-resolution model for soil moisture product validation; development of a multi-scale parameterization approach for surface roughness, and validation of disaggregation of SMAP soil moisture with optical thermal signal. The SMAPVEX16 data set has been already used for studying the spatial upscaling within a pixel with highly heterogeneous soil texture distribution; for understanding the process of radiative transfer at plot scale in relation to field scale and SMAP footprint scale over highly heterogeneous vegetation distribution; for testing a data fusion based soil moisture downscaling approach; and for investigating soil moisture impact on estimation of vegetation fluorescence from airborne measurements. The presentation will describe the collected data and showcase some of the most important results achieved so far.

  9. Downscaling soil moisture over regions that include multiple coarse-resolution grid cells

    USDA-ARS?s Scientific Manuscript database

    Many applications require soil moisture estimates over large spatial extents (30-300 km) and at fine-resolutions (10-30 m). Remote-sensing methods can provide soil moisture estimates over very large spatial extents (continental to global) at coarse resolutions (10-40 km), but their output must be d...

  10. Gain and loss of moisture in large forest fuels

    Treesearch

    Arthur P. Brackebusch

    1975-01-01

    Equations for predicting moisture in large fuels were developed from data gathered at Priest River Experimental Forest and Boise Basin Experimental Forest. The most important variables were beginning moisture content of the fuel, duration of precipitation, amount of precipitation, and the sum of the mean temperature of an observation period. Sensitivity and precision...

  11. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E. A. H.

    2017-03-01

    Satellite-based near-surface (0-2 cm) soil moisture estimates have global coverage, but do not capture variations of soil moisture in the root zone (up to 100 cm depth) and may be biased with respect to ground-based soil moisture measurements. Here, we present an ensemble Kalman filter (EnKF) hydrologic data assimilation system that predicts bias in satellite soil moisture data to support the physically based Soil Moisture Analytical Relationship (SMAR) infiltration model, which estimates root zone soil moisture with satellite soil moisture data. The SMAR-EnKF model estimates a regional-scale bias parameter using available in situ data. The regional bias parameter is added to satellite soil moisture retrievals before their use in the SMAR model, and the bias parameter is updated continuously over time with the EnKF algorithm. In this study, the SMAR-EnKF assimilates in situ soil moisture at 43 Soil Climate Analysis Network (SCAN) monitoring locations across the conterminous U.S. Multivariate regression models are developed to estimate SMAR parameters using soil physical properties and the moderate resolution imaging spectroradiometer (MODIS) evapotranspiration data product as covariates. SMAR-EnKF root zone soil moisture predictions are in relatively close agreement with in situ observations when using optimal model parameters, with root mean square errors averaging 0.051 [cm3 cm-3] (standard error, s.e. = 0.005). The average root mean square error associated with a 20-fold cross-validation analysis with permuted SMAR parameter regression models increases moderately (0.082 [cm3 cm-3], s.e. = 0.004). The expected regional-scale satellite correction bias is negative in four out of six ecoregions studied (mean = -0.12 [-], s.e. = 0.002), excluding the Great Plains and Eastern Temperate Forests (0.053 [-], s.e. = 0.001). With its capability of estimating regional-scale satellite bias, the SMAR-EnKF system can predict root zone soil moisture over broad extents and has applications in drought predictions and other operational hydrologic modeling purposes.

  12. Evaluation of soil and vegetation response to drought using SMOS soil moisture satellite observations

    NASA Astrophysics Data System (ADS)

    Piles, Maria; Sánchez, Nilda; Vall-llossera, Mercè; Ballabrera, Joaquim; Martínez, Justino; Martínez-Fernández, José; Camps, Adriano; Font, Jordi

    2014-05-01

    Soil moisture plays an important role in determining the likelihood of droughts and floods that may affect an area. Knowledge of soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological and agricultural applications, especially in water-limited or drought-prone regions. However, measuring soil moisture is challenging because of its high variability; point-scale in-situ measurements are scarce being remote sensing the only practical means to obtain regional- and global-scale soil moisture estimates. The ESA's Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to measuring the Earth's surface soil moisture at near daily time scales with levels of accuracy previously not attained. Since its launch in November 2009, significant efforts have been dedicated to validate and fine-tune the retrieval algorithms so that SMOS-derived soil moisture estimates meet the standards required for a wide variety of applications. In this line, the SMOS Barcelona Expert Center (BEC) is distributing daily, monthly, and annual temporal averages of 0.25-deg global soil moisture maps, which have proved useful for assessing drought and water-stress conditions. In addition, a downscaling algorithm has been developed to combine SMOS and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) data into fine-scale (< 1km) soil moisture estimates, which permits extending the applicability of the data to regional and local studies. Fine-scale soil moisture maps are currently limited to the Iberian Peninsula but the algorithm is dynamic and can be transported to any region. Soil moisture maps are generated in a near real-time fashion at BEC facilities and are used by Barcelona's fire prevention services to detect extremely dry soil and vegetation conditions posing a risk of fire. Recently, they have been used to explain drought-induced tree mortality episodes and forest decline in the Catalonia region. These soil moisture products can also be a useful tool to monitor the effectiveness of land restoration management practices. The aim of this work is to demonstrate the feasibility of using SMOS soil moisture maps for monitoring drought and water-stress conditions. In previous research, SMOS-derived Soil Moisture Anomalies (SSMA), calculated in a ten-day basis, were shown to be in close relationship with well-known drought indices (the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index). In this work, SSMA have been calculated for the period 2010-2013 in representative arid, semi-arid, sub-humid and humid areas across global land biomes. The SSMA reflect the cumulative precipitation anomalies and is known to provide 'memory' in the climate and hydrological system; the water retained in the soil after a rainfall event is temporally more persistent than the rainfall event itself, and has a greater persistence during periods of low precipitation. Besides, the Normalized Difference Vegetation Index (NDVI) from MODIS is used as an indicator of vegetation activity and growth. The NDVI time series are expected to reflect the changes in surface vegetation density and status induced by water-deficit conditions. Understanding the relationships between SSMA and NDVI concurrent time series should provide new insight about the sensitivity of land biomes to drought.

  13. Seasonality of the Tropical Intraseasonal Oscillations: Sensitivity to Mean Background State

    NASA Astrophysics Data System (ADS)

    Singh, Bohar

    This study investigates the seasonality of tropical intraseasonal oscillations (TISO) in Earths current climate and its relationship with the inter-hemispherical migration of the climatological mean maximum sea surface temperature (SST) and the tropical core of the low-level westerly wind. TISO is identified with anomalies of atmospheric convection with large spatial scale (105 km2) that characteristically exist on the intra-seasonal time scale (20- 100 days period). A new method for tracking the large spatial scale features of convective anomalies, measured by outgoing long-wave radiation (OLR), is developed, based on a two-stage Kalman filter predictor-corrector method. Two dominant components of TISO (eastward-propagating and northward-propagating) are classified, and it is found that TISO remains active throughout the year, with eastward propagation of TISO events occurring from November to April and northward propagating events occurring from May to October. The eastward events have a phase speed of 4 m/s, while the northward events propagate at 2 m/s in both the Indian and Pacific Ocean basins. A composite analysis of the mean background states (zonal wind, SST and low-level moisture) reveals that the co-occurrence of warm climatological SST and mean westerly wind plays an important role in the direction of propagation and geographical location of TISO. It is hypothesized that the geographical location of TISO occurrences is coupled with SST, moisture and lower tropospheric circulation. The seasonal migration of the mean background state is a potential determinant of the seasonal changes in the characteristics of TISO. A Lagrangian composite analysis with respect to the center of mass of the each convective cloud system was done separately for eastward-propagating TISO events, northward propagating TISO events over the Indian Ocean and northward-propagating TISO events over the west Pacific Ocean. The analysis suggests that the average size of eastward propagating events is 106 km2 and the OLR anomaly at the center of convection is -50 W/m 2, and size of northward propagating events is 106 km 2 and the OLR anomaly at the center of convection is -45 W/ m2. The spatial asymmetry in the mean background state composite moisture, moist static energy, moisture convergence, and vertical velocity all suggest that the development phase of convection lies east of the convection center. A slight shift in moisture anomalies ahead of the convection center and moistening (drying) ahead of (behind) the convection is found in both eastward and northward propagating TISO events. An analysis of the individual terms from the anomalous vertically-integrated moisture budget suggests that vertical moisture advection dominates the local tendency of moisture, but it is balanced by the moisture sink term due to precipitation and evaporation. Column processes (the sum of vertical moisture advection and the moisture sinks) compete with the large drying produced by the horizontal moisture advection. Horizontal moisture advection that brings dry moisture anomalies into the convection area from behind the convective center is common to all three kinds of TISO. Horizontal moisture advection also plays an important role in the moistening ahead of the convection in eastward-propagating and northward-propagating events in the Indian Ocean. Moistening ahead of convection in northward-propagating events in the west Pacific Ocean is accomplished primarily by column processes. To test the hypothesis that the climatological SST maximum and the tropical core of the westerly low-level wind guide the development and propagation of TISO, a series of sensitivity experiments is performed. In these experiments, with initial conditions taken from early boreal summer in several selected years of the free run of the SP-CAM4 (a super-parameterized version of the Community Atmospheric Model, version 4), the lower boundary condition is prescribed as the climatological mean, seasonally varying SST in boreal winter. A companion set of sensitivity experiments is made with early boreal winter initial conditions and prescribed SST from the boreal summer. The four sets of runs were analyzed as was done with the observations. The results of these experiments indicate that the regionality and seasonality of TISO are closely coupled to the SST and the low- level circulation. The SST in the tropics must reach a required threshold for convection to occur, while the low-level circulation controls the direction of propagation by controlling the location of moisture convergence. A moisture budget analysis of the observations and control simulation with the model indicates that both eastward and northward propagating TISO events propagate according to the moisture mode, that is, dynamics are strongly regulated by the processes that control the growth of moisture. TISO remains active throughout the year in both the model and observations. During the boreal summer, when the maximum SST migrates into the northern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The horizontal shear line in the northern hemisphere in the mean background zonal wind during boreal summer modulates the northward horizontal moisture advection. The convection then moves northward in the Indian and west Pacific Ocean basins. During boreal winter, when the maximum SST and low-level westerlies are located in the southern hemisphere, the SST in this hemisphere becomes conducive for convection organization. The mean background wind and anomalies together advect anomalously dry air into the convective region and advect anomalously moist air preferentially on the east side of the convective region, leading to eastward propagation. Column processes in both eastward and northward propagating events maintain the convection by competing with excessive drying produced by the horizontal advection. Column processes also help in moistening ahead of the convection. The analysis is unique insofar as it relies on a new method for tracking intra-seasonal propagating convection anomalies in the tropics and an event-centric Lagrangian moisture budget analysis. The results of the analysis and the sensitivity tests are consistent with published work showing that the moisture mode is the dominant mechanism for propagating organized convection in the tropics.

  14. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, M.; Lewis, M.; Bosch, D.; Giraldo, Mario; Yamamoto, K.; Sullivan, D.; Kincaid, R.; Luna, R.; Allam, G.; Kvien, Craig; Williams, M.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  15. Remote sensing of soil moisture using airborne hyperspectral data

    USGS Publications Warehouse

    Finn, Michael P.; Lewis, Mark (David); Bosch, David D.; Giraldo, Mario; Yamamoto, Kristina H.; Sullivan, Dana G.; Kincaid, Russell; Luna, Ronaldo; Allam, Gopala Krishna; Kvien, Craig; Williams, Michael S.

    2011-01-01

    Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.

  16. Optimizing available water capacity using microwave satellite data for improving irrigation management

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into two steps during one time interval: the state variable is optimized through the state filter and the optimal parameter values are then transferred for retrieving soil moisture. However, soil moisture from sensors such as AMSR-E can only be retrieved for the top few centimeters of soil. So, for the present study, a homogeneous soil system has been considered. By assimilating this information into the model, the accuracy of model structure in relating surface moisture dynamics to deeper soil profiles can be ascertained. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments alongwith the available water capacity, the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the soil moisture simulations. The optimized parameters as compared to the pedo-transfer based parameters were found to reduce the RMSE from 0.14 to 0.04 and 0.15 to 0.07 in surface layer and root zone respectively.

  17. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.

  18. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    PubMed

    Feng, Huihui

    2016-09-07

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.

  19. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation.

    PubMed

    Verstraeten, Willem W; Veroustraete, Frank; Feyen, Jan

    2008-01-09

    The proper assessment of evapotranspiration and soil moisture content arefundamental in food security research, land management, pollution detection, nutrient flows,(wild-) fire detection, (desert) locust, carbon balance as well as hydrological modelling; etc.This paper takes an extensive, though not exhaustive sample of international scientificliterature to discuss different approaches to estimate land surface and ecosystem relatedevapotranspiration and soil moisture content. This review presents:(i) a summary of the generally accepted cohesion theory of plant water uptake andtransport including a shortlist of meteorological and plant factors influencing planttranspiration;(ii) a summary on evapotranspiration assessment at different scales of observation (sapflow,porometer, lysimeter, field and catchment water balance, Bowen ratio,scintillometer, eddy correlation, Penman-Monteith and related approaches);(iii) a summary on data assimilation schemes conceived to estimate evapotranspirationusing optical and thermal remote sensing; and(iv) for soil moisture content, a summary on soil moisture retrieval techniques atdifferent spatial and temporal scales is presented.Concluding remarks on the best available approaches to assess evapotranspiration and soilmoisture content with and emphasis on remote sensing data assimilation, are provided.

  20. Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs

    NASA Astrophysics Data System (ADS)

    Guan, B.; Jiang, X.; Waliser, D. E.

    2013-12-01

    The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.

  1. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  2. Comparison between the land surface response of the ECMWF model and the FIFE-1987 data

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Ball, John H.; Beljaars, Anton C. M.

    1993-01-01

    An averaged time series for the surface data for the 15 x 15 km FIFE site was prepared for the summer of 1987. Comparisons with 48-hr forecasts from the ECMWF model for extended periods in July, August, and October 1987 identified model errors in the incoming SW radiation in clear skies, the ground heat flux, the formulation of surface evaporation, the soil-moisture model, and the entrainment at boundary-layer top. The model clear-sky SW flux is too high at the surface by 5-10 percent. The ground heat flux is too large by a factor of 2 to 3 because of the large thermal capacity of the first soil layer (which is 7 cm thick), and a time truncation error. The surface evaporation was near zero in October 1987, rather than of order 70 W/sq m at noon. The surface evaporation falls too rapidly after rainfall, with a time-scale of a few days rather than the 7-10 d (or more) of the observations. On time-scales of more than a few days the specified 'climate layer' soil moisture, rather than the storage of precipitation, has a large control on the evapotranspiration. The boundary-layer-top entrainment is too low. This results in a moist bias in the boundary-layer mixing ratio of order 2 g/Kg in forecasts from an experimental analysis with nearly realistic surface fluxes; this because there is insufficient downward mixing of dry air.

  3. Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien

    2017-03-01

    The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.

  4. An Improved GRACE Terrestrial Water Storage Assimilation System For Estimating Large-Scale Soil Moisture and Shallow Groundwater

    NASA Astrophysics Data System (ADS)

    Girotto, M.; De Lannoy, G. J. M.; Reichle, R. H.; Rodell, M.

    2015-12-01

    The Gravity Recovery And Climate Experiment (GRACE) mission is unique because it provides highly accurate column integrated estimates of terrestrial water storage (TWS) variations. Major limitations of GRACE-based TWS observations are related to their monthly temporal and coarse spatial resolution (around 330 km at the equator), and to the vertical integration of the water storage components. These challenges can be addressed through data assimilation. To date, it is still not obvious how best to assimilate GRACE-TWS observations into a land surface model, in order to improve hydrological variables, and many details have yet to be worked out. This presentation discusses specific recent features of the assimilation of gridded GRACE-TWS data into the NASA Goddard Earth Observing System (GEOS-5) Catchment land surface model to improve soil moisture and shallow groundwater estimates at the continental scale. The major recent advancements introduced by the presented work with respect to earlier systems include: 1) the assimilation of gridded GRACE-TWS data product with scaling factors that are specifically derived for data assimilation purposes only; 2) the assimilation is performed through a 3D assimilation scheme, in which reasonable spatial and temporal error standard deviations and correlations are exploited; 3) the analysis step uses an optimized calculation and application of the analysis increments; 4) a poor-man's adaptive estimation of a spatially variable measurement error. This work shows that even if they are characterized by a coarse spatial and temporal resolution, the observed column integrated GRACE-TWS data have potential for improving our understanding of soil moisture and shallow groundwater variations.

  5. Global response of the growing season to soil moisture and topography

    NASA Astrophysics Data System (ADS)

    Guevara, M.; Arroyo, C.; Warner, D. L.; Equihua, J.; Lule, A. V.; Schwartz, A.; Taufer, M.; Vargas, R.

    2017-12-01

    Soil moisture has a direct influence in plant productivity. Plant productivity and its greenness can be inferred by remote sensing with higher spatial detail than soil moisture. The objective was to improve the coarse scale of currently available satellite soil moisture estimates and identify areas of strong coupling between the interannual variability soil moisture and the maximum greenness vegetation fraction (MGVF) at the global scale. We modeled, cross-validated and downscaled remotely sensed soil moisture using machine learning and digital terrain analysis across 23 years (1991-2013) of available data. Improving the accuracy (0.69-0.87 % of cross-validated explained variance) and the spatial detail (from 27 to 15km) of satellite soil moisture, we filled temporal gaps of information across vegetated areas where satellite soil moisture does not work properly. We found that 7.57% of global vegetated area shows strong correlation with our downscaled product (R2>0.5, Fig. 1). We found a dominant positive response of vegetation greenness to topography-based soil moisture across water limited environments, however, the tropics and temperate environments of higher latitudes showed a sparse negative response. We conclude that topography can be used to effectively improve the spatial detail of globally available remotely sensed soil moisture, which is convenient to generate unbiased comparisons with global vegetation dynamics, and better inform land and crop modeling efforts.

  6. Large-scale impacts of herbivores on the structural diversity of African savannas

    PubMed Central

    Asner, Gregory P.; Levick, Shaun R.; Kennedy-Bowdoin, Ty; Knapp, David E.; Emerson, Ruth; Jacobson, James; Colgan, Matthew S.; Martin, Roberta E.

    2009-01-01

    African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africa's natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes. PMID:19258457

  7. SMOS and SMAP: from Lessons Learned to Future Mission Requirements

    NASA Astrophysics Data System (ADS)

    Kerr, Y. H.; Wigneron, J. P.; Cabot, F.; Escorihuela, M. J.; Anterrieu, E.; Rouge, B.; Rodriguez Fernandez, N.; Bindlish, R.; Khazaal, A.; Al-Bitar, A.; Mialon, A.; Lesthievent, G.

    2017-12-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface, vegetation water content over land, and ocean salinity. The Soil Moisture and Ocean Salinity mission has now been collecting data for over 7 years. TheSoil Moisture Active and Passive for over 2 years.The two data set have been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS) to be merged into one product, while operational near real time soil moisture data is now available and assimilation of SMOS data in NWP has proved successful. After 7 years of L-Band data acquisition, it seems important to start using data for having a look at anomalies and see how they can relate to large scale events. We have also produced a 15 year soil moisture data set by merging SMOS and AMSR using a neural network approach. The purpose of this communication is to present the two mission results after more than seven years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth of information and some interesting perspectives will be presented. More important it is now possible to draw conclusions from the lessons learnt and, with the help of the user's community, define the requirements for future missions. And, finally, from these requirement to propose mission scenarii.

  8. A Moisture Function of Soil Heterotrophic Respiration Derived from Pore-scale Mechanisms

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Todd-Brown, K. E.; Bond-Lamberty, B. P.; Bailey, V.; Liu, C.

    2017-12-01

    Soil heterotrophic respiration (HR) is an important process controlling carbon (C) flux, but its response to changes in soil water content (θ) is poorly understood. Earth system models (ESMs) use empirical moisture functions developed from specific sites to describe the HR-θ relationship in soils, introducing significant uncertainty. Generalized models derived from mechanisms that control substrate availability and microbial respiration are thus urgently needed. Here we derive, present, and test a novel moisture function fp developed from pore-scale mechanisms. This fp encapsulates primary physicochemical and biological processes controlling HR response to moisture variation in soils. We tested fp against a wide range of published data for different soil types, and found that fp reliably predicted diverse HR- relationships. The mathematical relationship between the parameters in fp and macroscopic soil properties such as porosity and organic C content was also established, enabling to estimate fp using soil properties. Compared with empirical moisture functions used in ESMs, this derived fp could reduce uncertainty in predicting the response of soil organic C stock to climate changes. In addition, this work is one of the first studies to upscale a mechanistic soil HR model based on pore-scale processes, thus linking the pore-scale mechanisms with macroscale observations.

  9. The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes

    NASA Astrophysics Data System (ADS)

    Meyer, N.; Welp, G.; Amelung, W.

    2018-02-01

    The temperature sensitivity of heterotrophic soil respiration is crucial for modeling carbon dynamics but it is variable. Presently, however, most models employ a fixed value of 1.5 or 2.0 for the increase of soil respiration per 10°C increase in temperature (Q10). Here we identified the variability of Q10 at a regional scale (Rur catchment, Germany/Belgium/Netherlands). We divided the study catchment into environmental soil classes (ESCs), which we define as unique combinations of land use, aggregated soil groups, and texture. We took nine soil samples from each ESC (108 samples) and incubated them at four soil moisture levels and five temperatures (5-25°C). We hypothesized that Q10 variability is controlled by soil organic carbon (SOC) degradability and soil moisture and that ESC can be used as a widely available proxy for Q10, owing to differences in SOC degradability. Measured Q10 values ranged from 1.2 to 2.8 and were correlated with indicators of SOC degradability (e.g., pH, r = -0.52). The effect of soil moisture on Q10 was variable: Q10 increased with moisture in croplands but decreased in forests. The ESC captured significant parts of Q10 variability under dry (R2 = 0.44) and intermediate (R2 = 0.36) moisture conditions, where Q10 increased in the order cropland

  10. On identifying relationships between the flood scaling exponent and basin attributes.

    PubMed

    Medhi, Hemanta; Tripathi, Shivam

    2015-07-01

    Floods are known to exhibit self-similarity and follow scaling laws that form the basis of regional flood frequency analysis. However, the relationship between basin attributes and the scaling behavior of floods is still not fully understood. Identifying these relationships is essential for drawing connections between hydrological processes in a basin and the flood response of the basin. The existing studies mostly rely on simulation models to draw these connections. This paper proposes a new methodology that draws connections between basin attributes and the flood scaling exponents by using observed data. In the proposed methodology, region-of-influence approach is used to delineate homogeneous regions for each gaging station. Ordinary least squares regression is then applied to estimate flood scaling exponents for each homogeneous region, and finally stepwise regression is used to identify basin attributes that affect flood scaling exponents. The effectiveness of the proposed methodology is tested by applying it to data from river basins in the United States. The results suggest that flood scaling exponent is small for regions having (i) large abstractions from precipitation in the form of large soil moisture storages and high evapotranspiration losses, and (ii) large fractions of overland flow compared to base flow, i.e., regions having fast-responding basins. Analysis of simple scaling and multiscaling of floods showed evidence of simple scaling for regions in which the snowfall dominates the total precipitation.

  11. An Approach to Flooding Inundation Combining the Streamflow Prediction Tool (SPT) and Downscaled Soil Moisture

    NASA Astrophysics Data System (ADS)

    Cotterman, K. A.; Follum, M. L.; Pradhan, N. R.; Niemann, J. D.

    2017-12-01

    Flooding impacts numerous aspects of society, from localized flash floods to continental-scale flood events. Many numerical flood models focus solely on riverine flooding, with some capable of capturing both localized and continental-scale flood events. However, these models neglect flooding away from channels that are related to excessive ponding, typically found in areas with flat terrain and poorly draining soils. In order to obtain a holistic view of flooding, we combine flood results from the Streamflow Prediction Tool (SPT), a riverine flood model, with soil moisture downscaling techniques to determine if a better representation of flooding is obtained. This allows for a more holistic understanding of potential flood prone areas, increasing the opportunity for more accurate warnings and evacuations during flooding conditions. Thirty-five years of near-global historical streamflow is reconstructed with continental-scale flow routing of runoff from global land surface models. Elevation data was also obtained worldwide, to establish a relationship between topographic attributes and soil moisture patterns. Derived soil moisture data is validated against observed soil moisture, increasing confidence in the ability to accurately capture soil moisture patterns. Potential flooding situations can be examined worldwide, with this study focusing on the United States, Central America, and the Philippines.

  12. High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.

    2016-05-01

    During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.

  13. Moisture availability constraints on the leaf area to sapwood area ratio: analysis of measurements on Australian evergreen angiosperm trees

    NASA Astrophysics Data System (ADS)

    Togashi, Henrique; Prentice, Colin; Evans, Bradley; Forrester, David; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2014-05-01

    The leaf area to sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. Pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease towards drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. We found considerable scatter in LA:SA among species. However quantile regression showed strong (0.2

  14. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees.

    PubMed

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-03-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology.

  15. Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees

    PubMed Central

    Togashi, Henrique Furstenau; Prentice, Iain Colin; Evans, Bradley John; Forrester, David Ian; Drake, Paul; Feikema, Paul; Brooksbank, Kim; Eamus, Derek; Taylor, Daniel

    2015-01-01

    The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5–15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology. PMID:25859331

  16. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    NASA Technical Reports Server (NTRS)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.

  17. Efficacy of Radiative Transfer Model Across Space, Time and Hydro-climates

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Neelam, M.

    2017-12-01

    The efficiency of radiative transfer model for better soil moisture retrievals is not yet clearly understood over natural systems with great variability and heterogeneity with respect to soil, land cover, topography, precipitation etc. However, this knowledge is important to direct and strategize future research direction and field campaigns. In this work, we present global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties on radiative transfer model (RTM) and to quantify climate-soil-vegetation interactions. A framework is proposed to understand soil moisture mechanisms underlying these interactions, and influence of these interactions on soil moisture retrieval accuracy. Soil moisture dynamics is observed to play a key role in variability of these interactions, i.e., it enhances both mean and variance of soil-vegetation coupling. The analysis is conducted for different support scales (Point Scale, 800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 36 km), seasonality (time), hydro-climates, aggregation (scaling) methods and across Level I and Level II ecoregions of contiguous USA (CONUS). For undisturbed natural environments such as SGP'97 (Oklahoma, USA) and SMEX04 (Arizona, USA), the sensitivity of TB to land surface variables remain nearly uniform and are not influenced by extent, support scales or averaging method. On the contrary, for anthropogenically-manipulated environments such as SMEX02 (Iowa, USA) and SMAPVEX12 (Winnipeg, Canada), the sensitivity to variables are highly influenced by the distribution of land surface heterogeneity and upscaling methods. The climate-soil-vegetation interactions analyzed across all ecoregions are presented through a probability distribution function (PDF). The intensity of these interactions are categorized accordingly to yield "hotspots", where the RTM model fails to retrieve soil moisture. A ecoregion specific scaling function is proposed for these hotspots to rectify RTM for retrieving soil moisture.

  18. Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ter Maat, H. W.; Hutjes, R. W. A.; Ohba, R.; Ueda, H.; Bisselink, B.; Bauer, T.

    2006-11-01

    On continental to regional scales feedbacks between landuse and landcover change and climate have been widely documented over the past 10-15 years. In the present study we explore the possibility that also vegetation changes over much smaller areas may affect local precipitation regimes. Large scale (˜ 10 5 ha) irrigated plantations in semi-arid environments under particular conditions may affect local circulations and induce additional rainfall. Capturing this rainfall 'surplus' could then reduce the need for external irrigation sources and eventually lead to self-sustained water cycling. This concept is studied in the coastal plains in South West Saudi Arabia where the mountains of the Asir region exhibit the highest rainfall of the peninsula due to orographic lifting and condensation of moisture imported with the Indian Ocean monsoon and with disturbances from the Mediterranean Sea. We use a regional atmospheric modeling system (RAMS) forced by ECMWF analysis data to resolve the effect of complex surface conditions in high resolution (Δ x = 4 km). After validation, these simulations are analysed with a focus on the role of local processes (sea breezes, orographic lifting and the formation of fog in the coastal mountains) in generating rainfall, and on how these will be affected by large scale irrigated plantations in the coastal desert. The validation showed that the model simulates the regional and local weather reasonably well. The simulations exhibit a slightly larger diurnal temperature range than those captured by the observations, but seem to capture daily sea-breeze phenomena well. Monthly rainfall is well reproduced at coarse resolutions, but appears more localized at high resolutions. The hypothetical irrigated plantation (3.25 10 5 ha) has significant effects on atmospheric moisture, but due to weakened sea breezes this leads to limited increases of rainfall. In terms of recycling of irrigation gifts the rainfall enhancement in this particular setting is rather insignificant.

  19. Sensitivity of soil moisture initialization for decadal predictions under different regional climatic conditions in Europe

    NASA Astrophysics Data System (ADS)

    Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.

    2015-12-01

    The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.

  20. Atmospheric Rivers and Their Role in Extreme Precipitation in the Midwest U.S.

    DTIC Science & Technology

    2013-03-01

    located in the warm sector of extratropical cyclones (warm conveyor belt) and can be characterized by strong winds (low level jet) and large water...the associated synoptic-scale extratropical cyclone and subsequent frontal processes of each planetary wave, resulting in narrow regions of moisture...normal falls during AR storms during the winter on the West Coast. During the summer, precipitation enhancements were not as significant (mostly due

  1. Mobile Soil Moisture Management in High Elevations: Applications of the Cosmic Ray Neutron Sensor Technique for Estimating Field Scale Soil Water Content

    NASA Astrophysics Data System (ADS)

    Avery, William Alexander; Wahbi, Ammar; Dercon, Gerd; Heng, Lee; Franz, Trenton; Strauss, Peter

    2017-04-01

    Meeting the demands of a growing global population is one of the principal challenges of the 21st century. Meeting this challenge will require an increase in food production around the world. Currently, approximately two thirds of freshwater use by humans is devoted to agricultural production. As such, an expansion of agricultural activity will place additional pressure on freshwater resources. The incorporation of novel soil moisture sensing technologies into agricultural practices carries the potential to make agriculture more precise thus increasing water use efficiency. One such technology is known as the Cosmic Ray Neutron Sensor (CRNS). The CRNS technique is capable of quantifying soil moisture on a large spatial scale ( 30 ha) compared with traditional point based in-situ soil moisture sensing technology. Recent years have seen the CRNS to perform well when deployed in agricultural environments at low to mid elevations. However, the performance of the CRNS technique in higher elevations, particularly alpine environments, has yet to be demonstrated or understood. Mountainous environments are more vulnerable to changing climates and land use practices, yet are often responsible for the headwaters of major river systems sustaining cultivated lands or support important agricultural activity on their own. As such, the applicability of a mobile version of the CRNS technology in high alpine environments needs to be explored. This research details the preliminary efforts to determine if established calibration and validation techniques associated with the use of the CRNS can be applied at higher elevations. Field work was conducted during the summer of 2016 in the mountains of western Austria. Initial results indicate that the relationship between in-situ soil moisture data determined via traditional soil sampling and soil moisture data determined via the mobile CRNS is not clear. It is possible that the increasing intensity of incoming cosmic rays at higher altitudes may have an effect on the signal of the CRNS, however, more work is required to fully understand this phenomenon and is scheduled to resume in the summer of 2017.

  2. The impact of soil moisture extremes and their spatiotemporal variability on Zambian maize yields

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Estes, L. D.; Vergopolan, N.

    2017-12-01

    Food security in sub-Saharan Africa is highly sensitive to climate variability. While it is well understood that extreme heat has substantial negative impacts on crop yield, the impacts of precipitation extremes, particularly over large spatial extents, are harder to quantify. There are three primary reasons for this difficulty, which are (1) lack of high quality, high resolution precipitation data, (2) rainfall data provide incomplete information on plant water availability, the variable that most directly affects crop performance, and (3) the type of rainfall extreme that most affects crop yields varies throughout the crop development stage. With respect to the first reason, the spatial and temporal variation of precipitation is much greater than that of temperature, yet the spatial resolution of rainfall data is typically even coarser than it is for temperature, particularly within Africa. Even if there were high-resolution rainfall data, the amount of water available to crops also depends on other physical factors that affect evapotranspiration, which are strongly influenced by heterogeneity in the land surface related to topography, soil properties, and land cover. In this context, soil moisture provides a better measure of crop water availability than rainfall. Furthermore, soil moisture has significantly different influences on crop yield depending on the crop's growth stage. The goal of this study is to understand how the spatiotemporal scales of soil moisture extremes interact with crops, more specifically, the timing and the spatial scales of extreme events like droughts and flooding. In this study, we simulate daily-1km soil moisture using HydroBlocks - a physically based land surface model - and compare it with precipitation and remote sensing derived maize yields between 2000 and 2016 in Zambia. We use a novel combination of the SCYM (scalable satellite-based yield mapper) method with DSSAT crop model, which is a mechanistic model responsive to water stress. Understanding the relationships between soil moisture spatiotemporal variability and yields can help to improve agricultural drought risk assessment and seasonal crop yield forecasting as well as early season warning of potential famines.

  3. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE PAGES

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...

    2018-01-01

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  4. Simulation of Mesoscale Cellular Convection in Marine Stratocumulus. Part I: Drizzling Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.

    This study uses eddy-permitting simulations to investigate the mechanisms that promote mesoscale variability of moisture in drizzling stratocumulus-topped marine boundary layers. Simulations show that precipitation tends to increase horizontal scales. Analysis of terms in the prognostic equation for total water mixing ratio variance indicates that moisture stratification plays a leading role in setting horizontal scales. This result is supported by simulations in which horizontal mean thermodynamic profiles are strongly nudged to their initial well-mixed state, which limits cloud scales. It is found that the spatial variability of subcloud moist cold pools surprisingly tends to respond to, rather than determine, themore » mesoscale variability, which may distinguish them from dry cold pools associated with deeper convection. Finally, simulations also indicate that moisture stratification increases cloud scales specifically by increasing latent heating within updrafts, which increases updraft buoyancy and favors greater horizontal scales.« less

  5. The Australian National Airborne Field Experiment 2005: Soil Moisture Remote Sensing at 60 Meter Resolution and Up

    NASA Technical Reports Server (NTRS)

    Kim, E. J.; Walker, J. P.; Panciera, R.; Kalma, J. D.

    2006-01-01

    Spatially-distributed soil moisture observations have applications spanning a wide range of spatial resolutions from the very local needs of individual farmers to the progressively larger areas of interest to weather forecasters, water resource managers, and global climate modelers. To date, the most promising approach for space-based remote sensing of soil moisture makes use of passive microwave emission radiometers at L-band frequencies (1-2 GHz). Several soil moisture-sensing satellites have been proposed in recent years, with the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission scheduled to be launched first in a couple years. While such a microwave-based approach has the advantage of essentially allweather operation, satellite size limits spatial resolution to 10's of km. Whether used at this native resolution or in conjunction with some type of downscaling technique to generate soil moisture estimates on a finer-scale grid, the effects of subpixel spatial variability play a critical role. The soil moisture variability is typically affected by factors such as vegetation, topography, surface roughness, and soil texture. Understanding and these factors is the key to achieving accurate soil moisture retrievals at any scale. Indeed, the ability to compensate for these factors ultimately limits the achievable spatial resolution and/or accuracy of the retrieval. Over the last 20 years, a series of airborne campaigns in the USA have supported the development of algorithms for spaceborne soil moisture retrieval. The most important observations involved imagery from passive microwave radiometers. The early campaigns proved that the retrieval worked for larger and larger footprints, up to satellite-scale footprints. These provided the solid basis for proposing the satellite missions. More recent campaigns have explored other aspects such as retrieval performance through greater amounts of vegetation. All of these campaigns featured extensive ground truth collection over a range of grid spacings, to provide a basis for examining the effects of subpixel variability. However, the native footprint size of the airborne L-band radiometers was always a few hundred meters. During the recently completed (November, 2005) National Airborne Field Experiment (NAFE) campaign in Australia, a compact L-band radiometer was deployed on a small aircraft. This new combination permitted routine observations at native resolutions as high as 60 meters, substantially finer than in previous airborne soil moisture campaigns, as well as satellite footprint areal coverage. The radiometer, the Polarimetric L-band Microwave Radiometer (PLMR) performed extremely well and operations included extensive calibration-related observations. Thus, along with the extensive fine-scale ground truth, the NAFE dataset includes all the ingredients for the first scaling studies involving very-high-native resolution soil moisture observations and the effects of vegetation, roughness, etc. A brief overview of the NAFE will be presented, then examples of the airborne observations with resolutions from 60 m to 1 km will be shown, and early results from scaling studies will be discussed.

  6. Water content estimated from point scale to plot scale

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Binley, A. M.; Demir, G.; Abgarmi, B.

    2017-12-01

    Soil moisture controls the portioning of rainfall into infiltration and runoff. Here we investigate measurements of soil moisture using a range of techniques spanning different spatial scales. In order to understand soil water content in a test basin, 512 km2 in area, in the south of Turkey, a Cosmic Ray CRS200B soil moisture probe was installed at elevation of 1459 m and an ML3 ThetaProbe (CS 616) soil moisture sensor was established at 5cm depth used to get continuous soil moisture. Neutron count measurements were corrected for the changes in atmospheric pressure, atmospheric water vapour and intensity of incoming neutron flux. The calibration of the volumetric soil moisture was performed, from the laboratory analysis, the bulk density varies between 1.719 (g/cm3) -1.390 (g/cm3), and the dominant soil texture is silty clay loam and silt loamThe water content reflectometer was calibrated for soil-specific conditions and soil moisture estimates were also corrected with respect to soil temperature. In order to characterize the subsurface, soil electrical resistivity tomography was used. Wenner and Schlumberger array geometries were used with electrode spacing varied from 1m- 5 m along 40 m and 200 m profiles. From the inversions of ERT data it is apparent that within 50 m distance from the CRS200B, the soil is moderately resistive to a depth of 2m and more conductive at greater depths. At greater distances from the CRS200B, the ERT results indicate more resistive soils. In addition to the ERT surveys, ground penetrating radar surveys using a common mid-point configuration was used with 200MHz antennas. The volumetric soil moisture obtained from GPR appears to overestimate those based on TDR observations. The values obtained from CS616 (at a point scale) and CRS200B (at a mesoscale) are compared with the values obtained at a plot scale. For the field study dates (20-22.06.2017) the volumetric moisture content obtained from CS616 were 25.14%, 25.22% and 25.96% respectively. The values obtained from CRS200B were 23.23%, 22.81% and 23.26% for the same dates. Whereas the values obtained from GPR were between 32%-44%. Soil moisture observed by CRS200B is promising to monitor the water content in the soil at the mesoscale and ERT surveys help to understand the spatial variability of the soil water content within the footprint of CRS200B.

  7. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...

  8. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  9. Recent advances in (soil moisture) triple collocation analysis

    USDA-ARS?s Scientific Manuscript database

    To date, triple collocation (TC) analysis is one of the most important methods for the global scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method....

  10. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons 1986

    USDA-ARS?s Scientific Manuscript database

    Soil moisture content on a horizontal scale of hectometers and at depths of decimeters can be inferred from measurements of low-energy cosmic-ray neutrons that are generated within soil, moderated mainly by hydrogen atoms, and diffused back to the atmosphere. These neutrons are sensitive to water co...

  11. Multi-time scale analysis of the spatial representativeness of in situ soil moisture data within satellite footprints

    USDA-ARS?s Scientific Manuscript database

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...

  12. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations

    NASA Astrophysics Data System (ADS)

    Fan, Ying; Miguez-Macho, Gonzalo; Weaver, Christopher P.; Walko, Robert; Robock, Alan

    2007-05-01

    Soil moisture is a key participant in land-atmosphere interactions and an important determinant of terrestrial climate. In regions where the water table is shallow, soil moisture is coupled to the water table. This paper is the first of a two-part study to quantify this coupling and explore its implications in the context of climate modeling. We examine the observed water table depth in the lower 48 states of the United States in search of salient spatial and temporal features that are relevant to climate dynamics. As a means to interpolate and synthesize the scattered observations, we use a simple two-dimensional groundwater flow model to construct an equilibrium water table as a result of long-term climatic and geologic forcing. Model simulations suggest that the water table depth exhibits spatial organization at watershed, regional, and continental scales, which may have implications for the spatial organization of soil moisture at similar scales. The observations suggest that water table depth varies at diurnal, event, seasonal, and interannual scales, which may have implications for soil moisture memory at these scales.

  13. Effect of land use change for bioenergy on greenhouse gas emissions from a wet marginal soil in New York State, USA.

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Mason, Cedric; Steenhuis, Tammo; Richards, Brian

    2013-04-01

    Millions of hectares of marginal lands in the Northeast USA no longer used for agriculture are suitable for production of second-generation cellulosic bioenergy crops, offering the potential for regional bioenergy production without inducing food vs. fuel competition for prime farmland. Abundant water resources, close proximity between production and markets, and compatibility with existing agricultural systems all favor development in the region. Yet, little is known about how sustainable bioenergy crop production on marginal lands is regarding greenhouse gas emissions. In a 10-ha field trial on wet marginal soils in upstate New York, we are assessing the effect of land use change (from fallow land to perennial grass stands) on N2O and CH4 emissions. The deep clay loam is unsuited for row-crop agriculture because it is too dry in summer and too wet in winter. Monthly chamber campaigns were performed from April to November 2012 to monitor large scale (10-20 m resolution) differences caused by land cover type (n=4 for both switchgrass, reed-canary grass and a 50-yr unplowed control) across soil moisture gradients (n=5 soil moisture levels per replicate). Additional weekly campaigns assessed the smaller scale spatial and temporal variability in emissions at meter-scale. Here we present results of both the large and small-scale patterns in greenhouse gas emissions from this marginal soil, and discuss effects of soil properties and hydrologic conditions as potential drivers. Insight gained about the environmental impact of bioenergy crops can be used to assess the sustainability of using this region's underutilized land base for energy production.

  14. Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.

    2007-01-01

    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.

  15. Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Leathers, D. J.; Levia, D. F.

    2017-05-01

    Synoptic classification is a methodology that represents diverse atmospheric variables and allows researchers to relate large-scale atmospheric circulation patterns to regional- and small-scale terrestrial processes. Synoptic classification has often been applied to questions concerning the surface environment. However, full applicability has been under-utilized to date, especially in disciplines such as hydroclimatology, which are intimately linked to atmospheric inputs. This paper aims to (1) outline the development of a daily synoptic calendar for the Mid-Atlantic (USA), (2) define seasonal synoptic patterns occurring in the region, and (3) provide hydroclimatological examples whereby the cascading response of precipitation characteristics, soil moisture, and streamflow are explained by synoptic classification. Together, achievement of these objectives serves as a guide for development and use of a synoptic calendar for hydroclimatological studies. In total 22 unique synoptic types were identified, derived from a combination of 12 types occurring in the winter (DJF), 13 in spring (MAM), 9 in summer (JJA), and 11 in autumn (SON). This includes six low pressure systems, four high pressure systems, one cold front, three north/northwest flow regimes, three south/southwest flow regimes, and five weakly defined regimes. Pairwise comparisons indicated that 84.3 % had significantly different rainfall magnitudes, 86.4 % had different rainfall durations, and 84.7 % had different rainfall intensities. The largest precipitation-producing classifications were not restricted to low pressure systems, but rather to patterns with access to moisture sources from the Atlantic Ocean and easterly (on-shore) winds, which transport moisture inland. These same classifications resulted in comparable rates of soil moisture recharge and streamflow discharge, illustrating the applicability of synoptic classification for a range of hydroclimatological research objectives.

  16. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  17. Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.

    2011-01-01

    The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.

  18. Explosive Cyclogenesis Over the Eastern United States.

    NASA Astrophysics Data System (ADS)

    MacDonald, Bruce Calvin

    Cases of explosive cyclogenesis occurring over the east central United States are identified and analyzed. Other selected cases of weak or nonintensifying cyclones over the same area are identified and studied for comparative purposes. Signatures of explosively deepening cyclones (bombs) are derived from the analyses, including vertical profiles of vorticity, divergence, and latent heating, and also the relative importance of terms in the vorticity tendency equation and the relative importance of convective and stable latent heating. Composite analyses for the differing phases of bomb development and for regular cyclones are presented. Analyses of individual cases reveal the importance of a low-level jet streak, low-level moisture content, and moisture gradients in the lower troposphere. A numerical model is used to further examine the important processes in explosive cyclogenesis. A mesoscale feature is introduced to improve the prediction of sea -level pressure. This feature is based on the tendency of the large scale height field and vorticity field to adjust concurrently at each time step. The model is also used to provide air parcel trajectories to indicate the importance of parcels with high vorticity and moisture content as an ingredient in explosive cyclogenesis. Sensitivity studies are carried out with the model in order to determine the effect of changes in the initial vorticity and moisture field on cyclogenesis.

  19. Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US

    USDA-ARS?s Scientific Manuscript database

    As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...

  20. Role of subsurface physics in the assimilation of surface soil moisture observations

    USDA-ARS?s Scientific Manuscript database

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  1. Large-scale experimental technology with remote sensing in land surface hydrology and meteorology

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.

    1988-01-01

    Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.

  2. Convective organization in the Pacific ITCZ: Merging OLR, TOVS, and SSM/I information

    NASA Technical Reports Server (NTRS)

    Hayes, Patrick M.; Mcguirk, James P.

    1993-01-01

    One of the most striking features of the planet's long-time average cloudiness is the zonal band of concentrated convection lying near the equator. Large-scale variability of the Intertropical Convergence Zone (ITCZ) has been well documented in studies of the planetary spatial scales and seasonal/annual/interannual temporal cycles of convection. Smaller-scale variability is difficult to study over the tropical oceans for several reasons. Conventional surface and upper-air data are virtually non-existent in some regions; diurnal and annual signals overwhelm fluctuations on other time scales; and analyses of variables such as geopotential and moisture are generally less reliable in the tropics. These problems make the use of satellite data an attractive alternative and the preferred means to study variability of tropical weather systems.

  3. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of soil moisture changes on model projections of the West African Monsoon under global warming. Soil moisture-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term soil moisture changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without soil moisture change. Importantly, we find that climate models exhibit soil moisture-precipitation feedbacks of different sign in this region: in some models soil moisture changes amplify precipitation changes (positive feedback), in others they dampen them (negative feedback). The impact of those feedbacks is in some cases of comparable amplitude to the projected precipitation changes themselves. In other words, we show, over a subset of climate models, how land-atmosphere interactions may be a cause of uncertainty in model projections of precipitation; we emphasize the need to evaluate these processes carefully in current and next-generation climate model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMPP13C1416M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMPP13C1416M"><span>A Transition in Atmospheric Moisture Transport as Observed in Stable Isotope Data From Mount Wrangell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, K.; Field, R.; Benson, C.</p> <p>2007-12-01</p> <p>Measurements made at the summit of Mount Wrangell in the Saint Elias Mountains during a storm in early August 1980 show a change in δ18O that approaches that normally observed to occur between winter and summer in the same region. We explore the synoptic-scale conditions associated with this storm with a view to understanding the processes responsible for this large change in δ18O. Using a variety of diagnostic techniques including satellite imagery, reanalysis data and back-trajectories, we show that during this event there was a dramatic transition in the atmospheric moisture transport to Mount Wrangell from a sub-tropical source region over the central Pacific to an extra-tropical source region over Siberia. This transition was mediated by the interaction of two synoptic-scale weather systems, the semi-permanent high situated over the northeastern Pacific Ocean and a transient extra-tropical cyclone that entered the Alaska region from the west. The implications that such events have on the reconstruction of climate signals contained in ice cores from the Saint Elias region will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP23E..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP23E..07L"><span>Relating isotopic composition of precipitation to atmospheric patterns and local moisture recycling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Logan, K. E.; Brunsell, N. A.; Nippert, J. B.</p> <p>2016-12-01</p> <p>Local land management practices such as irrigation significantly alter surface evapotranspiration (ET), regional boundary layer development, and potentially modify precipitation likelihood and amount. How strong this local forcing is in comparison to synoptic-scale dynamics, and how much ET is recycled locally as precipitation are areas of great uncertainty and are especially important when trying to forecast the impact of local land management strategies on drought mitigation. Stable isotope analysis has long been a useful tool for tracing movement throughout the water cycle. In this study, reanalysis data and stable isotope samples of precipitation events are used to estimate the contribution of local moisture recycling to precipitation at the Konza Prairie LTER - located in the Great Plains, downwind of intensive agricultural areas. From 2001 to 2014 samples of all precipitation events over 5mm were collected and 18O and D isotopes measured. Comparison of observed precipitation totals and MERRA and ERA-interim reanalysis totals is used to diagnose periods of strong local moisture contribution (especially from irrigation) to precipitation. Large discrepancies in precipitation between observation and reanalysis, particularly MERRA, tend to follow dry periods during the growing season, presumably because while ERA-Interim adjusts soil moisture using observed surface temperature and humidity, MERRA includes no such local soil moisture adjustment and therefore lacks potential precipitation feedbacks induced by irrigation. The δ18O and δD signature of local irrigation recycling is evaluated using these incongruous observations. Self-organizing maps (SOM) are then used to identify a comprehensive range of synoptic conditions that result in precipitation at Konza LTER. Comparison of isotopic signature and SOM classification of rainfall events allows for identification of the primary moisture source and estimation of the contribution of locally recycled moisture. The climatology of precipitation source and changes in the influence of local moisture over the course of 14 years of observation are explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC21H1182Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC21H1182Z"><span>High-resolution Mapping of Permafrost and Soil Freeze/thaw Dynamics in the Tibetan Plateau Based on Multi-sensor Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.</p> <p>2016-12-01</p> <p>The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H52E..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H52E..04M"><span>ESA's Soil Moisture dnd Ocean Salinity Mission - Contributing to Water Resource Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mecklenburg, S.; Kerr, Y. H.</p> <p>2015-12-01</p> <p>The Soil Moisture and Ocean Salinity (SMOS) mission, launched in November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the need for global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations also provide information on the characterisation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. The focus of this paper will be on SMOS's contribution to support water resource management: SMOS surface soil moisture provides the input to derive root-zone soil moisture, which in turn provides the input for the drought index, an important monitoring prediction tool for plant available water. In addition to surface soil moisture, SMOS also provides observations on vegetation optical depth. Both parameters aid agricultural applications such as crop growth, yield forecasting and drought monitoring, and provide input for carbon and land surface modelling. SMOS data products are used in data assimilation and forecasting systems. Over land, assimilating SMOS derived information has shown to have a positive impact on applications such as NWP, stream flow forecasting and the analysis of net ecosystem exchange. Over ocean, both sea surface salinity and severe wind speed have the potential to increase the predictive skill on the seasonal and short- to medium-range forecast range. Operational users in particular in Numerical Weather Prediction and operational hydrology have put forward a requirement for soil moisture data to be available in near-real time (NRT). This has been addressed by developing a fast retrieval for a NRT level 2 soil moisture product based on Neural Networks, which will be available by autumn 2015. This paper will focus on presenting the above applications and used SMOS data products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014996','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014996"><span>A Modeling Study of the Spring 2011 Extreme US Weather Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schubert, S.; Suarez, M.; Chang, Y.</p> <p>2012-01-01</p> <p>The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189961','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189961"><span>Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.</p> <p>2012-01-01</p> <p>Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915682R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915682R"><span>Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan</p> <p>2017-04-01</p> <p>Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913719L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913719L"><span>Water availability as a driver of spatial and temporal variability in vegetation in the La Mancha plain (Spain): Implications for the land-surface energy, water and carbon budget</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Los, Sietse</p> <p>2017-04-01</p> <p>Vegetation is water limited in large areas of Spain and therefore a close link exists between vegetation greenness observed from satellite and moisture availability. Here we exploit this link to infer spatial and temporal variability in moisture from MODIS NDVI data and thermal data. Discrepancies in the precipitation - vegetation relationship indicate areas with an alternative supply of water (i.e. not rainfall), this can be natural where moisture is supplied by upwelling groundwater, or can be artificial where crops are irrigated. As a result spatial and temporal variability in vegetation in the La Mancha Plain appears closely linked to topography, geology, rainfall and land use. Crop land shows large variability in year-to-year vegetation greenness; for some areas this variability is linked to variability in rainfall but in other cases this variability is linked to irrigation. The differences in irrigation treatment within one plant functional type, in this case crops, will lead to errors in land surface models when ignored. The magnitude of these effects on the energy, carbon and water balance are assessed at the scale of 250 m to 200 km. Estimating the water balance correctly is of particular important since in some areas in Spain more water is used for irrigation than is supplemented by rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864533','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864533"><span>Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François</p> <p>2007-01-01</p> <p>Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.2162T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.2162T"><span>Spatial and temporal variability of Mediterranean drought events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trigo, R.; Sousa, P.; Nieto, R.; Gimeno, L.</p> <p>2009-04-01</p> <p>The original Palmer Drought Severity Index (PDSI) and a recent adaptation to European soil characteristics, the Self Calibrated PDSI (or scPDSI) proposed by Schrier et al (2005) were used. We have computed monthly, seasonal and annual trends between 1901 and 2000 but also for the first and second halves of the 20th century. Results were represented only when achieving a minimum level of statistical significance (either 5% or 10% using a Mann-Kendall test) and confirm that the majority of the western and central Mediterranean is getting drier in the last decades of the 20th century while Turkey is generally getting wetter (Trigo et al., 2006). The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. The inter-annual variability of the regional spatial droughts indices for each region was analyzed separately. We have also performed an evaluation of their eventual links with large-scale atmospheric circulation indices that affect the Mediterranean basin, namely the NAO, EA, and SCAND. Finally we have evaluated the main sources of moisture affecting two drought prone areas in the western (Iberia) and eastern (Balkans) Mediterranean. This analysis was performed by means of backward tracking the air masses that ultimately reach these two regions using the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998) and meteorological analysis data from the ECMWF to track atmospheric moisture. This was done for a five-year period (2000-2004) and using ECMWF operational analysis available every six hours (00, 06, 12 and 18 UTC) with a 1°x1° resolution (Sthol et al., 2004). Following the approach used by the authors for the Sahel (Nieto et al., 2006) and Tropical south America (Nieto et al., 2008) we traced (E-P) backwards from both regions, limiting the transport times to 10 days, which is the average time that water vapor resides in the atmosphere. In order to evaluate possible shifts in the origin of the moisture sources (between wet and dry years) this analysis was performed independently for dry and wet winter seasons. Nieto R., Gimeno L., Trigo R.M. (2006) A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Letters, 33, L18707, doi:10.1029/2006GL027232. Nieto R., Ribera P., Trigo R.M. , Gallego D., Gimeno L.(2008) Dynamic identification of moisture sources in the Orinoco Basin. Hydrological Sciences Journal, 53, 602-612. Schrier G, Briffa KR, Jones PD, Osborn TJ. (2005). Summer moisture variability across Europe. Journal of Climate, 19, 2818-2834. Stohl, A., M. Hittenberger, and G. Wotawa (1998), Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmos. Environ., 32, 4245- 4264. Stohl, A., and P. James (2004), A Lagrangian analysis of the atmospheric branch of the global water cycle. Part 1: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656-678. Trigo, R. and 21 authors (2006) Relations between variability in the Mediterranean region and mid-latitude variability. In: P. Lionello, P. Malanotte-Rizzoli & R. Boscolo (Eds), Mediterranean Climate Variability, Amsterdam: Elsevier, pp. 179-226.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011561','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011561"><span>Scaling, soil moisture and evapotranspiration in runoff models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, Eric F.</p> <p>1993-01-01</p> <p>The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in the land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, the probability distribution for evaporation is derived which illustrates the conditions for which scaling should work. A correction algorithm that may appropriate for the land parameterization of a GCM is derived using a 2nd order linearization scheme. The performance of the algorithm is evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/882470','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/882470"><span>USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Edward K. Levy; Nenad Sarunac; Harun Bilirgen</p> <p>2006-03-01</p> <p>U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissionsmore » and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH31A1877R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH31A1877R"><span>Using GRACE-Derived Water and Moisture Products as a Predictive Tool for Fire Response in the Contiguous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rousseau, N. J.; Jensen, D.; Zajic, B.; Rodell, M.; Reager, J. T., II</p> <p>2015-12-01</p> <p>Understanding the relationship between wildfire activity and soil moisture in the United States has been difficult to assess, with limited ability to determine areas that are at high risk. This limitation is largely due to complex environmental factors at play, especially as they relate to alternating periods of wet and dry conditions, and the lack of remotely-sensed products. Recent drought conditions and accompanying low Fuel Moisture Content (FMC) have led to disastrous wildfire outbreaks causing economic loss, property damage, and environmental degradation. Thus, developing a programmed toolset to assess the relationship between soil moisture, which contributes greatly to FMC and fire severity, can establish the framework for determining overall wildfire risk. To properly evaluate these parameters, we used data assimilated from the Gravity Recovery and Climate Experiment (GRACE) and data from the Fire Program Analysis fire-occurrence database (FPA FOD) to determine the extent soil moisture affects fire activity. Through these datasets, we produced correlation and regression maps at a coarse resolution of 0.25 degrees for the contiguous United States. These fire-risk products and toolsets proved the viability of this methodology, allowing for the future incorporation of more GRACE-derived water parameters, MODIS vegetation indices, and other environmental datasets to refine the model for fire risk. Additionally, they will allow assessment to national-scale early fire management and provide responders with a predictive tool to better employ early decision-support to areas of high risk during regions' respective fire season(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC41B1087Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC41B1087Y"><span>Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.</p> <p>2016-12-01</p> <p>The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342747-scaling-behavior-moisture-induced-grain-degradation-polycrystalline-hybrid-perovskite-thin-films','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342747-scaling-behavior-moisture-induced-grain-degradation-polycrystalline-hybrid-perovskite-thin-films"><span>Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Qi; Chen, Bo; Liu, Ye; ...</p> <p>2017-01-01</p> <p>The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1342747','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1342747"><span>Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Qi; Chen, Bo; Liu, Ye</p> <p></p> <p>The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH 3NH 3PbI 3 films. The degradation rates of CH 3NH 3PbI 3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the filmsmore » were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH 3NH 3PbI 3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090001333','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090001333"><span>The Climate Signal in Regional Moisture Fluxes: A Comparison of Three Global Data Assimilation Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Min, Wei; Schubert, Siegfried D.</p> <p>1997-01-01</p> <p>This study assesses the quality of estimates of climate variability in moisture flux and convergence from three assimilated data sets: two are reanalysis products generated at the Goddard Data Assimilation Office (DAO) and the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEPJNCAR), and the third consists of the operational analyses generated at the European Center for Medium Range Forecasts (ECMWF). The regions under study (the United States Great Plains, the Indian monsoon region, and Argentina east of the Andes) are characterized by frequent low level jets (LLJs) and other interannual low level wind variations tied to the large-scale flow. While the emphasis is on the reanalysis products, the comparison with the operational product is provided to help assess the improvements gained from a fixed analysis system. All three analyses capture the main moisture flux anomalies associated with selected extreme climate (drought and flood) events during the period 1985-93. The correspondence is strongest over the Great Plains and weakest over the Indian monsoon region reflecting differences in the observational coverage. For the reanalysis products, the uncertainties in the lower tropospheric winds is by far the dominant source of the discrepancies in the moisture flux anomalies in the middle latitude regions. Only in the Indian Monsoon region, where interannual variability in the low level winds is comparatively small, does the moisture bias play a substantial role. In contrast, the comparisons with the operational product show differences in moisture which are comparable torhe differences in the wind in all three regions. Compared with the fluxes, the anomalous moisture convergences show substantially larger differences among the three products. The best agreement occurs over the Great Plains region where all three products show vertically-integrated moisture convergence during the floods and divergence during the drought with differences in magnitude of about 25%. The reanalysis products, in particular, show good agreement in depicting the different roles of the mean flow and transients during the flood and drought periods. Differences between the three products in the other two regions exceed 100% reflecting differences in the low level jets and the large scale circulation patterns. The operational product tends to have locally larger amplitude convergence fields which average out in area-mean budgets: this appears to be at least in part due to errors in the surface pressure fields and aliasing from the higher resolution of the original ECMWF fields. On average, the reanalysis products show higher coherence with each other than with the operational product in the estimates of interannual variability. This result is less clear in the Indian monsoon region where differences in the input observations appears to be an important factor. The agreement in the anomalous convergence patterns is, however, still rather poor even over relatively data dense regions such as the United States Great Plains. These differences are attributed to deficiencies in the assimilating GCM's representations of the planetary boundary layer and orography, and a global observing system incapable of resolving the highly confined low level winds associated with the climate anomalies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8226P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8226P"><span>Optimizing operational water management with soil moisture data from Sentinel-1 satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezij, Michiel; Augustijn, Denie; Hendriks, Dimmie; Hulscher, Suzanne</p> <p>2016-04-01</p> <p>In the Netherlands, regional water authorities are responsible for management and maintenance of regional water bodies. Due to socio-economic developments (e.g. agricultural intensification and on-going urbanisation) and an increase in climate variability, the pressure on these water bodies is growing. Optimization of water availability by taking into account the needs of different users, both in wet and dry periods, is crucial for sustainable developments. To support timely and well-directed operational water management, accurate information on the current state of the system as well as reliable models to evaluate water management optimization measures are essential. Previous studies showed that the use of remote sensing data (for example soil moisture data) in water management offers many opportunities (e.g. Wanders et al. (2014)). However, these data are not yet used in operational applications at a large scale. The Sentinel-1 satellites programme offers high spatiotemporal resolution soil moisture data (1 image per 6 days with a spatial resolution of 10 by 10 m) that are freely available. In this study, these data will be used to improve the Netherlands Hydrological Instrument (NHI). The NHI consists of coupled models for the unsaturated zone (MetaSWAP), groundwater (iMODFLOW) and surface water (Mozart and DM). The NHI is used for scenario analyses and operational water management in the Netherlands (De Lange et al., 2014). Due to the lack of soil moisture data, the unsaturated zone model is not yet thoroughly validated and its output is not used by regional water authorities for decision-making. Therefore, the newly acquired remotely sensed soil moisture data will be used to improve the skill of the MetaSWAP-model and the NHI as whole. The research will focus among other things on the calibration of soil parameters by comparing model output (MetaSWAP) with the remotely sensed soil moisture data. Eventually, we want to apply data-assimilation to improve operational water management in cooperation with users. As a first step, the current simulation of soil moisture processes within the NHI will be reviewed. We want to present the findings of this assessment as well as the research methodology. This PhD-research is part of the Optimizing Water Availability with Sentinel-1 Satellites (OWAS1S)-project in which two other PhD-students are participating. They are focussing on the translation of raw Sentinel-1 satellite data to surface soil moisture data and the application of the remotely sensed soil moisture data on crop water availability and trafficability on field scale. References: De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Oude Essink, G. H. P., van Walsum, P. E. V., Delsman, J. R., Hunink, J. C., Massop, H. T. L., & Kroon, T. (2014). An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument. Environmental Modelling & Software, 59, 98-108. doi: 10.1016/j.envsoft.2014.05.009 Wanders, N., Karssenberg, D., de Roo, A., de Jong, S. M., & Bierkens, M. F. P. (2014). The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrology and Earth System Sciences, 18(6), 2343-2357. doi: 10.5194/hess-18-2343-2014</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H24A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H24A..01S"><span>Applying Hillslope Hydrology to Bridge between Ecosystem and Grid-Scale Processes within an Earth System Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.</p> <p>2013-12-01</p> <p>Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1332618-towards-retrieving-critical-relative-humidity-from-ground-based-remote-sensing-observations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1332618-towards-retrieving-critical-relative-humidity-from-ground-based-remote-sensing-observations"><span>Towards retrieving critical relative humidity from ground-based remote sensing observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Weverberg, Kwinten; Boutle, Ian; Morcrette, Cyril J.</p> <p>2016-08-22</p> <p>Nearly all parameterisations of large-scale cloud require the specification of the critical relative humidity (RHcrit). This is the gridbox-mean relative humidity at which the subgrid fluctuations in temperature and water vapour become so large that part of a subsaturated gridbox becomes saturated and cloud starts to form. Until recently, the lack of high-resolution observations of temperature and moisture variability has hindered a reasonable estimate of the RHcrit from observations. However, with the advent of ground-based measurements from Raman lidar, it becomes possible to obtain long records of temperature and moisture (co-)variances with sub-minute sample rates. Lidar observations are inherently noisymore » and any analysis of higher-order moments will be very dependent on the ability to quantify and remove this noise. We present an exporatory study aimed at understanding whether current noise levels of lidar-retrieved temperature and water vapour are sufficient to obtain a reasonable estimate of the RHcrit. We show that vertical profiles of RHcrit can be derived for a gridbox length of up to about 30 km (120) with an uncertainty of about 4 % (2 %). RHcrit tends to be smallest near the scale height and seems to be fairly insensitive to the horizontal grid spacing at the scales investigated here (30 - 120 km). However, larger sensitivity was found to the vertical grid spacing. As the grid spacing decreases from 400 to 100 m, RHcrit is observed to increase by about 6 %, which is more than the uncertainty in the RHcrit retrievals.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011288','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011288"><span>Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, Yaping; Lau, William K M.; Liu, Chuntao</p> <p>2013-01-01</p> <p>This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29079764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29079764"><span>Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S</p> <p>2017-10-27</p> <p>Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H13F0984I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H13F0984I"><span>Soil Moisture Processes in the Near Surface Unsaturated Zone: Experimental Investigations in Multi-scale Test Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.</p> <p>2008-12-01</p> <p>Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916217M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916217M"><span>A Mulitivariate Statistical Model Describing the Compound Nature of Soil Moisture Drought</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manning, Colin; Widmann, Martin; Bevacqua, Emanuele; Maraun, Douglas; Van Loon, Anne; Vrac, Mathieu</p> <p>2017-04-01</p> <p>Soil moisture in Europe acts to partition incoming energy into sensible and latent heat fluxes, thereby exerting a large influence on temperature variability. Soil moisture is predominantly controlled by precipitation and evapotranspiration. When these meteorological variables are accumulated over different timescales, their joint multivariate distribution and dependence structure can be used to provide information of soil moisture. We therefore consider soil moisture drought as a compound event of meteorological drought (deficits of precipitation) and heat waves, or more specifically, periods of high Potential Evapotraspiration (PET). We present here a statistical model of soil moisture based on Pair Copula Constructions (PCC) that can describe the dependence amongst soil moisture and its contributing meteorological variables. The model is designed in such a way that it can account for concurrences of meteorological drought and heat waves and describe the dependence between these conditions at a local level. The model is composed of four variables; daily soil moisture (h); a short term and a long term accumulated precipitation variable (Y1 and Y_2) that account for the propagation of meteorological drought to soil moisture drought; and accumulated PET (Y_3), calculated using the Penman Monteith equation, which can represent the effect of a heat wave on soil conditions. Copula are multivariate distribution functions that allow one to model the dependence structure of given variables separately from their marginal behaviour. PCCs then allow in theory for the formulation of a multivariate distribution of any dimension where the multivariate distribution is decomposed into a product of marginal probability density functions and two-dimensional copula, of which some are conditional. We apply PCC here in such a way that allows us to provide estimates of h and their uncertainty through conditioning on the Y in the form h=h|y_1,y_2,y_3 (1) Applying the model to various Fluxnet sites across Europe, we find the model has good skill and can particularly capture periods of low soil moisture well. We illustrate the relevance of the dependence structure of these Y variables to soil moisture and show how it may be generalised to offer information of soil moisture on a widespread scale where few observations of soil moisture exist. We then present results from a validation study of a selection of EURO CORDEX climate models where we demonstrate the skill of these models in representing these dependencies and so offer insight into the skill seen in the representation of soil moisture in these models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=313553','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=313553"><span>Scaling and calibration of a core validation site for the soil moisture active passive mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The calibration and validation of soil moisture remote sensing products is complicated due to the logistics of installing a long term soil moisture monitoring network in an active landscape. It is more efficient to locate these stations along agricultural field boundaries, but unfortunately this oft...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=334824','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=334824"><span>Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=336288','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=336288"><span>Validation and scaling of soil moisture in a semi-arid environment: SMAP Validation Experiment 2015 (SMAPVEX15)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The NASA SMAP (Soil Moisture Active Passive) mission conducted the SMAP Validation Experiment 2015 (SMAPVEX15) in order to support the calibration and validation activities of SMAP soil moisture data product.The main goals of the experiment were to address issues regarding the spatial disaggregation...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=325552','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=325552"><span>Closing the water balance with cosmic-ray soil moisture measurements and assessing their relation to evapotranspiration in two semiarid watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120002049&hterms=Soil+solution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSoil%2Bsolution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120002049&hterms=Soil+solution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSoil%2Bsolution"><span>In Situ Validation of the Soil Moisture Active Passive (SMAP) Satellite Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, T.; Cosh, M.; Crow, W.; Colliander, A.; Walker, J.</p> <p>2011-01-01</p> <p>SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from the currently available set of soil moisture observing sites and networks need improvement if they are to be useful. Problems include a lack of standardization of instrumentation and installation and the disparity in spatial scale between the point-scale in situ data (a few centimeters) and the coarser satellite products. SMAP has initiated activities to resolve these issues for some of the existing resources. The other challenge to soil moisture validation is the need to expand the number of sites and their geographic distribution. SMAP is attempting to increase the number of sites and their value in validation through collaboration. The issues and solutions involving in situ validation being investigated will be described along with recent results from SMAP validation projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614840H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614840H"><span>Understanding green roof spatial dynamics: results from a scale based hydrologic study and introduction of a low-cost method for wide-range monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida</p> <p>2014-05-01</p> <p>Green roofs have the potential, if implemented on a wide scale and with proper foresight, to become an important supplement to traditional urban water management infrastructure, while also helping to change the face of cities from concrete draped, highly modified environments, to hybrid places where nature is more closely integrated into designs rather than pushed out of them. The ability of these systems to act as a decentralized rainwater handling network has been the topic of many recent studies. While these studies have attempted to quantify the hydrologic performance of green roofs, it's clear that they are dynamic systems whose responses are difficult to generalize. What also seems to be lacking from many studies is a discussion on the effects of green roof scale, spatial planning and configuration. This research aims to understand how rainfall characteristics and green roof scale impact its hydrologic performance. Three extensive green roof systems in New York City, with the same engineered components, age and regional climatic conditions, but different drainage areas, are analyzed. We find that rainfall volume and event duration are two of the parameters that most affect green roof performance, while rainfall intensity and antecedent dry weather period are less significant. We also find that green roof scale does in fact affect hydrologic performance, but mainly in reducing runoff peaks, with rainfall retention and lag time being much less affected by drainage area. We also introduce a low-cost monitoring method, termed the Soil Water Apportioning (SWA) method, which uses a water balance approach to analytically link precipitation to substrate moisture, and enable inference of green runoff and evapotranspiration from information on substrate moisture changes over time. Twelve months of in situ rainfall and soil moisture observations from three different green roof systems - extensive vegetated mat, semi-intensive vegetated mat, and semi-intensive tray - are used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11911682S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11911682S"><span>Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.</p> <p>2014-10-01</p> <p>Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NHESS..18..807S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NHESS..18..807S"><span>Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Segoni, Samuele; Rosi, Ascanio; Lagomarsino, Daniela; Fanti, Riccardo; Casagli, Nicola</p> <p>2018-03-01</p> <p>We communicate the results of a preliminary investigation aimed at improving a state-of-the-art RSLEWS (regional-scale landslide early warning system) based on rainfall thresholds by integrating mean soil moisture values averaged over the territorial units of the system. We tested two approaches. The simplest can be easily applied to improve other RSLEWS: it is based on a soil moisture threshold value under which rainfall thresholds are not used because landslides are not expected to occur. Another approach deeply modifies the original RSLEWS: thresholds based on antecedent rainfall accumulated over long periods are substituted with soil moisture thresholds. A back analysis demonstrated that both approaches consistently reduced false alarms, while the second approach reduced missed alarms as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........51N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........51N"><span>High resolution change estimation of soil moisture and its assimilation into a land surface model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Narayan, Ujjwal</p> <p></p> <p>Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.H31C0405S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.H31C0405S"><span>Toward a Continental-Scale Mesonet: USDA National Resources Conservation Service SCAN and SNOTEL System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaffer, G.; Marks, D.</p> <p>2004-12-01</p> <p>Since 1978 snow deposition and SWE in the inter-mountain western US have been monitored by the NRCS SNOTEL (SNOwpack TELemetry) system. This revolutionary network utilizes Meteorburst technology to telemeter data back to a central location in near real-time. With a pilot program starting in 1991, NRCS introduced SCAN (Soil Climate and Analysis Network) adding a focus on soil moisture and climate in regions outside the intermountain west. In the mid-1990's SNOTEL sites began to be augmented to match the full climate instrumentation (air temperature, humidity, solar radiation, wind, and soil moisture and temperature in addition to precipitation, snow depth and SWE) of the SCAN system. At present there are nearly 700 SNOTEL sites in 12 states in the western US and Alaska, and over 100 SCAN sites in 40 states, Puerto Rico, and several foreign countries. Though SNOTEL was originally a western snow-monitoring network, differences between SCAN and SNOTEL have largely disappeared. The combined SNOTEL/SCAN system provides a continental-scale mesonet to support river basin to continental scale hydro-climatic analysis. The system is flexible and based on off-the-shelf data recording technology, allowing instrumentation, sampling and averaging intervals to be specified by site conditions, issues, or scientific questions. Because of the NRCS data management structure, all sites have active telemetery and provide near real-time access to data through the internet. An ongoing research program is directed to improved instrumentation for measuring precipitation, snow depth and SWE, and soil moisture and temperature. Future directions include expansion of the network to be more comprehensive, and to develop focused monitoring efforts to more effectively observe elevational and regional gradients, and to capture high intensity hydro-climatic events such as potential flooding from convective storms and rain-on-snow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H12E..01D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H12E..01D"><span>Field data collection, analysis, and adaptive management of green infrastructure in the urban water cycle in Cleveland and Columbus, OH</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darner, R.; Shuster, W.</p> <p>2016-12-01</p> <p>Expansion of the urban environment can alter the landscape and creates challenges for how cities deal with energy and water. Large volumes of stormwater in areas that have combined septic and stormwater systems present on challenge. Managing the water as near to the source as possible by creates an environment that allows more infiltration and evapotranspiration. Stormwater control measures (SCM) associated with this type of development, often called green infrastructure, include rain gardens, pervious or porous pavements, bioswales, green or blue roofs, and others. In this presentation, we examine the hydrology of green infrastructure in urban sewersheds in Cleveland and Columbus, OH. We present the need for data throughout the water cycle and challenges to collecting field data at a small scale (single rain garden instrumented to measure inflows, outflow, weather, soil moisture, and groundwater levels) and at a macro scale (a project including low-cost rain gardens, highly engineered rain gardens, groundwater wells, weather stations, soil moisture, and combined sewer flow monitoring). Results will include quantifying the effectiveness of SCMs in intercepting stormwater for different precipitation event sizes. Small scale deployment analysis will demonstrate the role of active adaptive management in the ongoing optimization over multiple years of data collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41D1462D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41D1462D"><span>L-band HIgh Spatial Resolution Soil Moisture Mapping using SMALL UnManned Aerial Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, E.; Venkitasubramony, A.; Gasiewski, A. J.; Stachura, M.; Elston, J. S.; Walter, B.; Lankford, D.; Corey, C.</p> <p>2017-12-01</p> <p>Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 provided new passive global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions of 36 km. However, there exists a need for measurements of soil moisture on much smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters. Compared with other methods of validation based on either in-situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed ( km scale) coverage at very high spatial resolution ( 15 m) suitable for scaling studies, and at comparatively low operator cost. To demonstrate the LDCR several flights had been performed during field experiments at the Canton Oklahoma Soilscape site and Yuma Colorado Irrigation Research Foundation (IRF) site in 2015 and 2016, respectively, using LDCR Revision A and Tempest sUAS. The scientific intercomparisons of LDCR retrieved soil moisture and in-situ measurements will be presented. LDCR Revision B has been built and integrated into SuperSwift sUAS and additional field experiments will be performed at IRF in 2017. In Revision B the IF signal is sampled at 80 MS/s to enable digital correlation and RFI mitigation capabilities, in addition to analog correlation. [1] McIntyre, E.M., A.J. Gasiewski, and D. Manda D, "Near Real-Time Passive C-Band Microwave Soil Moisture Retrieval During CLASIC 2007," Proc. IGARSS, 2008. [2] Robock, A., S. Steele-Dunne, J. Basara, W. Crow, and M. Moghaddam M, "In Situ Network and Scaling," SMAP Algorithm and Cal/Val Workshop, 2009. [3] Walker, A., "Airborne Microwave Radiometer Measurements During CanEx-SM10," Second SMAP Cal/Val Workshop, 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC51E1226H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC51E1226H"><span>Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harvey, J. E.; Smith, D. J.</p> <p>2016-12-01</p> <p>We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.3275P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.3275P"><span>Regional co-variability of spatial and temporal soil moisture-precipitation coupling in North Africa: an observational perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrova, Irina Y.; van Heerwaarden, Chiel C.; Hohenegger, Cathy; Guichard, Françoise</p> <p>2018-06-01</p> <p>The magnitude and sign of soil moisture-precipitation coupling (SMPC) is investigated using a probability-based approach and 10 years of daily microwave satellite data across North Africa at a 1° horizontal scale. Specifically, the co-existence and co-variability of spatial (i.e. using soil moisture gradients) and temporal (i.e. using soil moisture anomaly) soil moisture effects on afternoon rainfall is explored. The analysis shows that in the semi-arid environment of the Sahel, the negative spatial and the negative temporal coupling relationships do not only co-exist, but are also dependent on one another. Hence, if afternoon rain falls over temporally drier soils, it is likely to be surrounded by a wetter environment. Two regions are identified as SMPC <q>hot spots</q>. These are the south-western part of the domain (7-15° N, 10° W-7° E), with the most robust negative SMPC signal, and the South Sudanese region (5-13° N, 24-34° E). The sign and significance of the coupling in the latter region is found to be largely modulated by the presence of wetlands and is susceptible to the number of long-lived propagating convective systems. The presence of wetlands and an irrigated land area is found to account for about 30 % of strong and significant spatial SMPC in the North African domain. This study provides the first insight into regional variability of SMPC in North Africa, and supports the potential relevance of mechanisms associated with enhanced sensible heat flux and mesoscale variability in surface soil moisture for deep convection development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011HESSD...8.5427D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011HESSD...8.5427D"><span>Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.</p> <p>2011-06-01</p> <p>The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11I1989H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11I1989H"><span>Conceptualizing the self organization of cloud cells, cold pools and soil moisture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henneberg, O.; Härter, J. O. M.</p> <p>2017-12-01</p> <p>Convective-type cloud is the cause of extreme, short-duration precipitation, challenging weather forecasting and climate modeling. Such extremes are ultimately tied to the uneven redistribution of water in the course of convective self organization and possibly the interaction between clouds [1]. Over land, moisture is organized through: cloud cells, cold pools, and the land surface. Each of these generally capture and release moisture at different rates, e.g. cold pools form quickly but dissipate slowly. Such distinct timescales have implications for the emergent dynamics.Incorporating such distinct time scales, we here present a conceptual model for the spatio-temporal self organization within the diurnal cycle of convection and describe the possible role of soil moisture memory in serving as a predisposition for extremes.We bolster our findings by high resolution, large eddy simulations: Sensible and latent heat fluxes, which are determined by the soil moisture content, can influence the stability of the atmosphere. The onset of initial precipitation is affected by such heat release, which in turn is modified by previous precipitation. Starting from static heat sources, we quantify how their spatial distribution affects the self organization and thus onset, duration and strength of precipitation events in an idealized model setup. Furthermore, an extended model setup with inhomogeneous, self organized distributions of latent and sensible heat fluxes is used to contrast how emergent soil moisture patterns impact on the selforganization structure of convection. Our findings may have implications for the role of land use changes regarding the development of extreme convective precipitation.Reference[1] Moseley et al. (2016) "Intensification of convective extremes driven by cloud-cloud interaction", Nature Geosc. , 9, 748-752</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..543..242C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..543..242C"><span>Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Yaokui; Long, Di; Hong, Yang; Zeng, Chao; Zhou, Jie; Han, Zhongying; Liu, Ronghua; Wan, Wei</p> <p>2016-12-01</p> <p>Soil moisture is a key variable in the exchange of water and energy between the land surface and the atmosphere, especially over the Tibetan Plateau (TP) which is climatically and hydrologically sensitive as the Earth's 'third pole'. Large-scale spatially consistent and temporally continuous soil moisture datasets are of great importance to meteorological and hydrological applications, such as weather forecasting and drought monitoring. The Fengyun-3B Microwave Radiation Imager (FY-3B/MWRI) soil moisture product is a relatively new passive microwave product, with the satellite being launched on November 5, 2010. This study validates and reconstructs FY-3B/MWRI soil moisture across the TP. First, the validation is performed using in situ measurements within two in situ soil moisture measurement networks (1° × 1° and 0.25° × 0.25°), and also compared with the Essential Climate Variable (ECV) soil moisture product from multiple active and passive satellite soil moisture products using new merging procedures. Results show that the ascending FY-3B/MWRI product outperforms the descending product. The ascending FY-3B/MWRI product has almost the same correlation as the ECV product with the in situ measurements. The ascending FY-3B/MWRI product has better performance than the ECV product in the frozen season and under the lower NDVI condition. When the NDVI is higher in the unfrozen season, uncertainty in the ascending FY-3B/MWRI product increases with increasing NDVI, but it could still capture the variability in soil moisture. Second, the FY-3B/MWRI soil moisture product is subsequently reconstructed using the back-propagation neural network (BP-NN) based on reconstructed MODIS products, i.e., LST, NDVI, and albedo. The reconstruction method of generating the soil moisture product not only considers the relationship between the soil moisture and NDVI, LST, and albedo, but also the relationship between the soil moisture and four-dimensional variations using the longitude, latitude, DEM and day of year (DOY). Results show that the soil moisture could be well reconstructed with R2 higher than 0.56, RMSE less than 0.1 cm3 cm-3, and Bias less than 0.07 cm3 cm-3 for both frozen and unfrozen seasons, compared with the in situ measurements at the two networks. Third, the reconstruction method is applied to generate surface soil moisture over the TP. Both original and reconstructed FY-3B/MWRI soil moisture products could be valuable in studying meteorology, hydrology, and ecosystems over the TP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H53E0988D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H53E0988D"><span>Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dominguez, F.; Castro, C. L.</p> <p>2009-12-01</p> <p>The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H31F1177M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H31F1177M"><span>Agricultural Decision Support Through Robust Assimilation of Satellite Derived Soil Moisture Estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishra, V.; Cruise, J.; Mecikalski, J. R.</p> <p>2012-12-01</p> <p>Soil Moisture is a key component in the hydrological process, affects surface and boundary layer energy fluxes and is the driving factor in agricultural production. Multiple in situ soil moisture measuring instruments such as Time-domain Reflectrometry (TDR), Nuclear Probes etc. are in use along with remote sensing methods like Active and Passive Microwave (PM) sensors. In situ measurements, despite being more accurate, can only be obtained at discrete points over small spatial scales. Remote sensing estimates, on the other hand, can be obtained over larger spatial domains with varying spatial and temporal resolutions. Soil moisture profiles derived from satellite based thermal infrared (TIR) imagery can overcome many of the problems associated with laborious in-situ observations over large spatial domains. An area where soil moisture observation and assimilation is receiving increasing attention is agricultural crop modeling. This study revolves around the use of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model to simulate corn yields under various forcing scenarios. First, the model was run and calibrated using observed precipitation and model generated soil moisture dynamics. Next, the modeled soil moisture was updated using estimates derived from satellite based TIR imagery and the Atmospheric Land Exchange Inverse (ALEXI) model. We selected three climatically different locations to test the concept. Test Locations were selected to represent varied climatology. Bell Mina, Alabama - South Eastern United States, representing humid subtropical climate. Nabb, Indiana - Mid Western United States, representing humid continental climate. Lubbok, Texas - Southern United States, representing semiarid steppe climate. A temporal (2000-2009) correlation analysis of the soil moisture values from both DSSAT and ALEXI were performed and validated against the Land Information System (LIS) soil moisture dataset. The results clearly show strong correlation (R = 73%) between ALEXI and DSSAT at Bell Mina. At Nabb and Lubbock the correlation was 50-60%. Further, multiple experiments were conducted for each location: a) a DSSAT rain-fed 10 year sequential run forced with daymet precipitation; b) a DSSAT sequential run with no precipitation data; and c) a DSSAT run forced with ALEXI soil moisture estimates alone. The preliminary results of all the experiments are quantified through soil moisture correlations and yield comparisons. In general, the preliminary results strongly suggest that DSSAT forced with ALEXI can provide significant information especially at locations where no significant precipitation data exists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H21C1045S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H21C1045S"><span>Application of Cosmic-ray Soil Moisture Sensing to Understand Land-atmosphere Interactions in Three North American Monsoon Ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schreiner-McGraw, A.; Vivoni, E. R.; Franz, T. E.; Anderson, C.</p> <p>2013-12-01</p> <p>Human impacts on desert ecosystems have wide ranging effects on the hydrologic cycle which, in turn, influence interactions between the critical zone and the atmosphere. In this contribution, we utilize cosmic-ray soil moisture sensors at three human-modified semiarid ecosystems in the North American monsoon region: a buffelgrass pasture in Sonora, Mexico, a woody-plant encroached savanna ecosystem in Arizona, and a woody-plant encroached shrubland ecosystem in New Mexico. In each case, landscape heterogeneity in the form of bare soil and vegetation patches of different types leads to a complex mosaic of soil moisture and land-atmosphere interactions. Historically, the measurement of spatially-averaged soil moisture at the ecosystem scale (on the order of several hundred square meters) has been problematic. Thus, new advances in measuring cosmogenically-produced neutrons present an opportunity for observational and modeling studies in these ecosystems. We discuss the calibration of the cosmic-ray soil moisture sensors at each site, present comparisons to a distributed network of in-situ measurements, and verify the spatially-aggregated observations using the watershed water balance method at two sites. We focus our efforts on the summer season 2013 and its rainfall period during the North American monsoon. To compare neutron counts to the ground sensors, we utilized an aspect-elevation weighting algorithm to compute an appropriate spatial average for the in-situ measurements. Similarly, the water balance approach utilizes precipitation, runoff, and evapotranspiration measurements in the footprint of the cosmic-ray sensors to estimate a spatially-averaged soil moisture field. Based on these complementary approaches, we empirically determined a relationship between cosmogenically-produced neutrons and the spatially-aggregated soil moisture. This approach may improve upon existing methods used to calculate soil moisture from neutron counts that typically suffer from increasing errors for higher soil moisture content. We also examined the effects of sub-footprint variability in soil moisture on the neutron readings by comparing two of the sites with large variations in topographically-mediated surface flows. Our work also synthesizes seasonal soil moisture dynamics across the desert ecosystems and attempts to tease out differences due to land cover alterations, including the seasonal greening in each study site occurring during the North American monsoon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010071127','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010071127"><span>Evolution of the Large Scale Circulation, Cloud Structure and Regional Water Cycle Associated with the South China Sea Monsoon During May-June, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lau, William K.-M.; Li, Xiao-Fan</p> <p>2001-01-01</p> <p>In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the active phase, the SCS was a strong sink (E-P much less than 0) of atmospheric moisture, with the primary source of moisture coming from regions further west over Indo-China and the eastern Indian Ocean. Before onset and during the break, the SCS was a moisture source (E-P greater than ) to the overlying atmosphere. In particular, the SCS provided the bulk of moisture to the torrential rain over the YRV in mid-June 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123....3M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123....3M"><span>Multi-Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.</p> <p>2018-01-01</p> <p>We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/937126-insect-infestations-linked-shifts-microclimate-important-climate-change-implications','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/937126-insect-infestations-linked-shifts-microclimate-important-climate-change-implications"><span>Insect Infestations Linked to Shifts in Microclimate: Important Climate Change Implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Classen, Aimee T; Hart, Stephen C; Whitham, Thomas G</p> <p></p> <p>Changes in vegetation due to drought-influenced herbivory may influence microclimate in ecosystems. In combination with studies of insect resistant and susceptible trees, we used long-term herbivore removal experiments with two herbivores of pinon (Pinus edulis Endelm.) to test the general hypothesis that herbivore alteration of plant architecture affects soil microclimate, a major driver of ecosystem-level processes. The pinon needle scale (Matsucoccus acalyptus, Herbert) attacks needles of juvenile trees causing them to develop an open crown. In contrast, the stem-boring moth (Dioryctria albovittella Hulst.) kills the terminal shoots of mature trees, causing the crown to develop a dense form. Our studiesmore » focused on how the microclimate effects of these architectural changes are likely to accumulate over time. Three patterns emerged: (1) scale herbivory reduced leaf area index (LAI) of susceptible trees by 39%, whereas moths had no effect on LAI; (2) scale herbivory increased soil moisture and temperature beneath susceptible trees by 35 and 26%, respectively, whereas moths had no effect; and (3) scale and moth herbivory decreased crown interception of precipitation by 51 and 29%, respectively. From these results, we conclude: (1) the magnitude of scale effects on soil moisture and temperature is large, similar to global change scenarios, and sufficient to drive changes in ecosystem processes. (2) The larger sizes of moth-susceptible trees apparently buffered them from most microclimate effects of herbivory, despite marked changes in crown architecture. (3) The phenotypic expression of susceptibility or resistance to scale insects extends beyond plant-herbivore interactions to the physical environment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A53F..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A53F..01C"><span>Relationships Among Atmospheric Rivers, Tropical Moisture Exports, and Warm Conveyor Belts over the Northeast Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cordeira, J. M.</p> <p>2015-12-01</p> <p>Extreme precipitation and attendant floods annually result in 80 fatalities and $5 Billion in damages across the U.S. and account for 50% of annual average U.S. natural disaster losses. The mechanisms that produce extreme precipitation are well known and are relatively well simulated by modern numerical weather prediction models in conjunction with synoptic-scale and mesoscale lift, instability, moisture, and boundaries. The focus of this presentation is on moisture in the form of synoptic-scale water vapor transport and its role in extreme precipitation along the U.S. West Coast. Many different terms have been used to describe synoptic-scale water vapor transport over the Northeast Pacific, including: moisture conveyor belts, warm conveyor belts, tropical moisture exports, tropical plumes, moisture plumes, pineapple express events, and atmospheric rivers. Each term respectively attempts to quantify or represent the propagation or instantaneous movement of water vapor from the Lagrangian and Eulerian frameworks in which they exist. These differences in frameworks often makes comparing and contrasting, for example, warm conveyor belts and atmospheric rivers difficult and may lead to misguided interpretations of long-range trans-oceanic water vapor transport. The purpose of this presentation is to discuss the dynamics of water vapor transport over the Northeast Pacific from the Eulerian and Lagrangian frameworks and illustrate to what degree the two- and three-dimensional structures of these rivers, exports, and belts overlap. Illustration of overlap between these processes will be shown via case study analysis of synoptic-scale water vapor transport over the Northeast Pacific that led to heavy precipitation along the U.S. West Coast during February 2014 and February 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN23E..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN23E..08M"><span>SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.</p> <p>2013-12-01</p> <p>Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are available publicly in near-real-time from the project web site, and are also available and searchable via an extensive set of metadata fields through the ORNL-DAAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39280','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39280"><span>Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Roger C. Bales; Jan W. Hopmans; Anthony T. O’Geen; Matthew Meadows; Peter C. Hartsough; Peter Kirchner; Carolyn T. Hunsaker; Dylan Beaudette</p> <p>2011-01-01</p> <p>Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..557..679S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..557..679S"><span>Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm</p> <p>2018-02-01</p> <p>The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6648R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6648R"><span>A novel representation of chalk hydrology in a land surface model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahman, Mostaquimur; Rosolem, Rafael</p> <p>2016-04-01</p> <p>Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3106F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3106F"><span>Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.</p> <p>2016-04-01</p> <p>Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the potential to greatly increase agricultural water use efficiency at scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810017091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810017091"><span>Summary of results of January climate simulations with the GISS coarse-mesh model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spar, J.; Cohen, C.; Wu, P.</p> <p>1981-01-01</p> <p>The large scale climates generated by extended runs of the model are relatively independent of the initial atmospheric conditions, if the first few months of each simulation are discarded. The perpetual January simulations with a specified SST field produced excessive snow accumulation over the continents of the Northern Hemisphere. Mass exchanges between the cold (warm) continents and the warm (cold) adjacent oceans produced significant surface pressure changes over the oceans as well as over the land. The effect of terrain and terrain elevation on the amount of precipitation was examined. The evaporation of continental moisture was calculated to cause large increases in precipitation over the continents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/96322-decadal-trends-north-atlantic-oscillation-regional-temperatures-precipitation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/96322-decadal-trends-north-atlantic-oscillation-regional-temperatures-precipitation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hurrell, J.W.</p> <p></p> <p>Greenland ice-core data have revealed large decadal climate variations over the North Atlantic that can be related to a major source of low-frequency variability, the North Atlantic Oscillation. Over the past decade, the Oscillation has remained in one extreme phase during the winters, contributing significantly to the recent wintertime warmth across Europe and to cold conditions in the northwest Atlantic. An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.more » 27 refs., 4 figs., 1 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29479372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29479372"><span>The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jensen, Daniel; Reager, John T; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett</p> <p>2018-01-01</p> <p>It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest Service's historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This result is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship's utility for the future development of national-scale predictive capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13a4021J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13a4021J"><span>The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett</p> <p>2018-01-01</p> <p>It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>