Outbreaks associated to large open air festivals, including music festivals, 1980 to 2012.
Botelho-Nevers, E; Gautret, P
2013-03-14
In the minds of many, large scale open air festivals have become associated with spring and summer, attracting many people, and in the case of music festivals, thousands of music fans. These festivals share the usual health risks associated with large mass gatherings, including transmission of communicable diseases and risk of outbreaks. Large scale open air festivals have however specific characteristics, including outdoor settings, on-site housing and food supply and the generally young age of the participants. Outbreaks at large scale open air festivals have been caused by Cryptosporium parvum, Campylobacter spp., Escherichia coli, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, hepatitis A virus, influenza virus, measles virus, mumps virus and norovirus. Faecal-oral and respiratory transmissions of pathogens result from non-compliance with hygiene rules, inadequate sanitation and insufficient vaccination coverage. Sexual transmission of infectious diseases may also occur and is likely to be underestimated and underreported. Enhanced surveillance during and after festivals is essential. Preventive measures such as immunisations of participants and advice on-site and via social networks should be considered to reduce outbreaks at these large scale open air festivals.
Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus
2016-01-01
Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769
Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2010-01-01
The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less
Akanda, Ali Shafqat; Jutla, Antarpreet S.; Gute, David M.; Sack, R. Bradley; Alam, Munirul; Huq, Anwar; Colwell, Rita R.; Islam, Shafiqul
2013-01-01
The highly populated floodplains of the Bengal Delta have a long history of endemic and epidemic cholera outbreaks, both coastal and inland. Previous studies have not addressed the spatio-temporal dynamics of population vulnerability related to the influence of underlying large-scale processes. We analyzed spatial and temporal variability of cholera incidence across six surveillance sites in the Bengal Delta and their association with regional hydroclimatic and environmental drivers. More specifically, we use salinity and flood inundation modeling across the vulnerable districts of Bangladesh to test earlier proposed hypotheses on the role of these environmental variables. Our results show strong influence of seasonal and interannual variability in estuarine salinity on spring outbreaks and inland flooding on fall outbreaks. A large segment of the population in the Bengal Delta floodplains remain vulnerable to these biannual cholera transmission mechanisms that provide ecologic and environmental conditions for outbreaks over large geographic regions. PMID:24019441
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2009-12-01
Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.
TESTING METHODS FOR DETECTION OF CRYPTOSPORIDIUM SPP. IN WATER SAMPLES
A large waterborne outbreak of cryptosporidiosis in Milwaukee, Wisconsin, U.S.A. in 1993 prompted a search for ways to prevent large scale waterborne outbreaks of protozoan parasitoses. Two principle strategies have emerged: risk assessment leading to appropriate treatment and ...
TESTING METHODS FOR DETECTION OF CRYPTOSPORIDIUM SPP. IN WATER SAMPLES
A large waterborne outbreak of cryptosporidiosis in Milwaukee, Wisconsin, U.S.A. in 1993 prompted a search for ways to prevent large-scale waterborne outbreaks of protozoan parasitoses. Methods for detecting Cryptosporidium parvum play an integral role in strategies that lead to...
Chen, T M; Chen, Q P; Liu, R C; Szot, A; Chen, S L; Zhao, J; Zhou, S S
2017-02-01
Hundreds of small-scale influenza outbreaks in schools are reported in mainland China every year, leading to a heavy disease burden which seriously impacts the operation of affected schools. Knowing the transmissibility of each outbreak in the early stage has become a major concern for public health policy-makers and primary healthcare providers. In this study, we collected all the small-scale outbreaks in Changsha (a large city in south central China with ~7·04 million population) from January 2005 to December 2013. Four simple and popularly used models were employed to calculate the reproduction number (R) of these outbreaks. Given that the duration of a generation interval Tc = 2·7 and the standard deviation (s.d.) σ = 1·1, the mean R estimated by an epidemic model, normal distribution and delta distribution were 2·51 (s.d. = 0·73), 4·11 (s.d. = 2·20) and 5·88 (s.d. = 5·00), respectively. When Tc = 2·9 and σ = 1·4, the mean R estimated by the three models were 2·62 (s.d. = 0·78), 4·72 (s.d. = 2·82) and 6·86 (s.d. = 6·34), respectively. The mean R estimated by gamma distribution was 4·32 (s.d. = 2·47). We found that the values of R in small-scale outbreaks in schools were higher than in large-scale outbreaks in a neighbourhood, city or province. Normal distribution, delta distribution, and gamma distribution models seem to more easily overestimate the R of influenza outbreaks compared to the epidemic model.
Hydroclimatic drivers, Water-borne Diseases, and Population Vulnerability in Bengal Delta
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.
2012-04-01
Water-borne diarrheal disease outbreaks in the Bengal Delta region, such as cholera, rotavirus, and dysentery, show distinct seasonal peaks and spatial signatures in their origin and progression. However, the mechanisms behind these seasonal phenomena, especially the role of regional climatic and hydrologic processes behind the disease outbreaks, are not fully understood. Overall diarrheal disease prevalence and the population vulnerability to transmission mechanisms thus remain severely underestimated. Recent findings suggest that diarrheal incidence in the spring is strongly associated with scarcity of freshwater flow volumes, while the abundance of water in monsoon show strong positive correlation with autumn diarrheal burden. The role of large-scale ocean-atmospheric processes that tend to modulate meteorological, hydrological, and environmental conditions over large regions and the effects on the ecological states conducive to the vectors and triggers of diarrheal outbreaks over large geographic regions are not well understood. We take a large scale approach to conduct detailed diagnostic analyses of a range of climate, hydrological, and ecosystem variables to investigate their links to outbreaks, occurrence, and transmission of the most prevalent water-borne diarrheal diseases. We employ satellite remote sensing data products to track coastal ecosystems and plankton processes related to cholera outbreaks. In addition, we investigate the effect of large scale hydroclimatic extremes (e.g., droughts and floods, El Nino) to identify how diarrheal transmission and epidemic outbreaks are most likely to respond to shifts in climatic, hydrologic, and ecological changes over coming decades. We argue that controlling diarrheal disease burden will require an integrated predictive surveillance approach - a combination of prediction and prevention - with recent advances in climate-based predictive capabilities and demonstrated successes in primary and tertiary prevention in endemic regions.
K. E. Mock; B. J. Bentz; E. M. O' Neill; J. P. Chong; J. Orwin; M. E. Pfrender
2007-01-01
The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae...
2014-01-01
Background Food-borne Salmonella infections are a worldwide concern. During a large-scale outbreak, it is important that the public follows preventive advice. To increase compliance, insight in how the public gathers its knowledge and which factors determine whether or not an individual complies with preventive advice is crucial. Methods In 2012, contaminated salmon caused a large Salmonella Thompson outbreak in the Netherlands. During the outbreak, we conducted an online survey (n = 1,057) to assess the general public’s perceptions, knowledge, preventive behavior and sources of information. Results Respondents perceived Salmonella infections and the 2012 outbreak as severe (m = 4.21; five-point scale with 5 as severe). Their knowledge regarding common food sources, the incubation period and regular treatment of Salmonella (gastro-enteritis) was relatively low (e.g., only 28.7% knew that Salmonella is not normally treated with antibiotics). Preventive behavior differed widely, and the majority (64.7%) did not check for contaminated salmon at home. Most information about the outbreak was gathered through traditional media and news and newspaper websites. This was mostly determined by time spent on the medium. Social media played a marginal role. Wikipedia seemed a potentially important source of information. Conclusions To persuade the public to take preventive actions, public health organizations should deliver their message primarily through mass media. Wikipedia seems a promising instrument for educating the public about food-borne Salmonella. PMID:24479614
The Influence of Large-Scale Circulation on Fire Outbreaks in the Amazon Region
NASA Astrophysics Data System (ADS)
Pires, L. B. M.; Romao, M.; Freitas, A. C. V.
2017-12-01
The combination of alterations in land use cover and severe droughts may dramatically increase fire outbreaks. Tropical convection in the Amazon Basin is regulated mainly by large-scale atmospheric systems such as the Walker circulation. Many of the documented drought episodes in the Amazon occurred during intense El Niño events such as those recorded in 1926, 1983, 1997-1998, and 2010. However, not all El Niño events are related to drought in the Amazon. Recent studies have also pointed out the importance of the tropical Atlantic Ocean in the modulation of the Amazonian climate, as observed during the drought episodes in 2005 and 2010. This work investigates the fire outbreak tendency in the Amazon region, and the influence of large-scale circulation on these events. Data from the Fire Program of the Center for Weather Forecasting and Climate Studies (CPTEC/INPE) show a substantial increase in the number of fire outbreaks in the last few years, especially during 2016. However, in the 2017 year a sharp drop in fire outbreaks reaching levels similar to the years prior to 2016 is being noted, already showing a reduction of 54% in relation to the preceding 2016 year. The 2015-2016 period was marked by one of the strongest El Niño in history. This was reflected in the increase of the number of fire outbreaks due to the increase of the drought and temperature elevation period. On the other hand, the 2017 year is being characterized by a condition of neutrality in relation to the El Niño-Southern Oscillation (ENSO) phenomena, and have overall presented positive sea surface temperature (SST) anomalies in the tropical Atlantic. Variations of these systems and their relation to fire outbreaks is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dombroski, M; Melius, C; Edmunds, T
2008-09-24
This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to humanmore » epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future work including validating the model against reliable historical disease data, improving contact rates, spread methods, and disease parameters through discussions with epidemiological experts, and incorporating realistic behavioral assumptions.« less
Mannes, Trish; Gupta, Leena; Craig, Adam; Rosewell, Alexander; McGuinness, Clancy Aimers; Musto, Jennie; Shadbolt, Craig; Biffin, Brian
2010-03-01
This report describes the investigation and public health response to a large point-source outbreak of salmonellosis in Sydney, Australia. The case-series investigation involved telephone interviews with 283 cases or their guardians and active surveillance through hospitals, general practitioners, laboratories and the public health network. In this outbreak 319 cases of gastroenteritis were identified, of which 221 cases (69%) presented to a hospital emergency department and 136 (43%) required hospital admission. This outbreak was unique in its scale and severity and the surge capacity of hospital emergency departments was stretched. It highlights that foodborne illness outbreaks can cause substantial preventable morbidity and resultant health service burden, requiring close attention to regulatory and non-regulatory interventions.
Modelling disease outbreaks in realistic urban social networks
NASA Astrophysics Data System (ADS)
Eubank, Stephen; Guclu, Hasan; Anil Kumar, V. S.; Marathe, Madhav V.; Srinivasan, Aravind; Toroczkai, Zoltán; Wang, Nan
2004-05-01
Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
Thorsten Zeppenfeld; Miroslav Svoboda; R. Justin DeRose; Marco Heurich; Jorg Muller; Pavla Cizkova; Martin Stary; Radek Bace; Daniel C. Donato
2015-01-01
Large, severe disturbances drive many forest ecosystems over the long term, but pose management uncertainties when human experience with them is limited. Recent continent-scale outbreaks of bark beetles across the temperate Northern Hemisphere have raised major concerns as to whether coniferous forests will regenerate back towards pre-outbreak condition and...
NASA Astrophysics Data System (ADS)
Singh, Sarabjeet; Schneider, David J.; Myers, Christopher R.
2014-03-01
Branching processes have served as a model for chemical reactions, biological growth processes, and contagion (of disease, information, or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this work we focus on coupled branching processes as a model of infectious diseases spreading from one population to another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from animal populations to humans. We derive several statistical quantities characterizing the first spillover event from animals to humans, including the probability of spillover, the first passage time distribution for human infection, and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes, and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility of large human outbreaks even when human-to-human transmission is subcritical.
Discrete Event Modeling and Massively Parallel Execution of Epidemic Outbreak Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Seal, Sudip K
2011-01-01
In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks make it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction-diffusion simulation model of epidemic propagation is presented to facilitate in dramatically increasing the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallelmore » execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes exceeding several hundreds of millions of individuals in the largest cases are successfully exercised to verify model scalability.« less
NASA Astrophysics Data System (ADS)
Bier, Martin; Brak, Bastiaan
2015-04-01
In the Netherlands there has been nationwide vaccination against the measles since 1976. However, in small clustered communities of orthodox Protestants there is widespread refusal of the vaccine. After 1976, three large outbreaks with about 3000 reported cases of the measles have occurred among these orthodox Protestants. The outbreaks appear to occur about every twelve years. We show how a simple Kermack-McKendrick-like model can quantitatively account for the periodic outbreaks. Approximate analytic formulae to connect the period, size, and outbreak duration are derived. With an enhanced model we take the latency period in account. We also expand the model to follow how different age groups are affected. Like other researchers using other methods, we conclude that large scale underreporting of the disease must occur.
Climate change and the outbreak ranges of two North American bark beetles
David W. Williams; Andrew M. Liebhold
2002-01-01
One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...
Poovorawan, Kittiyod; Chattakul, Paiboon; Chattakul, Sirirat; Thongmee, Thanunrat; Theamboonlers, Apiradee; Komolmit, Piyawat; Poovorawan, Yong
2013-01-01
Introduction Acute hepatitis A is a worldwide public health problem especially in developing countries. Recently, a large, community-wide outbreak of hepatitis A occurred in the northeast part of Thailand. Methods Demographic and clinical data as well as blood samples were collected and analyzed from patients with acute hepatitis who attended the Buengkan Provincial Hospital from June to September 2012. About 1619 patients with clinical symptoms of hepatitis A visited the hospital during the outbreak which manifested in three waves. Blood samples were collected from 205 patients. Results One hundred and seventy eight patients had hepatitis A confirmed by the presence of anti-hepatitis A virus (HAV) IgM and/or HAV-RNA. The sensitivities for anti-HAV IgM and HAV-RNA were 95.5% (170/178) and 61.8% (110/178), respectively. When HAV-RNA was combined with anti-HAV IgM test, this increased the diagnostic yield by 7.2% (8/111) in the early phase of the acute infection (less than 5 days). Investigation of the molecular structure of the detected viruses indicated that all of the infections were caused by HAV genotype IA. There were no fatalities from this outbreak. Rapid detection, health education, sanitation campaigns, and vaccination offered on a voluntary basis have steadily reduced the number of infected patients and stopped the outbreak. Conclusion Occasionally a large-scale outbreak of HAV genotype IA can occur. A combination of HAV-RNA and anti-HAV IgM tests can increase the diagnostic yield during the early phase of the acute infection. Early diagnosis and preventive management campaigns can slow down and stop the outbreak. PMID:24392680
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.
2012-01-01
Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.
Prevalence of small round structured virus infections in acute gastroenteritis outbreaks in Tokyo.
Sekine, S; Okada, S; Hayashi, Y; Ando, T; Terayama, T; Yabuuchi, K; Miki, T; Ohashi, M
1989-01-01
During the three-year period from 1984 to 1987, 506 acute gastroenteritis outbreaks involving 14,383 patients were reported to the Bureau of Public Health, Tokyo Metropolitan Government. Eighty (4,324 patients) of 150 outbreaks (4,860 patients) from which etiologic agents were not identified were subjected to virological investigation. Spherical particles of 28-32 nm in diameter with capsomere-like structures on the surface were detected in patients' stool specimens. Buoyant density of the particles appeared to be 1.36 to 1.40 g/ml in CsCl. Seroconversion to the particles was observed in patients by immune electron microscopy. From these observations, we concluded that the detected particles were members of small round structured virus (SRSV), and that they were implicated in the etiologically ill-defined outbreaks encountered. Prevalence of SRSV infections in these outbreaks was examined by electron microscopy. SRSV was positive in 83.8% of the outbreaks, and 96.4% of the cases. SRSV-positive outbreaks usually occurred during winter in contrast to bacterial outbreaks which often occurred in the summer season. Of 80 outbreaks examined, 53 were associated with the ingestion of oysters, and the remaining 27 mostly with food other than oysters. Oyster-associated outbreaks usually occurred on a small scale, while unassociated ones on diverse scales ranged from family clusters to large outbreaks.
Response to a Large Polio Outbreak in a Setting of Conflict - Middle East, 2013-2015.
Mbaeyi, Chukwuma; Ryan, Michael J; Smith, Philip; Mahamud, Abdirahman; Farag, Noha; Haithami, Salah; Sharaf, Magdi; Jorba, Jaume C; Ehrhardt, Derek
2017-03-03
As the world advances toward the eradication of polio, outbreaks of wild poliovirus (WPV) in polio-free regions pose a substantial risk to the timeline for global eradication. Countries and regions experiencing active conflict, chronic insecurity, and large-scale displacement of persons are particularly vulnerable to outbreaks because of the disruption of health care and immunization services (1). A polio outbreak occurred in the Middle East, beginning in Syria in 2013 with subsequent spread to Iraq (2). The outbreak occurred 2 years after the onset of the Syrian civil war, resulted in 38 cases, and was the first time WPV was detected in Syria in approximately a decade (3,4). The national governments of eight countries designated the outbreak a public health emergency and collaborated with partners in the Global Polio Eradication Initiative (GPEI) to develop a multiphase outbreak response plan focused on improving the quality of acute flaccid paralysis (AFP) surveillance* and administering polio vaccines to >27 million children during multiple rounds of supplementary immunization activities (SIAs). † Successful implementation of the response plan led to containment and interruption of the outbreak within 6 months of its identification. The concerted approach adopted in response to this outbreak could serve as a model for responding to polio outbreaks in settings of conflict and political instability.
NASA Astrophysics Data System (ADS)
Lee, Sang-Ki; Wittenberg, Andrew T.; Enfield, David B.; Weaver, Scott J.; Wang, Chunzai; Atlas, Robert
2016-04-01
Recent violent and widespread tornado outbreaks in the US, such as occurred in the spring of 2011, have caused devastating societal impact with significant loss of life and property. At present, our capacity to predict US tornado and other severe weather risk does not extend beyond seven days. In an effort to advance our capability for developing a skillful long-range outlook for US tornado outbreaks, here we investigate the spring probability patterns of US regional tornado outbreaks during 1950-2014. We show that the four dominant springtime El Niño-Southern Oscillation (ENSO) phases (persistent versus early-terminating El Niño and resurgent versus transitioning La Niña) and the North Atlantic sea surface temperature tripole variability are linked to distinct and significant US regional patterns of outbreak probability. These changes in the probability of outbreaks are shown to be largely consistent with remotely forced regional changes in the large-scale atmospheric processes conducive to tornado outbreaks. An implication of these findings is that the springtime ENSO phases and the North Atlantic SST tripole variability may provide seasonal predictability of US regional tornado outbreaks.
Lafrancois, Brenda Moraska; Riley, Stephen C.; Blehert, David S.; Ballmann, Anne E.
2011-01-01
Relationships between large-scale environmental factors and the incidence of type E avian botulism outbreaks in Lake Michigan were examined from 1963 to 2008. Avian botulism outbreaks most frequently occurred in years with low mean annual water levels, and lake levels were significantly lower in outbreak years than in non-outbreak years. Mean surface water temperatures in northern Lake Michigan during the period when type E outbreaks tend to occur (July through September) were significantly higher in outbreak years than in non-outbreak years. Trends in fish populations did not strongly correlate with botulism outbreaks, although botulism outbreaks in the 1960s coincided with high alewife abundance, and recent botulism outbreaks coincided with rapidly increasing round goby abundance. Botulism outbreaks occurred cyclically, and the frequency of outbreaks did not increase over the period of record. Climate change scenarios for the Great Lakes predict lower water levels and warmer water temperatures. As a consequence, the frequency and magnitude of type E botulism outbreaks in the Great Lakes may increase.
Logan, Jesse A; MacFarlane, William W; Willcox, Louisa
2010-06-01
Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.
USDA-ARS?s Scientific Manuscript database
Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of vector-borne diseases. We show that episodic outbreaks of Rift Valley fever are influen...
Selected Insights from Application of Whole Genome Sequencing for Outbreak Investigations
Le, Vien Thi Minh; Diep, Binh An
2014-01-01
Purpose of review The advent of high-throughput whole genome sequencing has the potential to revolutionize the conduct of outbreak investigation. Because of its ultimate pathogen strain resolution, whole genome sequencing could augment traditional epidemiologic investigations of infectious disease outbreaks. Recent findings The combination of whole genome sequencing and intensive epidemiologic analysis provided new insights on the sources and transmission dynamics of large-scale epidemics caused by Escherichia coli and Vibrio cholerae, nosocomial outbreaks caused by methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, and Mycobacterium abscessus, community-centered outbreaks caused by Mycobacterium tuberculosis, and natural disaster-associated outbreak caused by environmentally acquired molds. Summary When combined with traditional epidemiologic investigation, whole genome sequencing has proven useful for elucidating sources and transmission dynamics of disease outbreaks. Development of a fully automated bioinformatics pipeline for analysis of whole genome sequence data is much needed to make this powerful tool more widely accessible. PMID:23856896
Craig, Adam T; Joshua, Cynthia A; Sio, Alison R; Teobasi, Bobby; Dofai, Alfred; Dalipanda, Tenneth; Hardie, Kate; Kaldor, John; Kolbe, Anthony
2018-01-01
Between August-2016 and April-2017, Solomon Islands experienced the largest and longest-running dengue outbreak on record in the country, with 12,329 suspected cases, 877 hospitalisations and 16 deaths. We conducted a retrospective review of related data and documents, and conducted key informant interviews to characterise the event and investigate the adaptability of syndromic surveillance for enhanced and expanded data collection during a public health emergency in a low resource country setting. While the outbreak quickly consumed available public and clinical resources, we found that authorities were able to scale up the conventional national syndrome-based early warning surveillance system to support the increased information demands during the event demonstrating the flexibility of the system and syndromic surveillance more broadly. Challenges in scaling up included upskilling and assisting staff with no previous experience of the tasks required; managing large volumes of data; maintaining data quality for the duration of the outbreak; harmonising routine and enhanced surveillance data and maintaining surveillance for other diseases; producing information optimally useful for response planning; and managing staff fatigue. Solomon Islands, along with other countries of the region remains vulnerable to outbreaks of dengue and other communicable diseases. Ensuring surveillance systems are robust and able to adapt to changing demands during emergencies should be a health protection priority.
Jumbo tornado outbreak of 3 April 1974
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1974-01-01
General meteorological data concerning the Jumbo tornado outbreak are presented. In terms of tornado number and total path mileage, it was more extensive than all known outbreaks. Most of the intense tornadoes avoided the large cities, however. Turn information is analyzed in detail. Left-turn tornadoes were more intense than right-turn tornadoes. Many important phenomena were observed, such as multiple suction vortices, family tornadoes, and cousin tornadoes spawned from interacting tornado cyclones. Aerial survey data will aid greatly in the solution of various scales of rotating motions, leading to improved prediction and warning of tornadoes.
Rubella outbreak and outbreak management in a school setting, China, 2014.
Chang, Caiyun; Ma, Huilai; Liang, Wenjia; Hu, Pei; Mo, Xianghuan; An, Zhijie; Zheng, Huizhen
2017-04-03
An active response to a rubella outbreak may interrupt disease transmission, and outbreak response immunization (ORI) can increase immunity among persons who might otherwise not be protected. On March 17, 2014, a rubella outbreak was reported in a middle school in Guangzhou city, China. We conducted an investigation to assess impact of a policy of exclusion of cases from school and of ORI. Active surveillance was used to find cases of rubella. Investigators interviewed teachers and reviewed the absentee records to determine implementation details of school exclusion. ORI was recommended on 2 occasions during the outbreak, one small-scale and one large-scale. Laboratory confirmation tests included serum IgM and IgG measurements to distinguish between acute infection and immunity. A serological survey in 4 classes was used to determine immunity status and identify symptomatic and asymptomatic cases. From February 17 to May 23, 2014, 162 rubella cases (24 laboratory-confirmed and 138 epidemiologically linked) were detected among 1,621 students. Cases ultimately occurred in 27 classes (72.97%) across 37 classes. In 11 classes in which exclusion from school was delayed by 1 or more days, the secondary attack rate was 12.30%, compared with 2.35% in 15 classes with immediate exclusion. ORI increased vaccine coverage from 25.83 % to 86.92%, and the final case of the epidemic was reported one month later. A serological survey of 91 students in 4 classes identified 15 cases, 6 of which were asymptomatic. The outbreak happened in school with low rubella-containing vaccination coverage. Exclusion from school upon rash/fever onset was associated with lowering the secondary attack rate, but school exclusion alone was not able to stop this outbreak - a large ORI was needed. Assuring complete vaccination upon entry to school is likely to be necessary to ensure coverage is above the herd immunity threshold and prevent outbreaks from happening.
Severe canine distemper outbreak in unvaccinated dogs in Mozambique.
Zacarias, Julieta; Dimande, Alberto; Achá, Sara; Dias, Paula T; Leonel, Elisa M; Messa, Aurora; Macucule, Baltazar; Júnior, José L; Bila, Custódio G
2016-07-15
Although significant animal suffering caused by preventable diseases is frequently seen in developing countries, reports of this are scarce. This report describes avoidable animal suffering owing to a suspected canine distemper (CD) outbreak in unvaccinated dogs owned by low-income families in Mozambique that killed approximately 200 animals. Affected dogs exhibited clinical signs, and gross and microscopic lesions compatible with CD. Immunohistochemical staining confirmed the presence of canine distemper virus (CDV) in the kidney of one dog from the cohort. This brief communication again illustrates that large outbreaks of CDV in unvaccinated dogs occur and that large-scale avoidable suffering and threats to the health of dogs and wild canines continue. Mass vaccination supported by government and non-government organisations is recommended.
Hong S. He; Robert E. Keane; Louis R. Iverson
2008-01-01
Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...
Lomonaco, Sara; Gallina, Silvia; Filipello, Virginia; Sanchez Leon, Maria; Kastanis, George John; Allard, Marc; Brown, Eric; Amato, Ettore; Pontello, Mirella; Decastelli, Lucia
2018-01-18
Listeriosis outbreaks are frequently multistate/multicountry outbreaks, underlining the importance of molecular typing data for several diverse and well-characterized isolates. Large-scale whole-genome sequencing studies on Listeria monocytogenes isolates from non-U.S. locations have been limited. Herein, we describe the draft genome sequences of 510 L. monocytogenes isolates from northern Italy from different sources.
Yan, Meiying; Yang, Bo; Wang, Zhigang; Wang, Shukun; Zhang, Xiaohe; Zhou, Yanhua; Pang, Bo; Diao, Baowei; Yang, Rusong; Wu, Shuyu; Klena, John D; Kan, Biao
2015-01-01
Since the 1990s, paratyphoid fever caused by Salmonella Paratyphi A has emerged in Southeast Asia and China. In 2010, a large-scale outbreak involving 601 cases of paratyphoid fever occurred in the whole of Yuanjiang county in China. Epidemiological and laboratory investigations were conducted to determine the etiology, source and transmission factors of the outbreak. A case-control study was performed to identify the risk factors for this paratyphoid outbreak. Cases were identified as patients with blood culture-confirmed S. Paratyphi A infection. Controls were healthy persons without fever within the past month and matched to cases by age, gender and geography. Pulsed-field gel electrophoresis and whole-genome sequencing of the S. Paratyphi A strains isolated from patients and environmental sources were performed to facilitate transmission analysis and source tracking. We found that farmers and young adults were the populations mainly affected in this outbreak, and the consumption of raw vegetables was the main risk factor associated with paratyphoid fever. Molecular subtyping and genome sequencing of S. Paratyphi A isolates recovered from improperly disinfected hospital wastewater showed indistinguishable patterns matching most of the isolates from the cases. An investigation showed that hospital wastewater mixed with surface water was used for crop irrigation, promoting a cycle of contamination. After prohibition of the planting of vegetables in contaminated fields and the thorough disinfection of hospital wastewater, the outbreak subsided. Further analysis of the isolates indicated that the origin of the outbreak was most likely from patients outside Yuanjiang county. This outbreak is an example of the combined effect of social behaviors, prevailing ecological conditions and improper disinfection of hospital wastewater on facilitating a sustained epidemic of paratyphoid fever. This study underscores the critical need for strict treatment measures of hospital wastewater and the maintenance of independent agricultural irrigation systems in rural areas.
Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A
2017-10-01
Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features amenable to intervention such as controlling domestic bird movement in areas of high poultry density or preventing contact between poultry and wild birds and/or surface water features. © 2016 Blackwell Verlag GmbH.
Resource allocation for epidemic control in metapopulations.
Ndeffo Mbah, Martial L; Gilligan, Christopher A
2011-01-01
Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection) while accounting for social equity (e.g. equal opportunity for infected individuals to access treatment). For a large range of diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic outbreaks at the landscape scale.
NASA Astrophysics Data System (ADS)
Jutla, A.; Akanda, A. S.; Colwell, R. R.
2014-12-01
Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.
Building test data from real outbreaks for evaluating detection algorithms.
Texier, Gaetan; Jackson, Michael L; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.
Building test data from real outbreaks for evaluating detection algorithms
Texier, Gaetan; Jackson, Michael L.; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals. PMID:28863159
Phase-dependent outbreak dynamics of geometrid moth linked to host plant phenology.
Jepsen, Jane U; Hagen, Snorre B; Karlsen, Stein-Rune; Ims, Rolf A
2009-12-07
Climatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent. We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000-2008). We use satellite-derived time series of the prevalence of moth defoliation and the onset of the growing season for the entire region to investigate the link between the patterns of defoliation and outbreak spread. In addition, we examine whether a phase-dependent coherence in the pattern of spatial synchrony exists between defoliation and onset of the growing season, in order to evaluate if the degree of matching phenology between the moth and their host plant could be the mechanism behind a Moran effect. The strength of regional spatial synchrony in defoliation and the pattern of defoliation spread were both highly phase-dependent. The incipient phase of the outbreak was characterized by high regional synchrony in defoliation and long spread distances, compared with the epidemic and crash phase. Defoliation spread was best described using a two-scale stratified spread model, suggesting that defoliation spread is governed by two processes operating at different spatial scale. The pattern of phase-dependent spatial synchrony was coherent in both defoliation and onset of the growing season. This suggests that the timing of spring phenology plays a role in the large-scale synchronization of birch forest moth outbreaks.
Phase-dependent outbreak dynamics of geometrid moth linked to host plant phenology
Jepsen, Jane U.; Hagen, Snorre B.; Karlsen, Stein-Rune; Ims, Rolf A.
2009-01-01
Climatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent. We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000–2008). We use satellite-derived time series of the prevalence of moth defoliation and the onset of the growing season for the entire region to investigate the link between the patterns of defoliation and outbreak spread. In addition, we examine whether a phase-dependent coherence in the pattern of spatial synchrony exists between defoliation and onset of the growing season, in order to evaluate if the degree of matching phenology between the moth and their host plant could be the mechanism behind a Moran effect. The strength of regional spatial synchrony in defoliation and the pattern of defoliation spread were both highly phase-dependent. The incipient phase of the outbreak was characterized by high regional synchrony in defoliation and long spread distances, compared with the epidemic and crash phase. Defoliation spread was best described using a two-scale stratified spread model, suggesting that defoliation spread is governed by two processes operating at different spatial scale. The pattern of phase-dependent spatial synchrony was coherent in both defoliation and onset of the growing season. This suggests that the timing of spring phenology plays a role in the large-scale synchronization of birch forest moth outbreaks. PMID:19740876
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A.; Huq, A.; Colwell, R. R.
2014-12-01
Cholera is a global disease, with significantly large outbreaks occurring since the 1990s, notably in Sub-Saharan Africa and South Asia and recently in Haiti, in the Caribbean. Critical knowledge gaps remain in the understanding of the annual recurrence in endemic areas and the nature of epidemic outbreaks, especially those that follow extreme hydroclimatic events. Teleconnections with large-scale climate phenomena affecting regional scale hydroclimatic drivers of cholera dynamics remain largely unexplained. For centuries, the Bengal delta region has been strongly influenced by the asymmetric availability of water in the rivers Ganges and the Brahmaputra. As these two major rivers are known to have strong contrasting affects on local cholera dynamics in the region, we argue that the role of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), or other phenomena needs to be interpreted in the context of the seasonal role of individual rivers and subsequent impact on local environmental processes, not as a teleconnection having a remote and unified effect. We present a modified hypothesis that the influences of large-scale climate phenomena such as ENSO and IOD on Bengal cholera can be explicitly identified and incorporated through regional scale hydroclimatic drivers. Here, we provide an analytical review of the literature addressing cholera and climate linkages and present hypotheses, based on recent evidence, and quantification on the role of regional scale hydroclimatic drivers of cholera. We argue that the seasonal changes in precipitation and temperature, and resulting river discharge in the GBM basin region during ENSO and IOD events have a dominant combined effect on the endemic persistence and the epidemic vulnerability to cholera outbreaks in spring and fall seasons, respectively, that is stronger than the effect of localized hydrological and socio-economic sensitivities in Bangladesh. In addition, systematic identification of underlying seasonal hydroclimatic drivers will allow us to harness the inherent system memory of these processes to develop early warning systems and strengthen prevention measures.
The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling.
Nguyen, Van Kinh; Parra-Rojas, César; Hernandez-Vargas, Esteban A
2018-06-01
From August to November 2017, Madagascar endured an outbreak of plague. A total of 2417 cases of plague were confirmed, causing a death toll of 209. Public health intervention efforts were introduced and successfully stopped the epidemic at the end of November. The plague, however, is endemic in the region and occurs annually, posing the risk of future outbreaks. To understand the plague transmission, we collected real-time data from official reports, described the outbreak's characteristics, and estimated transmission parameters using statistical and mathematical models. The pneumonic plague epidemic curve exhibited multiple peaks, coinciding with sporadic introductions of new bubonic cases. Optimal climate conditions for rat flea to flourish were observed during the epidemic. Estimate of the plague basic reproduction number during the large wave of the epidemic was high, ranging from 5 to 7 depending on model assumptions. The incubation and infection periods for bubonic and pneumonic plague were 4.3 and 3.4 days and 3.8 and 2.9 days, respectively. Parameter estimation suggested that even with a small fraction of the population exposed to infected rat fleas (1/10,000) and a small probability of transition from a bubonic case to a secondary pneumonic case (3%), the high human-to-human transmission rate can still generate a large outbreak. Controlling rodent and fleas can prevent new index cases, but managing human-to-human transmission is key to prevent large-scale outbreaks. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Die-off rates of Cryptosporidium parvum oocysts in a swine lagoon and in a spray field
USDA-ARS?s Scientific Manuscript database
Background: Because of several large-scale outbreaks of cryptosporidiosis in humans, Cryptosporidium has become a public health concern. Commercial swine operations apply large volumes of effluent from lagoons to spray fields as a waste management practice. This effluent is a source of Cryptosporidi...
The Evolution of Ebola virus: Insights from the 2013–2016 Epidemic
Holmes, Edward C.; Dudas, Gytis; Rambaut, Andrew; Andersen, Kristian G.
2017-01-01
Preface The 2013–2016 epidemic of Ebola virus disease in West Africa was of unprecedented magnitude and changed our perspective on this lethal but sporadically emerging virus. This outbreak also marked the beginning of large-scale real-time molecular epidemiology. Herein, we show how evolutionary analyses of Ebola virus genome sequences provided key insights into virus origins, evolution, and spread during the epidemic. We provide basic scientists, epidemiologists, medical practitioners, and other outbreak responders with an enhanced understanding of the utility and limitations of pathogen genomic sequencing. This will be crucially important in our attempts to track and control future infectious disease outbreaks. PMID:27734858
Large-scale Individual-based Models of Pandemic Influenza Mitigation Strategies
NASA Astrophysics Data System (ADS)
Kadau, Kai; Germann, Timothy; Longini, Ira; Macken, Catherine
2007-03-01
We have developed a large-scale stochastic simulation model to investigate the spread of a pandemic strain of influenza virus through the U.S. population of 281 million people, to assess the likely effectiveness of various potential intervention strategies including antiviral agents, vaccines, and modified social mobility (including school closure and travel restrictions) [1]. The heterogeneous population structure and mobility is based on available Census and Department of Transportation data where available. Our simulations demonstrate that, in a highly mobile population, restricting travel after an outbreak is detected is likely to delay slightly the time course of the outbreak without impacting the eventual number ill. For large basic reproductive numbers R0, we predict that multiple strategies in combination (involving both social and medical interventions) will be required to achieve a substantial reduction in illness rates. [1] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken, Proc. Natl. Acad. Sci. (USA) 103, 5935-5940 (2006).
Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations
Jöst, Hanna; Cadar, Daniel; Thomas, Stephanie Margarete; Bosch, Stefan; Tannich, Egbert; Becker, Norbert; Ziegler, Ute; Lachmann, Lars; Schmidt-Chanasit, Jonas
2017-01-01
Usutu virus (USUV) is an emerging mosquitoborne flavivirus with an increasing number of reports from several countries in Europe, where USUV infection has caused high avian mortality rates. However, 20 years after the first observed outbreak of USUV in Europe, there is still no reliable assessment of the large-scale impact of USUV outbreaks on bird populations. In this study, we identified the areas suitable for USUV circulation in Germany and analyzed the effects of USUV on breeding bird populations. We calculated the USUV-associated additional decline of common blackbird (Turdus merula) populations as 15.7% inside USUV-suitable areas but found no significant effect for the other 14 common bird species investigated. Our results show that the emergence of USUV is a further threat for birds in Europe and that the large-scale impact on population levels, at least for common blackbirds, must be considered. PMID:29148399
Farrington, C. Paddy; Noufaily, Angela; Andrews, Nick J.; Charlett, Andre
2016-01-01
A large-scale multiple surveillance system for infectious disease outbreaks has been in operation in England and Wales since the early 1990s. Changes to the statistical algorithm at the heart of the system were proposed and the purpose of this paper is to compare two new algorithms with the original algorithm. Test data to evaluate performance are created from weekly counts of the number of cases of each of more than 2000 diseases over a twenty-year period. The time series of each disease is separated into one series giving the baseline (background) disease incidence and a second series giving disease outbreaks. One series is shifted forward by twelve months and the two are then recombined, giving a realistic series in which it is known where outbreaks have been added. The metrics used to evaluate performance include a scoring rule that appropriately balances sensitivity against specificity and is sensitive to variation in probabilities near 1. In the context of disease surveillance, a scoring rule can be adapted to reflect the size of outbreaks and this was done. Results indicate that the two new algorithms are comparable to each other and better than the algorithm they were designed to replace. PMID:27513749
NASA Astrophysics Data System (ADS)
Moore, D. J.; Wilkes, P.; Quaife, T. L.; Trahan, N. A.; Monson, R. K.; Stephens, B. B.
2010-12-01
A large scale insect outbreak has progressively infected North American Forests in the Rocky Mountains over the last 8 years causing the death of millions of trees. Loss of mature trees on this scale is likely to compromise the ability of these ecosystems to sequester carbon. While a reduction of live leaf area likely leads to reduced carbon uptake gross primary productivity (GPP) the impact of the outbreak on ecosystem respiration (RE) is not clear. We investigated the response of both GPP (2000 through 2010) and RE (2005-2010) to insect out break by contrasting two locations in the Rocky Mountains, the Fraser Experiment Forest (FEF; 39.91 N, 105.88 W) which has been heavily impacted by insects and Niwot Ridge (NWR; 40.05 N, 105.58 W) where the outbreak has not yet occurred. We used a modified estimate of GPP based on enhanced vegetation index (EVI) calibrated using eddy covariance measured at NWR to examine the impact of the beetle outbreak across the region. We found that while GPP decreased significantly at Fraser after the insect outbreak did not show a time dependent decline at NWR. Since 2005 near continuous atmospheric CO2 has been measured at the bottom of FEF. We used the diurnal variation in the CO2 concentration measured at the bottom of Fraser Valley as a proximate measurement of RE. We found that from 2005 through 2009 there was a decline in apparent RE while in 2010 apparent RE increased relative to 2009. Direct measurements of soil CO2 efflux appear to bear out this trend. Barring a large shift in temperature it is possible that the increase in apparent RE in 2010 may be the result of mobilization of N or potentially recovery of GPP from regenerating vegetation. The relative changes in GPP and RE are investigated from 2005 through 2010.
Outbreak statistics and scaling laws for externally driven epidemics.
Singh, Sarabjeet; Myers, Christopher R
2014-04-01
Power-law scalings are ubiquitous to physical phenomena undergoing a continuous phase transition. The classic susceptible-infectious-recovered (SIR) model of epidemics is one such example where the scaling behavior near a critical point has been studied extensively. In this system the distribution of outbreak sizes scales as P(n)∼n-3/2 at the critical point as the system size N becomes infinite. The finite-size scaling laws for the outbreak size and duration are also well understood and characterized. In this work, we report scaling laws for a model with SIR structure coupled with a constant force of infection per susceptible, akin to a "reservoir forcing". We find that the statistics of outbreaks in this system fundamentally differ from those in a simple SIR model. Instead of fixed exponents, all scaling laws exhibit tunable exponents parameterized by the dimensionless rate of external forcing. As the external driving rate approaches a critical value, the scale of the average outbreak size converges to that of the maximal size, and above the critical point, the scaling laws bifurcate into two regimes. Whereas a simple SIR process can only exhibit outbreaks of size O(N1/3) and O(N) depending on whether the system is at or above the epidemic threshold, a driven SIR process can exhibit a richer spectrum of outbreak sizes that scale as O(Nξ), where ξ∈(0,1]∖{2/3} and O((N/lnN)2/3) at the multicritical point.
Tippett, Michael K; Cohen, Joel E
2016-02-29
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Tippett, Michael K.; Cohen, Joel E.
2016-01-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210
NASA Astrophysics Data System (ADS)
Tippett, Michael K.; Cohen, Joel E.
2016-02-01
Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from `outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.
Population Screening for Chronic Q-Fever Seven Years after a Major Outbreak
Morroy, Gabriëlla; van der Hoek, Wim; Albers, Jelle; Coutinho, Roel A.; Bleeker-Rovers, Chantal P.; Schneeberger, Peter M.
2015-01-01
Introduction From 2007 through 2010, the Netherlands experienced a large Q-fever epidemic, with 4,107 notifications. The most serious complication of Q-fever is chronic Q-fever. Method In 2014, we contacted all 2,161 adult inhabitants of the first village in the Netherlands affected by the Q-fever epidemic and offered to test for antibodies against Coxiella burnetii using immunofluorescence assay (IFA) to screen for chronic infections and assess whether large-scale population screening elsewhere is warranted. Results Of the 1,517 participants, 33.8% were IFA-positive. Six IFA-positive participants had an IgG phase I titer ≥1:512. Two of these six participants were previously diagnosed with chronic Q-fever. Chronic infection was diagnosed in one of the other four participants after clinical examination. Conclusions Seven years after the initial outbreak, seroprevalence remains high, but the yield of screening the general population for chronic Q-fever is low. A policy of screening known high-risk groups for chronic Q-fever in outbreak areas directly following an outbreak might be more efficient than population screening. A cost-effectiveness analysis should also be performed before initiating a population screening program for chronic Q-fever. PMID:26132155
An outbreak of Bacillus cereus food poisoning--are caterers supervised sufficiently.
Slaten, D D; Oropeza, R I; Werner, S B
1992-01-01
Bacillus cereus is an uncommonly reported cause of foodborne illness in the United States. In May 1989, an outbreak of B. cereus gastroenteritis occurred among 140 guests who had attended a catered wedding reception in Napa, CA. Investigation established Cornish game hens served at the event as the vehicle for disease transmission (OR = 29, P = 0.0001). Although the spores of B. cereus are ubiquitous, large numbers of toxin-producing organisms (more than 10(5) per gram of food) are required for illness to occur. In the Napa outbreak, bacterial multiplication was facilitated at several points during the preparation and transportation of the food. While a licensed restaurant kitchen was used, the facilities were clearly inadequate for the event. At present, the California Health and Safety Code does not address the scope of catering operations. As caterers increase in number, there will be a growing need for governmental oversight to ensure that food production on a large scale is conducted safely. PMID:1641447
NASA Astrophysics Data System (ADS)
Papritz, L.; Grams, C. M.
2018-03-01
The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.
Cloud-to-Ground Lightning Characteristics of a Major Tropical Cyclone Tornado Outbreak
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.
1999-01-01
It is well known that most tropical cyclones (TCs) that make landfall along the Gulf coast of the United States spawn at least a few tornadoes. Although most landfalling TCs generate fewer than a dozen such tornadoes, a small proportion produce large swarm outbreaks, with as many as 25 or more tornadoes. Usually, these major outbreaks occur in large, intense hurricane-strength TCs, but on 15-17 August 1994 Tropical Storm Beryl spun off 37 tornadoes along its path from the Florida panhandle through the mid-Atlantic states. Some 32 of these tornadoes occurred on 16 August 1994 from eastern Georgia to southern Virginia, with most of these taking place in South Carolina. Beryl's 37 tornadoes moved it into what was at that time fifth place historically in terms of TC tornado productivity. The Beryl outbreak is especially noteworthy in that at least three of the tornadoes achieved peak intensity of F3 on the Fujita damage intensity scale. Although no fatalities resulted from the Beryl outbreak, at least 50 persons suffered injuries, and property damages totalled more than $50 million . The Beryl outbreak is a good example of a TC whose greatest danger to the public is its post-landfall severe weather. In this respect, and in the character of its swarm outbreak of tornadoes, it resembles another large tornado outbreak spawned by a relatively weak TC, Hurricane Danny of 1985). In the Danny outbreak, numerous shallow mini-supercell storms were found to have occurred, and it was noted that, because of the storms' relatively shallow depth, cloud-to-ground (CG) lightning was negligible. Better observations of future TC tornado outbreaks, especially with modern surveillance tools such as Doppler radars and the National Lightning Detection Network (NLDN), were recommended. Although the Beryl tornado outbreak is not the first set of TC-spawned tornado storms to be observed with the NLDN, it is one of the largest and likely the most intense such outbreak. The purpose of this paper is to document the NLDN-derived CG lightning characteristics of Beryl's tornadic storms, and to see how they compare with observations of CG lightning activity in other types of severe storms. In particular, we attempt to quantify the CG flash rates of TC tornadic cells, and to discover if there are any characteristics of their CG activity that may be useful to operational forecasters seeking to distinguish which cells are most likely to produce severe weather.
Villafuerte, Rafael; Castro, Francisca; Ramírez, Esther; Cotilla, Irene; Parra, Francisco; Delibes-Mateos, Miguel; Recuerda, Pilar; Rouco, Carlos
2017-10-01
Myxomatosis is a viral disease that affects European rabbits (Oryctolagus cuniculus) worldwide. In Spain, populations of wild rabbits drastically decreased in the 1950s after the first outbreak of myxomatosis. Since that first appearance, it seems to be an annual epizootic in Spain with periodic outbreaks, predominantly in summer and autumn. Taking into account rabbit population structure, abundance, and genetic lineage, this paper attempts to make a large-scale characterization of myxomatosis seroprevalence based on the immune status of 29 rabbit populations distributed throughout Spain, where O. cuniculus cuniculus and O. c. algirus, the two known rabbit subspecies, naturally inhabit. A total of 654 samples were collected between 2003 and 2009, and seroprevalence of antibodies against Myxoma virus (MYXV) was determined. Overall, our results revealed that 53% of the rabbit samples were positive to antibodies against MYXV. Newborn and juvenile rabbits were the most susceptible animals to the virus, with 19% and 16% seropositivity for newborn and juveniles, respectively, while adult rabbits were the most protected, with 65% of seropositive samples. This suggests that prevalence is negatively related to the proportion of newborn and juvenile rabbits in a population. Our results also showed that seroprevalence against MYXV tended to be higher in high-abundance populations. In contrast, no differences were detected in seroprevalence between rabbit subspecies. This study confirms that >60years since first outbreak, myxomatosis is an endemic disease in Spain. Based on the results, the establishment of a myxomatosis surveillance protocol is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Limits to Forecasting Precision for Outbreaks of Directly Transmitted Diseases
Drake, John M
2006-01-01
Background Early warning systems for outbreaks of infectious diseases are an important application of the ecological theory of epidemics. A key variable predicted by early warning systems is the final outbreak size. However, for directly transmitted diseases, the stochastic contact process by which outbreaks develop entails fundamental limits to the precision with which the final size can be predicted. Methods and Findings I studied how the expected final outbreak size and the coefficient of variation in the final size of outbreaks scale with control effectiveness and the rate of infectious contacts in the simple stochastic epidemic. As examples, I parameterized this model with data on observed ranges for the basic reproductive ratio (R 0) of nine directly transmitted diseases. I also present results from a new model, the simple stochastic epidemic with delayed-onset intervention, in which an initially supercritical outbreak (R 0 > 1) is brought under control after a delay. Conclusion The coefficient of variation of final outbreak size in the subcritical case (R 0 < 1) will be greater than one for any outbreak in which the removal rate is less than approximately 2.41 times the rate of infectious contacts, implying that for many transmissible diseases precise forecasts of the final outbreak size will be unattainable. In the delayed-onset model, the coefficient of variation (CV) was generally large (CV > 1) and increased with the delay between the start of the epidemic and intervention, and with the average outbreak size. These results suggest that early warning systems for infectious diseases should not focus exclusively on predicting outbreak size but should consider other characteristics of outbreaks such as the timing of disease emergence. PMID:16435887
Binns, Philippa L; Sheppeard, Vicky; Staff, Michael P
2010-01-01
During the DELAY and CONTAIN phases of pandemic (H1N1) 2009 influenza in NSW, public health units needed to rapidly surge operations to manage the 3070 potential cases and 1894 contacts notified to them. The Incident Control System, NetEpi (the web-based multi-user access database), training to up-skill surge staff, and electronic communication were all integral to the outbreak response. Ongoing identification and training of surge staff would assist a timely and effective response to future large scale outbreaks. Investing and incorporating information technology tools into routine public health unit business to assist with communication, outbreak management and reporting will improve familiarity and capability within the network to respond to public health emergencies.
Population dynamics in changing environments: the case of an eruptive forest pest species.
Kausrud, Kyrre; Okland, Bjørn; Skarpaas, Olav; Grégoire, Jean-Claude; Erbilgin, Nadir; Stenseth, Nils Chr
2012-02-01
In recent decades we have seen rapid and co-occurring changes in landscape structure, species distributions and even climate as consequences of human activity. Such changes affect the dynamics of the interaction between major forest pest species, such as bark beetles (Coleoptera: Curculionidae, Scolytinae), and their host trees. Normally breeding mostly in broken or severely stressed spruce; at high population densities some bark beetle species can colonise and kill healthy trees on scales ranging from single trees in a stand to multi-annual landscape-wide outbreaks. In Eurasia, the largest outbreaks are caused by the spruce bark beetle, Ips typographus (Linnaeus), which is common and shares a wide distribution with its main host, Norway spruce (Picea abies Karst.). A large literature is now available, from which this review aims to synthesize research relevant for the population dynamics of I. typographus and co-occurring species under changing conditions. We find that spruce bark beetle population dynamics tend to be metastable, but that mixed-species and age-heterogeneous forests with good site-matching tend to be less susceptible to large-scale outbreaks. While large accumulations of logs should be removed and/or debarked before the next swarming period, intensive removal of all coarse dead wood may be counterproductive, as it reduces the diversity of predators that in some areas may play a role in keeping I. typographus populations below the outbreak threshold, and sanitary logging frequently causes edge effects and root damage, reducing the resistance of remaining trees. It is very hard to predict the outcome of interspecific interactions due to invading beetle species or I. typographus establishing outside its current range, as they can be of varying sign and strength and may fluctuate depending on environmental factors and population phase. Most research indicates that beetle outbreaks will increase in frequency and magnitude as temperature, wind speed and precipitation variability increases, and that mitigating forestry practices should be adopted as soon as possible considering the time lags involved. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.
How Will Climate Change Impact Cholera Outbreaks?
NASA Astrophysics Data System (ADS)
Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.
2014-12-01
Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.
Tildesley, Michael J.; Smith, Gary; Keeling, Matt J.
2013-01-01
In this paper, we simulate outbreaks of foot-and-mouth disease in the Commonwealth of Pennsylvania, USA – after the introduction of a state-wide movement ban – as they might unfold in the presence of mitigation strategies. We have adapted a model previously used to investigate FMD control policies in the UK to examine the potential for disease spread given an infection seeded in each county in Pennsylvania. The results are highly dependent upon the county of introduction and the spatial scale of transmission. Should the transmission kernel be identical to that for the UK, the epidemic impact is limited to fewer than 20 premises, regardless of the county of introduction. However, for wider kernels where infection can spread further, outbreaks seeded in or near the county with highest density of premises and animals result in large epidemics (>150 premises). Ring culling and vaccination reduce epidemic size, with the optimal radius of the rings being dependent upon the county of introduction. Should the kernel width exceed a given county-dependent threshold, ring culling is unable to control the epidemic. We find that a vaccinate-to-live policy is generally preferred to ring culling (in terms of reducing the overall number of premises culled), indicating that well-targeted control can dramatically reduce the risk of large scale outbreaks of foot-and-mouth disease occurring in Pennsylvania. PMID:22169708
Spatial-temporal clustering of tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2016-12-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Spatial-Temporal Clustering of Tornadoes
NASA Astrophysics Data System (ADS)
Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.
2017-04-01
The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated individual tornadoes with specified supercell thunderstorms. Our analysis of the 3 May 1999 tornado outbreak directly associated linear features in the largely random spatial-temporal analysis with several supercell thunderstorms, which we then confirmed using model scenarios of synthetic tornado outbreaks. We suggest that it may be possible to develop a semi-automated modelling of tornado touchdowns to match the type of observations made on the 3 May 1999 outbreak.
Hydroclimatic mechanisms of cholera transmission in the Bengal Delta
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2011-07-01
Cholera, a deadly waterborne disease, remains a major threat in many areas of the world, including the Bengal Delta region. In this region, cholera outbreaks have two annual peaks; the first occurs during the dry season in the spring, and the second occurs in the fall following the wet season. However, the large-scale hydroclimatic processes underlying the propagation of the disease have not been well understood. Akanda et al. show that cholera outbreaks in the Bengal Delta region propagate from the coast to inland and from spring to fall following two distinct transmission cycles. The first outbreak begins in the spring near the coast when northward movement of plankton-rich seawater and increasing salinity promote the growth of cholera-causing bacteria in rivers, which are used for irrigation, sanitation, and consumption. The second outbreak begins in the fall, after summer floods and monsoons affect sanitation conditions that aid in bacterial transmission by contaminating waters over much of Bangladesh. (Water Resources Research, doi:10.1029/ 2010WR009914, 2011)
Impact of foot-and-mouth disease on milk production on a large-scale dairy farm in Kenya.
Lyons, Nicholas A; Alexander, Neal; Stärk, Katharina D C; Dulu, Thomas D; Sumption, Keith J; James, Andrew D; Rushton, Jonathan; Fine, Paul E M
2015-06-15
The economic impact of foot-and-mouth disease (FMD) has been poorly characterised particularly in endemic settings where such knowledge is important for decision-making on disease control with limited resources. In order to address this, a study was designed using individual animal data from a large-scale dairy farm in Kenya to estimate the impact of an FMD outbreak due to serotype SAT2 virus on milk yield. Daily milk yields from 218 mainly European-breed cattle that were lactating during the 29-day outbreak period were considered in the analysis. At the herd level, the average daily yields decreased from around 20 to 13kg per cow, recovering approximately 2 months after the commencement of the outbreak. Generalised estimating equations (GEE) and an autoregressive correlation matrix were used to compare yields of reported clinical FMD cases and non-cases. No difference was found between reported clinical and non-clinical cases suggesting inaccurate case recording, poor sensitivity of the case definition and subclinical infections being present. To further investigate the impact of FMD, yields were predicted for each individual animal based on historic data from the same herd using a similar GEE approach. For cattle lactating during the outbreak, comparisons were made between actual and predicted yields from the commencement of the outbreak to 305 days lactation using a linear regression model. Animals produced significantly less than predicted if in parity 2 or greater and between 0 and 50 days in milk (DIM) at the start of the outbreak period. The maximum effect was seen among animals in parity ≥4 and between 0 and 50 DIM at the start of the outbreak, producing on average 688.7kg (95%CI 395.5, 981.8) less milk than predicted for their remaining lactation, representing an average 15% reduction in the 305 day production for these animals. Generalisation of the results requires caution as the majority of Kenyan milk is produced in smallholder farms. However, such farms use similar genetics and feeding practices to the study farm, and such systems are increasingly important in the supply of milk globally. These results make an important and unique contribution to the evidence base on FMD impact among dairy cattle in an endemic setting. Copyright © 2015 Elsevier B.V. All rights reserved.
Nakamura, Kazuya; Shirakura, Masayuki; Fujisaki, Seiichiro; Kishida, Noriko; Burke, David F; Smith, Derek J; Kuwahara, Tomoko; Takashita, Emi; Takayama, Ikuyo; Nakauchi, Mina; Chadha, Mandeep; Potdar, Varsha; Bhushan, Arvind; Upadhyay, Bishnu Prasad; Shakya, Geeta; Odagiri, Takato; Kageyama, Tsutomu; Watanabe, Shinji
2017-09-01
We characterized influenza A(H1N1)pdm09 isolates from large-scale outbreaks that occurred in Nepal and India in early 2015. Although no specific viral features, which may have caused the outbreaks, were identified, an S84N substitution in hemagglutinin was frequently observed. Chronological phylogenetic analysis revealed that these Nepalese and Indian viruses possessing the S84N substitution constitute potential ancestors of the novel genetic subclade 6B.1 virus that spread globally in the following (2015/16) influenza season. Thus, active surveillance of circulating influenza viruses in the Southern Asia region, including Nepal and India, would be beneficial for detecting novel variant viruses prior to their worldwide spread. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
Prophylaxis and treatment of pregnant women for emerging infections and bioterrorism emergencies.
Cono, Joanne; Cragan, Janet D; Jamieson, Denise J; Rasmussen, Sonja A
2006-11-01
Emerging infectious disease outbreaks and bioterrorism attacks warrant urgent public health and medical responses. Response plans for these events may include use of medications and vaccines for which the effects on pregnant women and fetuses are unknown. Healthcare providers must be able to discuss the benefits and risks of these interventions with their pregnant patients. Recent experiences with outbreaks of severe acute respiratory syndrome, monkeypox, and anthrax, as well as response planning for bioterrorism and pandemic influenza, illustrate the challenges of making recommendations about treatment and prophylaxis for pregnant women. Understanding the physiology of pregnancy, the factors that influence the teratogenic potential of medications and vaccines, and the infection control measures that may stop an outbreak will aid planners in making recommendations for care of pregnant women during large-scale infectious disease emergencies.
Cheng, Karen Elizabeth; Crary, David J; Ray, Jaideep; Safta, Cosmin
2013-01-01
Objective We discuss the use of structural models for the analysis of biosurveillance related data. Methods and results Using a combination of real and simulated data, we have constructed a data set that represents a plausible time series resulting from surveillance of a large scale bioterrorist anthrax attack in Miami. We discuss the performance of anomaly detection with structural models for these data using receiver operating characteristic (ROC) and activity monitoring operating characteristic (AMOC) analysis. In addition, we show that these techniques provide a method for predicting the level of the outbreak valid for approximately 2 weeks, post-alarm. Conclusions Structural models provide an effective tool for the analysis of biosurveillance data, in particular for time series with noisy, non-stationary background and missing data. PMID:23037798
Stamm, Lola V.
2015-01-01
Ebola virus disease (EVD) is a life-threatening zoonosis caused by infection with the Ebola virus. Since the first reported EVD outbreak in the Democratic Republic of the Congo, several small outbreaks have been reported in central Africa with about 2,400 cases occurring between 1976 and 2013. The 2013–2015 EVD outbreak in west Africa is the first documented outbreak in this region and the largest ever with over 27,000 cases and more than 11,000 deaths. Although EVD transmission rates have recently decreased in west Africa, this crisis continues to threaten global health and security, particularly since infected travelers could spread EVD to other resource-limited areas of the world. Because vaccines and drugs are not yet licensed for EVD, outbreak control is dependent on the use of non-pharmaceutical interventions (e.g., infection control practices, isolation of EVD cases, contact tracing with follow-up and quarantine, sanitary burial, health education). However, delays in diagnosing and reporting EVD cases in less accessible rural areas continue to hamper control efforts. New advances in rapid diagnostics for identifying presumptive EVD cases and in mobile-based technologies for communicating critical health-related information should facilitate deployment of an early response to prevent the amplification of sporadic EVD cases into large-scale outbreaks. PMID:26175026
Graham, Jay P; Leibler, Jessica H; Price, Lance B; Otte, Joachim M; Pfeiffer, Dirk U; Tiensin, T; Silbergeld, Ellen K
2008-01-01
Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.
Timmers, Molly A.; Bird, Christopher E.; Skillings, Derek J.; Smouse, Peter E.; Toonen, Robert J.
2012-01-01
One of the most significant biological disturbances on a tropical coral reef is a population outbreak of the fecund, corallivorous crown-of-thorns sea star, Acanthaster planci. Although the factors that trigger an initial outbreak may vary, successive outbreaks within and across regions are assumed to spread via the planktonic larvae released from a primary outbreak. This secondary outbreak hypothesis is predominantly based on the high dispersal potential of A. planci and the assertion that outbreak populations (a rogue subset of the larger population) are genetically more similar to each other than they are to low-density non-outbreak populations. Here we use molecular techniques to evaluate the spatial scale at which A. planci outbreaks can propagate via larval dispersal in the central Pacific Ocean by inferring the location and severity of gene flow restrictions from the analysis of mtDNA control region sequence (656 specimens, 17 non-outbreak and six outbreak locations, six archipelagos, and three regions). Substantial regional, archipelagic, and subarchipelagic-scale genetic structuring of A. planci populations indicate that larvae rarely realize their dispersal potential and outbreaks in the central Pacific do not spread across the expanses of open ocean. On a finer scale, genetic partitioning was detected within two of three islands with multiple sampling sites. The finest spatial structure was detected at Pearl & Hermes Atoll, between the lagoon and forereef habitats (<10 km). Despite using a genetic marker capable of revealing subtle partitioning, we found no evidence that outbreaks were a rogue genetic subset of a greater population. Overall, outbreaks that occur at similar times across population partitions are genetically independent and likely due to nutrient inputs and similar climatic and ecological conditions that conspire to fuel plankton blooms. PMID:22363570
Donato, Daniel C.; Raffa, Kenneth F.; Turner, Monica G.
2016-01-01
Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes. PMID:27821739
Seidl, Rupert; Donato, Daniel C; Raffa, Kenneth F; Turner, Monica G
2016-11-15
Climate change is altering the frequency and severity of forest disturbances such as wildfires and bark beetle outbreaks, thereby increasing the potential for sequential disturbances to interact. Interactions can amplify or dampen disturbances, yet the direction and magnitude of future disturbance interactions are difficult to anticipate because underlying mechanisms remain poorly understood. We tested how variability in postfire forest development affects future susceptibility to bark beetle outbreaks, focusing on mountain pine beetle (Dendroctonus ponderosae) and Douglas-fir beetle (Dendroctonus pseudotsugae) in forests regenerating from the large high-severity fires that affected Yellowstone National Park in Wyoming in 1988. We combined extensive field data on postfire tree regeneration with a well-tested simulation model to assess susceptibility to bark beetle outbreaks over 130 y of stand development. Despite originating from the same fire event, among-stand variation in forest structure was very high and remained considerable for over a century. Thus, simulated emergence of stands susceptible to bark beetles was not temporally synchronized but was protracted by several decades, compared with stand development from spatially homogeneous regeneration. Furthermore, because of fire-mediated variability in forest structure, the habitat connectivity required to support broad-scale outbreaks and amplifying cross-scale feedbacks did not develop until well into the second century after the initial burn. We conclude that variability in tree regeneration after disturbance can dampen and delay future disturbance by breaking spatiotemporal synchrony on the landscape. This highlights the importance of fostering landscape variability in the context of ecosystem management given changing disturbance regimes.
Epidemic outbreaks in complex heterogeneous networks
NASA Astrophysics Data System (ADS)
Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.
2002-04-01
We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.
NASA Astrophysics Data System (ADS)
Bates, Alyssa Victoria
Tornado outbreaks have significant human impact, so it is imperative forecasts of these phenomena are accurate. As a synoptic setup lays the foundation for a forecast, synoptic-scale aspects of Storm Prediction Center (SPC) outbreak forecasts of varying accuracy were assessed. The percentages of the number of tornado outbreaks within SPC 10% tornado probability polygons were calculated. False alarm events were separately considered. The outbreaks were separated into quartiles using a point-in-polygon algorithm. Statistical composite fields were created to represent the synoptic conditions of these groups and facilitate comparison. Overall, temperature advection had the greatest differences between the groups. Additionally, there were significant differences in the jet streak strengths and amounts of vertical wind shear. The events forecasted with low accuracy consisted of the weakest synoptic-scale setups. These results suggest it is possible that events with weak synoptic setups should be regarded as areas of concern by tornado outbreak forecasters.
Uribe-Sánchez, Andrés; Savachkin, Alex
2011-01-01
As recently pointed out by the Institute of Medicine, the existing pandemic mitigation models lack the dynamic decision support capability. We develop a large-scale simulation-driven optimization model for generating dynamic predictive distribution of vaccines and antivirals over a network of regional pandemic outbreaks. The model incorporates measures of morbidity, mortality, and social distancing, translated into the cost of lost productivity and medical expenses. The performance of the strategy is compared to that of the reactive myopic policy, using a sample outbreak in Fla, USA, with an affected population of over four millions. The comparison is implemented at different levels of vaccine and antiviral availability and administration capacity. Sensitivity analysis is performed to assess the impact of variability of some critical factors on policy performance. The model is intended to support public health policy making for effective distribution of limited mitigation resources. PMID:23074658
NASA Astrophysics Data System (ADS)
McCoy, Isabel; Wood, Robert; Fletcher, Jennifer
Marine low clouds are key influencers of the climate and contribute significantly to uncertainty in model climate sensitivity due to their small scale and complex processes. Many low clouds occur in large-scale cellular patterns, known as open and closed mesoscale cellular convection (MCC), which have significantly different radiative and microphysical properties. Investigating MCC development and meteorological controls will improve our understanding of their impacts on the climate. We conducted an examination of time-varying meteorological conditions associated with satellite-determined open and closed MCC. The spatial and temporal patterns of MCC clouds were compared with key meteorological control variables calculated from ERA-Interim Reanalysis to highlight dependencies and major differences. This illustrated the influence of environmental stability and surface forcing as well as the role of marine cold air outbreaks (MCAO, the movement of cold air from polar-regions across warmer waters) in MCC cloud formation. Such outbreaks are important to open MCC development and may also influence the transition from open to closed MCC. Our results may lead to improvements in the parameterization of cloudiness and advance the simulation of marine low clouds. National Science Foundation Graduate Research Fellowship Grant (DGE-1256082).
The battle against bark beetles in Crater Lake National Park: 1925-34
B.E. Wickman
1987-01-01
This history records the first large-scale bark beetle control project in a national park in the Pacific Northwest. It describes the relations between Park Service, Forest Service, and USDA Bureau of Entomology personnel; how the project was organized; the ecological implications of the outbreak; and the long-term results of direct control measures.
Ips typographus and Ophiostoma polonicum versus Norway spruce: joint attack and host defense
Erik Christiansen
1991-01-01
During the years 1971 to 1982, major epidemics of the spruce bark beetle, Ips typographus L., occurred in southeastern Norway and adjoining parts of Sweden. The outbreaks were triggered by large-scale wind-felling and long-lasting drought (Worrell 1983). This "epidemic of the century," hitting our important timber tree, Norway spruce,...
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak.
Inferring rubella outbreak risk from seroprevalence data in Belgium.
Abrams, Steven; Kourkouni, Eleni; Sabbe, Martine; Beutels, Philippe; Hens, Niel
2016-12-07
Rubella is usually a mild disease for which infections often pass by unnoticed. In approximately 50% of the cases, there are no or only few clinical symptoms. However, rubella contracted during early pregnancy could lead to spontaneous abortion, to central nervous system defects, or to one of a range of other serious and debilitating conditions in a newborn such as the congenital rubella syndrome. Before the introduction of mass vaccination, rubella was a common childhood infection occurring all over the world. However, since the introduction of rubella antigen-containing vaccines, the incidence of rubella has declined dramatically in high-income countries. Recent large-scale mumps outbreaks, one of the components in the combined measles-mumps-rubella vaccine, occurring in countries throughout Europe with high vaccination coverage, provide evidence of pathogen-specific waning of vaccine-induced immunity and primary vaccine failure. In addition, recent measles outbreaks affecting populations with suboptimal vaccination coverages stress the importance of maintaining high vaccination coverages. In this paper, we focus on the assessment of rubella outbreak risk using a previously developed method to identify geographic regions of high outbreak potential. The methodology relies on 2006 rubella seroprevalence data and vaccination coverage data from Belgium and information on primary and secondary vaccine failure obtained from extensive literature reviews. We estimated the rubella outbreak risk in Belgium to be low, however maintaining high levels of immunisation and surveillance are of utmost importance to avoid future outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grad, Yonatan H.; Godfrey, Paul; Cerquiera, Gustavo C.; Mariani-Kurkdjian, Patricia; Gouali, Malika; Bingen, Edouard; Shea, Terrence P.; Haas, Brian J.; Griggs, Allison; Young, Sarah; Zeng, Qiandong; Lipsitch, Marc; Waldor, Matthew K.; Weill, François-Xavier; Wortman, Jennifer R.; Hanage, William P.
2013-01-01
ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. PMID:23341549
Kayal, Mohsen; Vercelloni, Julie; Lison de Loma, Thierry; Bosserelle, Pauline; Chancerelle, Yannick; Geoffroy, Sylvie; Stievenart, Céline; Michonneau, François; Penin, Lucie; Planes, Serge; Adjeroud, Mehdi
2012-01-01
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Christner, Martin; Trusch, Maria; Rohde, Holger; Kwiatkowski, Marcel; Schlüter, Hartmut; Wolters, Manuel; Aepfelbacher, Martin; Hentschke, Moritz
2014-01-01
In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification. Specific peaks in the outbreak strain's spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak. Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates. MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.
Zingg, Dana; Häsler, Stephan; Schuepbach-Regula, Gertraud; Schwermer, Heinzpeter; Dürr, Salome
2015-01-01
Foot-and-mouth disease (FMD) is a highly contagious disease that caused several large outbreaks in Europe in the last century. The last important outbreak in Switzerland took place in 1965/66 and affected more than 900 premises and more than 50,000 animals were slaughtered. Large-scale emergency vaccination of the cattle and pig population has been applied to control the epidemic. In recent years, many studies have used infectious disease models to assess the impact of different disease control measures, including models developed for diseases exotic for the specific region of interest. Often, the absence of real outbreak data makes a validation of such models impossible. This study aimed to evaluate whether a spatial, stochastic simulation model (the Davis Animal Disease Simulation model) can predict the course of a Swiss FMD epidemic based on the available historic input data on population structure, contact rates, epidemiology of the virus, and quality of the vaccine. In addition, the potential outcome of the 1965/66 FMD epidemic without application of vaccination was investigated. Comparing the model outcomes to reality, only the largest 10% of the simulated outbreaks approximated the number of animals being culled. However, the simulation model highly overestimated the number of culled premises. While the outbreak duration could not be well reproduced by the model compared to the 1965/66 epidemic, it was able to accurately estimate the size of the area infected. Without application of vaccination, the model predicted a much higher mean number of culled animals than with vaccination, demonstrating that vaccination was likely crucial in disease control for the Swiss FMD outbreak in 1965/66. The study demonstrated the feasibility to analyze historical outbreak data with modern analytical tools. However, it also confirmed that predicted epidemics from a most carefully parameterized model cannot integrate all eventualities of a real epidemic. Therefore, decision makers need to be aware that infectious disease models are useful tools to support the decision-making process but their results are not equal valuable as real observations and should always be interpreted with caution. PMID:26697436
Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2.
Tang, Jiaqi; Wang, Changjun; Feng, Youjun; Yang, Weizhong; Song, Huaidong; Chen, Zhihai; Yu, Hongjie; Pan, Xiuzhen; Zhou, Xiaojun; Wang, Huaru; Wu, Bo; Wang, Haili; Zhao, Huamei; Lin, Ying; Yue, Jianhua; Wu, Zhenqiang; He, Xiaowei; Gao, Feng; Khan, Abdul Hamid; Wang, Jian; Zhao, Guo-Ping; Wang, Yu; Wang, Xiaoning; Chen, Zhu; Gao, George F
2006-05-01
Streptococcus suis serotype 2 (S. suis 2, SS2) is a major zoonotic pathogen that causes only sporadic cases of meningitis and sepsis in humans. Most if not all cases of Streptococcal toxic shock syndrome (STSS) that have been well-documented to date were associated with the non-SS2 group A streptococcus (GAS). However, a recent large-scale outbreak of SS2 in Sichuan Province, China, appeared to be caused by more invasive deep-tissue infection with STSS, characterized by acute high fever, vascular collapse, hypotension, shock, and multiple organ failure. We investigated this outbreak of SS2 infections in both human and pigs, which took place from July to August, 2005, through clinical observation and laboratory experiments. Clinical and pathological characterization of the human patients revealed the hallmarks of typical STSS, which to date had only been associated with GAS infection. Retrospectively, we found that this outbreak was very similar to an earlier outbreak in Jiangsu Province, China, in 1998. We isolated and analyzed 37 bacterial strains from human specimens and eight from pig specimens of the recent outbreak, as well as three human isolates and two pig isolates from the 1998 outbreak we had kept in our laboratory. The bacterial isolates were examined using light microscopy observation, pig infection experiments, multiplex-PCR assay, as well as restriction fragment length polymorphisms (RFLP) and multiple sequence alignment analyses. Multiple lines of evidence confirmed that highly virulent strains of SS2 were the causative agents of both outbreaks. We report, to our knowledge for the first time, two outbreaks of STSS caused by SS2, a non-GAS streptococcus. The 2005 outbreak was associated with 38 deaths out of 204 documented human cases; the 1998 outbreak with 14 deaths out of 25 reported human cases. Most of the fatal cases were characterized by STSS; some of them by meningitis or severe septicemia. The molecular mechanisms underlying these human STSS outbreaks in human beings remain unclear and an objective for further study.
Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence
Assal, Timothy J.; Sibold, Jason; Reich, Robin M.
2014-01-01
Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the landscape.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Christner, Martin; Trusch, Maria; Rohde, Holger; Kwiatkowski, Marcel; Schlüter, Hartmut; Wolters, Manuel; Aepfelbacher, Martin; Hentschke, Moritz
2014-01-01
Background In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification. Methods Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak. Results Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates. Conclusions MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow. PMID:25003758
Choi, S; Jung, E; Choi, B Y; Hur, Y J; Ki, M
2018-06-01
Effective countermeasures against emerging infectious diseases require an understanding of transmission rate and basic reproduction number (R 0 ). R 0 for severe acute respiratory syndrome is generally considered to be >1, whereas that for Middle East respiratory syndrome (MERS) is considered to be <1. However, this does not explain the large-scale outbreaks of MERS that occurred in Kingdom of Saudi Arabia (KSA) and South Korean hospitals. To estimate R 0 in nosocomial outbreaks of MERS. R 0 was estimated using the incidence decay with an exponential adjustment model. The KSA and Korean outbreaks were compared using a line listing of MERS cases compiled using publicly available sources. Serial intervals to estimate R 0 were assumed to be six to eight days. Study parameters [R 0 and countermeasures (d)] were estimated by fitting a model to the cumulative incidence epidemic curves using Matlab. The estimated R 0 in Korea was 3.9 in the best-fit model, with a serial interval of six days. The first outbreak cluster in a hospital in Pyeongtaek had an R 0 of 4.04, and the largest outbreak cluster in a hospital in Samsung had an R 0 of 5.0. Assuming a six-day serial interval, the KSA outbreaks in Jeddah and Riyadh had R 0 values of 3.9 and 1.9, respectively. R 0 for the nosocomial MERS outbreaks in KSA and South Korea was estimated to be in the range of 2-5, which is significantly higher than the previous estimate of <1. Therefore, more comprehensive countermeasures are needed to address these infections. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Vindstad, Ole Petter Laksforsmo; Schultze, Sabrina; Jepsen, Jane Uhd; Biuw, Martin; Kapari, Lauri; Sverdrup-Thygeson, Anne; Ims, Rolf Anker
2014-01-01
Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak. PMID:24911056
Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City.
Yang, Wan; Olson, Donald R; Shaman, Jeffrey
2016-11-01
The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast.
Springtime ENSO Flavors and Their Impacts on US Regional Tornado Outbreaks
NASA Astrophysics Data System (ADS)
Lee, S. K.; Wittenberg, A. T.; Enfield, D. B.; Weaver, S. J.; Wang, C.; Atlas, R. M.
2015-12-01
A new method is presented to objectively characterize and explore the differences in the space-time evolution of equatorial Pacific SSTAs observed during El Nino events. An application of this method to the 21 El Nino events during 1949-2013 captured two leading orthogonal modes, which explain more than 60% of the inter-event variance. The first mode distinguishes a strong and persistent El Nino from a weak and early-terminating El Niño. A similar analysis applied to the 22 La Nina events during 1949-2013 also revealed two leading orthogonal modes, with its first mode distinguishing a resurgent La Nina from a transitioning La Nina. This study shows that the four main phases of springtime El Nino-Southern Oscillation (ENSO) evolution (persistent versus early-terminating El Nino, and resurgent versus transitioning La Nina) are linked to distinctive spatial patterns of the probability of U.S. regional tornado outbreaks. In particular, the outbreak probability increases significantly up to 27% over the Ohio Valley, Upper Midwest and Southeast when a La Nina persists into the spring and is followed by another La Nina (i.e., resurgent La Nina). The probability also increases significantly up to 38%, but mainly in the South, when a two-year La Nina transitions to an El Nino (i.e., transitioning La Nna). These changes in outbreak probability are shown to be largely consistent with remotely forced regional changes in the large-scale tropospheric circulation, low-level vertical wind shear, moisture transports and extratropical storm activity.
Coleman, Marlize; Coleman, Michael; Mabuza, Aaron M; Kok, Gerdalize; Coetzee, Maureen; Durrheim, David N
2008-04-27
To evaluate the performance of a novel malaria outbreak identification system in the epidemic prone rural area of Mpumalanga Province, South Africa, for timely identification of malaria outbreaks and guiding integrated public health responses. Using five years of historical notification data, two binomial thresholds were determined for each primary health care facility in the highest malaria risk area of Mpumalanga province. Whenever the thresholds were exceeded at health facility level (tier 1), primary health care staff notified the malaria control programme, which then confirmed adequate stocks of malaria treatment to manage potential increased cases. The cases were followed up at household level to verify the likely source of infection. The binomial thresholds were reviewed at village/town level (tier 2) to determine whether additional response measures were required. In addition, an automated electronic outbreak identification system at town/village level (tier 2) was integrated into the case notification database (tier 3) to ensure that unexpected increases in case notification were not missed.The performance of these binomial outbreak thresholds was evaluated against other currently recommended thresholds using retrospective data. The acceptability of the system at primary health care level was evaluated through structured interviews with health facility staff. Eighty four percent of health facilities reported outbreaks within 24 hours (n = 95), 92% (n = 104) within 48 hours and 100% (n = 113) within 72 hours. Appropriate response to all malaria outbreaks (n = 113, tier 1, n = 46, tier 2) were achieved within 24 hours. The system was positively viewed by all health facility staff. When compared to other epidemiological systems for a specified 12 month outbreak season (June 2003 to July 2004) the binomial exact thresholds produced one false weekly outbreak, the C-sum 12 weekly outbreaks and the mean + 2 SD nine false weekly outbreaks. Exceeding the binomial level 1 threshold triggered an alert four weeks prior to an outbreak, but exceeding the binomial level 2 threshold identified an outbreak as it occurred. The malaria outbreak surveillance system using binomial thresholds achieved its primary goal of identifying outbreaks early facilitating appropriate local public health responses aimed at averting a possible large-scale epidemic in a low, and unstable, malaria transmission setting.
Jacobsen, Sonja; Patel, Pranav; Rieger, Toni; Eickmann, Markus; Becker, Stephan; Günther, Stephan; Naidoo, Dhamari; Schrick, Livia; Keeren, Kathrin; Targosz, Angelina; Teichmann, Anette; Formenty, Pierre; Niedrig, Matthias
2017-01-01
During the recent Ebola outbreak in West Africa several international mobile laboratories were deployed to the mainly affected countries Guinea, Sierra Leone and Liberia to provide ebolavirus diagnostic capacity. Additionally, imported cases and small outbreaks in other countries required global preparedness for Ebola diagnostics. Detection of viral RNA by reverse transcription polymerase chain reaction has proven effective for diagnosis of ebolavirus disease and several assays are available. However, reliability of these assays is largely unknown and requires serious evaluation. Therefore, a proficiency test panel of 11 samples was generated and distributed on a global scale. Panels were analyzed by 83 expert laboratories and 106 data sets were returned. From these 78 results were rated optimal and 3 acceptable, 25 indicated need for improvement. While performance of the laboratories deployed to West Africa was superior to the overall performance there was no significant difference between the different assays applied. PMID:28459810
Ellerbrok, Heinz; Jacobsen, Sonja; Patel, Pranav; Rieger, Toni; Eickmann, Markus; Becker, Stephan; Günther, Stephan; Naidoo, Dhamari; Schrick, Livia; Keeren, Kathrin; Targosz, Angelina; Teichmann, Anette; Formenty, Pierre; Niedrig, Matthias
2017-05-01
During the recent Ebola outbreak in West Africa several international mobile laboratories were deployed to the mainly affected countries Guinea, Sierra Leone and Liberia to provide ebolavirus diagnostic capacity. Additionally, imported cases and small outbreaks in other countries required global preparedness for Ebola diagnostics. Detection of viral RNA by reverse transcription polymerase chain reaction has proven effective for diagnosis of ebolavirus disease and several assays are available. However, reliability of these assays is largely unknown and requires serious evaluation. Therefore, a proficiency test panel of 11 samples was generated and distributed on a global scale. Panels were analyzed by 83 expert laboratories and 106 data sets were returned. From these 78 results were rated optimal and 3 acceptable, 25 indicated need for improvement. While performance of the laboratories deployed to West Africa was superior to the overall performance there was no significant difference between the different assays applied.
The 2012 Madeira dengue outbreak: epidemiological determinants and future epidemic potential.
Lourenço, José; Recker, Mario
2014-08-01
Dengue, a vector-borne viral disease of increasing global importance, is classically associated with tropical and sub-tropical regions around the world. Urbanisation, globalisation and climate trends, however, are facilitating the geographic spread of its mosquito vectors, thereby increasing the risk of the virus establishing itself in previously unaffected areas and causing large-scale epidemics. On 3 October 2012, two autochthonous dengue infections were reported within the Autonomous Region of Madeira, Portugal. During the following seven months, this first 'European' dengue outbreak caused more than 2000 local cases and 81 exported cases to mainland Europe. Here, using an ento-epidemiological mathematical framework, we estimate that the introduction of dengue to Madeira occurred around a month before the first official cases, during the period of maximum influx of airline travel, and that the naturally declining temperatures of autumn were the determining factor for the outbreak's demise in early December 2012. Using key estimates, together with local climate data, we further propose that there is little support for dengue endemicity on this island, but a high potential for future epidemic outbreaks when seeded between May and August-a period when detection of imported cases is crucial for Madeira's public health planning.
The 2012 Madeira Dengue Outbreak: Epidemiological Determinants and Future Epidemic Potential
Lourenço, José; Recker, Mario
2014-01-01
Dengue, a vector-borne viral disease of increasing global importance, is classically associated with tropical and sub-tropical regions around the world. Urbanisation, globalisation and climate trends, however, are facilitating the geographic spread of its mosquito vectors, thereby increasing the risk of the virus establishing itself in previously unaffected areas and causing large-scale epidemics. On 3 October 2012, two autochthonous dengue infections were reported within the Autonomous Region of Madeira, Portugal. During the following seven months, this first ‘European’ dengue outbreak caused more than 2000 local cases and 81 exported cases to mainland Europe. Here, using an ento-epidemiological mathematical framework, we estimate that the introduction of dengue to Madeira occurred around a month before the first official cases, during the period of maximum influx of airline travel, and that the naturally declining temperatures of autumn were the determining factor for the outbreak's demise in early December 2012. Using key estimates, together with local climate data, we further propose that there is little support for dengue endemicity on this island, but a high potential for future epidemic outbreaks when seeded between May and August—a period when detection of imported cases is crucial for Madeira's public health planning. PMID:25144749
Tracking Cholera in Coastal Regions using Satellite Observations
Jutla, Antarpreet S; Akanda, Ali S; Islam, Shafiqul
2010-01-01
Cholera remains a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and then spread inland through secondary means. Cholera bacteria show strong association with plankton abundance in coastal ecosystems. This review study investigates relationship(s) between cholera incidence and coastal processes and explores utility of using remote sensing data to track coastal plankton blooms, using chlorophyll as a surrogate variable for plankton abundance, and subsequent cholera outbreaks. Most studies over the last several decades have primarily focused on the microbiological and epidemiological understanding of cholera outbreaks. Accurate identification and mechanistic understanding of large scale climatic, geophysical and oceanic processes governing cholera-chlorophyll relationship is important for developing cholera prediction models. Development of a holistic understanding of these processes requires long and reliable chlorophyll dataset(s), which are beginning to be available through satellites. We have presented a schematic pathway and a modeling framework that relate cholera with various hydroclimatic and oceanic variables for understanding disease dynamics using latest advances in remote sensing. Satellite data, with its unprecedented spatial and temporal coverage, have potentials to monitor coastal processes and track cholera outbreaks in endemic regions. PMID:21072249
Efficient detection of contagious outbreaks in massive metropolitan encounter networks
Sun, Lijun; Axhausen, Kay W.; Lee, Der-Horng; Cebrian, Manuel
2014-01-01
Physical contact remains difficult to trace in large metropolitan networks, though it is a key vehicle for the transmission of contagious outbreaks. Co-presence encounters during daily transit use provide us with a city-scale time-resolved physical contact network, consisting of 1 billion contacts among 3 million transit users. Here, we study the advantage that knowledge of such co-presence structures may provide for early detection of contagious outbreaks. We first examine the “friend sensor” scheme - a simple, but universal strategy requiring only local information - and demonstrate that it provides significant early detection of simulated outbreaks. Taking advantage of the full network structure, we then identify advanced “global sensor sets”, obtaining substantial early warning times savings over the friends sensor scheme. Individuals with highest number of encounters are the most efficient sensors, with performance comparable to individuals with the highest travel frequency, exploratory behavior and structural centrality. An efficiency balance emerges when testing the dependency on sensor size and evaluating sensor reliability; we find that substantial and reliable lead-time could be attained by monitoring only 0.01% of the population with the highest degree. PMID:24903017
Jose F. Negron; Christopher J. Fettig
2014-01-01
It is well documented in the scientific and popular literature that large-scale bark beetle outbreaks are occurring across many coniferous forests in the western United States. One of the major species exhibiting extensive eruptive populations resulting in high levels of tree mortality is the mountain pine beetle, Dendroctonus ponderosae (Hopkins) (Negron et al. 2008...
Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City
2016-01-01
The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast. PMID:27855155
Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks.
Finger, Flavio; Genolet, Tina; Mari, Lorenzo; de Magny, Guillaume Constantin; Manga, Noël Magloire; Rinaldo, Andrea; Bertuzzo, Enrico
2016-06-07
The spatiotemporal evolution of human mobility and the related fluctuations of population density are known to be key drivers of the dynamics of infectious disease outbreaks. These factors are particularly relevant in the case of mass gatherings, which may act as hotspots of disease transmission and spread. Understanding these dynamics, however, is usually limited by the lack of accurate data, especially in developing countries. Mobile phone call data provide a new, first-order source of information that allows the tracking of the evolution of mobility fluxes with high resolution in space and time. Here, we analyze a dataset of mobile phone records of ∼150,000 users in Senegal to extract human mobility fluxes and directly incorporate them into a spatially explicit, dynamic epidemiological framework. Our model, which also takes into account other drivers of disease transmission such as rainfall, is applied to the 2005 cholera outbreak in Senegal, which totaled more than 30,000 reported cases. Our findings highlight the major influence that a mass gathering, which took place during the initial phase of the outbreak, had on the course of the epidemic. Such an effect could not be explained by classic, static approaches describing human mobility. Model results also show how concentrated efforts toward disease control in a transmission hotspot could have an important effect on the large-scale progression of an outbreak.
Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks
Finger, Flavio; Genolet, Tina; Mari, Lorenzo; de Magny, Guillaume Constantin; Manga, Noël Magloire; Rinaldo, Andrea; Bertuzzo, Enrico
2016-01-01
The spatiotemporal evolution of human mobility and the related fluctuations of population density are known to be key drivers of the dynamics of infectious disease outbreaks. These factors are particularly relevant in the case of mass gatherings, which may act as hotspots of disease transmission and spread. Understanding these dynamics, however, is usually limited by the lack of accurate data, especially in developing countries. Mobile phone call data provide a new, first-order source of information that allows the tracking of the evolution of mobility fluxes with high resolution in space and time. Here, we analyze a dataset of mobile phone records of ∼150,000 users in Senegal to extract human mobility fluxes and directly incorporate them into a spatially explicit, dynamic epidemiological framework. Our model, which also takes into account other drivers of disease transmission such as rainfall, is applied to the 2005 cholera outbreak in Senegal, which totaled more than 30,000 reported cases. Our findings highlight the major influence that a mass gathering, which took place during the initial phase of the outbreak, had on the course of the epidemic. Such an effect could not be explained by classic, static approaches describing human mobility. Model results also show how concentrated efforts toward disease control in a transmission hotspot could have an important effect on the large-scale progression of an outbreak. PMID:27217564
Mietkiewicz, Nathan; Kulakowski, Dominik
2016-12-01
Extensive outbreaks of bark beetles have killed trees across millions of hectares of forests and woodlands in western North America. These outbreaks have led to spirited scientific, public, and policy debates about consequential increases in fire risk, especially in the wildland-urban interface (WUI), where homes and communities are at particular risk from wildfires. At the same time, large wildfires have become more frequent across this region. Widespread expectations that outbreaks increase extent, severity, and/or frequency of wildfires are based partly on visible and dramatic changes in foliar moisture content and other fuel properties following outbreaks, as well as associated modeling projections. A competing explanation is that increasing wildfires are driven primarily by climatic extremes, which are becoming more common with climate change. However, the relative importance of bark beetle outbreaks vs. climate on fire occurrence has not been empirically examined across very large areas and remains poorly understood. The most extensive outbreaks of tree-killing insects across the western United States have been of mountain pine beetle (MPB; Dendroctonus ponderosae), which have killed trees over >650,000 km 2 , mostly in forests dominated by lodgepole pine (Pinus contorta). We show that outbreaks of MPB in lodgepole pine forests of the western United States have been less important than climatic variability for the occurrence of large fires over the past 29 years. In lodgepole pine forests in general, as well as those in the WUI, occurrence of large fires was determined primarily by current and antecedent high temperatures and low precipitation but was unaffected by preceding outbreaks. Trends of increasing co-occurrence of wildfires and outbreaks are due to a common climatic driver rather than interactions between these disturbances. Reducing wildfire risk hinges on addressing the underlying climatic drivers rather than treating beetle-affected forests. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel
2017-03-01
A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.
1984 Ivanovo tornado outbreak: Determination of actual tornado tracks with satellite data
NASA Astrophysics Data System (ADS)
Chernokulsky, Alexander; Shikhov, Andrey
2018-07-01
The 1984 Ivanovo tornado outbreak is one of the most fatal tornado events in Europe with previously unspecified tornado track characteristics. In this paper, we used Landsat images to discover tornado-induced forest disturbances and restore actual characteristics of tornadoes during the outbreak. We defined boundaries of tornado-induced windthrows by visual comparison of satellite images and specified them with Normalized Difference Infrared Index. We confirmed the occurrence of eight tornadoes during the outbreak and determined their location, path width and length. Other tornadoes occurrence during the outbreak was discussed. Fujita-scale intensity of confirmed tornadoes was estimated based on the related literature corpus including previously omitted sources. In addition, information on tornado path lengths and widths was used to estimate minimal tornado intensity for those tornadoes that passed no settlements. In total, the Ivanovo outbreak includes 8-13 tornadoes with F-scale rating mean ranges from 1.8-2.5 and has adjusted Fujita length around 540 km, which makes the outbreak one the strongest in Europe and places it within the upper quartile of U.S. outbreaks. Characteristics of certain tornadoes within the Ivanovo outbreak are exceptional for Russia. The widest tornado path during the Ivanovo outbreak is 1740 m; the longest is from 81.5-85.9 km. With the example of the Ivanovo outbreak, we showed that existing databases on historical Russian tornadoes tend to overestimate tornado path length (for very long tornadoes) and underestimate maximum tornado path width.
NASA Astrophysics Data System (ADS)
Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.
2013-12-01
pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.
Global Distribution of Outbreaks of Water-Associated Infectious Diseases
Yang, Kun; LeJeune, Jeffrey; Alsdorf, Doug; Lu, Bo; Shum, C. K.; Liang, Song
2012-01-01
Background Water plays an important role in the transmission of many infectious diseases, which pose a great burden on global public health. However, the global distribution of these water-associated infectious diseases and underlying factors remain largely unexplored. Methods and Findings Based on the Global Infectious Disease and Epidemiology Network (GIDEON), a global database including water-associated pathogens and diseases was developed. In this study, reported outbreak events associated with corresponding water-associated infectious diseases from 1991 to 2008 were extracted from the database. The location of each reported outbreak event was identified and geocoded into a GIS database. Also collected in the GIS database included geo-referenced socio-environmental information including population density (2000), annual accumulated temperature, surface water area, and average annual precipitation. Poisson models with Bayesian inference were developed to explore the association between these socio-environmental factors and distribution of the reported outbreak events. Based on model predictions a global relative risk map was generated. A total of 1,428 reported outbreak events were retrieved from the database. The analysis suggested that outbreaks of water-associated diseases are significantly correlated with socio-environmental factors. Population density is a significant risk factor for all categories of reported outbreaks of water-associated diseases; water-related diseases (e.g., vector-borne diseases) are associated with accumulated temperature; water-washed diseases (e.g., conjunctivitis) are inversely related to surface water area; both water-borne and water-related diseases are inversely related to average annual rainfall. Based on the model predictions, “hotspots” of risks for all categories of water-associated diseases were explored. Conclusions At the global scale, water-associated infectious diseases are significantly correlated with socio-environmental factors, impacting all regions which are affected disproportionately by different categories of water-associated infectious diseases. PMID:22348158
Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study.
Chowell, Gerardo; Abdirizak, Fatima; Lee, Sunmi; Lee, Jonggul; Jung, Eunok; Nishiura, Hiroshi; Viboud, Cécile
2015-09-03
The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied highly across individual hospital outbreaks (Kruskal-Wallis test; P < 0.0001), with significantly higher transmission heterogeneity in the distribution of secondary cases for MERS than SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (>100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses.
Strategic Plan for the U.S. Climate Change Science Program
2003-07-01
the Amazon have been conducted in the framework of the Large- Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), a cooperative international...native rodent , the deer mouse (Peromyscus maniculatus). Public health officials wanted to understand the cause of the outbreak so they could develop...winter of 1992, were thought to have created favorable conditions for an increase in local rodent populations. It was suggested that a cascading series of
Online Health Education on SARS to University Students during the SARS Outbreak
ERIC Educational Resources Information Center
Wong, Mee Lian; Koh, David; Iyer, Prasad; Seow, Adeline; Goh, Lee Gan; Chia, Sin Eng; Lim, Meng Kin; Ng, Daniel; Ong, Choon Nam; Phua, Kai Hong; Tambyah, Paul; Chow, Vincent T K; Chew, Suok Kai; Chandran, Ravi; Lee, Hin Peng
2005-01-01
Little is known about how online learning may be used to disseminate health information rapidly and widely to large university populations if there is an infectious disease outbreak. During the SARS outbreak in Singapore in 2003, a six-lesson elearning module on SARS was developed for a large university population of 32,000 students. The module…
Bernard, H; Faber, M; Wilking, H; Haller, S; Höhle, M; Schielke, A; Ducomble, T; Siffczyk, C; Merbecks, S S; Fricke, G; Hamouda, O; Stark, K; Werber, D
2014-02-27
From 20 September through 5 October 2012, the largest recorded food-borne outbreak in Germany occurred. Norovirus was identified as the causative agent. We conducted four analytical epidemiological studies, two case–control studies and two surveys (in total 150 cases) in secondary schools in three different federal states. Overall, 390 institutions in five federal states reported nearly 11,000 cases of gastroenteritis. They were predominantly schools and childcare facilities and were supplied almost exclusively by one large catering company. The analytical epidemiological studies consistently identified dishes containing strawberries as the most likely vehicle, with estimated odds ratios ranging from 2.6 to 45.4. The dishes had been prepared in different regional kitchens of the catering company and were served in the schools two days before the peaks of the respective outbreaks. All affected institutions had received strawberries of one lot, imported frozen from China. The outbreak vehicle was identified within a week, which led to a timely recall and prevented more than half of the lot from reaching the consumer. This outbreak exemplifies the risk of large outbreaks in the era of global food trade. It underlines the importance of timely surveillance and epidemiological outbreak investigations for food safety.
Dimensionality reduction in epidemic spreading models
NASA Astrophysics Data System (ADS)
Frasca, M.; Rizzo, A.; Gallo, L.; Fortuna, L.; Porfiri, M.
2015-09-01
Complex dynamical systems often exhibit collective dynamics that are well described by a reduced set of key variables in a low-dimensional space. Such a low-dimensional description offers a privileged perspective to understand the system behavior across temporal and spatial scales. In this work, we propose a data-driven approach to establish low-dimensional representations of large epidemic datasets by using a dimensionality reduction algorithm based on isometric features mapping (ISOMAP). We demonstrate our approach on synthetic data for epidemic spreading in a population of mobile individuals. We find that ISOMAP is successful in embedding high-dimensional data into a low-dimensional manifold, whose topological features are associated with the epidemic outbreak. Across a range of simulation parameters and model instances, we observe that epidemic outbreaks are embedded into a family of closed curves in a three-dimensional space, in which neighboring points pertain to instants that are close in time. The orientation of each curve is unique to a specific outbreak, and the coordinates correlate with the number of infected individuals. A low-dimensional description of epidemic spreading is expected to improve our understanding of the role of individual response on the outbreak dynamics, inform the selection of meaningful global observables, and, possibly, aid in the design of control and quarantine procedures.
NASA Astrophysics Data System (ADS)
Khan, M. R. H.; Jutla, A.; Colwell, R. R.
2015-12-01
Diarrheal diseases continue to pose a severe health threat in regions where sanitation facilities remain marginal and are prone to destruction. With limited efficacy of vaccines, it is important to device alternate methods to determine environmental conditions favorable for diarrheal diseases. Several vibrios (V. cholerae., V. vulnificus, V. parahaemolyticus) have characteristic signatures that are associated with large scale climatic processes. The interactions of vibrios with humans eventually lead to outbreak of diseases. Here, using cholera as one of the signature diarrheal disease, we present a framework coupling social, hydrological and microbiological understanding with satellite remote sensing data to predict environmental conditions associated with outbreak of disease in several regions of sub-Saharan Africa. Hydroclimatic processes, primarily precipitation and temperature are found to be strongly associated with epidemic and episodic outbreak of cholera. We will present an algorithm to classify regions susceptible to risks of outbreak cholera using profile method in five epidemic regions of Mozambique, Central African Republic, Cameroon, South Sudan and Rwanda. Conditions for occurrence of cholera were detectable at least one month in advance. Using spatial land surface temperature (LST) data from satellites along with water accessibility data and population data, the implementation of the algorithm aid in classification of cholera risk regions.
Choi, Sungwoon; Lee, Jangho; Kang, Min-Gyu; Min, Hyeyoung; Chang, Yoon-Seok; Yoon, Sungroh
2017-10-01
From May to July 2015, there was a nation-wide outbreak of Middle East respiratory syndrome (MERS) in Korea. MERS is caused by MERS-CoV, an enveloped, positive-sense, single-stranded RNA virus belonging to the family Coronaviridae. Despite expert opinions that the danger of MERS might be exaggerated, there was an overreaction by the public according to the Korean mass media, which led to a noticeable reduction in social and economic activities during the outbreak. To explain this phenomenon, we presumed that machine learning-based analysis of media outlets would be helpful and collected a number of Korean mass media articles and short-text comments produced during the 10-week outbreak. To process and analyze the collected data (over 86 million words in total) effectively, we created a methodology composed of machine-learning and information-theoretic approaches. Our proposal included techniques for extracting emotions from emoticons and Internet slang, which allowed us to significantly (approximately 73%) increase the number of emotion-bearing texts needed for robust sentiment analysis of social media. As a result, we discovered a plausible explanation for the public overreaction to MERS in terms of the interplay between the disease, mass media, and public emotions. Copyright © 2017 Elsevier Inc. All rights reserved.
An outbreak of type C botulism in Herring Gulls (Larus argentatus) in Southeastern Sweden
Neimanis, A.; Gavier-Widen, D.; Leighton, F.; Bollinger, T.; Rocke, Tonie E.; Morner, T.
2007-01-01
From 2000 to 2004, over 10,000 seabirds, primarily Herring Gulls (Larus argentatus), died from an undetermined cause in the Blekinge archipelago in southeastern Sweden. In June 2004, 24 affected Herring Gulls were examined clinically, killed humanely, and 23 were examined by necropsy. Seven and 10 unaffected Herring Gulls collected from a local landfill site and from Iceland, respectively, served as controls. All affected birds showed similar neurologic signs, ranging from mild incoordination and weakness to severe flaccid paralysis of legs and wings, but generally were alert and responsive. All affected gulls were in normal nutritional condition, but were dehydrated and had empty stomachs. No gross or microscopic lesions, and no bacterial or viral pathogens were identified. Type C botulinum toxin was detected in the sera of 11 of 16 (69%) affected gulls by mouse inoculation. Type C botulism was the proximate cause of disease in 2004. Sera from 31% of birds tested from outbreaks in 2000 to 2003 also had detectable type C botulinum toxin by mouse inoculation. No large-scale botulism outbreak has been documented previously in this area. The source of toxin, initiating conditions, and thus, the ultimate cause of this outbreak are not known. This epidemic might signal environmental change in the Baltic Sea.
An outbreak of type C botulism in herring gulls (Larus argentatus) in southeastern Sweden.
Neimanis, A; Gavier-Widén, D; Leighton, F; Bollinger, T; Rocke, T; Mörner, T
2007-07-01
From 2000 to 2004, over 10,000 seabirds, primarily Herring Gulls (Larus argentatus), died from an undetermined cause in the Blekinge archipelago in southeastern Sweden. In June 2004, 24 affected Herring Gulls were examined clinically, killed humanely, and 23 were examined by necropsy. Seven and 10 unaffected Herring Gulls collected from a local landfill site and from Iceland, respectively, served as controls. All affected birds showed similar neurologic signs, ranging from mild incoordination and weakness to severe flaccid paralysis of legs and wings, but generally were alert and responsive. All affected gulls were in normal nutritional condition, but were dehydrated and had empty stomachs. No gross or microscopic lesions, and no bacterial or viral pathogens were identified. Type C botulinum toxin was detected in the sera of 11 of 16 (69%) affected gulls by mouse inoculation. Type C botulism was the proximate cause of disease in 2004. Sera from 31% of birds tested from outbreaks in 2000 to 2003 also had detectable type C botulinum toxin by mouse inoculation. No large-scale botulism outbreak has been documented previously in this area. The source of toxin, initiating conditions, and thus, the ultimate cause of this outbreak are not known. This epidemic might signal environmental change in the Baltic Sea.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.; Gómez-Forrellad, J. M.; Rojas, J. F.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Peralta, J.; Ordonez-Etxeberria, I.; Chen-Chen, H.; Mendikoa, I.; Peach, D.; Go, C.; Wesley, A.; Miles, P.; Olivetti, T.
2017-09-01
We present an analysis of Jupiter's atmospheric activity over Juno's first year around the planet based on ground-based observations. We present variability of the zonal winds associated to large outbreaks of convective activity at different belts in the planet, a study of short-scale atmospheric waves at low latitudes and examine polar views of the planet that can be compared with JunoCam observations.
Understanding the potential dispersal of HPAI H5N1 virus by migratory wildfowl
Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.
2010-01-01
We analysed wildfowl movements between 2006-2009, including 228 birds from 19 species, part of a larger international programme (see Figure 1) coordinated by the Food and Agricultural Organisation (FAO) of the United Nations aimed at understanding if there are temporal or spatial relationships between HPAI H5N1 outbreaks and movements of migratory wildfowl, the first large scale data set available for such an analysis.
Elizabeth A. Matseur
2017-01-01
Natural disturbances, such as wildfire and mountain pine beetle (Dentroctonus ponderosae, hereafter MPB) infestations, are two sources of large-scale disturbance that can significantly alter forest structure in the Black Hills. The Black Hills has recently experienced one of the largest MPB outbreaks in the last 100 years, along with varying levels of wildfires...
Frederick M. Stephen Kimberly G. Smith
2005-01-01
The Arkansas Ozarks are currently experiencing an outbreak of the red oak borer (Enaphalodes rufulus), a native insect that has previously not been considered an important forest pest species. As many as 50 percent of the trees in the Ozarks, which has the highest density of oaks in the United States, may be dead by the year 2006. The Ozarks are...
NASA Astrophysics Data System (ADS)
Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.
2014-05-01
The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the region. Our findings may prove to be useful in both water sustainability and disaster management perspectives as the dry and wet seasonal trends are affecting both endemic and epidemic outbreaks, respectively, and are influenced by distinctly different seasonal and interannual drivers.
Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles
Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble
2009-01-01
Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine...
Are bark beetle outbreaks less synchronous than forest Lepidoptera outbreaks?
Bjorn Okland; Andrew M. Liebhold; Ottar N. Bjornstad; Nadir Erbilgin; Paal Krokene; Paal Krokene
2005-01-01
Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the...
Hughes, Joseph; Allen, Richard C.; Baguelin, Marc; Hampson, Katie; Baillie, Gregory J.; Elton, Debra; Newton, J. Richard; Kellam, Paul; Wood, James L. N.; Holmes, Edward C.; Murcia, Pablo R.
2012-01-01
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics. PMID:23308065
Benjamin Bright; J. A. Hicke; A. T. Hudak
2012-01-01
Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field...
Dechet, Amy M; Parsons, Michele; Rambaran, Madan; Mohamed-Rambaran, Pheona; Florendo-Cumbermack, Anita; Persaud, Shamdeo; Baboolal, Shirematee; Ari, Mary D; Shadomy, Sean V; Zaki, Sherif R; Paddock, Christopher D; Clark, Thomas A; Harris, Lazenia; Lyon, Douglas; Mintz, Eric D
2012-01-01
Leptospirosis is a zoonosis usually transmitted through contact with water or soil contaminated with urine from infected animals. Severe flooding can put individuals at greater risk for contracting leptospirosis in endemic areas. Rapid testing for the disease and large-scale interventions are necessary to identify and control infection. We describe a leptospirosis outbreak following severe flooding and a mass chemoprophylaxis campaign in Guyana. From January-March 2005, we collected data on suspected leptospirosis hospitalizations and deaths. Laboratory testing included anti-leptospiral dot enzyme immunoassay (DST), immunohistochemistry (IHC) staining, and microscopic agglutination testing (MAT). DST testing was conducted for 105 (44%) of 236 patients; 52 (50%) tested positive. Four (57%) paired serum samples tested by MAT were confirmed leptospirosis. Of 34 total deaths attributed to leptospirosis, postmortem samples from 10 (83%) of 12 patients were positive by IHC. Of 201 patients interviewed, 89% reported direct contact with flood waters. A 3-week doxycycline chemoprophylaxis campaign reached over 280,000 people. A confirmed leptospirosis outbreak in Guyana occurred after severe flooding, resulting in a massive chemoprophylaxis campaign to try to limit morbidity and mortality.
Allison, Andrew B.; Ballard, Jennifer R.; Tesh, Robert B.; Brown, Justin D.; Ruder, Mark G.; Keel, M. Kevin; Munk, Brandon A.; Mickley, Randall M.; Gibbs, Samantha E.J.; Ellis, Julie C.; Travassos da Rosac, Amelia P.A.; Ip, Hon S.; Shearn-Bochsler, Valerie I.; Rogers, Matthew B.; Gheldin, Elodie; Holmes, Edward C.; Parrish, Colin R.; Dwyer, Chris P.
2015-01-01
Importance The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health.
Kalimuddin, Shirin; Chen, Swaine L; Lim, Cindy T K; Koh, Tse Hsien; Tan, Thean Yen; Kam, Michelle; Wong, Christopher W; Mehershahi, Kurosh S; Chau, Man Ling; Ng, Lee Ching; Tang, Wen Ying; Badaruddin, Hishamuddin; Teo, Jeanette; Apisarnthanarak, Anucha; Suwantarat, Nuntra; Ip, Margaret; Holden, Matthew T G; Hsu, Li Yang; Barkham, Timothy
2017-05-15
Streptococcus agalactiae (group B Streptococcus [GBS]) has not been described as a foodborne pathogen. However, in 2015, a large outbreak of severe invasive sequence type (ST) 283 GBS infections in adults epidemiologically linked to the consumption of raw freshwater fish occurred in Singapore. We attempted to determine the scale of the outbreak, define the clinical spectrum of disease, and link the outbreak to contaminated fish. Time-series analysis was performed on microbiology laboratory data. Food handlers and fishmongers were screened for enteric carriage of GBS. A retrospective cohort study was conducted to assess differences in demographic and clinical characteristics of patients with invasive ST283 and non-ST283 infections. Whole-genome sequencing was performed on human and fish ST283 isolates from Singapore, Thailand, and Hong Kong. The outbreak was estimated to have started in late January 2015. Within the study cohort of 408 patients, ST283 accounted for 35.8% of cases. Patients with ST283 infection were younger and had fewer comorbidities but were more likely to develop meningoencephalitis, septic arthritis, and spinal infection. Of 82 food handlers and fishmongers screened, none carried ST283. Culture of 43 fish samples yielded 13 ST283-positive samples. Phylogenomic analysis of 161 ST283 isolates from humans and fish revealed they formed a tight clade distinguished by 93 single-nucleotide polymorphisms. ST283 is a zoonotic GBS clone associated with farmed freshwater fish, capable of causing severe disease in humans. It caused a large foodborne outbreak in Singapore and poses both a regional and potentially more widespread threat. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Factors determining dengue outbreak in Malaysia.
Ahmad, Rohani; Suzilah, Ismail; Wan Najdah, Wan Mohamad Ali; Topek, Omar; Mustafakamal, Ibrahim; Lee, Han Lim
2018-01-01
A large scale study was conducted to elucidate the true relationship among entomological, epidemiological and environmental factors that contributed to dengue outbreak in Malaysia. Two large areas (Selayang and Bandar Baru Bangi) were selected in this study based on five consecutive years of high dengue cases. Entomological data were collected using ovitraps where the number of larvae was used to reflect Aedes mosquito population size; followed by RT-PCR screening to detect and serotype dengue virus in mosquitoes. Notified cases, date of disease onset, and number and type of the interventions were used as epidemiological endpoint, while rainfall, temperature, relative humidity and air pollution index (API) were indicators for environmental data. The field study was conducted during 81 weeks of data collection. Correlation and Autoregressive Distributed Lag Model were used to determine the relationship. The study showed that, notified cases were indirectly related with the environmental data, but shifted one week, i.e. last 3 weeks positive PCR; last 4 weeks rainfall; last 3 weeks maximum relative humidity; last 3 weeks minimum and maximum temperature; and last 4 weeks air pollution index (API), respectively. Notified cases were also related with next week intervention, while conventional intervention only happened 4 weeks after larvae were found, indicating ample time for dengue transmission. Based on a significant relationship among the three factors (epidemiological, entomological and environmental), estimated Autoregressive Distributed Lag (ADL) model for both locations produced high accuracy 84.9% for Selayang and 84.1% for Bandar Baru Bangi in predicting the actual notified cases. Hence, such model can be used in forestalling dengue outbreak and acts as an early warning system. The existence of relationships among the entomological, epidemiological and environmental factors can be used to build an early warning system for the prediction of dengue outbreak so that preventive interventions can be taken early to avert the outbreaks.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
Hydroclimatic Extremes and Cholera Dynamics in the 21st Century
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2012-12-01
Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.
Devising a method towards development of early warning tool for detection of malaria outbreak.
Verma, Preeti; Sarkar, Soma; Singh, Poonam; Dhiman, Ramesh C
2017-11-01
Uncertainty often arises in differentiating seasonal variation from outbreaks of malaria. The present study was aimed to generalize the theoretical structure of sine curve for detecting an outbreak so that a tool for early warning of malaria may be developed. A 'case/mean-ratio scale' system was devised for labelling the outbreak in respect of two diverse districts of Assam and Rajasthan. A curve-based method of analysis was developed for determining outbreak and using the properties of sine curve. It could be used as an early warning tool for Plasmodium falciparum malaria outbreaks. In the present method of analysis, the critical C max (peak value of sine curve) value of seasonally adjusted curve for P. falciparum malaria outbreak was 2.3 for Karbi Anglong and 2.2 for Jaisalmer districts. On case/mean-ratio scale, the C max value of malaria curve between C max and 3.5, the outbreak could be labelled as minor while >3.5 may be labelled as major. In epidemic years, with mean of case/mean ratio of ≥1.00 and root mean square (RMS) ≥1.504 of case/mean ratio, outbreaks can be predicted 1-2 months in advance. The present study showed that in P. falciparum cases in Karbi Anglong (Assam) and Jaisalmer (Rajasthan) districts, the rise in C max value of curve was always followed by rise in average/RMS or both and hence could be used as an early warning tool. The present method provides better detection of outbreaks than the conventional method of mean plus two standard deviation (mean+2 SD). The identified tools are simple and may be adopted for preparedness of malaria outbreaks.
Severi, E; Verhoef, L; Thornton, L; Guzman-Herrador, B R; Faber, M; Sundqvist, L; Rimhanen-Finne, R; Roque-Afonso, A M; Ngui, S L; Allerberger, F; Baumann-Popczyk, A; Muller, L; Parmakova, K; Alfonsi, V; Tavoschi, L; Vennema, H; Fitzgerald, M; Myrmel, M; Gertler, M; Ederth, J; Kontio, M; Vanbockstael, C; Mandal, S; Sadkowska-Todys, M; Tosti, M E; Schimmer, B; O Gorman, J; Stene-Johansen, K; Wenzel, J J; Jones, G; Balogun, K; Ciccaglione, A R; O' Connor, L; Vold, L; Takkinen, J; Rizzo, C
2015-07-23
In May 2013, Italy declared a national outbreak of hepatitis A, which also affected several foreign tourists who had recently visited the country. Molecular investigations identified some cases as infected with an identical strain of hepatitis A virus subgenotype IA. After additional European Union/European Economic Area (EU/EEA) countries reported locally acquired and travel-related cases associated with the same outbreak, an international outbreak investigation team was convened, a European outbreak case definition was issued and harmonisation of the national epidemiological and microbiological investigations was encouraged. From January 2013 to August 2014, 1,589 hepatitis A cases were reported associated with the multistate outbreak; 1,102 (70%) of the cases were hospitalised for a median time of six days; two related deaths were reported. Epidemiological and microbiological investigations implicated mixed frozen berries as the vehicle of infection of the outbreak. In order to control the spread of the outbreak, suspected or contaminated food batches were recalled, the public was recommended to heat-treat berries, and post-exposure prophylaxis of contacts was performed. The outbreak highlighted how large food-borne hepatitis A outbreaks may affect the increasingly susceptible EU/EEA general population and how, with the growing international food trade, frozen berries are a potential high-risk food.
Kim, Sun-Young; Choi, Yeongchull; Mason, Peter R; Rusakaniko, Simbarashe; Goldie, Sue J
2011-09-05
To contain ongoing cholera outbreaks, the World Health Organization has suggested that reactive vaccination should be considered in addition to its previous control measures. To explore the potential impact of a hypothetical reactive oral cholera vaccination using the example of the recent large-scale cholera outbreak in Zimbabwe. This was a retrospective cost-effectiveness analysis calculating the health and economic burden of the cholera outbreak in Zimbabwe with and without reactive vaccination. The primary outcome measure was incremental cost per disability-adjusted life year (DALY) averted. Under the base-case assumptions (assuming 50% coverage among individuals aged ≥2 years), reactive vaccination could have averted 1 320 deaths and 23 650 DALYs. Considering herd immunity, the corresponding values would have been 2 920 deaths and 52 360 DALYs averted. The total vaccination costs would have been ~$74 million and ~$21 million, respectively, with per-dose vaccine price of US$5 and $1. The incremental costs per DALY averted of reactive vaccination were $2 770 and $370, respectively, for vaccine price set at $5 and $1. Assuming herd immunity, the corresponding cost was $980 with vaccine price of $5, and the programme was cost-saving with a vaccine price of $1. Results were most sensitive to case-fatality rate, per-dose vaccine price, and the size of the outbreak. Reactive vaccination has the potential to be a cost-effective measure to contain cholera outbreaks in countries at high risk. However, the feasibility of implementation should be further evaluated, and caution is warranted in extrapolating the findings to different settings in the absence of other in-depth studies.
Chu, Chen-Yi; de Silva, U Chandimal; Guo, Jin-Peng; Wang, Yong; Wen, Liang; Lee, Vernon J; Li, Shen-Long; Huang, Liu-Yu
2017-07-01
Many studies have suggested the effectiveness of single control measures in the containment and mitigation of pandemic influenza A (H1N1) 2009. The effects of combined interventions by multiple control measures in reducing the impact of an influenza A (H1N1) 2009 outbreak in a closed physical training camp in Beijing, China were evaluated. Oseltamivir was prescribed for the treatment of confirmed cases and possible cases and as prophylaxis for all other participants in this training camp. Public health control measures were applied simultaneously, including the isolation of patients and possible cases, personal protection and hygiene, and social distancing measures. Symptom surveillance of all participants was initiated, and the actual attack rate was calculated. For comparison, the theoretical attack rate for this outbreak was projected using the Newton-Raphson numerical method. A total of 3256 persons were present at the physical training camp. During the outbreak, 405 (68.3%) possible cases and 26 (4.4%) confirmed cases were reported before the intervention and completed oseltamivir treatment; 162 (27.3%) possible cases were reported after the intervention and received part treatment and part prophylaxis. The other 2663 participants completed oseltamivir prophylaxis. Of the possible cases, 181 with fever ≥38.5°C were isolated. The actual attack rate for this outbreak of pandemic influenza A (H1N1) 2009 was 18.2%, which is much lower than the theoretical attack rate of 80% projected. Combined interventions of large-scale antiviral ring prophylaxis and treatment and public health control measures could be applied to reduce the magnitude of influenza A (H1N1) 2009 outbreaks in closed settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Machado, Gabriel Esquitini; Matsumoto, Cristianne Kayoko; Chimara, Erica; Duarte, Rafael da Silva; de Freitas, Denise; Palaci, Moises; Hadad, David Jamil; Lima, Karla Valéria Batista; Lopes, Maria Luiza; Ramos, Jesus Pais; Campos, Carlos Eduardo; Caldas, Paulo César; Heym, Beate; Leão, Sylvia Cardoso
2014-08-01
Outbreaks of infections by rapidly growing mycobacteria following invasive procedures, such as ophthalmological, laparoscopic, arthroscopic, plastic, and cardiac surgeries, mesotherapy, and vaccination, have been detected in Brazil since 1998. Members of the Mycobacterium chelonae-Mycobacterium abscessus group have caused most of these outbreaks. As part of an epidemiological investigation, the isolates were typed by pulsed-field gel electrophoresis (PFGE). In this project, we performed a large-scale comparison of PFGE profiles with the results of a recently developed multilocus sequence typing (MLST) scheme for M. abscessus. Ninety-three isolates were analyzed, with 40 M. abscessus subsp. abscessus isolates, 47 M. abscessus subsp. bolletii isolates, and six isolates with no assigned subspecies. Forty-five isolates were obtained during five outbreaks, and 48 were sporadic isolates that were not associated with outbreaks. For MLST, seven housekeeping genes (argH, cya, glpK, gnd, murC, pta, and purH) were sequenced, and each isolate was assigned a sequence type (ST) from the combination of obtained alleles. The PFGE patterns of DraI-digested DNA were compared with the MLST results. All isolates were analyzable by both methods. Isolates from monoclonal outbreaks showed unique STs and indistinguishable or very similar PFGE patterns. Thirty-three STs and 49 unique PFGE patterns were identified among the 93 isolates. The Simpson's index of diversity values for MLST and PFGE were 0.69 and 0.93, respectively, for M. abscessus subsp. abscessus and 0.96 and 0.97, respectively, for M. abscessus subsp. bolletii. In conclusion, the MLST scheme showed 100% typeability and grouped monoclonal outbreak isolates in agreement with PFGE, but it was less discriminative than PFGE for M. abscessus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Logistical constraints lead to an intermediate optimum in outbreak response vaccination
Shea, Katriona; Ferrari, Matthew
2018-01-01
Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432
Davidson, Rebecca M.; Hasan, Nabeeh A.; de Moura, Vinicius Calado Nogueira; Duarte, Rafael Silva; Jackson, Mary; Strong, Michael
2013-01-01
Rapidly growing, non-tuberculous mycobacteria (NTM) in the Mycobacterium abscessus (MAB) species are emerging pathogens that cause various diseases including skin and respiratory infections. The species has undergone recent taxonomic nomenclature refinement, and is currently recognized as two subspecies, M. abscessus subsp. abscessus (MAB-A) and M. abscessus subsp. bolletii (MAB-B). The recently reported outbreaks of MAB-B in surgical patients in Brazil from 2004 to 2009 and in cystic fibrosis patients in the United Kingdom (UK) in 2006 to 2012 underscore the need to investigate the genetic diversity of clinical MAB strains. To this end, we sequenced the genomes of two Brazilian MAB-B epidemic isolates (CRM-0019 and CRM-0020) derived from an outbreak of skin infections in Rio de Janeiro, two unrelated MAB strains from patients with pulmonary infections in the United States (US) (NJH8 and NJH11) and one type MAB-B strain (CCUG 48898) and compared them to 25 publically available genomes of globally diverse MAB strains. Genome-wide analyses of 27,598 core genome single nucleotide polymorphisms (SNPs) revealed that the two Brazilian derived CRM strains are nearly indistinguishable from one another and are more closely related to UK outbreak isolates infecting CF patients than to strains from the US, Malaysia or France. Comparative genomic analyses of six closely related outbreak strains revealed geographic-specific large-scale insertion/deletion variation that corresponds to bacteriophage insertions and recombination hotspots. Our study integrates new genome sequence data with existing genomic information to explore the global diversity of infectious M. abscessus isolates and to compare clinically relevant outbreak strains from different continents. PMID:24055961
Preisler, Haiganoush K; Hicke, Jeffrey A; Ager, Alan A; Hayes, Jane L
2012-11-01
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks or at larger spatial scales. This study used the observed number of trees killed by mountain pine beetles per square kilometer in Oregon and Washington, USA, over the past three decades to quantify and assess the influence of climate and weather variables on beetle activity over longer time periods and larger scales than previously studied. Influences of temperature and precipitation in addition to process model output variables were assessed at annual and climatological time scales. The statistical analysis showed that new attacks are more likely to occur at locations with climatological mean August temperatures >15 degrees C. After controlling for beetle pressure, the variables with the largest effect on the odds of an outbreak exceeding a certain size were minimum winter temperature (positive relationship) and drought conditions in current and previous years. Precipitation levels in the year prior to the outbreak had a positive effect, possibly an indication of the influence of this driver on brood size. Two-year cumulative precipitation had a negative effect, a possible indication of the influence of drought on tree stress. Among the process model variables, cold tolerance was the strongest indicator of an outbreak increasing to epidemic size. A weather suitability index developed from the regression analysis indicated a 2.5x increase in the odds of outbreak at locations with highly suitable weather vs. locations with low suitability. The models were useful for estimating expected amounts of damage (total area with outbreaks) and for quantifying the contribution of climate to total damage. Overall, the results confirm the importance of climate and weather on the spatial expansion of bark beetle outbreaks over time.
Koolhof, I S; Bettiol, S; Carver, S
2017-10-01
Health warnings of mosquito-borne disease risk require forecasts that are accurate at fine-temporal resolutions (weekly scales); however, most forecasting is coarse (monthly). We use environmental and Ross River virus (RRV) surveillance to predict weekly outbreak probabilities and incidence spanning tropical, semi-arid, and Mediterranean regions of Western Australia (1991-2014). Hurdle and linear models were used to predict outbreak probabilities and incidence respectively, using time-lagged environmental variables. Forecast accuracy was assessed by model fit and cross-validation. Residual RRV notification data were also examined against mitigation expenditure for one site, Mandurah 2007-2014. Models were predictive of RRV activity, except at one site (Capel). Minimum temperature was an important predictor of RRV outbreaks and incidence at all predicted sites. Precipitation was more likely to cause outbreaks and greater incidence among tropical and semi-arid sites. While variable, mitigation expenditure coincided positively with increased RRV incidence (r 2 = 0·21). Our research demonstrates capacity to accurately predict mosquito-borne disease outbreaks and incidence at fine-temporal resolutions. We apply our findings, developing a user-friendly tool enabling managers to easily adopt this research to forecast region-specific RRV outbreaks and incidence. Approaches here may be of value to fine-scale forecasting of RRV in other areas of Australia, and other mosquito-borne diseases.
NASA Astrophysics Data System (ADS)
McCoy, Isabel L.; Wood, Robert; Fletcher, Jennifer K.
2017-11-01
Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and have important radiative effects on the climate system. An examination of time-varying meteorological conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated with Clouds and the Earth's Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to have much higher albedo on average than open MCC clouds for the same cloud fraction. Three meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength (EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of a MCC cloud feedback is discussed.
Weiss, Don; Boyd, Christopher; Rakeman, Jennifer L; Greene, Sharon K; Fitzhenry, Robert; McProud, Trevor; Musser, Kimberlee; Huang, Li; Kornblum, John; Nazarian, Elizabeth J; Fine, Annie D; Braunstein, Sarah L; Kass, Daniel; Landman, Keren; Lapierre, Pascal; Hughes, Scott; Tran, Anthony; Taylor, Jill; Baker, Deborah; Jones, Lucretia; Kornstein, Laura; Liu, Boning; Perez, Rodolfo; Lucero, David E; Peterson, Eric; Benowitz, Isaac; Lee, Kristen F; Ngai, Stephanie; Stripling, Mitch; Varma, Jay K
Infections caused by Legionella are the leading cause of waterborne disease outbreaks in the United States. We investigated a large outbreak of Legionnaires' disease in New York City in summer 2015 to characterize patients, risk factors for mortality, and environmental exposures. We defined cases as patients with pneumonia and laboratory evidence of Legionella infection from July 2 through August 3, 2015, and with a history of residing in or visiting 1 of several South Bronx neighborhoods of New York City. We describe the epidemiologic, environmental, and laboratory investigation that identified the source of the outbreak. We identified 138 patients with outbreak-related Legionnaires' disease, 16 of whom died. The median age of patients was 55. A total of 107 patients had a chronic health condition, including 43 with diabetes, 40 with alcoholism, and 24 with HIV infection. We tested 55 cooling towers for Legionella, and 2 had a strain indistinguishable by pulsed-field gel electrophoresis from 26 patient isolates. Whole-genome sequencing and epidemiologic evidence implicated 1 cooling tower as the source of the outbreak. A large outbreak of Legionnaires' disease caused by a cooling tower occurred in a medically vulnerable community. The outbreak prompted enactment of a new city law on the operation and maintenance of cooling towers. Ongoing surveillance and evaluation of cooling tower process controls will determine if the new law reduces the incidence of Legionnaires' disease in New York City.
Boyd, Christopher; Rakeman, Jennifer L.; Greene, Sharon K.; Fitzhenry, Robert; McProud, Trevor; Musser, Kimberlee; Huang, Li; Kornblum, John; Nazarian, Elizabeth J.; Fine, Annie D.; Braunstein, Sarah L.; Kass, Daniel; Landman, Keren; Lapierre, Pascal; Hughes, Scott; Tran, Anthony; Taylor, Jill; Baker, Deborah; Jones, Lucretia; Kornstein, Laura; Liu, Boning; Perez, Rodolfo; Lucero, David E.; Peterson, Eric; Benowitz, Isaac; Lee, Kristen F.; Ngai, Stephanie; Stripling, Mitch; Varma, Jay K.
2017-01-01
Objectives: Infections caused by Legionella are the leading cause of waterborne disease outbreaks in the United States. We investigated a large outbreak of Legionnaires’ disease in New York City in summer 2015 to characterize patients, risk factors for mortality, and environmental exposures. Methods: We defined cases as patients with pneumonia and laboratory evidence of Legionella infection from July 2 through August 3, 2015, and with a history of residing in or visiting 1 of several South Bronx neighborhoods of New York City. We describe the epidemiologic, environmental, and laboratory investigation that identified the source of the outbreak. Results: We identified 138 patients with outbreak-related Legionnaires’ disease, 16 of whom died. The median age of patients was 55. A total of 107 patients had a chronic health condition, including 43 with diabetes, 40 with alcoholism, and 24 with HIV infection. We tested 55 cooling towers for Legionella, and 2 had a strain indistinguishable by pulsed-field gel electrophoresis from 26 patient isolates. Whole-genome sequencing and epidemiologic evidence implicated 1 cooling tower as the source of the outbreak. Conclusions: A large outbreak of Legionnaires’ disease caused by a cooling tower occurred in a medically vulnerable community. The outbreak prompted enactment of a new city law on the operation and maintenance of cooling towers. Ongoing surveillance and evaluation of cooling tower process controls will determine if the new law reduces the incidence of Legionnaires’ disease in New York City. PMID:28141970
Existence and control of Legionella bacteria in building water systems: A review.
Springston, John P; Yocavitch, Liana
2017-02-01
Legionellae are waterborne bacteria which are capable of causing potentially fatal Legionnaires' disease (LD), as well as Pontiac Fever. Public concern about Legionella exploded following the 1976 outbreak at the American Legion conference in Philadelphia, where 221 attendees contracted pneumonia and 34 died. Since that time, a variety of different control methods and strategies have been developed and implemented in an effort to eradicate Legionella from building water systems. Despite these efforts, the incidence of LD has been steadily increasing in the U.S. for more than a decade. Public health and occupational hygiene professionals have maintained an active debate regarding best practices for management and control of Legionella. Professional opinion remains divided with respect to the relative merits of performing routine sampling for Legionella, vs. the passive, reactive approach that has been largely embraced by public health officials and facility owners. Given the potential risks and ramifications associated with waiting to assess systems for Legionella until after disease has been identified and confirmed, a proactive approach of periodic testing for Legionella, along with proper water treatment, is the best approach to avoiding large-scale disease outbreaks.
What tree-ring reconstruction tells us about conifer defoliator outbreaks
Ann M. Lynch
2012-01-01
Our ability to understand the dynamics of forest insect outbreaks is limited by the lack of long-term data describing the temporal and spatial trends of outbreaks, the size and long life span of host plants, and the impracticability of manipulative experiments at relevant temporal and spatial scales. Population responses can be studied across varying site and stand...
Jesse L. Morris; Stuart Cottrell; Chris Fettig; Winslow D. Hansen; Rosemary L. Sherriff; Vachel A. Carter; Jennifer L. Clear; Jessica Clement; R. Justin DeRose; Jeffrey A. Hicke; Philip E. Higuera; Katherine M. Mattor; Alistair W. R. Seddon; Heikki T. Sepp; John D. Stednick; Steven J. Seybold
2016-01-01
1. Recent bark beetle outbreaks in North America and Europe have impacted forested landscapes and the provisioning of critical ecosystem services. The scale and intensity of many recent outbreaks are widely believed to be unprecedented. 2. The effects of bark beetle outbreaks on ecosystems are often measured in terms of area affected, host tree mortality rates, and...
Flower, Aquila; G. Gavin, Daniel; Heyerdahl, Emily K.; Parsons, Russell A.; Cohn, Gregory M.
2014-01-01
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk. PMID:25526633
Flower, Aquila; Gavin, Daniel G; Heyerdahl, Emily K; Parsons, Russell A; Cohn, Gregory M
2014-01-01
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk.
Chapuis, Marie-Pierre; Loiseau, Anne; Michalakis, Yannis; Lecoq, Michel; Franc, Alex; Estoup, Arnaud
2009-03-01
The potential effect of population outbreaks on within and between genetic variation of populations in pest species has rarely been assessed. In this study, we compare patterns of genetic variation in different sets of historically frequently outbreaking and rarely outbreaking populations of an agricultural pest of major importance, the migratory locust, Locusta migratoria. We analyse genetic variation within and between 24 populations at 14 microsatellites in Western Europe, where only ancient and low-intensity outbreaks have been reported (non-outbreaking populations), and in Madagascar and Northern China, where frequent and intense outbreak events have been recorded over the last century (outbreaking populations). Our comparative survey shows that (i) the long-term effective population size is similar in outbreaking and non-outbreaking populations, as evidenced by similar estimates of genetic diversity, and (ii) gene flow is substantially larger among outbreaking populations than among non-outbreaking populations, as evidenced by a fourfold to 30-fold difference in FST values. We discuss the implications for population dynamics and the consequences for management strategies of the observed patterns of genetic variation in L. migratoria populations with contrasting historical outbreak frequency and extent.
Bjelkmar, Pär; Hansen, Anette; Schönning, Caroline; Bergström, Jakob; Löfdahl, Margareta; Lebbad, Marianne; Wallensten, Anders; Allestam, Görel; Stenmark, Stephan; Lindh, Johan
2017-04-18
In the winter and spring of 2011 a large outbreak of cryptosporidiosis occurred in Skellefteå municipality, Sweden. This study summarizes the outbreak investigation in terms of outbreak size, duration, clinical characteristics, possible source(s) and the potential for earlier detection using calls to a health advice line. The investigation included two epidemiological questionnaires and microbial analysis of samples from patients, water and other environmental sources. In addition, a retrospective study based on phone calls to a health advice line was performed by comparing patterns of phone calls between different water distribution areas. Our analyses showed that approximately 18,500 individuals were affected by a waterborne outbreak of cryptosporidiosis in Skellefteå in 2011. This makes it the second largest outbreak of cryptosporidiosis in Europe to date. Cryptosporidium hominis oocysts of subtype IbA10G2 were found in patient and sewage samples, but not in raw water or in drinking water, and the initial contamination source could not be determined. The outbreak went unnoticed to authorities for several months. The analysis of the calls to the health advice line provides strong indications early in the outbreak that it was linked to a particular water treatment plant. We conclude that an earlier detection of the outbreak by linking calls to a health advice line to water distribution areas could have limited the outbreak substantially.
Colizza, Vittoria; Barrat, Alain; Barthélemy, Marc; Vespignani, Alessandro
2006-02-14
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.
Ecologic and Geographic Distribution of Filovirus Disease
Bauer, John T.; Mills, James N.
2004-01-01
We used ecologic niche modeling of outbreaks and sporadic cases of filovirus-associated hemorrhagic fever (HF) to provide a large-scale perspective on the geographic and ecologic distributions of Ebola and Marburg viruses. We predicted that filovirus would occur across the Afrotropics: Ebola HF in the humid rain forests of central and western Africa, and Marburg HF in the drier and more open areas of central and eastern Africa. Most of the predicted geographic extent of Ebola HF has been observed; Marburg HF has the potential to occur farther south and east. Ecologic conditions appropriate for Ebola HF are also present in Southeast Asia and the Philippines, where Ebola Reston is hypothesized to be distributed. This first large-scale ecologic analysis provides a framework for a more informed search for taxa that could constitute the natural reservoir for this virus family. PMID:15078595
A multi-faceted pandemic: a review of the state of knowledge on the Zika virus.
Depoux, Anneliese; Philibert, Aline; Rabier, Serge; Philippe, Henri-Jean; Fontanet, Arnaud; Flahault, Antoine
2018-01-01
While until recently the small and isolated Zika outbreaks in Eastern Asia and Pacific islands had been overlooked, the large-scale outbreak that started in Brazil in 2015 and the increase of microcephaly cases in the same place and time made media headlines. Considered as harmless until recently, Zika has given rise to an important global crisis that poses not only health challenges but also environmental, economical, social, and ethical challenges for states and people around the world. The main objective of this paper is to review the recent Zika outbreak by covering a broad range of disciplines and their interactions. This paper synthetises experts' interviews and reactions conducted during a Massive Open Online Course (MOOC) entitled "In the footsteps of Zika…approaching the unknown." It reviews knowledge and uncertainties around epidemiology, geographical dispersion of the virus and its vectors through globalization and climate change, and also its modes of transmission, diagnosis, symptoms, and treatment of the disease. The resulting societal and ethical issues in pregnancy and women of reproductive age were also addressed as well as the global outbreak alert and response network in international organizations and social media. This paper attempted to combine each piece of the jigsaw puzzle of the Zika phenomenon to complete the best realistic picture, while keeping in mind the balance between the interdisciplinary nature and international context of Zika and its unique characteristics.
Pons, Wendy; Young, Ian; Truong, Jenifer; Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew
2015-01-01
Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with 'outbreak' as the unit of analysis. From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts.
Wiltshire, Serge W
2018-01-01
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents' contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments-defined by one-phase, two-phase, and three-phase production systems-a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer-producer edges may be largely responsible for the superior disease resilience of single-phase "farrow to finish" production systems.
Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014
MacGregor, Vanessa; Robbins, Vivienne; Bayliss, Laura; Chattaway, Marie Anne; Dallman, Tim; Ready, Derren; Aird, Heather; Puleston, Richard; Hawker, Jeremy
2016-01-01
Enteroinvasive Escherichia coli (EIEC) outbreaks are uncommon in Europe. In June 2014, two EIEC outbreaks occurred in Nottingham, UK, within 2 days; outbreak A was linked to a takeaway restaurant and outbreak B to a wedding party. We conducted 2 analytical studies: a case–control study for outbreak A and a cohort study for outbreak B. We tested microbiological and environmental samples, including by using whole-genome sequencing. For both outbreaks combined, we identified 157 probable case-patients; 27 were laboratory-confirmed as EIEC O96:H19–positive. Combined epidemiologic, microbiological, and environmental findings implicated lettuce as the vehicle of infection in outbreak A, but the source of the organism remained unknown. Whole-genome sequencing identified the same organism in cases from both outbreaks, but no epidemiologic link was confirmed. These outbreaks highlight that EIEC has the capacity to cause large and severe gastrointestinal disease outbreaks and should be considered as a potential pathogen in foodborne outbreaks in Europe. PMID:27314432
Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014.
Newitt, Sophie; MacGregor, Vanessa; Robbins, Vivienne; Bayliss, Laura; Chattaway, Marie Anne; Dallman, Tim; Ready, Derren; Aird, Heather; Puleston, Richard; Hawker, Jeremy
2016-07-01
Enteroinvasive Escherichia coli (EIEC) outbreaks are uncommon in Europe. In June 2014, two EIEC outbreaks occurred in Nottingham, UK, within 2 days; outbreak A was linked to a takeaway restaurant and outbreak B to a wedding party. We conducted 2 analytical studies: a case-control study for outbreak A and a cohort study for outbreak B. We tested microbiological and environmental samples, including by using whole-genome sequencing. For both outbreaks combined, we identified 157 probable case-patients; 27 were laboratory-confirmed as EIEC O96:H19-positive. Combined epidemiologic, microbiological, and environmental findings implicated lettuce as the vehicle of infection in outbreak A, but the source of the organism remained unknown. Whole-genome sequencing identified the same organism in cases from both outbreaks, but no epidemiologic link was confirmed. These outbreaks highlight that EIEC has the capacity to cause large and severe gastrointestinal disease outbreaks and should be considered as a potential pathogen in foodborne outbreaks in Europe.
Outbreak Column 16: Cognitive errors in outbreak decision making.
Curran, Evonne T
2015-01-01
During outbreaks, decisions must be made without all the required information. People, including infection prevention and control teams (IPCTs), who have to make decisions during uncertainty use heuristics to fill the missing data gaps. Heuristics are mental model short cuts that by-and-large enable us to make good decisions quickly. However, these heuristics contain biases and effects that at times lead to cognitive (thinking) errors. These cognitive errors are not made to deliberately misrepresent any given situation; we are subject to heuristic biases when we are trying to perform optimally. The science of decision making is large; there are over 100 different biases recognised and described. Outbreak Column 16 discusses and relates these heuristics and biases to decision making during outbreak prevention, preparedness and management. Insights as to how we might recognise and avoid them are offered.
Kundrick, Avery; Huang, Zhuojie; Carran, Spencer; Kagoli, Matthew; Grais, Rebecca Freeman; Hurtado, Northan; Ferrari, Matthew
2018-06-15
Despite progress towards increasing global vaccination coverage, measles continues to be one of the leading, preventable causes of death among children worldwide. Whether and how to target sub-national areas for vaccination campaigns continues to remain a question. We analyzed three metrics for prioritizing target areas: vaccination coverage, susceptible birth cohort, and the effective reproductive ratio (R E ) in the context of the 2010 measles epidemic in Malawi. Using case-based surveillance data from the 2010 measles outbreak in Malawi, we estimated vaccination coverage from the proportion of cases reporting with a history of prior vaccination at the district and health facility catchment scale. Health facility catchments were defined as the set of locations closer to a given health facility than to any other. We combined these estimates with regional birth rates to estimate the size of the annual susceptible birth cohort. We also estimated the effective reproductive ratio, R E , at the health facility polygon scale based on the observed rate of exponential increase of the epidemic. We combined these estimates to identify spatial regions that would be of high priority for supplemental vaccination activities. The estimated vaccination coverage across all districts was 84%, but ranged from 61 to 99%. We found that 8 districts and 354 health facility catchments had estimated vaccination coverage below 80%. Areas that had highest birth cohort size were frequently large urban centers that had high vaccination coverage. The estimated R E ranged between 1 and 2.56. The ranking of districts and health facility catchments as priority areas varied depending on the measure used. Each metric for prioritization may result in discrete target areas for vaccination campaigns; thus, there are tradeoffs to choosing one metric over another. However, in some cases, certain areas may be prioritized by all three metrics. These areas should be treated with particular concern. Furthermore, the spatial scale at which each metric is calculated impacts the resulting prioritization and should also be considered when prioritizing areas for vaccination campaigns. These methods may be used to allocate effort for prophylactic campaigns or to prioritize response for outbreak response vaccination.
WATERBORNE OUTBREAKS CAUSED BY DISTRIBUTION SYSTEM DEFICIENCIES IN THE UNITED STATES
Distribution system contamination has caused a significant number of waterborne outbreaks in the United States. The number of illnesses in a distribution-system outbreak can be quite large, and illness can be severe resulting in hospitalization and sometimes death. During t...
Deter, J; Berthier, K; Chaval, Y; Cosson, J F; Morand, S; Charbonnel, N
2006-04-01
Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.
Bonovas, S; Nikolopoulos, G
2012-09-01
Economic hardships have unleashed epidemics of infectious diseases in many countries in the past. In the era of the current financial crisis in Greece, it is interesting to assess the preliminary evidence concerning outbreaks of infectious diseases. Description and evaluation of published surveillance data. Greece has been suffering a high burden of different large-scale epidemics during the last three years. These include the increased mortality of influenza during the pandemic and the first post-pandemic seasons, the emergence and spread of West Nile virus, the appearance of clusters of non-imported malaria and the outbreak of Human Immunodeficiency Virus infection among people who inject drugs. The economic turmoil in Greece seems to impact the infectious disease dynamics. It is essential to safeguard and even bolster budgetary allocations to the public health sector, in order to alleviate the effects of the economic downturn.
Observation of gravity waves during the extreme tornado outbreak of 3 April 1974
NASA Technical Reports Server (NTRS)
Hung, R. J.; Phan, T.; Smith, R. E.
1978-01-01
A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.
Climate change alters diffusion of forest pest: A model study
NASA Astrophysics Data System (ADS)
Jo, Woo Seong; Kim, Hwang-Yong; Kim, Beom Jun
2017-01-01
Population dynamics with spatial information is applied to understand the spread of pests. We introduce a model describing how pests spread in discrete space. The number of pest descendants at each site is controlled by local information such as temperature, precipitation, and the density of pine trees. Our simulation leads to a pest spreading pattern comparable to the real data for pine needle gall midge in the past. We also simulate the model in two different climate conditions based on two different representative concentration pathways scenarios for the future. We observe that after an initial stage of a slow spread of pests, a sudden change in the spreading speed occurs, which is soon followed by a large-scale outbreak. We found that a future climate change causes the outbreak point to occur earlier and that the detailed spatio-temporal pattern of the spread depends on the source position from which the initial pest infection starts.
Kim, Jin Yong; Song, Joon Young; Yoon, Young Kyung; Choi, Seong-Ho; Song, Young Goo; Kim, Sung-Ran; Son, Hee-Jung; Jeong, Sun-Young; Choi, Jung-Hwa; Kim, Kyung Mi; Yoon, Hee Jung; Choi, Jun Yong; Kim, Tae Hyong; Choi, Young Hwa; Kim, Hong Bin; Yoon, Ji Hyun; Lee, Jacob; Eom, Joong Sik; Lee, Sang-Oh; Oh, Won Sup; Choi, Jung-Hyun; Yoo, Jin-Hong; Kim, Woo Joo
2015-01-01
Middle East Respiratory Syndrome (MERS) is an acute viral respiratory illness with high mortality caused by a new strain of betacoronavirus (MERS-CoV). Since the report of the first patient in Saudi Arabia in 2012, large-scale outbreaks through hospital-acquired infection and inter-hospital transmission have been reported. Most of the patients reported in South Korea were also infected in hospital settings. Therefore, to eliminate the spread of MERS-CoV, infection prevention and control measures should be implemented with rigor. The present guideline has been drafted on the basis of the experiences of infection control in the South Korean hospitals involved in the recent MERS outbreak and on domestic and international infection prevention and control guidelines. To ensure efficient MERS-CoV infection prevention and control, care should be taken to provide comprehensive infection control measures including contact control, hand hygiene, personal protective equipment, disinfection, and environmental cleaning. PMID:26788414
Kim, Jin Yong; Song, Joon Young; Yoon, Young Kyung; Choi, Seong-Ho; Song, Young Goo; Kim, Sung-Ran; Son, Hee-Jung; Jeong, Sun-Young; Choi, Jung-Hwa; Kim, Kyung Mi; Yoon, Hee Jung; Choi, Jun Yong; Kim, Tae Hyong; Choi, Young Hwa; Kim, Hong Bin; Yoon, Ji Hyun; Lee, Jacob; Eom, Joong Sik; Lee, Sang-Oh; Oh, Won Sup; Choi, Jung-Hyun; Yoo, Jin-Hong; Kim, Woo Joo; Cheong, Hee Jin
2015-12-01
Middle East Respiratory Syndrome (MERS) is an acute viral respiratory illness with high mortality caused by a new strain of betacoronavirus (MERS-CoV). Since the report of the first patient in Saudi Arabia in 2012, large-scale outbreaks through hospital-acquired infection and inter-hospital transmission have been reported. Most of the patients reported in South Korea were also infected in hospital settings. Therefore, to eliminate the spread of MERS-CoV, infection prevention and control measures should be implemented with rigor. The present guideline has been drafted on the basis of the experiences of infection control in the South Korean hospitals involved in the recent MERS outbreak and on domestic and international infection prevention and control guidelines. To ensure efficient MERS-CoV infection prevention and control, care should be taken to provide comprehensive infection control measures including contact control, hand hygiene, personal protective equipment, disinfection, and environmental cleaning.
Jones-Bitton, Andria; McEwen, Scott; Pintar, Katarina; Papadopoulos, Andrew
2015-01-01
Background Reports of outbreaks in Canada and the United States (U.S.) indicate that approximately 50% of all waterborne diseases occur in small non-community drinking water systems (SDWSs). Summarizing these investigations to identify the factors and conditions contributing to outbreaks is needed in order to help prevent future outbreaks. Objectives The objectives of this study were to: 1) identify published reports of waterborne disease outbreaks involving SDWSs in Canada and the U.S. since 1970; 2) summarize reported factors contributing to outbreaks, including water system characteristics and events surrounding the outbreaks; and 3) identify terminology used to describe SDWSs in outbreak reports. Methods Three electronic databases and grey literature sources were searched for outbreak reports involving SDWSs throughout Canada and the U.S. from 1970 to 2014. Two reviewers independently screened and extracted data related to water system characteristics and outbreak events. The data were analyzed descriptively with ‘outbreak’ as the unit of analysis. Results From a total of 1,995 citations, we identified 50 relevant articles reporting 293 unique outbreaks. Failure of an existing water treatment system (22.7%) and lack of water treatment (20.2%) were the leading causes of waterborne outbreaks in SDWSs. A seasonal trend was observed with 51% of outbreaks occurring in summer months (p<0.001). There was large variation in terminology used to describe SDWSs, and a large number of variables were not reported, including water source and whether water treatment was used (missing in 31% and 66% of reports, respectively). Conclusions More consistent reporting and descriptions of SDWSs in future outbreak reports are needed to understand the epidemiology of these outbreaks and to inform the development of targeted interventions for SDWSs. Additional monitoring of water systems that are used on a seasonal or infrequent basis would be worthwhile to inform future protection efforts. PMID:26513152
Scale-free networks which are highly assortative but not small world
NASA Astrophysics Data System (ADS)
Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An
2008-06-01
Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).
The Ebola outbreak, 2013–2016: old lessons for new epidemics
Lindsey, Benjamin; Ghinai, Isaac; Johnson, Anne M.; Heymann, David L.
2017-01-01
Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013–2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world's largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396469
Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks
NASA Astrophysics Data System (ADS)
Barthélemy, Marc; Barrat, Alain; Pastor-Satorras, Romualdo; Vespignani, Alessandro
2004-04-01
We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.
E. coli O157 outbreaks in the United Kingdom: past, present, and future
Pennington, Thomas Hugh
2014-01-01
This review describes Escherichia coli O157 outbreaks in the United Kingdom, beginning from the first, in the 1980s, to those recorded in 2013. We point out that the United Kingdom differs from other countries, particularly the United States, in that it has had a considerable number of outbreaks associated with butchers, but very few caused by contaminated burgers. Two of the butcher-associated outbreaks (in central Scotland in 1996 and South Wales in 2005) were very large and are considered here in detail; the reviewer conducted detailed investigations into both outbreaks. Also considered is the very large outbreak that occurred in visitors to an open farm in Surrey in 2009. Detailed descriptions of some milk-borne outbreaks and incidents connected with camping and childrens’ nurseries have been published, and these are also considered in this review. Large outbreaks in the United Kingdom have sometimes led to policy developments regarding food safety, and these are considered, together with public reactions to them, their health effect, and their value, as examples to follow or eschew in terms of the procedures to be adopted in response to incidents of this kind. Regulatory and legal consequences are also considered. As a wise man said, making predictions is difficult, particularly about the future. This review follows this position but points out that although human infections caused by E. coli O157 are rare in the United Kingdom, their incidence has not changed significantly in the last 17 years. This review points out that although a response to an outbreak is to say “lessons must be learned”, this response has been tempered by forgetfulness. Accordingly, this review restricts its recommendations regarding outbreaks to two: the crucial importance of a rapid response and the importance of experience, and even “gut feeling”, when an inspector is evaluating the safety of a food business. PMID:25187729
Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014.
Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun
2016-04-01
We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. © The American Society of Tropical Medicine and Hygiene.
Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014
Chang, Shu-Fen; Yang, Cheng-Fen; Hsu, Tung-Chieh; Su, Chien-Ling; Lin, Chien-Chou; Shu, Pei-Yun
2016-01-01
We present the results of a laboratory-based surveillance of dengue in Taiwan in 2014. A total of 240 imported dengue cases were identified. The patients had arrived from 16 countries, and Malaysia, Indonesia, the Philippines, and China were the most frequent importing countries. Phylogenetic analyses showed that genotype I of dengue virus type 1 (DENV-1) and the cosmopolitan genotype of DENV-2 were the predominant DENV strains circulating in southeast Asia. The 2014 dengue epidemic was the largest ever to occur in Taiwan since World War II, and there were 15,492 laboratory-confirmed indigenous dengue cases. Phylogenetic analysis showed that the explosive dengue epidemic in southern Taiwan was caused by a DENV-1 strain of genotype I imported from Indonesia. There were several possible causes of this outbreak, including delayed notification of the outbreak, limited staff and resources for control measures, abnormal weather conditions, and a serious gas pipeline explosion in the dengue hot spot areas in Kaohsiung City. However, the results of this surveillance indicated that both active and passive surveillance systems should be strengthened so appropriate public health measures can be taken promptly to prevent large-scale dengue outbreaks. PMID:26880779
Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P
2017-10-19
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Dechet, Amy M.; Parsons, Michele; Rambaran, Madan; Mohamed-Rambaran, Pheona; Florendo-Cumbermack, Anita; Persaud, Shamdeo; Baboolal, Shirematee; Ari, Mary D.; Shadomy, Sean V.; Zaki, Sherif R.; Paddock, Christopher D.; Clark, Thomas A.; Harris, Lazenia; Lyon, Douglas; Mintz, Eric D.
2012-01-01
Background Leptospirosis is a zoonosis usually transmitted through contact with water or soil contaminated with urine from infected animals. Severe flooding can put individuals at greater risk for contracting leptospirosis in endemic areas. Rapid testing for the disease and large-scale interventions are necessary to identify and control infection. We describe a leptospirosis outbreak following severe flooding and a mass chemoprophylaxis campaign in Guyana. Methodology/Principal Findings From January–March 2005, we collected data on suspected leptospirosis hospitalizations and deaths. Laboratory testing included anti-leptospiral dot enzyme immunoassay (DST), immunohistochemistry (IHC) staining, and microscopic agglutination testing (MAT). DST testing was conducted for 105 (44%) of 236 patients; 52 (50%) tested positive. Four (57%) paired serum samples tested by MAT were confirmed leptospirosis. Of 34 total deaths attributed to leptospirosis, postmortem samples from 10 (83%) of 12 patients were positive by IHC. Of 201 patients interviewed, 89% reported direct contact with flood waters. A 3-week doxycycline chemoprophylaxis campaign reached over 280,000 people. Conclusions A confirmed leptospirosis outbreak in Guyana occurred after severe flooding, resulting in a massive chemoprophylaxis campaign to try to limit morbidity and mortality. PMID:22808049
Javelle, Emilie; Tiong, Tee Hua; Leparc-Goffart, Isabelle; Savini, Hélène; Simon, Fabrice
2014-04-01
The re-emerging invalidating chikungunya disease has recently extended to temperate areas. Other alphaviruses can also present with febrile arthalgias. Dengue virus transmitted by the same species of mosquitoes may cocirculate, leading to dual infections and concurrent epidemics. Although these diseases share similar clinical features, their prognoses considerably differ. Prominent and prolonged articular disorders are more consistent with chikungunya virus, whereas haemorrhages make the gravity of dengue infection. Specific symptoms are required, especially when diagnostic tests are not available or performable at a large scale. Indeed, early clinical suspicion of a vector-borne disease is crucial to isolate the first cases in the course of an outbreak, and discrimination between arboviruses help to optimal management of patients. No specific chikungunya clinical sign has been yet reported. We highlight here the high prevalence (about 25%) of acute ear redness in infected people during the 2008 chikungunya outbreak in Jahor Bahru in Malaysia. Nine consenting patients are more precisely described. Ear chondritis could be sensitive diagnostic criterion of the acute stage of chikungunya, every physician - even in occidental non endemic areas - should be aware of. Copyright © 2014 Elsevier B.V. All rights reserved.
Feasibility of depopulation of a large feedlot during a foot-and-mouth disease outbreak.
McReynolds, Sara W; Sanderson, Michael W
2014-02-01
To examine the feasibility of depopulation of a large feedlot during a foot-and-mouth disease (FMD) outbreak in the United States. Delphi survey followed by facilitated discussion. 27 experts, including veterinary toxicologists and pharmacologists, animal welfare experts, feedlot managers, and consulting veterinarians. 4 veterinary pharmacologists, 5 veterinary toxicologists, 4 animal welfare experts, 26 consulting veterinarians, and 8 feedlot managers were invited to participate in a Delphi survey to identify methods for depopulation of a large feedlot during an FMD outbreak. A facilitated discussion that included 1 pharmacologist, 1 toxicologist, 1 animal welfare expert, 2 consulting veterinarians, and 2 feedlot managers was held to review the survey results. 27 of 47 invited experts participated in the Delphi survey. Survey consensus was that, although several toxic agents would effectively cause acute death in a large number of animals, all of them had substantial animal welfare concerns. Pentobarbital sodium administered IV was considered the most effective pharmacological agent for euthanasia, and xylazine was considered the most effective sedative. Animal welfare concerns following administration of a euthanasia solution IV or a penetrating captive bolt were minimal; however, both veterinarians and feedlot managers felt that use of a captive bolt would be inefficient for depopulation. Veterinarians were extremely concerned about public perception, human safety, and timely depopulation of a large feedlot during an FMD outbreak. Depopulation of a large feedlot during an FMD outbreak would be difficult to complete in a humane and timely fashion.
Dengue outbreak in a large military station: Have we learnt any lesson?
Kunwar, R; Prakash, R
2015-01-01
An outbreak was reported from a large military station located in South India in 2013. In spite of instituting the preventive measures early, it took more than 2 months to bring the outbreak under control. This paper brings out lessons learnt and suggests strategy for controlling similar outbreak in future. The Military station comprises of 6 large Regimental Centres and many smaller units. The approximate strength of the serving personnel and their families is 25,000. Besides the unit Regimental Medical Officers, a large tertiary care hospital and a Station Health Organization is available to provide health care. A total of 266 patients including 192 serving personnel and 74 of their dependents were hospitalized for dengue between 15 May 2013 and 28 Jul 2013. Many dependents not having severe symptoms, were not hospitalized and treated on outpatient basis. Health advisories and instructions for constituting Dengue Task Force (DTF) were issued well in advance. Preventive measures were instituted early. But the outbreak was controlled only after intervention from higher administrative authorities. Lessons learnt included correct and timely perception of threat is essential; behavioural change of individuals is desired; availability of adequate health functionaries is mandatory; and complete dataset helps correct perception. Future strategy for control of dengue outbreak should include repeated and timely survey of entire area for correct risk perception, assessment of behavioural change among individuals; operational research to assess the impact of ongoing public health campaign.
Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination.
Zhao, Shi; Stone, Lewi; Gao, Daozhou; He, Daihai
2018-01-01
Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening viral disease endemic to tropical and subtropical regions of Africa and South America. YF has largely been controlled by widespread national vaccination campaigns. Nevertheless, between December 2015 and August 2016, YF resurged in Angola, quickly spread and became the largest YF outbreak for the last 30 years. Recently, YF resurged again in Brazil (December 2016). Thus, there is an urgent need to gain better understanding of the transmission pattern of YF. The present study provides a refined mathematical model, combined with modern likelihood-based statistical inference techniques, to assess and reconstruct important epidemiological processes underlying Angola's YF outbreak. This includes the outbreak's attack rate, the reproduction number ([Formula: see text]), the role of the mosquito vector, the influence of climatic factors, and the unusual but noticeable appearance of two-waves in the YF outbreak. The model explores actual and hypothetical vaccination strategies, and the impacts of possible human reactive behaviors (e.g., response to media precautions). While there were 73 deaths reported over the study period, the model indicates that the vaccination campaign saved 5.1-fold more people from death and saved from illness 5.6-fold of the observed 941 cases. Delaying the availability of the vaccines further would have greatly worsened the epidemic in terms of increased cases and deaths. The analysis estimated a mean [Formula: see text] and an attack rate of 0.09-0.15% (proportion of population infected) over the whole period from December 2015 to August 2016. Our estimated lower and upper bounds of [Formula: see text] are in line with previous studies. Unusually, [Formula: see text] oscillated in a manner that was "delayed" with the reported deaths. High recent number of deaths were associated (followed) with periods of relatively low disease transmission and low [Formula: see text], and vice-versa. The time-series of Luanda's YF cases suggest the outbreak occurred in two waves, a feature that would have become far more prominent had there been no mass vaccination. The waves could possibly be due to protective reactive behavioral changes of the population affecting the mosquito population. The second wave could well be an outcome of the March-April rainfall patterns in the 2016 El Niño year by creating ideal conditions for the breeding of the mosquito vectors. The modelling framework is a powerful tool for studying future YF epidemic outbreaks, and provides a basis for future vaccination campaign evaluations.
Yellow Fever Outbreak, Southern Sudan, 2003
Onyango, Clayton O.; Grobbelaar, Antoinette A.; Gibson, Georgina V.F.; Sang, Rosemary C.; Sow, Abdourahmane; Swanepoel, Robert
2004-01-01
In May 2003, an outbreak of fatal hemorrhagic fever, caused by yellow fever virus, occurred in southern Sudan. Phylogenetic analysis showed that the virus belonged to the East African genotype, which supports the contention that yellow fever is endemic in East Africa with the potential to cause large outbreaks in humans. PMID:15498174
Verbenone decreases whitebark pine mortality throughout a mountain pine beetle outbreak
USDA-ARS?s Scientific Manuscript database
Mountain pine beetle [Dendroctonus ponderosae (Hopkins)] outbreaks are killing large numbers of pine trees on millions of hectares in the western U.S. The ranges, impacts and frequencies of mountain pine beetle outbreaks are increasing, perhaps due to climate change. One of the species being impacte...
Automated biosurveillance data from England and Wales, 1991-2011.
Enki, Doyo G; Noufaily, Angela; Garthwaite, Paul H; Andrews, Nick J; Charlett, André; Lane, Chris; Farrington, C Paddy
2013-01-01
Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991-2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity.
Automated Biosurveillance Data from England and Wales, 1991–2011
Enki, Doyo G.; Noufaily, Angela; Garthwaite, Paul H.; Andrews, Nick J.; Charlett, André; Lane, Chris
2013-01-01
Outbreak detection systems for use with very large multiple surveillance databases must be suited both to the data available and to the requirements of full automation. To inform the development of more effective outbreak detection algorithms, we analyzed 20 years of data (1991–2011) from a large laboratory surveillance database used for outbreak detection in England and Wales. The data relate to 3,303 distinct types of infectious pathogens, with a frequency range spanning 6 orders of magnitude. Several hundred organism types were reported each week. We describe the diversity of seasonal patterns, trends, artifacts, and extra-Poisson variability to which an effective multiple laboratory-based outbreak detection system must adjust. We provide empirical information to guide the selection of simple statistical models for automated surveillance of multiple organisms, in the light of the key requirements of such outbreak detection systems, namely, robustness, flexibility, and sensitivity. PMID:23260848
A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China
NASA Astrophysics Data System (ADS)
Liu, Tao; Zhang, Yonghui; Lin, Hualiang; Lv, Xiaojuan; Xiao, Jianpeng; Zeng, Weilin; Gu, Yuzhou; Rutherford, Shannon; Tong, Shilu; Ma, Wenjun
2015-03-01
Although erythromelalgia (EM) has been documented in the literature for almost 150 years, it is still poorly understood. To overcome this limitation, we examined the spatial distribution of epidemic EM, and explored the association between temperature fluctuation and epidemic EM outbreaks in China. We searched all peer-reviewed literature on primary epidemic EM outbreaks in China. A two-stage model was used to characterize the relationship between temperature fluctuation and epidemic EM outbreaks. We observed that epidemic EM outbreaks were reported from 13 provinces during 1960-2014 and they mainly occurred between February and March in southern China. The majority of EM cases were middle school students, with a higher incidence rate in female and resident students. The major clinical characteristics of EM cases included burning, sharp, tingling and/or stinging pain in toes, soles and/or dorsum of feet, fever, erythema and swelling. A large ``V''-shaped fluctuation of daily average temperature (TM) observed during the epidemic EM outbreaks was significantly associated with the number of daily EM cases (β = 1.22, 95%CI: 0.66 ~ 1.79), which indicated that this ``V''-shaped fluctuation of TM probably triggered the epidemic EM outbreaks.
Stephens, Nicola; Coleman, David; Shaw, Kathleen
2008-12-01
Large egg-associated outbreaks of Salmonella Typhimurium 135 (STm135) that were associated with inadequate food safety practices but also linked to a common poultry farm occurred in Tasmania in 2005. A series of public health interventions were implemented to prevent further occurrences but 2 more egg-associated outbreaks in Tasmania in March 2007 and January 2008 led to a further 66 cases of STm135. This report describes these outbreaks and their links to the common source associated with the outbreaks in 2005.
Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre
2017-11-01
The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.
Management of nosocomial scabies, an outbreak of occupational disease.
Jungbauer, Frank H W; Veenstra-Kyuchukova, Yanka K; Koeze, Jacqueline; KruijtSpanjer, Martijn R; Kardaun, Sylvia H
2015-05-01
The optimal approach to managing institutional scabies outbreaks has yet to be defined. We report on outbreak managements are needed. We report on a large outbreak of scabies in three acute care wards in a tertiary university teaching hospital in the Netherlands. The outbreak potentially effected 460 patients and 185 health care workers who had been exposed to the index patient. Containment of an outbreak relies on a quick and strict implementation of appropriate infection control measures and should include simultaneous treatment of all infested persons and exposed contacts to prevent secondary spread and prolonged post-intervention surveillance. © 2015 Wiley Periodicals, Inc.
Hamami, Dalila; Cameron, Ross; Pollock, Kevin G.; Shankland, Carron
2017-01-01
Vaccination programs for childhood diseases, such as measles, mumps and rubella have greatly contributed to decreasing the incidence and impact of those diseases. Nonetheless, despite long vaccination programmes across the world, mumps has not yet been eradicated in those countries: indeed, large outbreaks continue. For example, in Scotland large outbreaks occurred in 2004, 2005, and 2015, despite introducing the MMR (Measles-Mumps-Rubella) vaccine more than 20 years ago. There are indications that this vaccine-preventable disease is re-emerging in highly vaccinated populations. Here we investigate whether the resurgence of mumps is due to waning immunity, and further, could a booster dose be the solution to eradicate mumps or would it just extend the period of waning immunity? Using mathematical modeling we enhance a seasonally-structured disease model with four scenarios: no vaccination, vaccinated individuals protected for life, vaccinated individuals at risk of waning immunity, and introduction of measures to increase immunity (a third dose, or a better vaccine). The model is parameterised from observed clinical data in Scotland 2004–2015 and the literature. The results of the four scenarios are compared with observed clinical data 2004–2016. While the force of infection is relatively sensitive to the duration of immunity and the number of boosters undertaken, we conclude that periodic large outbreaks of mumps will be sustained for all except the second scenario. This suggests that the current protocol of two vaccinations is optimal in the sense that while there are periodic large outbreaks, the severity of cases in vaccinated individuals is less than in unvaccinated individuals, and the size of the outbreaks does not decrease sufficiently with a third booster to make economic sense. This recommendation relies on continuous efforts to maintain high levels of vaccination uptake. PMID:28487657
Hamami, Dalila; Cameron, Ross; Pollock, Kevin G; Shankland, Carron
2017-01-01
Vaccination programs for childhood diseases, such as measles, mumps and rubella have greatly contributed to decreasing the incidence and impact of those diseases. Nonetheless, despite long vaccination programmes across the world, mumps has not yet been eradicated in those countries: indeed, large outbreaks continue. For example, in Scotland large outbreaks occurred in 2004, 2005, and 2015, despite introducing the MMR (Measles-Mumps-Rubella) vaccine more than 20 years ago. There are indications that this vaccine-preventable disease is re-emerging in highly vaccinated populations. Here we investigate whether the resurgence of mumps is due to waning immunity, and further, could a booster dose be the solution to eradicate mumps or would it just extend the period of waning immunity? Using mathematical modeling we enhance a seasonally-structured disease model with four scenarios: no vaccination, vaccinated individuals protected for life, vaccinated individuals at risk of waning immunity, and introduction of measures to increase immunity (a third dose, or a better vaccine). The model is parameterised from observed clinical data in Scotland 2004-2015 and the literature. The results of the four scenarios are compared with observed clinical data 2004-2016. While the force of infection is relatively sensitive to the duration of immunity and the number of boosters undertaken, we conclude that periodic large outbreaks of mumps will be sustained for all except the second scenario. This suggests that the current protocol of two vaccinations is optimal in the sense that while there are periodic large outbreaks, the severity of cases in vaccinated individuals is less than in unvaccinated individuals, and the size of the outbreaks does not decrease sufficiently with a third booster to make economic sense. This recommendation relies on continuous efforts to maintain high levels of vaccination uptake.
Crowdsourced 'R&D' and medical research.
Callaghan, Christian William
2015-09-01
Crowdsourced R&D, a research methodology increasingly applied to medical research, has properties well suited to large-scale medical data collection and analysis, as well as enabling rapid research responses to crises such as disease outbreaks. Multidisciplinary literature offers diverse perspectives of crowdsourced R&D as a useful large-scale medical data collection and research problem-solving methodology. Crowdsourced R&D has demonstrated 'proof of concept' in a host of different biomedical research applications. A wide range of quality and ethical issues relate to crowdsourced R&D. The rapid growth in applications of crowdsourced R&D in medical research is predicted by an increasing body of multidisciplinary theory. Further research in areas such as artificial intelligence may allow better coordination and management of the high volumes of medical data and problem-solving inputs generated by the crowdsourced R&D process. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Coccidioidomycosis Outbreaks, United States and Worldwide, 1940-2015.
Freedman, Michael; Jackson, Brendan R; McCotter, Orion; Benedict, Kaitlin
2018-03-01
Coccidioidomycosis causes substantial illness and death in the United States each year. Although most cases are sporadic, outbreaks provide insight into the clinical and environmental features of coccidioidomycosis, high-risk activities, and the geographic range of Coccidioides fungi. We identified reports published in English of 47 coccidioidomycosis outbreaks worldwide that resulted in 1,464 cases during 1940-2015. Most (85%) outbreaks were associated with environmental exposures; the 2 largest outbreaks resulted from an earthquake and a large dust storm. More than one third of outbreaks occurred in areas where the fungus was not previously known to be endemic, and more than half of outbreaks involved occupational exposures. Coccidioidomycosis outbreaks can be difficult to detect and challenging to prevent given the unknown effectiveness of environmental control methods and personal protective equipment; therefore, increased awareness of coccidioidomycosis outbreaks is needed among public health professionals, healthcare providers, and the public.
Coccidioidomycosis Outbreaks, United States and Worldwide, 1940–2015
Freedman, Michael; Jackson, Brendan R.; McCotter, Orion
2018-01-01
Coccidioidomycosis causes substantial illness and death in the United States each year. Although most cases are sporadic, outbreaks provide insight into the clinical and environmental features of coccidioidomycosis, high-risk activities, and the geographic range of Coccidioides fungi. We identified reports published in English of 47 coccidioidomycosis outbreaks worldwide that resulted in 1,464 cases during 1940–2015. Most (85%) outbreaks were associated with environmental exposures; the 2 largest outbreaks resulted from an earthquake and a large dust storm. More than one third of outbreaks occurred in areas where the fungus was not previously known to be endemic, and more than half of outbreaks involved occupational exposures. Coccidioidomycosis outbreaks can be difficult to detect and challenging to prevent given the unknown effectiveness of environmental control methods and personal protective equipment; therefore, increased awareness of coccidioidomycosis outbreaks is needed among public health professionals, healthcare providers, and the public. PMID:29460741
The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014.
Rostrup, Morten; Edwards, Jeffrey K; Abukalish, Mohamed; Ezzabi, Masoud; Some, David; Ritter, Helga; Menge, Tom; Abdelrahman, Ahmed; Rootwelt, Rebecca; Janssens, Bart; Lind, Kyrre; Paasma, Raido; Hovda, Knut Erik
2016-01-01
Outbreaks of methanol poisoning occur frequently on a global basis, affecting poor and vulnerable populations. Knowledge regarding methanol is limited, likely many cases and even outbreaks go unnoticed, with patients dying unnecessarily. We describe findings from the first three large outbreaks of methanol poisoning where Médecins Sans Frontières (MSF) responded, and evaluate the benefits of a possible future collaboration between local health authorities, a Non-Governmental Organisation and international expertise. Retrospective study of three major methanol outbreaks in Libya (2013) and Kenya (May and July 2014). Data were collected from MSF field personnel, local health personnel, hospital files, and media reports. In Tripoli, Libya, over 1,000 patients were poisoned with a reported case fatality rate of 10% (101/1,066). In Kenya, two outbreaks resulted in approximately 341 and 126 patients, with case fatality rates of 29% (100/341) and 21% (26/126), respectively. MSF launched an emergency team with international experts, medications and equipment, however, the outbreaks were resolving by the time of arrival. Recognition of an outbreak of methanol poisoning and diagnosis seem to be the most challenging tasks, with significant delay from time of first presentations to public health warnings being issued. In spite of the rapid response from an emergency team, the outbreaks were nearly concluded by the time of arrival. A major impact on the outcome was not seen, but large educational trainings were conducted to increase awareness and knowledge about methanol poisoning. Based on this training, MSF was able to send a local emergency team during the second outbreak, supporting that such an approach could improve outcomes. Basic training, simplified treatment protocols, point-of-care diagnostic tools, and early support when needed, are likely the most important components to impact the consequences of methanol poisoning outbreaks in these challenging contexts.
Measles (Rubeola): The Control of an Outbreak at a Large University.
ERIC Educational Resources Information Center
Bridgewater, Sharon C.; Lotz, Doris I.
1984-01-01
This article discusses the immunization program that followed an outbreak of measles (rubeloa) at Indiana University. Factors that may have contributed to the outbreak were less natural immunity in this age group, absence of school legislation requiring immunization, and use of killed vaccine which did not provide immunity. (Author/DF)
Costs of Conjunctivitis Outbreak, Réunion Island, France
Pagès, Frederic; Wan, Guy-Noel Chan; Brottet, Elise; Vilain, Pascal
2018-01-01
During January–April 2015, a major outbreak of conjunctivitis on Réunion Island caused a large public health impact. On the basis of general practitioner consultations, emergency department visits, and eye medication sales during the 13-week epidemic, we estimated a total healthcare cost of €3,341,191 from the outbreak. PMID:29260662
USDA-ARS?s Scientific Manuscript database
The highly virulent Escherichia coli O104:H4 that caused the large 2011 outbreak of diarrhoea and haemolytic uraemic syndrome secretes blended virulence factors of enterohaemorrhagic and enteroaggregative E. coli, but their secretion pathways are unknown. We demonstrate that the outbreak strain rele...
USDA-ARS?s Scientific Manuscript database
The twospotted spider mite, Tetranychus urticae Koch, is a worldwide pest of numerous agronomic and horticultural plants. Sulfur fungicides are known to induce outbreaks of this pest on several crops, although mechanisms associated with sulfur-induced mite outbreaks are largely unknown. Studies were...
Trowbridge, Amy M; Bowers, M Deane; Monson, Russell K
2016-12-01
Changes in the chemical composition of plant defense compounds during herbivory can impact herbivore resource allocation patterns and thereby herbivore survival, growth, and immune response against endoparasitoid infection. Few studies have investigated folivore responses to changes in plant chemistry that occur under outbreak conditions in mature conifer systems. Using data from an earlier observational field study, we carried out laboratory bioassays to test how variation in monoterpenes in piñon pine trees (Pinus edulis, Pinaceae) during an outbreak affects growth, consumption, and immune response of a specialist herbivore, the Southwestern tiger moth (Lophocampa ingens, Arctiidae). Larvae were fed on artificial diets containing four monoterpenes at concentrations that mimicked those observed in undamaged and herbivore-damaged trees in situ during an outbreak. Damaged trees contained 30% lower total monoterpene concentrations, likely reflecting volatile losses as observed in a previous field study Trowbridge et al. (Ecology 95:1591-1603, Trowbridge et al. 2014). Herbivores reared on diets mimicking terpene concentrations in the needles of damaged trees exhibited an approximately 60% increase in consumption relative to larvae reared on diets characteristic of trees without herbivore damage. Higher consumption was accompanied by a 40% increase in immune response with no change in growth rate. These observations suggest preferential resource allocation towards immunity and/or a strong genetic component that determines growth under these conditions. These outcomes, which favor the herbivore, point to: (i) a potential positive feedback mechanism that may increase L. ingens's chance of escaping parasitism during the early phases of an outbreak; and (ii) the important role of monoterpenes in mediating conifer-folivore interactions specifically for P. edulis, which has suffered large-scale drought-induced mortality events exacerbated by the presence of insects.
Re-emergence of dengue virus serotype 2 strains in the 2013 outbreak in Nepal
Gupta, Birendra Prasad; Singh, Sneha; Kurmi, Roshan; Malla, Rajani; Sreekumar, Easwaran; Manandhar, Krishna Das
2015-01-01
Background & objectives: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. Methods: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR), nucleotide sequencing and phylogenetic analysis. Results: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%), headache (59.1%), rashes (18.2%), retro-orbital pain (30.3%), vomiting (15.1%), joint pain (28.8%) and thrombocytopenia (74.3%). Fifteen (7.5%) of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. Interpretations & conclusions: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region. PMID:26905233
2018-01-01
An agent-based computer model that builds representative regional U.S. hog production networks was developed and employed to assess the potential impact of the ongoing trend towards increased producer specialization upon network-level resilience to catastrophic disease outbreaks. Empirical analyses suggest that the spatial distribution and connectivity patterns of contact networks often predict epidemic spreading dynamics. Our model heuristically generates realistic systems composed of hog producer, feed mill, and slaughter plant agents. Network edges are added during each run as agents exchange livestock and feed. The heuristics governing agents’ contact patterns account for factors including their industry roles, physical proximities, and the age of their livestock. In each run, an infection is introduced, and may spread according to probabilities associated with the various modes of contact. For each of three treatments—defined by one-phase, two-phase, and three-phase production systems—a parameter variation experiment examines the impact of the spatial density of producer agents in the system upon the length and size of disease outbreaks. Resulting data show phase transitions whereby, above some density threshold, systemic outbreaks become possible, echoing findings from percolation theory. Data analysis reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at lower spatial densities, have more abrupt percolation transitions, and are characterized by less-predictable outbreak scales and durations. Key differences in network-level metrics shed light on these results, suggesting that the absence of potentially-bridging producer–producer edges may be largely responsible for the superior disease resilience of single-phase “farrow to finish” production systems. PMID:29522574
Sumner, Steven A; Turner, Elizabeth L; Thielman, Nathan M
2013-12-01
Large earthquakes can cause population displacement, critical sanitation infrastructure damage, and increased threats to water resources, potentially predisposing populations to waterborne disease epidemics such as cholera. Problem The risk of cholera outbreaks after earthquake disasters remains uncertain. A cross-country analysis of World Health Organization (WHO) cholera data that would contribute to this discussion has yet to be published. A cross-country longitudinal analysis was conducted among 63 low- and middle-income countries from 1995-2009. The association between earthquake disasters of various effect sizes and a relative spike in cholera rates for a given country was assessed utilizing fixed-effects logistic regression and adjusting for gross domestic product per capita, water and sanitation level, flooding events, percent urbanization, and under-five child mortality. Also, the association between large earthquakes and cholera rate increases of various degrees was assessed. Forty-eight of the 63 countries had at least one year with reported cholera infections during the 15-year study period. Thirty-six of these 48 countries had at least one earthquake disaster. In adjusted analyses, country-years with ≥10,000 persons affected by an earthquake had 2.26 times increased odds (95 CI, 0.89-5.72, P = .08) of having a greater than average cholera rate that year compared to country-years having <10,000 individuals affected by an earthquake. The association between large earthquake disasters and cholera infections appeared to weaken as higher levels of cholera rate increases were tested. A trend of increased risk of greater than average cholera rates when more people were affected by an earthquake in a country-year was noted. However these findings did not reach statistical significance at traditional levels and may be due to chance. Frequent large-scale cholera outbreaks after earthquake disasters appeared to be relatively uncommon.
Need for speed: An optimized gridding approach for spatially explicit disease simulations.
Sellman, Stefan; Tsao, Kimberly; Tildesley, Michael J; Brommesson, Peter; Webb, Colleen T; Wennergren, Uno; Keeling, Matt J; Lindström, Tom
2018-04-01
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power.
Need for speed: An optimized gridding approach for spatially explicit disease simulations
Tildesley, Michael J.; Brommesson, Peter; Webb, Colleen T.; Wennergren, Uno; Lindström, Tom
2018-01-01
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power. PMID:29624574
Hall, Aidan A G; Johnson, Scott N; Cook, James M; Riegler, Markus
2017-08-26
Insect herbivore outbreaks frequently occur and this may be due to factors that restrict top-down control by parasitoids, for example, host-parasitoid asynchrony, hyperparasitization, resource limitation and climate. Few studies have examined host-parasitoid density relationships during an insect herbivore outbreak in a natural ecosystem with diverse parasitoids. We studied parasitization patterns of Cardiaspina psyllids during an outbreak in a Eucalyptus woodland. First, we established the trophic roles of the parasitoids through a species-specific multiplex PCR approach on mummies from which parasitoids emerged. Then, we assessed host-parasitoid density relationships across three spatial scales (leaf, tree and site) over one year. We detected four endoparasitoid species of the family Encyrtidae (Hymenoptera); two primary parasitoid and one heteronomous hyperparasitoid Psyllaephagus species (the latter with female development as a primary parasitoid and male development as a hyperparasitoid), and the hyperparasitoid Coccidoctonus psyllae. Parasitoid development was host-synchronized, although synchrony between sites appeared constrained during winter (due to temperature differences). Parasitization was predominantly driven by one primary parasitoid species and was mostly inversely host-density dependent across the spatial scales. Hyperparasitization by C. psyllae was psyllid-density dependent at the site scale, however, this only impacted the rarer primary parasitoid. High larval parasitoid mortality due to density-dependent nymphal psyllid mortality (a consequence of resource limitation) compounded by a summer heat wave was incorporated in the assessment and resulted in density independence of host-parasitoid relationships. As such, high larval parasitoid mortality during insect herbivore outbreaks may contribute to the absence of host density-dependent parasitization during outbreak events. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Schielke, Anika; Rabsch, Wolfgang; Prager, Rita; Simon, Sandra; Fruth, Angelika; Helling, Rüdiger; Schnabel, Martin; Siffczyk, Claudia; Wieczorek, Sina; Schroeder, Sabine; Ahrens, Beate; Oppermann, Hanna; Pfeiffer, Stefan; Merbecks, Sophie Susann; Rosner, Bettina; Frank, Christina; Weiser, Armin A; Luber, Petra; Gilsdorf, Andreas; Stark, Klaus; Werber, Dirk
2017-05-04
In 2013, raw pork was the suspected vehicle of a large outbreak (n = 203 cases) of Salmonella Muenchen in the German federal state of Saxony. In 2014, we investigated an outbreak (n = 247 cases) caused by the same serovar affecting Saxony and three further federal states in the eastern part of Germany. Evidence from epidemiological, microbiological and trace-back investigations strongly implicated different raw pork products as outbreak vehicles. Trace-back analysis of S. Muenchen-contaminated raw pork sausages narrowed the possible source down to 54 pig farms, and S. Muenchen was detected in three of them, which traded animals with each other. One of these farms had already been the suspected source of the 2013 outbreak. S. Muenchen isolates from stool of patients in 2013 and 2014 as well as from food and environmental surface swabs of the three pig farms shared indistinguishable pulsed-field gel electrophoresis patterns. Our results indicate a common source of both outbreaks in the primary production of pigs. Current European regulations do not make provisions for Salmonella control measures on pig farms that have been involved in human disease outbreaks. In order to prevent future outbreaks, legislators should consider tightening regulations for Salmonella control in causative primary production settings. This article is copyright of The Authors, 2017.
Schielke, Anika; Rabsch, Wolfgang; Prager, Rita; Simon, Sandra; Fruth, Angelika; Helling, Rüdiger; Schnabel, Martin; Siffczyk, Claudia; Wieczorek, Sina; Schroeder, Sabine; Ahrens, Beate; Oppermann, Hanna; Pfeiffer, Stefan; Merbecks, Sophie Susann; Rosner, Bettina; Frank, Christina; Weiser, Armin A.; Luber, Petra; Gilsdorf, Andreas; Stark, Klaus; Werber, Dirk
2017-01-01
In 2013, raw pork was the suspected vehicle of a large outbreak (n = 203 cases) of Salmonella Muenchen in the German federal state of Saxony. In 2014, we investigated an outbreak (n = 247 cases) caused by the same serovar affecting Saxony and three further federal states in the eastern part of Germany. Evidence from epidemiological, microbiological and trace-back investigations strongly implicated different raw pork products as outbreak vehicles. Trace-back analysis of S. Muenchen-contaminated raw pork sausages narrowed the possible source down to 54 pig farms, and S. Muenchen was detected in three of them, which traded animals with each other. One of these farms had already been the suspected source of the 2013 outbreak. S. Muenchen isolates from stool of patients in 2013 and 2014 as well as from food and environmental surface swabs of the three pig farms shared indistinguishable pulsed-field gel electrophoresis patterns. Our results indicate a common source of both outbreaks in the primary production of pigs. Current European regulations do not make provisions for Salmonella control measures on pig farms that have been involved in human disease outbreaks. In order to prevent future outbreaks, legislators should consider tightening regulations for Salmonella control in causative primary production settings. PMID:28494842
Identification and Screening of Carcass Pretreatment ...
Technical Fact Sheet Managing the treatment and disposal of large numbers of animal carcasses following a foreign animal disease (FAD) outbreak is a challenging endeavor. Pretreatment of the infectious carcasses might facilitate the disposal of the carcasses by simplifying the transportation, reducing the pathogen load in the carcasses, or by isolating the pathogen from the environment to minimize spread of any pathogens.This brief summarizes information contained in U.S. Environmental Protection Agency (EPA) report (EPA/600/R-15/053) entitled Identification and Screening of Infectious Carcass Pretreatment Alternatives. This brief describes how each of eleven pretreatment methods can be used prior to, and in conjunction with, six commonly used large-scale carcass disposal options
A framework for responding to coral disease outbreaks that facilitates adaptive management.
Beeden, Roger; Maynard, Jeffrey A; Marshall, Paul A; Heron, Scott F; Willis, Bette L
2012-01-01
Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.
A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management
NASA Astrophysics Data System (ADS)
Beeden, Roger; Maynard, Jeffrey A.; Marshall, Paul A.; Heron, Scott F.; Willis, Bette L.
2012-01-01
Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.
Faster Detection of Poliomyelitis Outbreaks to Support Polio Eradication
Chenoweth, Paul; Okayasu, Hiro; Donnelly, Christl A.; Aylward, R. Bruce; Grassly, Nicholas C.
2016-01-01
As the global eradication of poliomyelitis approaches the final stages, prompt detection of new outbreaks is critical to enable a fast and effective outbreak response. Surveillance relies on reporting of acute flaccid paralysis (AFP) cases and laboratory confirmation through isolation of poliovirus from stool. However, delayed sample collection and testing can delay outbreak detection. We investigated whether weekly testing for clusters of AFP by location and time, using the Kulldorff scan statistic, could provide an early warning for outbreaks in 20 countries. A mixed-effects regression model was used to predict background rates of nonpolio AFP at the district level. In Tajikistan and Congo, testing for AFP clusters would have resulted in an outbreak warning 39 and 11 days, respectively, before official confirmation of large outbreaks. This method has relatively high specificity and could be integrated into the current polio information system to support rapid outbreak response activities. PMID:26890053
Faster Detection of Poliomyelitis Outbreaks to Support Polio Eradication.
Blake, Isobel M; Chenoweth, Paul; Okayasu, Hiro; Donnelly, Christl A; Aylward, R Bruce; Grassly, Nicholas C
2016-03-01
As the global eradication of poliomyelitis approaches the final stages, prompt detection of new outbreaks is critical to enable a fast and effective outbreak response. Surveillance relies on reporting of acute flaccid paralysis (AFP) cases and laboratory confirmation through isolation of poliovirus from stool. However, delayed sample collection and testing can delay outbreak detection. We investigated whether weekly testing for clusters of AFP by location and time, using the Kulldorff scan statistic, could provide an early warning for outbreaks in 20 countries. A mixed-effects regression model was used to predict background rates of nonpolio AFP at the district level. In Tajikistan and Congo, testing for AFP clusters would have resulted in an outbreak warning 39 and 11 days, respectively, before official confirmation of large outbreaks. This method has relatively high specificity and could be integrated into the current polio information system to support rapid outbreak response activities.
Cornell University remote sensing program. [New York
NASA Technical Reports Server (NTRS)
Liang, T.; Mcnair, A. J.; Philipson, W. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Available aerial photographs were used to characterize mosquito breeding sites in Oswego County, New York. Numerous wetlands are contained within this county; this area is the only inland area in North America to have confirmed outbreaks of eastern equine encephalitis. This photocharacterization of primary mosquito breeding sites will be used to develop effective spraying. Large scale color and color infrared aerial photographs were used to assess changes in aquatic vegetation that accompanied phosphorus reduction in an eutrophic lake in New York.
Hagan, José E; Greiner, Ashley; Luvsansharav, Ulzii-Orshikh; Lake, Jason; Lee, Christopher; Pastore, Roberta; Takashima, Yoshihiro; Sarankhuu, Amarzaya; Demberelsuren, Sodbayar; Smith, Rachel; Park, Benjamin; Goodson, James L
2017-12-01
Measles is a highly transmissible infectious disease that causes serious illness and death worldwide. Efforts to eliminate measles through achieving high immunization coverage, well-performing surveillance systems, and rapid and effective outbreak response mechanisms while strategically engaging and strengthening health systems have been termed a diagonal approach. In March 2015, a large nationwide measles epidemic occurred in Mongolia, 1 year after verification of measles elimination in this country. A multidisciplinary team conducted an outbreak investigation that included a broad health system assessment, organized around the Global Health Security Agenda framework of Prevent-Detect-Respond, to provide recommendations for evidence-based interventions to interrupt the epidemic and strengthen the overall health system to prevent future outbreaks of measles and other epidemic-prone infectious threats. This investigation demonstrated the value of evaluating elements of the broader health system in investigating measles outbreaks and the need for using a diagonal approach to achieving sustainable measles elimination.
Population control methods in stochastic extinction and outbreak scenarios.
Segura, Juan; Hilker, Frank M; Franco, Daniel
2017-01-01
Adaptive limiter control (ALC) and adaptive threshold harvesting (ATH) are two related control methods that have been shown to stabilize fluctuating populations. Large variations in population abundance can threaten the constancy and the persistence stability of ecological populations, which may impede the success and efficiency of managing natural resources. Here, we consider population models that include biological mechanisms characteristic for causing extinctions on the one hand and pest outbreaks on the other hand. These models include Allee effects and the impact of natural enemies (as is typical of forest defoliating insects). We study the impacts of noise and different levels of biological parameters in three extinction and two outbreak scenarios. Our results show that ALC and ATH have an effect on extinction and outbreak risks only for sufficiently large control intensities. Moreover, there is a clear disparity between the two control methods: in the extinction scenarios, ALC can be effective and ATH can be counterproductive, whereas in the outbreak scenarios the situation is reversed, with ATH being effective and ALC being potentially counterproductive.
Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J
2016-04-01
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.
The changing epidemiology of diphtheria in Jordan*
Khuri-Bulos, N.; Hamzah, Y.; Sammerrai, S. M.; Shehabi, A.; Hamed, R.; Arnaout, M. A.; Turk, J.; Qubain, H.
1988-01-01
Outbreaks of diphtheria used to occur regularly in Jordan, the last such outbreak being in 1977-78. Since that time, a massive immunization programme targeted at pre-school-age children has been markedly successful. Hence, when an outbreak of diphtheria occurred in 1982-83, it was unexpected. Of the 35 patients who were treated at the Jordan University Hospital, two died and the remaining 33 recovered uneventfully. Contrary to our findings in previous diphtheria epidemics in Jordan, this outbreak largely involved adolescents and young adults. PMID:3260143
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-01-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks. PMID:29717695
Lytras, Theodore; Georgakopoulou, Theano; Tsiodras, Sotirios
2018-04-01
Greece is currently experiencing a large measles outbreak, in the context of multiple similar outbreaks across Europe. We devised and applied a modified chain-binomial epidemic model, requiring very simple data, to estimate the transmission parameters of this outbreak. Model results indicate sustained measles transmission among the Greek Roma population, necessitating a targeted mass vaccination campaign to halt further spread of the epidemic. Our model may be useful for other countries facing similar measles outbreaks.
[Epidemiological characteristics of influenza outbreaks in China, 2005-2013].
Li, Ming; Feng, Luzhao; Cao, Yu; Peng, Zhibin; Yu, Hongjie
2015-07-01
To understand the epidemiological characteristics of influenza outbreaks in China from 2005 to 2013. The data of influenza-like illness outbreaks involving 10 or more cases were collected through Public Health Emergency Management Information System and National Influenza Surveillance Information System in China, and the influenza outbreaks were identified according to the laboratory detection results. Descriptive epidemiological analysis was conducted to understand the type/subtype of influenza virus and outbreak time, area, place and extent. From 2005 to 2013, a total of 3 252 influenza-like illness outbreaks were reported in the mainland of China, in which 2 915 influenza outbreaks were laboratory confirmed, and influenza A (H1N1) pdm09 virus and influenza B virus were predominant. More influenza outbreaks were reported in the influenza A (H1N1) pandemic during 2009-2010. Influenza outbreaks mainly occurred during winter-spring, and less influenza outbreaks occurred in winter and summer vacations of schools. More influenza outbreaks were reported in southern provinces, accounting for 79% of the total. Influenza outbreaks mainly occurred in primary and middle schools, where 2 763 outbreaks were reported, accounting for 85% of the total. Average 30-99 people were involved in an outbreak. A large number of influenza outbreaks occur during influenza season every year in China, the predominant virus type or subtype varies with season. Primary and middle schools are mainly affected by influenza outbreaks.
Lund, Magnus; Raundrup, Katrine; Westergaard-Nielsen, Andreas; López-Blanco, Efrén; Nymand, Josephine; Aastrup, Peter
2017-02-01
Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO 2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118-143 g C m -2 , corresponding to 1210-1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events.
Understanding coupling between natural and human systems to ensure disease resilient societies
NASA Astrophysics Data System (ADS)
Jutla, A.; Nguyen, T. H.; Colwell, R. R.; Akanda, A. S.
2016-12-01
Human well-being is one of the key long-term indicators of a sustainable environment. John Snow, a prominent 19th century physician, provided insights on the role of drinking contaminated water and cholera outbreak(s). Extrapolation of Snow's discovery on locating source of cholera bacteria (in local wells) lead to the tenets of traditional doctrines of environmental sustainability of water where source capacities (such as physical condition of water) are directly linked to sink capacities (e.g., bacterial growth in water) of a system, a balance that must be maintained to sustain human life supporting mechanisms. With a changing climate, stress on availability of safe drinking water is likely to increase, particularly where population vulnerability intersects with hydroclimatic extremes. This raises a critical question on how environmental sustainability of water will affect human societies. A dynamic equilibrium exists between large scale geophysical (e.g., sea surface temperature-SST; precipitation, evaporative fluxes) and local scale water-ecological processes (salinity, plankton, organic matter) in water resources (ponds, rivers, lakes). The ecological processes aid in growth and proliferation of water based pathogens (such as cholera, Rotavirus, Shigella and other vibrios). Societal determinants, such as access to safe drinking water and sanitation facilities, defines interaction of human population with water. The feedback loop, between geophysical and water-ecological processes is fundamental to ensure a sustainable environment for human well-being. However, the feedback loops are often misconstrued resulting in massive loss of human life, and further leading to outbreak of diseases at various spatial and temporal scales across region(s). Using historical data on Cholera and Zika virus as examples, we will demonstrate the intricacies involved in understanding coupled human-natural system. The two infections result from a very different asymmetric hydroclimatic regimens, and the feedback loops determine interaction of humans with the pathogens.
Virus-like particle (VLP)-based vaccines for pandemic influenza
López-Macías, Constantino
2012-01-01
The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their safety and immunogenic characteristics. VLP vaccines against pandemic influenza have been developed in tobacco plant cells and in Sf9 insect cells infected with baculovirus that expresses protein genes from pandemic influenza strains. These technologies allow rapid and large-scale production of vaccines (3–12 weeks). The 2009 influenza outbreak provided an opportunity for clinical testing of a pandemic influenza VLP vaccine in the midst of the outbreak at its epicenter in Mexico. An influenza A(H1N1)2009 VLP pandemic vaccine (produced in insect cells) was tested in a phase II clinical trial involving 4,563 healthy adults. Results showed that the vaccine is safe and immunogenic despite high preexisting anti-A(H1N1)2009 antibody titers present in the population. The safety and immunogenicity profile presented by this pandemic VLP vaccine during the outbreak in Mexico suggests that VLP technology is a suitable alternative to current influenza vaccine technologies for producing pandemic and seasonal vaccines. PMID:22330956
O’Dea, Eamon B.; Snelson, Harry; Bansal, Shweta
2016-01-01
In 2013, U.S. swine producers were confronted with the disruptive emergence of porcine epidemic diarrhoea (PED). Movement of animals among farms is hypothesised to have played a role in the spread of PED among farms. Via this or other mechanisms, the rate of spread may also depend on the geographic density of farms and climate. To evaluate such effects on a large scale, we analyse state-level counts of outbreaks with variables describing the distribution of farm sizes and types, aggregate flows of animals among farms, and an index of climate. Our first main finding is that it is possible for a correlation analysis to be sensitive to transmission model parameters. This finding is based on a global sensitivity analysis of correlations on simulated data that included a biased and noisy observation model based on the available PED data. Our second main finding is that flows are significantly associated with the reports of PED outbreaks. This finding is based on correlations of pairwise relationships and regression modeling of total and weekly outbreak counts. These findings illustrate how variation in population structure may be employed along with observational data to improve understanding of disease spread. PMID:26947420
Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires
Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes
2010-01-01
Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...
Hagan, José E; Takashima, Yoshihiro; Sarankhuu, Amarzaya; Dashpagma, Otgonbayar; Jantsansengee, Baigalmaa; Pastore, Roberta; Nyamaa, Gunregjav; Yadamsuren, Buyanjargal; Mulders, Mick N; Wannemuehler, Kathleen A; Anderson, Raydel; Bankamp, Bettina; Rota, Paul; Goodson, James L
2017-12-05
In 2015, a large nationwide measles outbreak occurred in Mongolia, with very high incidence in the capital city of Ulaanbaatar and among young adults. We conducted an outbreak investigation including a matched case-control study of risk factors for laboratory-confirmed measles among young adults living in Ulaanbaatar. Young adults with laboratory-confirmed measles, living in the capital city of Ulaanbaatar, were matched with 2-3 neighborhood controls. Conditional logistic regression was used to estimate adjusted matched odds ratios (aMORs) for risk factors, with 95% confidence intervals. During March 1-September 30, 2015, 20 077 suspected measles cases were reported; 14 010 cases were confirmed. Independent risk factors for measles included being unvaccinated (adjusted matched odds ratio [aMOR] 2.0, P < .01), being a high school graduate without college education (aMOR 2.6, P < .01), remaining in Ulaanbaatar during the outbreak (aMOR 2.5, P < .01), exposure to an inpatient healthcare facility (aMOR 4.5 P < .01), and being born outside of Ulaanbaatar (aMOR 1.8, P = .02). This large, nationwide outbreak shortly after verification of elimination had high incidence among young adults, particularly those born outside the national capital. In addition, findings indicated that nosocomial transmission within health facilities helped amplify the outbreak. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie
2014-01-01
The study analyses the role of long-distance travel behaviours on the large-scale spatial spreading of directly transmitted infectious diseases, focusing on two different travel types in terms of the travellers travelling to a specific group or not. For this purpose, we have formulated and analysed a metapopulation model in which the individuals in each subpopulation are organised into a scale-free contact network. The long-distance travellers between the subpopulations will temporarily change the network structure of the destination subpopulation through the "merging effects (MEs)," which indicates that the travellers will be regarded as either connected components or isolated nodes in the contact network. The results show that the presence of the MEs has constantly accelerated the transmission of the diseases and aggravated the outbreaks compared to the scenario in which the diversity of the long-distance travel types is arbitrarily discarded. Sensitivity analyses show that these results are relatively constant regarding a wide range variation of several model parameters. Our study has highlighted several important causes which could significantly affect the spatiotemporal disease dynamics neglected by the present studies.
Pal, Bibhuti Bhusan; Khuntia, Hemant Kumar; Nayak, Smruti Ranjan; Mohanty, Anima; Biswal, Bhagyalaxmi
2017-09-25
The large outbreak of cholera reported during July to September 2014 in the Narla block of Kalahandi district, India, was investigated to determine the causative organism. Rectal swabs collected from patients with diarrhea and environmental water samples were cultured following standard techniques. The causative organism was identified as Vibrio cholerae O1 Ogawa biotype El Tor, and analysis by double mismatch mutation assay PCR confirmed that all strains were the ctxB7 variant of Haitian V. cholerae O1. The environmental water samples were negative for V. cholerae. The V. cholerae O1 strains were sensitive to tetracycline, ciprofloxacin, norfloxacin, ofloxacin, doxycycline, and azithromycin, but were resistant to erythromycin, gentamicin, chloramphenicol, furazolidone, neomycin, cotrimoxazole, nalidixic acid, and ampicillin. In the 2014 cholera outbreak, the early reporting of the pathogen enabled the government authorities to implement adequate control measures in time to curtail the spread of the disease. That was the second large cholera outbreak due to Haitian variants of V. cholerae O1 after the 2010 Haiti cholera outbreak reported from Odisha, India, and other locations globally. Active surveillance is required to track the spread of this strain in the Odisha region.
Discrimination of tornadic and non-tornadic severe weather outbreaks
NASA Astrophysics Data System (ADS)
Mercer, Andrew Edward
Outbreaks of severe weather affect the majority of the conterminous United States. An outbreak is characterized by multiple severe weather occurrences within a single synoptic system. Outbreaks can be categorized by whether or not they produce tornadoes. It is hypothesized that the antecedent synoptic signal contains important information about outbreak type. Accordingly, the scope of this research is to determine the extent that the synoptic signal can be utilized to classify outbreak type at various lead times. Outbreak types are classified using the NCEP/NCAR reanalysis data, which are arranged on a global 2.5° latitude-longitude grid, include 17 vertical pressure levels, and span from 1948 to the present (2008). Fifty major tornado outbreak (TO) cases and fifty major non-tornadic severe weather outbreak (NTO) cases are selected for this work. Two types of analyses are performed on these cases to assess discrimination ability. One analysis involves outbreak classification using the Weather Research and Forecasting (WRF) model initialized with the NCEP/NCAR reanalysis dataset. Meteorological covariates are computed from the WRF output and used in training and testing of statistical classification models. The covariate fields are depicted on a 21 X 21 gridpoint field with an 18 km grid spacing centered on the outbreak. Covariates with large discrimination potential are determined using permutation testing. A P-mode principal component analysis (PCA) is used on the subset of covariates determined by permutation testing to reduce data dimensionality, since numerous redundancies exist in the initial covariate set. Three statistical classification models are trained and tested with the resulting PC scores: a support vector machine (SVM), a logistic regression model (LogR), and a multiple linear regression model (LR). Promising results emerge from these methods, as a probability of detection (POD) of 0.89 and a false alarm ratio (FAR) of 0.13 are obtained from the best discriminating statistical technique (SVM) at 24-hours lead time. Results degrade only slightly by 72-hours lead time (maximum POD of 0.833 and minimum FAR of 0.276). Synoptic composites of the outbreak types are the second analysis considered. Composites are used to reveal synoptic features of outbreak types, which can be utilized to diagnose the differences between classes (in this case, TOs and NTOs). The composites are created using PCA. Five raw variables, height, temperature, relative humidity, and u and v wind components, are extracted from the NCEP/NCAR reanalysis data for North America. Converging longitude lines with increasing latitude on the reanalysis grid introduce bias into correlation calculations in higher latitudes; hence, the data are mapped onto both a latitudinal density grid and a Fibonacci grid. The resulting PCA produces two significant principal components (PCs), and a cluster analysis on these PCs for each outbreak type results in two types of TOs and NTOs. TO composites are characterized by a trough of low pressure over the central United States and major quasigeostrophic forcing features such as an upper level jet streak, cyclonic vorticity advection increasing with height, and warm air advection. These dynamics result in a strong surface cyclone in most tornado outbreaks. These features are considerably less pronounced in NTOs. The statistical analyses presented herein were successful in classifying outbreak types at various lead times, using synoptic scale data as input.
Interrupting poliovirus transmission -- new solutions to an old problem.
Aylward, R Bruce; Maher, Chris
2006-06-01
Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988, knowledge as to the nature of circulating polioviruses and the challenges to their interruption has increased tremendously, particularly during the period 2000-2005. By January 2006, however, the systematic application of the standard polio eradication strategies, combined with recent refinements, had reduced the number of countries with ongoing transmission of indigenous wild polioviruses to just four (Nigeria, India, Pakistan, and Afghanistan), the lowest ever in history. In addition, only 8 of the 22 areas that had been re-infected by wild poliovirus in 2003-2005 still required large-scale 'mop-up' activities and circulating vaccine-derived poliovirus (cVDPV) outbreaks were being readily addressed. This progress, despite new challenges late in the GPEI, was greatly facilitated by a range of solutions that included two new monovalent oral polio vaccines (mOPVs), new and robust international standards for polio outbreak response, and renewed political commitment across the remaining infected countries.
Alves, Joana; Roque, Ana Luísa; Cravo, Pedro; Valdez, Tomás; Jelinek, Tomas; do Rosário, Virgílio E; Arez, Ana Paula
2006-01-01
Background Malaria has come near eradication at archipelago of Cabo Verde in 1970. Infections are now only observed in Santiago, where outbreaks occur. In these islands, malaria is considered by the international community as being of limited risk and, therefore, no prophylaxis is recommended. Since the understanding of factors that determine malaria outbreaks are crucial for controlling the disease, the present study aimed to investigate if the malaria infections observed in Santiago Island are maintained in isolated foci and in asymptomatic individuals. Methods The occurrence of asymptomatic carriers in villages with history of malaria as well as the level of exposure of these populations were investigated using PCR and serological analyses. Results Results indicate that malaria is maintained as asymptomatic and sub-patent infections and that the majority of the circulating parasite populations harbour chloroquine-resistant mutations. Conclusion These observations highlight the alarming prospect of malaria to become a serious public health problem and underscore the need for a tighter surveillance. PMID:16630349
On the impact of forced roll convection on vertical turbulent transport in cold air outbreaks
NASA Astrophysics Data System (ADS)
Gryschka, Micha; Fricke, Jens; Raasch, Siegfried
2014-11-01
We investigated the impact of roll convection on the convective boundary layer and vertical transports in different cold air outbreak (CAO) scenarios using large eddy simulations (LES). The organization of convection into rolls was triggered by upstream heterogeneities in the surface temperature, representing ice and water. By changing the sea ice distribution in our LES, we were able to simulate a roll and a nonroll case for each scenario. Furthermore, the roll wavelength was varied by changing the scale of the heterogeneity. The characteristics of the simulated rolls and cloud streets, such as aspect ratios, orientation of the roll axes, and downstream extensions of single rolls agreed closely with observations in CAO situations. The vertical turbulent fluxes, calculated for each simulation, were decomposed into contributions from rolls and from unorganized turbulence. Even though our results confirmed that rolls triggered by upstream heterogeneities can substantially contribute to vertical turbulent fluxes, the total fluxes were not affected by the rolls.
Melamine nephrotoxicity: an emerging epidemic in an era of globalization.
Bhalla, Vivek; Grimm, Paul C; Chertow, Glenn M; Pao, Alan C
2009-04-01
Recent outbreaks of nephrolithiasis and acute kidney injury among children in China have been linked to ingestion of milk-based infant formula contaminated with melamine. These cases provide evidence in humans for the nephrotoxicity of melamine, which previously had been described only in animals. The consequences of this outbreak are already severe and will likely continue to worsen. Herein we summarize the global impact of the melamine milk contamination, the reemergence of melamine-tainted animal feed, and potential mechanisms of melamine nephrotoxicity. Large-scale epidemiologic studies are necessary to further characterize this disease and to assess its potential long-term sequelae. This epidemic of environmental kidney disease highlights the morbidity associated with adulterated food products available in today's global marketplace and reminds us of the unique vulnerability of the kidney to environmental insults. Melamine is the latest in a growing list of diverse potentially toxic compounds about which nephrologists and other health-care providers responsible for the diagnosis and management of kidney disease must now be aware.
Measures against transmission of pandemic H1N1 influenza in Japan in 2009: simulation model.
Yasuda, H; Suzuki, K
2009-11-05
The first outbreak of pandemic H1N1 influenza in Japan was contained in the Kansai region in May 2009 by social distancing measures. Modelling methods are needed to estimate the validity of these measures before their implementation on a large scale. We estimated the transmission coefficient from outbreaks of pandemic H1N1 influenza among school children in Japan in summer 2009; using this transmission coefficient, we simulated the spread of pandemic H1N1 influenza in a virtual community called the virtual Chuo Line which models an area to the west of metropolitan Tokyo. Measures evaluated in our simulation included: isolation at home, school closure, post-exposure prophylaxis and mass vaccinations of school children. We showed that post-exposure prophylaxis combined with isolation at home and school closure significantly decreases the total number of cases in the community and can mitigate the spread of pandemic H1N1 influenza, even when there is a delay in the availability of vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edburg, Steven L.; Hicke, Jeffrey A.; Lawrence, David M.
2011-01-01
Insect outbreaks are major ecosystem disturbances, affecting a similar area as forest fires annually across North America. Tree mortality caused by epidemics of bark beetles alters carbon cycling in the first several years following the disturbance by reducing stand-level primary production and increasing decomposition rates. The few studies of biogeochemical cycling following outbreaks have shown a range of impacts from small responses of net carbon fluxes in the first several years after a severe outbreak to large forest areas that are sources of carbon to the atmosphere for decades. To gain more understanding about causes of this range of responses,more » we used an ecosystem model to assess impacts of different bark beetle outbreak conditions on coupled carbon and nitrogen cycling. We modified the Community Land Model with prognostic carbon and nitrogen to include prescribed bark beetle outbreaks. We then compared control simulations (without a bark beetle outbreak) to simulations with various mortality severity, durations of outbreak, and snagfall dynamics to quantify the range of carbon flux responses and recovery rates of net ecosystem exchange to a range of realistic outbreak conditions. Prescribed mortality by beetles reduced leaf area and thus productivity. Gross primary productivity decreased by as much as 80% for a severe outbreak (95% mortality) and by 10% for less severe outbreaks (25% mortality). Soil mineral nitrogen dynamics (immobilization and plant uptake) were important in governing post-outbreak productivity, and were strongly modulated by carbon inputs to the soil from killed trees. Initial increases in heterotrophic respiration caused by a pulse of labile carbon from roots were followed by a slight reduction (from pre-snagfall reduced inputs), then a secondary increase (from inputs due to snagfall). Secondary increases in heterotrophic respiration were largest for simulated windthrow of snags after a prescribed snagfall delay period. Net ecosystem productivity recovered within 40 years for all simulations, with the largest increases in the first 10 years. Our simulations illustrate that, given the large variability in bark beetle outbreak conditions, a wide range of responses in carbon and nitrogen dynamics can occur. The fraction of trees killed, timing of snagfall, snagfall rate, and management decisions as to whether or not to remove snags for harvesting or for fire prevention will have a major impact on post-outbreak carbon fluxes up to 100 years following an outbreak.« less
The Methanol Poisoning Outbreaks in Libya 2013 and Kenya 2014
Rostrup, Morten; Edwards, Jeffrey K.; Abukalish, Mohamed; Ezzabi, Masoud; Some, David; Ritter, Helga; Menge, Tom; Abdelrahman, Ahmed; Rootwelt, Rebecca; Janssens, Bart; Lind, Kyrre; Paasma, Raido; Hovda, Knut Erik
2016-01-01
Background Outbreaks of methanol poisoning occur frequently on a global basis, affecting poor and vulnerable populations. Knowledge regarding methanol is limited, likely many cases and even outbreaks go unnoticed, with patients dying unnecessarily. We describe findings from the first three large outbreaks of methanol poisoning where Médecins Sans Frontières (MSF) responded, and evaluate the benefits of a possible future collaboration between local health authorities, a Non-Governmental Organisation and international expertise. Methods Retrospective study of three major methanol outbreaks in Libya (2013) and Kenya (May and July 2014). Data were collected from MSF field personnel, local health personnel, hospital files, and media reports. Findings In Tripoli, Libya, over 1,000 patients were poisoned with a reported case fatality rate of 10% (101/1,066). In Kenya, two outbreaks resulted in approximately 341 and 126 patients, with case fatality rates of 29% (100/341) and 21% (26/126), respectively. MSF launched an emergency team with international experts, medications and equipment, however, the outbreaks were resolving by the time of arrival. Interpretation Recognition of an outbreak of methanol poisoning and diagnosis seem to be the most challenging tasks, with significant delay from time of first presentations to public health warnings being issued. In spite of the rapid response from an emergency team, the outbreaks were nearly concluded by the time of arrival. A major impact on the outcome was not seen, but large educational trainings were conducted to increase awareness and knowledge about methanol poisoning. Based on this training, MSF was able to send a local emergency team during the second outbreak, supporting that such an approach could improve outcomes. Basic training, simplified treatment protocols, point-of-care diagnostic tools, and early support when needed, are likely the most important components to impact the consequences of methanol poisoning outbreaks in these challenging contexts. PMID:27030969
Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination
Zhao, Shi; Stone, Lewi; Gao, Daozhou
2018-01-01
Background Yellow fever (YF), transmitted via bites of infected mosquitoes, is a life-threatening viral disease endemic to tropical and subtropical regions of Africa and South America. YF has largely been controlled by widespread national vaccination campaigns. Nevertheless, between December 2015 and August 2016, YF resurged in Angola, quickly spread and became the largest YF outbreak for the last 30 years. Recently, YF resurged again in Brazil (December 2016). Thus, there is an urgent need to gain better understanding of the transmission pattern of YF. Model The present study provides a refined mathematical model, combined with modern likelihood-based statistical inference techniques, to assess and reconstruct important epidemiological processes underlying Angola’s YF outbreak. This includes the outbreak’s attack rate, the reproduction number (R0), the role of the mosquito vector, the influence of climatic factors, and the unusual but noticeable appearance of two-waves in the YF outbreak. The model explores actual and hypothetical vaccination strategies, and the impacts of possible human reactive behaviors (e.g., response to media precautions). Findings While there were 73 deaths reported over the study period, the model indicates that the vaccination campaign saved 5.1-fold more people from death and saved from illness 5.6-fold of the observed 941 cases. Delaying the availability of the vaccines further would have greatly worsened the epidemic in terms of increased cases and deaths. The analysis estimated a mean R0≈2.6-3.4 and an attack rate of 0.09-0.15% (proportion of population infected) over the whole period from December 2015 to August 2016. Our estimated lower and upper bounds of R0 are in line with previous studies. Unusually, R0 oscillated in a manner that was “delayed” with the reported deaths. High recent number of deaths were associated (followed) with periods of relatively low disease transmission and low R0, and vice-versa. The time-series of Luanda’s YF cases suggest the outbreak occurred in two waves, a feature that would have become far more prominent had there been no mass vaccination. The waves could possibly be due to protective reactive behavioral changes of the population affecting the mosquito population. The second wave could well be an outcome of the March-April rainfall patterns in the 2016 El Niño year by creating ideal conditions for the breeding of the mosquito vectors. The modelling framework is a powerful tool for studying future YF epidemic outbreaks, and provides a basis for future vaccination campaign evaluations. PMID:29338001
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
NASA Technical Reports Server (NTRS)
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Katherine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2011-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Extremes in rainfall (drought and flood) during the period 2004 - 2009 have privileged different disease vectors. Chikungunya outbreaks occurred during the severe drought from late 2004 to 2006 over coastal East Africa and the western Indian Ocean islands and in the later years India and Southeast Asia. The chikungunya pandemic was caused by a Central/East African genotype that appears to have been precipitated and then enhanced by global-scale and regional climate conditions in these regions. Outbreaks of Rift Valley fever occurred following excessive rainfall period from late 2006 to late 2007 in East Africa and Sudan, and then in 2008 - 2009 in Southern Africa. The shift in the outbreak patterns of Rift Valley fever from East Africa to Southern Africa followed a transition of the El Nino/Southern Oscillation (ENSO) phenomena from the warm El Nino phase (2006-2007) to the cold La Nina phase (2007-2009) and associated patterns of variability in the greater Indian Ocean basin that result in the displacement of the centres of above normal rainfall from Eastern to Southern Africa. Understanding the background patterns of climate variability both at global and regional scale and their impacts on ecological drivers of vector borne-diseases is critical in long-range planning of appropriate response and mitigation measures.
Bialek, Stephanie R; George, Prethiba A; Xia, Guo-Liang; Glatzer, Marc B; Motes, Miles L; Veazey, John E; Hammond, Roberta M; Jones, Timothy; Shieh, Y Carol; Wamnes, Janet; Vaughan, Gilberto; Khudyakov, Yury; Fiore, Anthony E
2007-03-15
The 39 oyster consumption-related cases of hepatitis A reported in 2005 represent the first large outbreak of hepatitis A associated with shellfish consumption in the United States in >15 years. This is the first outbreak investigation in which an identical hepatitis A virus sequence was obtained from both the implicated food product and case patients.
Dynamics of epidemics outbreaks in heterogeneous populations
NASA Astrophysics Data System (ADS)
Brockmann, Dirk; Morales-Gallardo, Alejandro; Geisel, Theo
2007-03-01
The dynamics of epidemic outbreaks have been investigated in recent years within two alternative theoretical paradigms. The key parameter of mean field type of models such as the SIR model is the basic reproduction number R0, the average number of secondary infections caused by one infected individual. Recently, scale free network models have received much attention as they account for the high variability in the number of social contacts involved. These models predict an infinite basic reproduction number in some cases. We investigate the impact of heterogeneities of contact rates in a generic model for epidemic outbreaks. We present a system in which both the time periods of being infectious and the time periods between transmissions are Poissonian processes. The heterogeneities are introduced by means of strongly variable contact rates. In contrast to scale free network models we observe a finite basic reproduction number and, counterintuitively a smaller overall epidemic outbreak as compared to the homogeneous system. Our study thus reveals that heterogeneities in contact rates do not necessarily facilitate the spread to infectious disease but may well attenuate it.
Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011-2016.
Efstratiou, Artemis; Ongerth, Jerry E; Karanis, Panagiotis
2017-05-01
This review provides a comprehensive update of worldwide waterborne parasitic protozoan outbreaks that occurred with reports published since previous reviews largely between January 2011 and December 2016. At least 381 outbreaks attributed to waterborne transmission of parasitic protozoa were documented during this time period. The nearly half (49%) of reports occurred in New Zealand, 41% of the outbreaks in North America and 9% in Europe. The most common etiological agent was Cryptosporidium spp., reported in 63% (239) of the outbreaks, while Giardia spp. was mentioned in 37% (142). No outbreaks attributed to other parasitic protozoa were reported. The distribution of reported outbreaks does not correspond to more broadly available epidemiological data or general knowledge of water and environmental conditions in the reporting countries. Noticeably, developing countries that are probably most affected by such waterborne disease outbreaks still lack reliable surveillance systems, and an international standardization of surveillance and reporting systems has yet to be established. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Outbreak of Escherichia coli O157:H7 associated with attendance at a large livestock exhibition – Denver, Colorado, January-February 2009 Nicole Comstock1, Hugh Maguire1, Abby Bronken2, Carol McDonald3, Donna Hite-Bynum4, Mary Kate Cichon1, Lisa Durso5 1 Colorado Department of Public Health and En...
Hub nodes inhibit the outbreak of epidemic under voluntary vaccination
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Zhang, Jie; Zhou, Changsong; Small, Michael; Wang, Binghong
2010-02-01
It is commonly believed that epidemic spreading on scale-free networks is difficult to control and that the disease can spread even with a low infection rate, lacking an epidemic threshold. In this paper, we study epidemic spreading on complex networks under the framework of game theory, in which a voluntary vaccination strategy is incorporated. In particular, individuals face the 'dilemma' of vaccination: they have to decide whether or not to vaccinate according to the trade-off between the risk and the side effects or cost of vaccination. Remarkably and quite excitingly, we find that disease outbreak can be more effectively inhibited on scale-free networks than on random networks. This is because the hub nodes of scale-free networks are more inclined to take self-vaccination after balancing the pros and cons. This result is encouraging as it indicates that real-world networks, which are often claimed to be scale free, can be favorably and easily controlled under voluntary vaccination. Our work provides a way of understanding how to prevent the outbreak of diseases under voluntary vaccination, and is expected to provide valuable information on effective disease control and appropriate decision-making.
Dynamic impacts of a catastrophic production event: the foot-and-mouth disease case.
Cordier, Alexandre; Gohin, Jean; Krebs, Stephane; Rault, Arnaud
2013-03-01
In foot-and-mouth disease (FMD) free countries, the occurrence of an FMD outbreak is a rare event with potentially large economic losses. We explore the dynamic effects of an FMD outbreak on market variables and economic surplus taking into account the largely neglected issue of farm bankruptcy. Simulations are performed on a stylized agricultural economy, which is a net exporter before the outbreak. We find complex dynamic market effects when the farm credit market suffers from information imperfections leading to farm closure. Welfare effects are also dramatically altered. Domestic consumers may lose in the long run from an FMD outbreak because domestic supply contracts. On the other hand, farmers able to resist this event may ultimately gain. Our analysis also shows that these effects are not monotone, making any efficient policy response to this catastrophic event quite challenging. © 2012 Society for Risk Analysis.
Török, T J; Tauxe, R V; Wise, R P; Livengood, J R; Sokolow, R; Mauvais, S; Birkness, K A; Skeels, M R; Horan, J M; Foster, L R
1997-08-06
This large outbreak of foodborne disease highlights the challenge of investigating outbreaks caused by intentional contamination and demonstrates the vulnerability of self-service foods to intentional contamination. To investigate a large community outbreak of Salmonella Typhimurium infections. Epidemiologic investigation of patients with Salmonella gastroenteritis and possible exposures in The Dalles, Oregon. Cohort and case-control investigations were conducted among groups of restaurant patrons and employees to identify exposures associated with illness. A community in Oregon. Outbreak period was September and October 1984. A total of 751 persons with Salmonella gastroenteritis associated with eating or working at area restaurants. Most patients were identified through passive surveillance; active surveillance was conducted for selected groups. A case was defined either by clinical criteria or by a stool culture yielding S Typhimurium. The outbreak occurred in 2 waves, September 9 through 18 and September 19 through October 10. Most cases were associated with 10 restaurants, and epidemiologic studies of customers at 4 restaurants and of employees at all 10 restaurants implicated eating from salad bars as the major risk factor for infection. Eight (80%) of 10 affected restaurants compared with only 3 (11%) of the 28 other restaurants in The Dalles operated salad bars (relative risk, 7.5; 95% confidence interval, 2.4-22.7; P<.001). The implicated food items on the salad bars differed from one restaurant to another. The investigation did not identify any water supply, food item, supplier, or distributor common to all affected restaurants, nor were employees exposed to any single common source. In some instances, infected employees may have contributed to the spread of illness by inadvertently contaminating foods. However, no evidence was found linking ill employees to initiation of the outbreak. Errors in food rotation and inadequate refrigeration on ice-chilled salad bars may have facilitated growth of the S Typhimurium but could not have caused the outbreak. A subsequent criminal investigation revealed that members of a religious commune had deliberately contaminated the salad bars. An S Typhimurium strain found in a laboratory at the commune was indistinguishable from the outbreak strain. This outbreak of salmonellosis was caused by intentional contamination of restaurant salad bars by members of a religious commune.
Cheng, V C C; Wu, A K L; Cheung, C H Y; Lau, S K P; Woo, P C Y; Chan, K H; Li, K S M; Ip, I K S; Dunn, E L W; Lee, R A; Yam, L Y C; Yuen, K Y
2007-12-01
Nosocomial outbreaks of infectious diseases in psychiatric facilities are not uncommon but the implementation of infection control measures is often difficult. Here, we report an outbreak of an acute respiratory illness in a psychiatric ward between 29 July and 20 August 2005 involving 31 patients. Human metapneumovirus was detected in seven (23%) patients by reverse transcription-polymerase chain reaction and nucleotide sequencing. A review of outbreak surveillance records showed that six nosocomial outbreaks occurred in the year 2005, of which four (67%) were confirmed or presumably related to a respiratory viral infection. Directly observed deliveries of alcohol hand rub 4-hourly during daytime to all psychiatric patients was instituted in December 2005. Only one nosocomial respiratory viral outbreak occurred in the following year. The total number of patients and staff involved in nosocomial outbreaks due to presumed or proven respiratory virus infections decreased significantly from 60 to six (P<0.001), whereas those due to all types of nosocomial outbreaks also decreased from 70 to 24 (P=0.004). Alcohol hand rub has been shown to have potent bactericidal and virucidal activity against a wide range of nosocomial pathogens. Regular use of directly observed alcohol hand rub may decrease the incidence and scale of nosocomial outbreaks due to enveloped respiratory viruses especially in mentally incapacitated patients.
A cohort study of the effect of winter dysentery on herd-level milk production.
Toftaker, Ingrid; Holmøy, Ingrid; Nødtvedt, Ane; Østerås, Olav; Stokstad, Maria
2017-08-01
Winter dysentery (WD) is a contagious disease caused by bovine coronavirus. It is characterized by acute onset of diarrhea, fever, depression, and reduced milk yield in adult cattle. Although production loss is a well-known consequence of WD, large-scale studies estimating the effect on milk production are lacking. The objective of this study was to estimate the effect of farmer-reported WD on herd-level milk production and milk composition. A cohort study was performed based on reports of herd outbreaks of winter dysentery during a regional epidemic in Norway during the winter of 2011-2012. Reports were made by farmers, and diagnosis was based on a herd outbreak of acute diarrhea in adults. Milk shipment data were retrieved from the dairy company, and information on herd size and milking system were retrieved from the Norwegian Dairy Herd Recording System. We compared milk production in herds with reported outbreaks of WD (n = 224) with all herds in the same area without a reported outbreak (n = 2,093) during the same period. The outcome variable in the analysis was milk volume per cow per day, and the main predictor was whether the herd had a reported outbreak of WD or not. We assessed the effect of WD on milk production by fitting a linear mixed model, adjusting for milk production in the herd before the outbreak. Similarly, we assessed the effect of WD on milk composition using linear regression, adjusting for the levels of milk components before the outbreak. This study estimated a total loss of 51 L/cow during the study period, from 7 d before to 19 d after a reported outbreak. The lowest estimated production was 2 d after the outbreak was reported, when the average milk yield was 19.4 L/cow per day, compared with 23.0 L/cow per day 7 days before notification (i.e., a difference of 3.6 L/cow, or 15%). The effect gradually declined with time. The estimated effect on milk composition was modest, but an increase of 11% in free fatty acids and a small increase in fat/protein ratio indicated that WD might put cows into negative energy balance. Descriptive analysis indicated that herd milk yield was still reduced 4 mo after an outbreak. This cohort study showed that WD causes considerable decreases in milk production, and it alters milk composition. These findings highlight the important negative consequences of WD, and should motivate actions to prevent between-herd spread of bovine coronavirus. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N
2016-12-03
Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.
Ebola, jobs and economic activity in Liberia
Bowles, Jeremy; Hjort, Jonas; Melvin, Timothy; Werker, Eric
2016-01-01
Background The 2014 Ebola virus disease (EVD) outbreak in the neighbouring West African countries of Guinea, Liberia and Sierra Leone represents the most significant setback to the region's development in over a decade. This study provides evidence on the extent to which economic activity declined and jobs disappeared in Liberia during the outbreak. Methods To estimate how the level of activity and number of jobs in a given set of firms changed during the outbreak, we use a unique panel data set of registered firms surveyed by the business-development non-profit organisation, Building Markets. We also compare the change in economic activity during the outbreak, across regions of the country that had more versus fewer Ebola cases in a difference-in-differences approach. Findings We find a large decrease in economic activity and jobs in all of Liberia during the Ebola outbreak, and an especially large decline in Monrovia. Outside of Monrovia, the restaurants, and food and beverages sectors have suffered the most among the surveyed sectors, and in Monrovia, the construction and restaurant sectors have shed the most employees, while the food and beverages sectors experienced the largest drop in new contracts. We find little association between the incidence of Ebola cases and declines in economic activity outside of Monrovia. Conclusions If the large decline in economic activity that occurred during the Ebola outbreak persists, a focus on economic recovery may need to be added to the efforts to rebuild and support the healthcare system in order for Liberia to regain its footing. PMID:26438188
An outbreak of shigellosis at an outdoor music festival.
Lee, L A; Ostroff, S M; McGee, H B; Johnson, D R; Downes, F P; Cameron, D N; Bean, N H; Griffin, P M
1991-03-15
In August 1988, an estimated 3,175 women who attended a 5-day outdoor music festival in Michigan became ill with gastroenteritis caused by Shigella sonnei. Onset of illness peaked 2 days after the festival ended, and patients were spread throughout the United States by the time the outbreak was recognized. An uncooked tofu salad served on the last day was implicated as the outbreak vehicle (odds ratio = 3.4, p less than 0.0001). Over 2,000 volunteer food handlers prepared the communal meals served during the festival. This large foodborne outbreak had been heralded by a smaller outbreak of shigellosis among staff shortly before the festival began and by continued transmission of shigellosis from staff to attendees during the festival. S. sonnei isolated from women who became ill before, during, and after the festival had identical antimicrobial susceptibility patterns and plasmid profiles. Limited access to soap and running water for handwashing was one of the few sanitary deficits noted at this gathering. This investigation demonstrates the need for surveillance and prompt public health intervention when Shigella infections are recognized in persons attending mass outdoor gatherings, the singular importance of handwashing in reducing secondary transmission of shigellosis, and the potential for explosive outbreaks when communal meals are prepared by large numbers of food handlers.
Excess healthcare costs of a large waterborne outbreak in Finland.
Huovinen, Elisa; Laine, Janne; Virtanen, Mikko J; Snellman, Marja; Hujanen, Timo; Kiiskinen, Urpo; Kujansuu, Eila; Lumio, Jukka; Ruutu, Petri; Kuusi, Markku
2013-11-01
The economic effects of waterborne outbreaks have rarely been reported. A large waterborne outbreak occurred in the town of Nokia in Finland in 2007 with half of the population in the contaminated area suffering from gastroenteritis. We studied the healthcare costs of this outbreak. Healthcare costs were studied using register data from the Nokia Health Care Centre, data collected in the regional university hospital, and data from laboratory register on stool samples. Total excess healthcare costs were EUR 354,496, which is approximately EUR 10 per resident of Nokia. There were 2052 excess visits because of gastroenteritis in Nokia Health Care Centre, 403 excess episodes in the university hospital, and altogether over 2000 excess stool samples due to the outbreak. Care in the Nokia Health Care Centre accounted for 44% and care in the university hospital for 42% of the excess healthcare costs while stool samples accounted for only 10%. Despite the high morbidity, the total cost was low because most patients had a relatively mild illness. The situation would have been worse if the microbes involved had been more hazardous or if the financial situation of the community had been worse. Prevention of waterborne outbreaks is important, as there is a risk of severe short- and long-term health effects and substantial health-economic costs.
Predicting the evolution of large cholera outbreaks: lessons learnt from the Haiti case study
NASA Astrophysics Data System (ADS)
Bertuzzo, Enrico; Mari, Lorenzo; Righetto, Lorenzo; Knox, Allyn; Finger, Flavio; Casagrandi, Renato; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2013-04-01
Mathematical models can provide key insights into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and possibly anticipating the impact of alternative interventions. Spatially explicit models of waterborne disease are made routinely possible by widespread data mapping of hydrology, road network, population distribution, and sanitation. Here, we study the ex-post reliability of predictions of the ongoing Haiti cholera outbreak. Our model consists of a set of dynamical equations (SIR-like, i.e. subdivided into the compartments of Susceptible, Infected and Recovered individuals) describing a connected network of human communities where the infection results from the exposure to excess concentrations of pathogens in the water, which are, in turn, driven by hydrologic transport through waterways and by mobility of susceptible and infected individuals. Following the evidence of a clear correlation between rainfall events and cholera resurgence, we test a new mechanism explicitly accounting for rainfall as a driver of enhanced disease transmission by washout of open-air defecation sites or cesspool overflows. A general model for Haitian epidemic cholera and the related uncertainty is thus proposed and applied to the dataset of reported cases now available. The model allows us to draw predictions on longer-term epidemic cholera in Haiti from multi-season Monte Carlo runs, carried out up to January 2014 by using a multivariate Poisson rainfall generator, with parameters varying in space and time. Lessons learned and open issues are discussed and placed in perspective. We conclude that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control.
Taenia ovis: an emerging threat to the Chinese sheep industry?
Zheng, Yadong
2016-07-26
Taenia ovis is a tapeworm that is mainly transmitted between dogs and sheep. Although T. ovis infection is not a public health issue, it causes a great financial loss due to condemnation of carcasses. The first outbreak of T. ovis infection in China occurred in 2015. Reassessment of adverse effects of T. ovis infection on Chinese sheep industry in future is necessary. The first T. ovis outbreak in China suggests that the epidemic situation across the country is underestimated. For the transmission of T. ovis, many factors, including eggs, dogs and wild canids, human behaviours and sheep trade, should be seriously considered. In blocking the transmission chain, regular treatments of the infected dogs using anthelmintics play a crucial step, but at the moment it is difficult to be fully executed in China, largely due to the behaviours, customs and faith of local farmers. Moreover, combined with no clinical symptoms in the infected adult sheep and goats, the lack of pre-mortem diagnostic tools makes it harder to practice a national wide surveillance as well as inspection and quarantine in increasingly frequent free sheep trade activities in China, leading to an inability to restrict T. ovis infection into small areas. Furthermore, the ongoing campaigns against Echinococcus granulosus may have an adverse effect on control of T. ovis infection because of no consideration of a role of dogs in the transmission of the parasite. Lack of national epidemic data, pre-mortem diagnostic reagents and vaccines severely hampers the implementation of disease control campaigns and the restriction of T. ovis infection into small areas. Consequently, sheep and goats are at an increasing risk of T. ovis exposure and the possibility of large-scale outbreaks across China in future is possible, causing great adversity towards sheep industry.
Immune Responses to an Oral Cholera Vaccine in Internally Displaced Persons in South Sudan.
Iyer, Anita S; Bouhenia, Malika; Rumunu, John; Abubakar, Abdinasir; Gruninger, Randon J; Pita, Jane; Lino, Richard Lako; Deng, Lul L; Wamala, Joseph F; Ryan, Edward T; Martin, Stephen; Legros, Dominique; Lessler, Justin; Sack, David A; Luquero, Francisco J; Leung, Daniel T; Azman, Andrew S
2016-10-24
Despite recent large-scale cholera outbreaks, little is known about the immunogenicity of oral cholera vaccines (OCV) in African populations, particularly among those at highest cholera risk. During a 2015 preemptive OCV campaign among internally displaced persons in South Sudan, a year after a large cholera outbreak, we enrolled 37 young children (1-5 years old), 67 older children (6-17 years old) and 101 adults (≥18 years old), who received two doses of OCV (Shanchol) spaced approximately 3 weeks apart. Cholera-specific antibody responses were determined at days 0, 21 and 35 post-immunization. High baseline vibriocidal titers (>80) were observed in 21% of the participants, suggesting recent cholera exposure or vaccination. Among those with titers ≤80, 90% young children, 73% older children and 72% adults seroconverted (≥4 fold titer rise) after the 1 st OCV dose; with no additional seroconversion after the 2 nd dose. Post-vaccination immunological endpoints did not differ across age groups. Our results indicate Shanchol was immunogenic in this vulnerable population and that a single dose alone may be sufficient to achieve similar short-term immunological responses to the currently licensed two-dose regimen. While we found no evidence of differential response by age, further immunologic and epidemiologic studies are needed.
Role of Edges in Complex Network Epidemiology
NASA Astrophysics Data System (ADS)
Zhang, Hao; Jiang, Zhi-Hong; Wang, Hui; Xie, Fei; Chen, Chao
2012-09-01
In complex network epidemiology, diseases spread along contacting edges between individuals and different edges may play different roles in epidemic outbreaks. Quantifying the efficiency of edges is an important step towards arresting epidemics. In this paper, we study the efficiency of edges in general susceptible-infected-recovered models, and introduce the transmission capability to measure the efficiency of edges. Results show that deleting edges with the highest transmission capability will greatly decrease epidemics on scale-free networks. Basing on the message passing approach, we get exact mathematical solution on configuration model networks with edge deletion in the large size limit.
Brian R. Sturtevant; V. Quinn; L.E. Robert; D. Kneeshaw; P. James; M.-J. Fortin; P. Wolter; P. Townsend; B. Cooke; D. Anderson
2010-01-01
The balance of evidence suggests forest insect outbreaks today are more damaging than ever because of changes in forest composition and structure induced by fire suppression and post-harvest proliferation of tree species intolerant to herbivory. We hypothesized that landscape connectivity of acceptable host trees increases defoliator population connectivity, altering...
Satellites and Human Health: Potential for Tracking Cholera Outbreaks
NASA Astrophysics Data System (ADS)
Jutla, A. S.; Akanda, A. S.; Islam, S.
2009-12-01
Cholera continues to be a significant health threat across the globe. The pattern and magnitude of the seven global pandemics suggest that cholera outbreaks primarily originate in coastal regions and spread inland through secondary means. Cholera bacteria show strong association with zooplankton and phytoplankton abundance in coastal ecosystems. Characterization of space-time variability of chlorophyll, a surrogate for phytoplankton abundance, in Northern Bay of Bengal (BoB) is an essential step to develop any methodology for tracking cholera in the Bengal Delta from space. Using ten years of satellite data, this study (a) quantifies the space-time distribution of chlorophyll in BoB region and (b) presents a hypothesis as to how coastal plankton may be related with cholera outbreaks. Preliminary results suggest that variability of chlorophyll at daily scale, irrespective of spatial averaging, resembles white noise. At a monthly scale, chlorophyll shows distinct annual seasonality and chlorophyll values are significantly higher close to the coast than those in the offshore regions. At pixel level (9 km) on monthly scale, on the other hand, chlorophyll does not exhibit much persistence in time. With increased spatial averaging, temporal persistence of monthly chlorophyll increases and lag one autocorrelation stabilizes around 0.60 for 1200 km2 or larger areal averages. Spatial analyses of chlorophyll suggest that coastal region in BoB have a stable sill at 100 km range. Using satellite chlorophyll data, we observe that phytoplankton blooms occur every year in BoB, yet severe cholera outbreaks happen in certain years. This study provides a working hypothesis on how BoB coastal plankton blooms aided by regional hydroclimatic processes may lead to possible cholera outbreaks in Bengal Delta.
Rivas, Violeta; Barrera, Aldo; Pino, Karla; Núñez, Ruth; Caceres, C Joaquin; Lopez-Lastra, Marcelo; Soza, Alejandro
2018-03-01
A hepatitis A outbreak has occurred in Chile since November 2016. Men are predominantly affected, with a large proportion of men who have sex with men (MSM). We describe 12 consecutive unrelated confirmed cases who presented at our healthcare institution in Santiago Metropolitan Area. Nine were men, all reporting having had sex with men. Ten viral sequences, genotyped as IA, clustered with the V16-25801 strain causing outbreaks mostly in MSM in Europe since mid-2016.
Rivas, Violeta; Barrera, Aldo; Pino, Karla; Núñez, Ruth; Caceres, C. Joaquin; Lopez-Lastra, Marcelo; Soza, Alejandro
2018-01-01
A hepatitis A outbreak has occurred in Chile since November 2016. Men are predominantly affected, with a large proportion of men who have sex with men (MSM). We describe 12 consecutive unrelated confirmed cases who presented at our healthcare institution in Santiago Metropolitan Area. Nine were men, all reporting having had sex with men. Ten viral sequences, genotyped as IA, clustered with the V16–25801 strain causing outbreaks mostly in MSM in Europe since mid-2016. PMID:29510780
Understanding scale dependency of climatic processes with diarrheal disease
NASA Astrophysics Data System (ADS)
Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.
2015-12-01
The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.
Satellite data based method for general survey of forest insect disturbance in British Columbia
NASA Astrophysics Data System (ADS)
Ranson, J.; Montesano, P.
2008-12-01
Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.
A large community outbreak of blastomycosis in Wisconsin with geographic and ethnic clustering.
Roy, Monika; Benedict, Kaitlin; Deak, Eszter; Kirby, Miles A; McNiel, Jena T; Sickler, Carrie J; Eckardt, Eileen; Marx, Ruth K; Heffernan, Richard T; Meece, Jennifer K; Klein, Bruce S; Archer, John R; Theurer, Joan; Davis, Jeffrey P; Park, Benjamin J
2013-09-01
Blastomycosis is a potentially life-threatening infection caused by the soil-based dimorphic fungus Blastomyces dermatitidis, which is endemic throughout much of the Midwestern United States. We investigated an increase in reported cases of blastomycosis that occurred during 2009-2010 in Marathon County, Wisconsin. Case detection was conducted using the Wisconsin Electronic Disease Surveillance System (WEDSS). WEDSS data were used to compare demographic, clinical, and exposure characteristics between outbreak-related and historical case patients, and to calculate blastomycosis incidence rates. Because initial mapping of outbreak case patients' homes and recreational sites demonstrated unusual neighborhood and household case clustering, we conducted a 1:3 matched case-control study to identify factors associated with being in a geographic cluster. Among the 55 patients with outbreak-related cases, 33 (70%) were hospitalized, 2 (5%) died, 30 (55%) had cluster-related cases, and 20 (45%) were Hmong. The overall incidence increased significantly since 2005 (average 11% increase per year, P < .001), and incidence during 2005-2010 was significantly higher among Asians than non-Asians (2010 incidence: 168 vs 13 per 100 000 population). Thirty of the outbreak cases grouped into 5 residential clusters. Outdoor activities were not risk factors for blastomycosis among cluster case patients or when comparing outbreak cases to historical cases. This outbreak of blastomycosis, the largest ever reported, was characterized by unique household and neighborhood clustering likely related to multifocal environmental sources. The reasons for the large number of Hmong affected are unclear, but may involve genetic predisposition.
Crowe, Samuel J; Green, Alice; Hernandez, Kimberly; Peralta, Vi; Bottichio, Lyndsay; Defibaugh-Chavez, Stephanie; Douris, Aphrodite; Gieraltowski, Laura; Hise, Kelley; La-Pham, Karen; Neil, Karen P; Simmons, Mustafa; Tillman, Glenn; Tolar, Beth; Wagner, Darlene; Wasilenko, Jamie; Holt, Kristin; Trees, Eija; Wise, Matthew E
2017-04-01
High consumption rates and a multitude of brands make multistate foodborne outbreaks of Salmonella infections associated with chicken challenging to investigate, but whole genome sequencing is a powerful tool that can be used to assist investigators. Whole genome sequencing of pathogens isolated from clinical, environmental, and food samples is increasingly being used in multistate foodborne outbreak investigations to determine with unprecedented resolution how closely related these isolates are to one another genetically. In 2014, federal and state health officials investigated an outbreak of 146 Salmonella Heidelberg infections in 24 states. A follow-up analysis was conducted after the conclusion of the investigation in which 27 clinical and 24 food isolates from the outbreak underwent whole genome sequencing. These isolates formed seven clades, the largest of which contained clinical isolates from a subcluster of case patients who attended a catered party. One isolate from a chicken processed by a large producer was closely related genetically (zero to three single-nucleotide polymorphism differences) to the clinical isolates from these subcluster case patients. Chicken from this large producer was also present in the kitchen of the caterer on the day before the event, thus providing additional evidence that the chicken from this producer was the outbreak source. This investigation highlights how whole genome sequencing can be used with epidemiologic and traceback evidence to identify chicken sources of foodborne outbreaks.
Crowe, Samuel J.; Green, Alice; Hernandez, Kimberly; Peralta, Vi; Bottichio, Lyndsay; Defibaugh-Chavez, Stephanie; Douris, Aphrodite; Gieraltowski, Laura; Hise, Kelley; La-Pham, Karen; Neil, Karen P.; Simmons, Mustafa; Tillman, Glenn; Tolar, Beth; Wagner, Darlene; Wasilenko, Jamie; Holt, Kristin; Trees, Eija; Wise, Matthew E.
2017-01-01
High consumption rates and a multitude of brands make multistate foodborne outbreaks of Salmonella infections associated with chicken challenging to investigate, but whole genome sequencing is a powerful tool that can be used to assist investigators. Whole genome sequencing of pathogens isolated from clinical, environmental, and food samples is increasingly being used in multistate foodborne outbreak investigations to determine with unprecedented resolution how closely related these isolates are to one another genetically. In 2014, federal and state health officials investigated an outbreak of 146 Salmonella Heidelberg infections in 24 states. A follow-up analysis was conducted after the conclusion of the investigation in which 27 clinical and 24 food isolates from the outbreak underwent whole genome sequencing. These isolates formed seven clades, the largest of which contained clinical isolates from a subcluster of case patients who attended a catered party. One isolate from a chicken processed by a large producer was closely related genetically (zero to three single-nucleotide polymorphism differences) to the clinical isolates from these subcluster case patients. Chicken from this large producer was also present in the kitchen of the caterer on the day before the event, thus providing additional evidence that the chicken from this producer was the outbreak source. This investigation highlights how whole genome sequencing can be used with epidemiologic and traceback evidence to identify chicken sources of foodborne outbreaks. PMID:28294686
Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses.
Duy, Nghia Ngu; Huong, Le Thi Thanh; Ravel, Patrice; Huong, Le Thi Song; Dwivedi, Ankit; Sessions, October Michael; Hou, Yan'An; Chua, Robert; Kister, Guilhem; Afelt, Aneta; Moulia, Catherine; Gubler, Duane J; Thiem, Vu Dinh; Thanh, Nguyen Thi Hien; Devaux, Christian; Duong, Tran Nhu; Hien, Nguyen Tran; Cornillot, Emmanuel; Gavotte, Laurent; Frutos, Roger
2017-05-08
In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before. The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters. The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity. The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.
Burnaford, Jennifer L.; Ambrose, Richard F.; Antrim, Liam; Bohlmann, Heath; Blanchette, Carol A.; Engle, John M.; Fradkin, Steven C.; Gaddam, Rani; Harley, Christopher D. G.; Miner, Benjamin G.; Murray, Steven N.; Smith, Jayson R.; Whitaker, Stephen G.; Raimondi, Peter T.
2018-01-01
Disease outbreaks can have substantial impacts on wild populations, but the often patchy or anecdotal evidence of these impacts impedes our ability to understand outbreak dynamics. Recently however, a severe disease outbreak occurred in a group of very well-studied organisms–sea stars along the west coast of North America. We analyzed nearly two decades of data from a coordinated monitoring effort at 88 sites ranging from southern British Columbia to San Diego, California along with 2 sites near Sitka, Alaska to better understand the effects of sea star wasting disease (SSWD) on the keystone intertidal predator, Pisaster ochraceus. Quantitative surveys revealed unprecedented declines of P. ochraceus in 2014 and 2015 across nearly the entire geographic range of the species. The intensity of the impact of SSWD was not uniform across the affected area, with proportionally greater population declines in the southern regions relative to the north. The degree of population decline was unrelated to pre-outbreak P. ochraceus density, although these factors have been linked in other well-documented disease events. While elevated seawater temperatures were not broadly linked to the initial emergence of SSWD, anomalously high seawater temperatures in 2014 and 2015 might have exacerbated the disease’s impact. Both before and after the onset of the SSWD outbreak, we documented higher recruitment of P. ochraceus in the north than in the south, and while some juveniles are surviving (as evidenced by transition of recruitment pulses to larger size classes), post-SSWD survivorship is lower than during pre-SSWD periods. In hindsight, our data suggest that the SSWD event defied prediction based on two factors found to be important in other marine disease events, sea water temperature and population density, and illustrate the importance of surveillance of natural populations as one element of an integrated approach to marine disease ecology. Low levels of SSWD-symptomatic sea stars are still present throughout the impacted range, thus the outlook for population recovery is uncertain. PMID:29558484
Doshi, Reena H; Shidi, Calixte; Mulumba, Audry; Eckhoff, Philip; Nguyen, Catherine; Hoff, Nicole A; Gerber, Sue; Okitolonda, Emile; Ilunga, Benoit Kebela; Rimoin, Anne W
2015-11-27
Measles continues to be a leading cause of vaccine-preventable disease mortality among children under five despite a safe and efficacious vaccine being readily available. While global vaccination coverage has improved tremendously, measles outbreaks persist throughout sub-Saharan Africa. Since 2010, the Democratic Republic of Congo (DRC) has seen a resurgence of measles outbreaks affecting all 11 provinces. These outbreaks are mainly attributed to gaps in routine immunization (RI) coverage compounded with missed supplementary immunization activities (SIAs). We utilized national passive surveillance data from DRC's Integrated Disease Surveillance and Response (IDSR) system to estimate the effect of immunization on measles incidence in DRC. We investigated the decline in measles incidence post-immunization with one dose of measles containing vaccine (MCV1) with and without the addition of supplementary immunization activities (SIAs) and outbreak response immunization (ORI) campaigns. Measles case counts by health zone were obtained from the IDSR system between January 1, 2010 and December 31, 2013. The impact of measles immunization was modeled using a random effects multi-level model for count data with RI coverage levels and mass campaign activities from one year prior. The presence of an SIA (aIRR [95% CI] 0.86 [0.60-1.25]) and ORI (0.28 [0.20-0.39]) in the year prior were both associated with a decrease in measles incidence. When interaction terms were included, our results suggested that the high levels of MCV1 reported in the year prior and the presence of either mass campaign was associated with a decrease in measles incidence. Our results highlight the importance of a two-dose measles vaccine schedule and the need for a strong routine immunization program coupled with frequent SIAs. Repeated occurrences of large-scale outbreaks in DRC suggest that vaccination coverage rates are grossly overestimated and signify the importance of the evaluation and modification of measles prevention and control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Haller, Sebastian; Eckmanns, Tim; Benzler, Justus; Tolksdorf, Kristin; Claus, Hermann; Gilsdorf, Andreas; Sin, Muna Abu
2014-01-01
Background In August 2011, the German Protection against Infection Act was amended, mandating the reporting of healthcare associated infection (HAI) outbreak notifications by all healthcare workers in Germany via local public health authorities and federal states to the Robert Koch Institute (RKI). Objective To describe the reported HAI-outbreaks and the surveillance system’s structure and capabilities. Methods Information on each outbreak was collected using standard paper forms and notified to RKI. Notifications were screened daily and regularly analysed. Results Between November 2011 and November 2012, 1,326 paper forms notified 578 HAI-outbreaks, between 7 and 116 outbreaks per month. The main causative agent was norovirus (n = 414/578; 72%). Among the 108 outbreaks caused by bacteria, the most frequent pathogens were Clostridium difficile (25%) Klebsiella spp. (19%) and Staphylococcus spp. (19%). Multidrug-resistant bacteria were responsible for 54/108 (50%) bacterial outbreaks. Hospitals were affected most frequently (485/578; 84%). Hospital outbreaks due to bacteria were mostly reported from intensive care units (ICUs) (45%), followed by internal medicine wards (16%). Conclusion The mandatory HAI-outbreak surveillance system describes common outbreaks. Pathogens with a particular high potential to cause large or severe outbreaks may be identified, enabling us to further focus research and preventive measures. Increasing the sensitivity and reliability of the data collection further will facilitate identification of outbreaks able to increase in size and severity, and guide specific control measures to interrupt their propagation. PMID:24875674
Grass, Julian E.; Gould, L. Hannah; Mahon, Barbara E.
2015-01-01
Clostridium perfringens is estimated to be the second most common bacterial cause of foodborne illness in the United States, causing one million illnesses each year. Local, state, and territorial health departments voluntarily report C. perfringens outbreaks to the U.S. Centers for Disease Control and Prevention through the Foodborne Disease Outbreak Surveillance System. Our analysis included outbreaks confirmed by laboratory evidence during 1998–2010. A food item was implicated if C. perfringens was isolated from food or based on epidemiologic evidence. Implicated foods were classified into one of 17 standard food commodities when possible. From 1998 to 2010, 289 confirmed outbreaks of C. perfringens illness were reported with 15,208 illnesses, 83 hospitalizations, and eight deaths. The number of outbreaks reported each year ranged from 16 to 31 with no apparent trend over time. The annual number of outbreak-associated illnesses ranged from 359 to 2,173, and the median outbreak size was 24 illnesses. Outbreaks occurred year round, with the largest number in November and December. Restaurants (43%) were the most common setting of food preparation. Other settings included catering facility (19%), private home (16%), prison or jail (11%), and other (10%). Among the 144 (50%) outbreaks attributed to a single food commodity, beef was the most common commodity (66 outbreaks, 46%), followed by poultry (43 outbreaks, 30%), and pork (23 outbreaks, 16%). Meat and poultry outbreaks accounted for 92% of outbreaks with an identified single food commodity. Outbreaks caused by C. perfringens occur regularly, are often large, and can cause substantial morbidity yet are preventable if contamination of raw meat and poultry products is prevented at the farm or slaughterhouse or, after contamination, if these products are properly handled and prepared, particularly in restaurants and catering facilities. PMID:23379281
Gulati, Reena K.; Rainey, Jeanette J.
2017-01-01
Mass gatherings create environments conducive to the transmission of infectious diseases. Thousands of mass gatherings are held annually in the United States; however, information on the frequency and characteristics of respiratory disease outbreaks and on the use of nonpharmaceutical interventions at these gatherings is scarce. We administered an online assessment to the 50 state health departments and 31 large local health departments in the United States to gather information about mass gathering-related respiratory disease outbreaks occurring between 2009 and 2014. The assessment also captured information on the use of nonpharmaceutical interventions to slow disease transmission in these settings. We downloaded respondent data into a SAS dataset for descriptive analyses. We received responses from 43 (53%) of the 81 health jurisdictions. Among these, 8 reported 18 mass gathering outbreaks. More than half (n = 11) of the outbreaks involved zoonotic transmission of influenza A (H3N2v) at county and state fairs. Other outbreaks occurred at camps (influenza A (H1N1)pdm09 [n = 2] and A (H3) [n = 1]), religious gatherings (influenza A (H1N1)pdm09 [n = 1] and unspecified respiratory virus [n = 1]), at a conference (influenza A (H1N1)pdm09), and a sporting event (influenza A). Outbreaks ranged from 5 to 150 reported cases. Of the 43 respondents, 9 jurisdictions used nonpharmaceutical interventions to slow or prevent disease transmission. Although respiratory disease outbreaks with a large number of cases occur at many types of mass gatherings, our assessment suggests that such outbreaks may be uncommon, even during the 2009 influenza A (H1N1) pandemic, which partially explains the reported, but limited, use of nonpharmaceutical interventions. More research on the characteristics of mass gatherings with respiratory disease outbreaks and effectiveness of nonpharmaceutical interventions would likely be beneficial for decision makers at state and local health departments when responding to future outbreaks and pandemics. PMID:29077750
Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew
2016-01-01
This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. United States. Outbreak period was March 1, 2013 through July 11, 2014. A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken was the cause of this outbreak. The outbreak involved multiple PFGE patterns, a variety of chicken products, and 3 production establishments, suggesting a reservoir for contamination upstream from the production establishments. Sources of bacteria and genes responsible for resistance, such as farms providing birds for slaughter or environmental reservoir on farms that raise chickens, might explain how multiple PFGE patterns were linked to chicken from 3 separate production establishments and many different poultry products.
Protracted outbreak of S. Enteritidis PT 21c in a large Hamburg nursing home
Frank, Christina; Buchholz, Udo; Maaß, Monika; Schröder, Arthur; Bracht, Karl-Hans; Domke, Paul-Gerhard; Rabsch, Wolfgang; Fell, Gerhard
2007-01-01
Background During August 2006, a protracted outbreak of Salmonella (S.) Enteritidis infections in a large Hamburg nursing home was investigated. Methods A site visit of the home was conducted and food suppliers' premises tested for Salmonella. Among nursing home residents a cohort study was carried out focusing on foods consumed in the three days before the first part of the outbreak. Instead of relying on residents' memory, data from the home's patient food ordering system was used as exposure data. S. Enteritidis isolates from patients and suspected food vehicles were phage typed and compared. Results Within a population of 822 nursing home residents, 94 case patients among residents (1 fatality) and 17 among staff members were counted 6 through 29 August. The outbreak peaked 7 through 9 August, two days after a spell of very warm summer weather. S. Enteritidis was consistently recovered from patients' stools throughout the outbreak. Among the food items served during 5 through 7 August, the cohort study pointed to afternoon cake on all three days as potential risk factors for disease. Investigation of the bakery supplying the cake yielded S. Enteritidis from cakes sampled 31 August. Comparison of the isolates by phage typing demonstrated both isolates from patients and the cake to be the exceedingly rare phage type 21c. Conclusion Cake (various types served on various days) contaminated with S. Enteritidis were the likely vehicle of the outbreak in the nursing home. While the cakes were probably contaminated with low pathogen dose throughout the outbreak period, high ambient summer temperatures and failure to keep the cake refrigerated led to high pathogen dose in cake on some days and in some of the housing units. This would explain the initial peak of cases, but also the drawn out nature of the outbreak with cases until the end of August. Suggestions are made to nursing homes, aiding in outbreak prevention. Early outbreak detection is crucial, such that counter measures can be swift and drawn-out outbreaks of nosocomial food-borne infections avoided. PMID:17854497
Johansson, Michael A.; Arana-Vizcarrondo, Neysarí; Biggerstaff, Brad J.; Gallagher, Nancy; Marano, Nina; Staples, J. Erin
2012-01-01
Yellow fever virus (YFV), a mosquito-borne virus endemic to tropical Africa and South America, is capable of causing large urban outbreaks of human disease. With the ease of international travel, urban outbreaks could lead to the rapid spread and subsequent transmission of YFV in distant locations. We designed a stochastic metapopulation model with spatiotemporally explicit transmissibility scenarios to simulate the global spread of YFV from a single urban outbreak by infected airline travelers. In simulations of a 2008 outbreak in Asunción, Paraguay, local outbreaks occurred in 12.8% of simulations and international spread in 2.0%. Using simple probabilistic models, we found that local incidence, travel rates, and basic transmission parameters are sufficient to assess the probability of introduction and autochthonous transmission events. These models could be used to assess the risk of YFV spread during an urban outbreak and identify locations at risk for YFV introduction and subsequent autochthonous transmission. PMID:22302873
Imanishi, Maho; Kweza, Patience F.; Slayton, Rachel B.; Urayai, Tanaka; Ziro, Odrie; Mushayi, Wellington; Francis-Chizororo, Monica; Kuonza, Lazarus R.; Ayers, Tracy; Freeman, Molly M.; Govore, Emmaculate; Duri, Clemence; Chonzi, Prosper; Mtapuri-Zinyowera, Sekesai; Manangazira, Portia; Kilmarx, Peter H.; Mintz, Eric; Lantagne, Daniele
2014-01-01
Locally manufactured sodium hypochlorite (chlorine) solution has been sold in Zimbabwe since 2010. During October 1, 2011–April 30, 2012, 4,181 suspected and 52 confirmed cases of typhoid fever were identified in Harare. In response to this outbreak, chlorine tablets were distributed. To evaluate household water treatment uptake, we conducted a survey and water quality testing in 458 randomly selected households in two suburbs most affected by the outbreak. Although 75% of households were aware of chlorine solution and 85% received chlorine tablets, only 18% had reportedly treated stored water and had the recommended protective level of free chlorine residuals. Water treatment was more common among households that reported water treatment before the outbreak, and those that received free tablets during the outbreak (P < 0.01), but was not associated with chlorine solution awareness or use before the outbreak (P > 0.05). Outbreak response did not build on pre-existing prevention programs. PMID:24664784
Johansson, Michael A; Arana-Vizcarrondo, Neysarí; Biggerstaff, Brad J; Gallagher, Nancy; Marano, Nina; Staples, J Erin
2012-02-01
Yellow fever virus (YFV), a mosquito-borne virus endemic to tropical Africa and South America, is capable of causing large urban outbreaks of human disease. With the ease of international travel, urban outbreaks could lead to the rapid spread and subsequent transmission of YFV in distant locations. We designed a stochastic metapopulation model with spatiotemporally explicit transmissibility scenarios to simulate the global spread of YFV from a single urban outbreak by infected airline travelers. In simulations of a 2008 outbreak in Asunción, Paraguay, local outbreaks occurred in 12.8% of simulations and international spread in 2.0%. Using simple probabilistic models, we found that local incidence, travel rates, and basic transmission parameters are sufficient to assess the probability of introduction and autochthonous transmission events. These models could be used to assess the risk of YFV spread during an urban outbreak and identify locations at risk for YFV introduction and subsequent autochthonous transmission.
Luque-Larena, Juan José; Mougeot, François; Roig, Dolors Vidal; Lambin, Xavier; Rodríguez-Pastor, Ruth; Rodríguez-Valín, Elena; Anda, Pedro; Escudero, Raquel
2015-09-01
During the last decades, large tularemia outbreaks in humans have coincided in time and space with population outbreaks of common voles in northwestern Spain, leading us to hypothesize that this rodent species acts as a key spillover agent of Francisella tularensis in the region. Here, we evaluate for the first time a potential link between irruptive vole numbers and human tularemia outbreaks in Spain. We compiled vole abundance estimates obtained through live-trapping monitoring studies and official reports of human tularemia cases during the period 1997-2014. We confirm a significant positive association between yearly cases of tularemia infection in humans and vole abundance. High vole densities during outbreaks (up to 1000 voles/hectare) may therefore enhance disease transmission and spillover contamination in the environment. If this ecological link is further confirmed, the apparent multiannual cyclicity of common vole outbreaks might provide a basis for forecasting the risk of tularemia outbreaks in northwestern Spain.
Distinguishing epidemiological features of the 2013–2016 West Africa Ebola virus disease outbreak
Shultz, James M.; Espinel, Zelde; Espinola, Maria; Rechkemmer, Andreas
2016-01-01
ABSTRACT The 2013–2016 West Africa Ebola virus disease epidemic was notable for its scope, scale, and complexity. This briefing presents a series of distinguishing epidemiological features that set this outbreak apart. Compared to one concurrent and 23 previous outbreaks of the disease over 40 years, this was the only occurrence of Ebola virus disease involving multiple nations and qualifying as a pandemic. Across multiple measures of magnitude, the 2013–2016 outbreak was accurately described using superlatives: largest and deadliest in terms of numbers of cases and fatalities; longest in duration; and most widely dispersed geographically, with outbreak-associated cases occurring in 10 nations. In contrast, the case-fatality rate was much lower for the 2013–2016 outbreak compared to the other 24 outbreaks. A population of particular interest for ongoing monitoring and public health surveillance is comprised of more than 17,000 “survivors,” Ebola patients who successfully recovered from their illness. The daunting challenges posed by this outbreak were met by an intensive international public health response. The near-exponential rate of increase of incident Ebola cases during mid-2014 was successfully slowed, reversed, and finally halted through the application of multiple disease containment and intervention strategies. PMID:28229017
Irwin, K; Ballard, J; Grendon, J; Kobayashi, J
1989-01-01
To analyze the association between the results of routine inspections and foodborne outbreaks in restaurants, we conducted a matched case-control study using available data from Seattle-King County, Washington. Case restaurants were facilities with a reported foodborne outbreak between January 1, 1986 and March 31, 1987 (N = 28). Two control restaurants with no reported outbreaks during this period were matched to each case restaurant on county health district and date of routine inspection (N = 56). Data from the routine inspection that preceded the outbreak (for case restaurants) or the date-matched routine inspection (for control restaurants) were abstracted from computerized inspection records. Case restaurants had a significantly lower mean inspection score (83.8 on a 0 to 100 point scale) than control restaurants (90.9). Restaurants with poor inspection scores and violations of proper temperature controls of potentially hazardous foods were, respectively, five and ten times more likely to have outbreaks than restaurants with better results. Although this study demonstrates that Seattle-King County's routine inspection form can successfully identify restaurants at increased risk of foodborne outbreaks, it also illustrates that more emphasis on regulation and education is needed to prevent outbreaks in restaurants with poor inspection results. PMID:2705592
Li, Xingguang; Zai, Junjie; Liu, Haizhou; Feng, Yi; Li, Fan; Wei, Jing; Zou, Sen; Yuan, Zhiming; Shao, Yiming
2016-10-21
Following its immergence in December 2013, the recent Zaire Ebola virus (EBOV) outbreak in West Africa has spread and persisted for more than two years, making it the largest EBOV epidemic in both scale and geographical region to date. In this study, a total of 726 glycoprotein (GP) gene sequences of the EBOV full-length genome obtained from West Africa from the 2014 outbreak, combined with 30 from earlier outbreaks between 1976 and 2008 were used to investigate the genetic divergence, evolutionary history, population dynamics, and selection pressure of EBOV among distinct epidemic waves. Results from our dataset showed that no non-synonymous substitutions occurred on the GP gene coding sequences of EBOV that were likely to have affected protein structure or function in any way. Furthermore, the significantly different dN/dS ratios observed between the 2014 West African outbreak and earlier outbreaks were more likely due to the confounding presence of segregating polymorphisms. Our results highlight no robust evidence that the 2014 EBOV outbreak is fast-evolving and adapting to humans. Therefore, the unprecedented nature of the 2014 EBOV outbreak might be more likely related to non-virological elements, such as environmental and sociological factors.
Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses.
Feldstein, Leora R; Brownstein, John S; Brady, Oliver J; Hay, Simon I; Johansson, Michael A
2015-05-01
Transmission of dengue viruses (DENV), the most common arboviral pathogens globally, is influenced by many climatic and socioeconomic factors. However, the relative contributions of these factors on a global scale are unclear. We randomly selected 94 islands stratified by socioeconomic and geographic characteristics. With a Bayesian model, we assessed factors contributing to the probability of islands having a history of any dengue outbreaks and of having frequent outbreaks. Minimum temperature was strongly associated with suitability for DENV transmission. Islands with a minimum monthly temperature of greater than 14.8°C (95% CI: 12.4-16.6°C) were predicted to be suitable for DENV transmission. Increased population size and precipitation were associated with increased outbreak frequency, but did not capture all of the variability. Predictions for 48 testing islands verified these findings. This analysis clarified two key components of DENV ecology: minimum temperature was the most important determinant of suitability; and endemicity was more likely in areas with high precipitation and large, but not necessarily dense, populations. Wealth and connectivity, in contrast, had no discernable effects. This model adds to our knowledge of global determinants of dengue risk and provides a basis for understanding the ecology of dengue endemicity. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Lin, Leesa; McCloud, Rachel F; Bigman, Cabral A; Viswanath, Kasisomayajula
2017-06-01
Large-scale influenza outbreaks over the last decade, such as SARS and H1N1, have brought to global attention the importance of emergency risk communication and prompted the international community to develop communication responses. Since pandemic outbreaks are relatively infrequent, there is a dearth of evidence addressing the following questions: (i) Have the resources invested in strategic and routine communication for past pandemic outbreaks yielded public health preparedness benefits? (ii) Have past efforts sensitized people to pay attention to new pandemic threats? The Middle East Respiratory Syndrome (MERS) that was followed closely by major media outlets in the USA provides an opportunity to examine the relationship between exposure to public communication about epidemics and public awareness and knowledge about new risks. In December, 2013, we surveyed a nationally representative sample of 627 American adults and examined the associations between people's awareness to prior pandemics and their awareness of and knowledge about MERS. Awareness of prior pandemics was significantly associated with awareness and knowledge of MERS. The most common sources from which people first heard about MERS were also identified. Communication inequalities were observed between racial/ethnic and socioeconomic positions, suggesting a need for more effective pandemic communication. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Progress toward measles elimination--European Region, 2005--2008.
2009-02-20
In 2002, the World Health Organization (WHO) Regional Committee for the European Region (EUR) revised earlier targets to eliminate indigenous measles and achieve rubella control by resolving to 1) eliminate both diseases in EUR member states by 2010, using a combination of routine and supplementary immunization strategies, and 2) monitor progress toward this goal through improved surveillance. This report summarizes progress toward measles elimination during 2005--2008 and updates a previous report from 2005. In 2005 and 2006, large-scale outbreaks occurred in the eastern EUR member states. However, in 2007 and 2008, overall measles incidence in EUR declined to a historic low of <10 cases per 1 million population, with the majority of cases reported from Western Europe. During 2005-2007, routine vaccination coverage with 1 dose of measles-containing vaccine (MCV) among children aged 12--23 months in EUR reached a high of 93%-94%, up from 90%-91% during 2000-2004. Nevertheless, two major challenges to measles elimination remain: 1) suboptimal vaccination coverage in many countries, which has led to continued outbreaks and the resurgence of indigenous measles in some Western European countries, and 2) setbacks with implementation of supplementary immunization activities (SIAs) in Eastern Europe in 2008. Achieving the measles elimination goal by 2010 will require 1) development of approaches to sustain and increase vaccination coverage, 2) promotion of effective outbreak prevention and control measures, and 3) further strengthening of surveillance.
Performance of eHealth data sources in local influenza surveillance: a 5-year open cohort study.
Timpka, Toomas; Spreco, Armin; Dahlström, Örjan; Eriksson, Olle; Gursky, Elin; Ekberg, Joakim; Blomqvist, Eva; Strömgren, Magnus; Karlsson, David; Eriksson, Henrik; Nyce, James; Hinkula, Jorma; Holm, Einar
2014-04-28
There is abundant global interest in using syndromic data from population-wide health information systems--referred to as eHealth resources--to improve infectious disease surveillance. Recently, the necessity for these systems to achieve two potentially conflicting requirements has been emphasized. First, they must be evidence-based; second, they must be adjusted for the diversity of populations, lifestyles, and environments. The primary objective was to examine correlations between data from Google Flu Trends (GFT), computer-supported telenursing centers, health service websites, and influenza case rates during seasonal and pandemic influenza outbreaks. The secondary objective was to investigate associations between eHealth data, media coverage, and the interaction between circulating influenza strain(s) and the age-related population immunity. An open cohort design was used for a five-year study in a Swedish county (population 427,000). Syndromic eHealth data were collected from GFT, telenursing call centers, and local health service website visits at page level. Data on mass media coverage of influenza was collected from the major regional newspaper. The performance of eHealth data in surveillance was measured by correlation effect size and time lag to clinically diagnosed influenza cases. Local media coverage data and influenza case rates showed correlations with large effect sizes only for the influenza A (A) pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001) and the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79, 95% CI .42-.93; P=.001), with media coverage preceding case rates with one week. Correlations between GFT and influenza case data showed large effect sizes for all outbreaks, the largest being the seasonal A H3N2 outbreak in 2008-2009 (r=.96, 95% CI .88-.99; P<.001). The preceding time lag decreased from two weeks during the first outbreaks to one week from the 2009 A pH1N1 pandemic. Telenursing data and influenza case data showed correlations with large effect sizes for all outbreaks after the seasonal B and A H1 outbreak in 2007-2008, with a time lag decreasing from two weeks for the seasonal A H3N2 outbreak in 2008-2009 (r=.95, 95% CI .82-.98; P<.001) to none for the A p H1N1 outbreak in 2009 (r=.84, 95% CI .62-.94; P<.001). Large effect sizes were also observed between website visits and influenza case data. Correlations between the eHealth data and influenza case rates in a Swedish county showed large effect sizes throughout a five-year period, while the time lag between signals in eHealth data and influenza rates changed. Further research is needed on analytic methods for adjusting eHealth surveillance systems to shifts in media coverage and to variations in age-group related immunity between virus strains. The results can be used to inform the development of alert-generating eHealth surveillance systems that can be subject for prospective evaluations in routine public health practice.
Performance of eHealth Data Sources in Local Influenza Surveillance: A 5-Year Open Cohort Study
Spreco, Armin; Dahlström, Örjan; Eriksson, Olle; Gursky, Elin; Ekberg, Joakim; Blomqvist, Eva; Strömgren, Magnus; Karlsson, David; Eriksson, Henrik; Nyce, James; Hinkula, Jorma; Holm, Einar
2014-01-01
Background There is abundant global interest in using syndromic data from population-wide health information systems—referred to as eHealth resources—to improve infectious disease surveillance. Recently, the necessity for these systems to achieve two potentially conflicting requirements has been emphasized. First, they must be evidence-based; second, they must be adjusted for the diversity of populations, lifestyles, and environments. Objective The primary objective was to examine correlations between data from Google Flu Trends (GFT), computer-supported telenursing centers, health service websites, and influenza case rates during seasonal and pandemic influenza outbreaks. The secondary objective was to investigate associations between eHealth data, media coverage, and the interaction between circulating influenza strain(s) and the age-related population immunity. Methods An open cohort design was used for a five-year study in a Swedish county (population 427,000). Syndromic eHealth data were collected from GFT, telenursing call centers, and local health service website visits at page level. Data on mass media coverage of influenza was collected from the major regional newspaper. The performance of eHealth data in surveillance was measured by correlation effect size and time lag to clinically diagnosed influenza cases. Results Local media coverage data and influenza case rates showed correlations with large effect sizes only for the influenza A (A) pH1N1 outbreak in 2009 (r=.74, 95% CI .42-.90; P<.001) and the severe seasonal A H3N2 outbreak in 2011-2012 (r=.79, 95% CI .42-.93; P=.001), with media coverage preceding case rates with one week. Correlations between GFT and influenza case data showed large effect sizes for all outbreaks, the largest being the seasonal A H3N2 outbreak in 2008-2009 (r=.96, 95% CI .88-.99; P<.001). The preceding time lag decreased from two weeks during the first outbreaks to one week from the 2009 A pH1N1 pandemic. Telenursing data and influenza case data showed correlations with large effect sizes for all outbreaks after the seasonal B and A H1 outbreak in 2007-2008, with a time lag decreasing from two weeks for the seasonal A H3N2 outbreak in 2008-2009 (r=.95, 95% CI .82-.98; P<.001) to none for the A p H1N1 outbreak in 2009 (r=.84, 95% CI .62-.94; P<.001). Large effect sizes were also observed between website visits and influenza case data. Conclusions Correlations between the eHealth data and influenza case rates in a Swedish county showed large effect sizes throughout a five-year period, while the time lag between signals in eHealth data and influenza rates changed. Further research is needed on analytic methods for adjusting eHealth surveillance systems to shifts in media coverage and to variations in age-group related immunity between virus strains. The results can be used to inform the development of alert-generating eHealth surveillance systems that can be subject for prospective evaluations in routine public health practice. PMID:24776527
Yadav, Shankar; Weng, Hsin-Yi
2017-04-04
The study aim was to quantify the impact of movement restriction on the well-being of pigs and the associated mitigation responses during a classical swine fever (CSF) outbreak. We developed a stochastic risk assessment model and incorporated Indiana swine industry statistics to estimate the timing and number of swine premises that would encounter overcrowding or feed interruption resulting from movement restriction. Our model also quantified the amount of on-farm euthanasia and movement of pigs to slaughter plants required to alleviate those conditions. We simulated various single-site (i.e., an outbreak initiated from one location) and multiple-site (i.e., an outbreak initiated from more than one location) outbreak scenarios in Indiana to estimate outputs. The study estimated that 14% of the swine premises in Indiana would encounter overcrowding or feed interruption due to movement restriction implemented during a CSF outbreak. The number of premises that would experience animal welfare conditions was about 2.5 fold of the number of infected premises. On-farm euthanasia needed to be performed on 33% of those swine premises to alleviate adverse animal welfare conditions, and more than 90% of on-farm euthanasia had to be carried out within 2 weeks after the implementation of movement restriction. Conversely, movement of pigs to slaughter plants could alleviate 67% of adverse animal welfare conditions due to movement restriction, and only less than 1% of movement of pigs to slaughter plants had to be initiated in the first 2 weeks of movement restrictions. The risk of secondary outbreaks due to movement of pigs from movement restriction areas to slaughter plants was low and only seven pigs from each shipment needed to be tested for CSF infection to prevent a secondary outbreak. We found that the scale of adverse animal welfare consequences of movement restriction during a CSF outbreak in Indiana was substantial, and controlled movement of pigs to slaughter plants was an efficient and low-risk alternative mitigation response to on-farm euthanasia. The output estimates generated from this study provide empirical evidence for decision makers to properly incorporate required resources for mitigating adverse animal welfare conditions in CSF outbreak management strategic planning.
Tau, Nomsa; Smouse, Shannon L.; Mtshali, Phillip S.; Mnyameni, Florah; Khumalo, Zamantungwa T. H.; Ismail, Arshad; Govender, Nevashan; Thomas, Juno
2018-01-01
ABSTRACT We report whole-genome sequences for 10 Listeria monocytogenes sequence type 6 isolates associated with a large listeriosis outbreak in South Africa, which occurred over the period of 2017 to 2018. The possibility of listeriosis spreading beyond South Africa’s borders as a result of exported contaminated food products prompted us to make the genome sequences publicly available. PMID:29930052
Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire
2014-01-01
Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.
Andrew Birt
2011-01-01
The population dynamics of the southern pine beetle (SPB) exhibit characteristic fluctuations between relatively long endemic and shorter outbreak periods. Populations exhibit complex and hierarchical spatial structure with beetles and larvae aggregating within individual trees, infestations with multiple infested trees, and regional outbreaks that comprise a large...
[Waterborne outbreaks in Norway 2003-2012].
Guzman-Herrador, Bernardo; de Blasio, Birgitte Freiesleben; Lund, Vidar; MacDonald, Emily; Vold, Line; Wahl, Erik; Nygård, Karin
2016-04-19
We describe the status of waterborne outbreaks notified in Norway and discuss this in the context of outbreaks recorded in previous years, to gain a better understanding of their development in Norway in recent years. We have collected information on all outbreaks notified to the Norwegian Institute of Public Health via the surveillance system for communicable diseases in the ten-year period from 2003-2012 for which drinking water was given as the suspected cause. Altogether 28 waterborne outbreaks with a total of 8,060 persons reported as ill were notified in the period. The majority of outbreaks resulted in fewer than 100 cases of illness. There were two outbreaks with more than 1,000 cases of illness: an oubreak of campylobacteriosis in Røros and an oubreak of giardiasis in Bergen. In more than half of the outbreaks, water was supplied from public water distribution systems (16/28 outbreaks, 57%). In addition, a large proportion was linked to individual households with their own water supply (12/28 outbreaks, 43%). Most of the outbreaks in the ten-year period were linked to public water distribution systems, while almost half were linked to non-disinfected water supplies to individual households. Although most of the outbreaks were small, two extensive outbreaks were also registered in the period, resulting in more than one thousand cases of illness. This underscores the need for good contingency planning and surveillance, so that suspicion of waterborne outbreaks is rapidly notified to the responsible authorities, and the importance of good protection of water sources, as well as proper maintenance of water treatment plants and distribution systems.
Comparison of Sexual Mixing Patterns for Syphilis in Endemic and Outbreak Settings
Doherty, Irene A; Adimora, Adaora A; Muth, Stephen Q; Serre, Marc L; Leone, Peter A; Miller, William C
2015-01-01
Background In a largely rural region of North Carolina during 1998–2002, outbreaks occurred of heterosexually-transmitted syphilis, tied to crack cocaine use and exchange of sex for drugs and money. Sexual partnership mixing patterns are an important characteristic of sexual networks that relate to transmission dynamics of STIs. Methods Using contact tracing data collected by Disease Intervention Specialists, we estimated Newman assortativity coefficients and compared values in counties experiencing syphilis outbreaks to non-outbreak counties, with respect to race/ethnicity, race/ethnicity and age, and the cases' number of social/sexual contacts, infected contacts, sex partners, and infected sex partners, and syphilis disease stage (primary, secondary, early latent). Results Individuals in the outbreak counties had more contacts and mixing by the number of sex partners was disassortative in outbreak counties and assortative non-outbreak counties. Whereas mixing by syphilis disease stage was minimally assortative in outbreak counties, it was disassortative in non-outbreak areas. Partnerships were relatively discordant by age, especially among older White men, who often chose considerably younger female partners. Conclusions Whether assortative mixing exacerbates or attenuates the reach of STIs into different populations depends on the characteristic/attribute and epidemiologic phase. Examination of sexual partnership characteristics and mixing patterns offers insights into the growth of STI outbreaks that complement other research methods. PMID:21217418
Chimpanzee adenoviral vectors as vaccines for outbreak pathogens
2017-01-01
ABSTRACT The 2014–15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS. PMID:29083948
A large outbreak of mumps in the postvaccine era.
Wharton, M; Cochi, S L; Hutcheson, R H; Bistowish, J M; Schaffner, W
1988-12-01
During a county-wide mumps outbreak in Nashville, Tennessee, 332 cases of mumps were identified at a public high school (attack rate, 18.8%). A pep rally 17 d before the peak of the outbreak at a single public high school may have provided an opportunity for point-source exposure. A case-control study demonstrated that vaccine efficacy was 75% (we used provider-verified records and excluded students with a history of mumps disease). Although school records were nonuniform, mumps immunization status was correct, compared with provider-verified records, in at least 85% of both cases and controls. Parental reports were much less reliable. The cost of the outbreak was estimated at $154/case. Receiving mumps vaccine at a vaccine clinic held after the outbreak had peaked was associated with a decrease in risk of mumps disease. Thus, these clinics may have a role in the control of such outbreaks.
Large outbreak of Legionnaires' disease and Pontiac fever at a military base.
Ambrose, J; Hampton, L M; Fleming-Dutra, K E; Marten, C; McClusky, C; Perry, C; Clemmons, N A; McCormic, Z; Peik, S; Mancuso, J; Brown, E; Kozak, N; Travis, T; Lucas, C; Fields, B; Hicks, L; Cersovsky, S B
2014-11-01
We investigated a mixed outbreak of Legionnaires' disease (LD) and Pontiac fever (PF) at a military base to identify the outbreak's environmental source as well as known legionellosis risk factors. Base workers with possible legionellosis were interviewed and, if consenting, underwent testing for legionellosis. A retrospective cohort study collected information on occupants of the buildings closest to the outbreak source. We identified 29 confirmed and probable LD and 38 PF cases. All cases were exposed to airborne pathogens from a cooling tower. Occupants of the building closest to the cooling tower were 6·9 [95% confidence interval (CI) 2·2-22·0] and 5·5 (95% CI 2·1-14·5) times more likely to develop LD and PF, respectively, than occupants of the next closest building. Thorough preventive measures and aggressive responses to outbreaks, including searching for PF cases in mixed legionellosis outbreaks, are essential for legionellosis control.
Ebola, jobs and economic activity in Liberia.
Bowles, Jeremy; Hjort, Jonas; Melvin, Timothy; Werker, Eric
2016-03-01
The 2014 Ebola virus disease (EVD) outbreak in the neighbouring West African countries of Guinea, Liberia and Sierra Leone represents the most significant setback to the region's development in over a decade. This study provides evidence on the extent to which economic activity declined and jobs disappeared in Liberia during the outbreak. To estimate how the level of activity and number of jobs in a given set of firms changed during the outbreak, we use a unique panel data set of registered firms surveyed by the business-development non-profit organisation, Building Markets. We also compare the change in economic activity during the outbreak, across regions of the country that had more versus fewer Ebola cases in a difference-in-differences approach. We find a large decrease in economic activity and jobs in all of Liberia during the Ebola outbreak, and an especially large decline in Monrovia. Outside of Monrovia, the restaurants, and food and beverages sectors have suffered the most among the surveyed sectors, and in Monrovia, the construction and restaurant sectors have shed the most employees, while the food and beverages sectors experienced the largest drop in new contracts. We find little association between the incidence of Ebola cases and declines in economic activity outside of Monrovia. If the large decline in economic activity that occurred during the Ebola outbreak persists, a focus on economic recovery may need to be added to the efforts to rebuild and support the healthcare system in order for Liberia to regain its footing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Zamir, C Stein; Schroeder, H; Shoob, H; Abramson, N; Zentner, G
2015-01-01
In recent years, large mumps outbreaks, involving mainly adolescents and young adults, have re-emerged in several countries. We investigated a large mumps outbreak, evaluated the association between mumps clinical severity (complications, hospitalization) and vaccination status (number of previous measles, mumps and rubella - MMR vaccine doses), and assessed vaccine effectiveness. The first mumps cases emerged in an ultra-orthodox boys' school in Jerusalem and were epidemiologically linked to the mumps outbreak in New York. Overall, 3130 mumps cases were notified in the Jerusalem district during September 2009-August 2011 (median age 13y, 64% males). Most cases were reported from community clinics. Patients with systemic symptoms and/or complications (419, 13.4%) were either hospitalized (n = 79) or treated in an emergency medical center (n = 340). The main complications included orchitis (3.8% males> age 12y) and meningoencephalitis (0.5%). The mumps virus genotype was G5. The distribution of previous MMR vaccine doses (n = 0,1,2) was: 24.8%, 28.3% and 46.9%, respectively. The number of previous vaccine doses was inversely associated with clinical severity. Adjusted values for MMR vaccine effectiveness against complications were estimated as 52.1% (95% CI -4 -78%) for one vaccine dose and 62.7% (95% CI 25.7-81.3%) for 2 doses. The outbreak was characterized by predominance of male students; the majority of whom had been previously vaccinated. The reported complication rate was relatively low. Vaccination status was associated with age and disease severity. The combination of limited mumps vaccine effectiveness and the specific school setting (dense learning and living conditions) probably contributed to the disease spread.
Zamir, C Stein; Schroeder, H; Shoob, H; Abramson, N; Zentner, G
2015-01-01
In recent years, large mumps outbreaks, involving mainly adolescents and young adults, have re-emerged in several countries. We investigated a large mumps outbreak, evaluated the association between mumps clinical severity (complications, hospitalization) and vaccination status (number of previous measles, mumps and rubella - MMR vaccine doses), and assessed vaccine effectiveness. The first mumps cases emerged in an ultra-orthodox boys' school in Jerusalem and were epidemiologically linked to the mumps outbreak in New York. Overall, 3130 mumps cases were notified in the Jerusalem district during September 2009-August 2011 (median age 13y, 64% males). Most cases were reported from community clinics. Patients with systemic symptoms and/or complications (419, 13.4%) were either hospitalized (n = 79) or treated in an emergency medical center (n = 340). The main complications included orchitis (3.8% males> age 12y) and meningoencephalitis (0.5%). The mumps virus genotype was G5. The distribution of previous MMR vaccine doses (n = 0,1,2) was: 24.8%, 28.3% and 46.9%, respectively. The number of previous vaccine doses was inversely associated with clinical severity. Adjusted values for MMR vaccine effectiveness against complications were estimated as 52.1% (95% CI −4 −78%) for one vaccine dose and 62.7% (95% CI 25.7–81.3%) for 2 doses. The outbreak was characterized by predominance of male students; the majority of whom had been previously vaccinated. The reported complication rate was relatively low. Vaccination status was associated with age and disease severity. The combination of limited mumps vaccine effectiveness and the specific school setting (dense learning and living conditions) probably contributed to the disease spread. PMID:25874726
Southern pine beetle regional outbreaks modeled on landscape, climate and infestation history
Adrian J. Duehl; Frank H. Koch; Fred P. Hain
2011-01-01
The southern pine beetle (Dendroctonus frontalis, SPB) is the major insect pest of pine species in the southeastern United States. It attains outbreak population levels sufficient to mass attack host pines across the landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis selected and examined the best climatic and...
Carolyn Sieg; Kurt Allen; Joel McMillin; Chad Hoffman
2014-01-01
Landscape-scale bark beetle outbreaks have occurred throughout the Western United States during recent years in response to dense forest conditions, climatic conditions, and wildfire (Fettig and others 2007, Bentz and others 2010). Previous studies, mostly conducted in moist forest types (such as lodgepole pine [Pinus contorta]) suggest that bark beetle...
Salimović-Bešić, I; Šeremet, M; Hübschen, J M; Hukić, M; Tihić, N; Ahmetagić, S; Delibegović, Z; Pilav, A; Mulaomerović, M; Ravlija, J; Muller, C P; Dedeić-Ljubović, A
2016-06-01
A measles outbreak with two epidemic waves involving 4649 probable and laboratory-confirmed cases was recorded in six out of ten cantons of the Federation of Bosnia and Herzegovina between February 2014 and April 2015. The majority of the patients had never received measles vaccination (3115/4649, 67.00%), and the vaccination status of another 23% was unknown (1066/4649). A total of 281 blood samples were tested serologically. Virus detection was performed using 44 nasopharyngeal swabs. About 57% (161/281) of the laboratory-investigated sera were immunoglobulin M positive, and 95% (42/44) of the swabs were reverse transcriptase-PCR positive. Phylogenetic analysis of sequences obtained from 30 swab samples showed circulation of two variants of genotype D8, but no genotype D4 strains as detected in 2007. Similar involvement of all age groups indicates a problem with vaccine refusal resulting from antivaccination activities in addition to gaps in immunization coverage during the war and postwar period (1992-1998). Differences in ethnicity, vaccine coverage, compliance with review policies of vaccination records and potentially also travel habits may partially explain why only six of ten cantons were affected by the outbreak. The second epidemic wave may in part be due to large-scale migrations due to catastrophic floods in 2014. As a result of the epidemic, 6- to 12-month-old children may now be vaccinated against measles during outbreaks, and public health recommendations for interventions have been strengthened. Additional efforts are required to implement the measures throughout the cantons. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Gomes, Elisete T. B.; Paiva, Marcelo H. S.; de Melo-Santos, Maria A. V.; Alves, Joana; Gómez, Lara F.; Ayres, Constância F. J.
2017-01-01
Abstract Arthropod-borne viruses, such as Dengue (DENV), Chikungunya (CHIKV), and Zika (ZIKV), pose a challenge to public health, due to their worldwide distribution and large-scale outbreaks. Dengue fever is currently one of the most important diseases and it is caused by four serotypes of DENV and is mainly transmitted by the mosquito Aedes aegypti. It is estimated that 50–100 million cases are reported every year worldwide. More recently, CHIKV and ZIKV, which are also transmitted by Ae. aegypti, have caused epidemics in countries in the Caribbean region, the Pacific region, and Americas. Cabo Verde faced its first dengue outbreak in 2009, with more than 21,000 reported cases and four registered deaths. The epidemic was caused by DENV-3 transmitted by Ae. aegypti mosquitoes. In addition, the country faced a Zika outbreak with more than 7,500 notified cases from October 2015 to May 2016. In the present study, we conducted a survey in mosquito samples to detect arboviruses circulating in the local vector population. Collections were performed from November 2014 to January 2015, in the City of Praia, the capital of Cabo Verde, using aspirators and BG-sentinel traps. Samples were examined by multiplex Reverse Transcription-polymerase chain reaction. A total of 161 Ae. aegypti adult females were analyzed (34 pools) and from these samples, eight pools were found positive for DENV-2 and DENV-4. Our results revealed a very high natural infection rate in the vector population and showed two different serotypes co-circulating in the island that differ from the one detected in the 2009 outbreak in Cabo Verde. PMID:28973490
Laboratory Response to Ebola - West Africa and United States.
Sealy, Tara K; Erickson, Bobbie R; Taboy, Céline H; Ströher, Ute; Towner, Jonathan S; Andrews, Sharon E; Rose, Laura E; Weirich, Elizabeth; Lowe, Luis; Klena, John D; Spiropoulou, Christina F; Rayfield, Mark A; Bird, Brian H
2016-07-08
The 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa highlighted the need to maintain organized laboratory systems or networks that can be effectively reorganized to implement new diagnostic strategies and laboratory services in response to large-scale events. Although previous Ebola outbreaks enabled establishment of critical laboratory practice safeguards and diagnostic procedures, this Ebola outbreak in West Africa highlighted the need for planning and preparedness activities that are better adapted to emerging pathogens or to pathogens that have attracted little commercial interest. The crisis underscored the need for better mechanisms to streamline development and evaluation of new diagnostic assays, transfer of material and specimens between countries and organizations, and improved processes for rapidly deploying health workers with specific laboratory expertise. The challenges and events of the outbreak forced laboratorians to examine not only the comprehensive capacities of existing national laboratory systems to recognize and respond to events, but also their sustainability over time and the mechanisms that need to be pre-established to ensure effective response. Critical to this assessment was the recognition of how response activities (i.e., infrastructure support, logistics, and workforce supplementation) can be used or repurposed to support the strengthening of national laboratory systems during the postevent transition to capacity building and recovery. This report compares CDC's domestic and international laboratory response engagements and lessons learned that can improve future responses in support of the International Health Regulations and Global Health Security Agenda initiatives.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html).
Guedes, Duschinka R D; Gomes, Elisete T B; Paiva, Marcelo H S; Melo-Santos, Maria A V de; Alves, Joana; Gómez, Lara F; Ayres, Constância F J
2017-07-01
Arthropod-borne viruses, such as Dengue (DENV), Chikungunya (CHIKV), and Zika (ZIKV), pose a challenge to public health, due to their worldwide distribution and large-scale outbreaks. Dengue fever is currently one of the most important diseases and it is caused by four serotypes of DENV and is mainly transmitted by the mosquito Aedes aegypti. It is estimated that 50-100 million cases are reported every year worldwide. More recently, CHIKV and ZIKV, which are also transmitted by Ae. aegypti, have caused epidemics in countries in the Caribbean region, the Pacific region, and Americas. Cabo Verde faced its first dengue outbreak in 2009, with more than 21,000 reported cases and four registered deaths. The epidemic was caused by DENV-3 transmitted by Ae. aegypti mosquitoes. In addition, the country faced a Zika outbreak with more than 7,500 notified cases from October 2015 to May 2016. In the present study, we conducted a survey in mosquito samples to detect arboviruses circulating in the local vector population. Collections were performed from November 2014 to January 2015, in the City of Praia, the capital of Cabo Verde, using aspirators and BG-sentinel traps. Samples were examined by multiplex Reverse Transcription-polymerase chain reaction. A total of 161 Ae. aegypti adult females were analyzed (34 pools) and from these samples, eight pools were found positive for DENV-2 and DENV-4. Our results revealed a very high natural infection rate in the vector population and showed two different serotypes co-circulating in the island that differ from the one detected in the 2009 outbreak in Cabo Verde. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease.
Kleczkowski, A; Gilligan, C A
2007-10-22
Many epidemics of plant diseases are characterized by large variability among individual outbreaks. However, individual epidemics often follow a well-defined trajectory which is much more predictable in the short term than the ensemble (collection) of potential epidemics. In this paper, we introduce a modelling framework that allows us to deal with individual replicated outbreaks, based upon a Bayesian hierarchical analysis. Information about 'similar' replicate epidemics can be incorporated into a hierarchical model, allowing both ensemble and individual parameters to be estimated. The model is used to analyse the data from a replicated experiment involving spread of Rhizoctonia solani on radish in the presence or absence of a biocontrol agent, Trichoderma viride. The rate of primary (soil-to-plant) infection is found to be the most variable factor determining the final size of epidemics. Breakdown of biological control in some replicates results in high levels of primary infection and increased variability. The model can be used to predict new outbreaks of disease based upon knowledge from a 'library' of previous epidemics and partial information about the current outbreak. We show that forecasting improves significantly with knowledge about the history of a particular epidemic, whereas the precision of hindcasting to identify the past course of the epidemic is largely independent of detailed knowledge of the epidemic trajectory. The results have important consequences for parameter estimation, inference and prediction for emerging epidemic outbreaks.
A large common-source outbreak of norovirus gastroenteritis in a hotel in Singapore, 2012.
Raj, P; Tay, J; Ang, L W; Tien, W S; Thu, M; Lee, P; Pang, Q Y; Tang, Y L; Lee, K Y; Maurer-Stroh, S; Gunalan, V; Cutter, J; Goh, K T
2017-02-01
An outbreak of gastroenteritis affected 453 attendees (attack rate 28·5%) of six separate events held at a hotel in Singapore. Active case detection, case-control studies, hygiene inspections and microbial analysis of food, environmental and stool samples were conducted to determine the aetiology of the outbreak and the modes of transmission. The only commonality was the food, crockery and cutlery provided and/or handled by the hotel's Chinese banquet kitchen. Stool specimens from 34 cases and 15 food handlers were positive for norovirus genogroup II. The putative index case was one of eight norovirus-positive food handlers who had worked while they were symptomatic. Several food samples and remnants tested positive for Escherichia coli or high faecal coliforms, aerobic plate counts and/or total coliforms, indicating poor food hygiene. This large common-source outbreak of norovirus gastroenteritis was caused by the consumption of contaminated food and/or contact with contaminated crockery or cutlery provided or handled by the hotel's Chinese banquet kitchen.
Idrovo, Alvaro J; Albavera-Hernández, Cidronio; Rodríguez-Hernández, Jorge Martín
2011-07-01
There are few social epidemiologic studies on chickenpox outbreaks, although previous findings suggested the important role of social determinants. This study describes the context of a large outbreak of chickenpox in the Cauca Valley region, Colombia (2003 to 2007), with an emphasis on macro-determinants. We explored the temporal trends in chickenpox incidence in 42 municipalities to identify the places with higher occurrences. We analyzed municipal characteristics (education quality, vaccination coverage, performance of health care services, violence-related immigration, and area size of planted sugar cane) through analyses based on set theory. Edwards-Venn diagrams were used to present the main findings. The results indicated that three municipalities had higher incidences and that poor quality education was the attribute most prone to a higher incidence. Potential use of set theory for exploratory outbreak analyses is discussed. It is a tool potentially useful to contrast units when only small sample sizes are available.
Epidemiology and estimated costs of a large waterborne outbreak of norovirus infection in Sweden.
Larsson, C; Andersson, Y; Allestam, G; Lindqvist, A; Nenonen, N; Bergstedt, O
2014-03-01
A large outbreak of norovirus (NoV) gastroenteritis caused by contaminated municipal drinking water occurred in Lilla Edet, Sweden, 2008. Epidemiological investigations performed using a questionnaire survey showed an association between consumption of municipal drinking water and illness (odds ratio 4·73, 95% confidence interval 3·53-6·32), and a strong correlation between the risk of being sick and the number of glasses of municipal water consumed. Diverse NoV strains were detected in stool samples from patients, NoV genotype I strains predominating. Although NoVs were not detected in water samples, coliphages were identified as a marker of viral contamination. About 2400 (18·5%) of the 13,000 inhabitants in Lilla Edet became ill. Costs associated with the outbreak were collected via a questionnaire survey given to organizations and municipalities involved in or affected by the outbreak. Total costs including sick leave, were estimated to be ∼8,700,000 Swedish kronor (∼€0·87 million).
Emergence of the Asian genotype of DENV-1 in South India.
Cecilia, D; Patil, J A; Kakade, M B; Walimbe, A; Alagarasu, K; Anukumar, B; Abraham, A
2017-10-01
A large outbreak of dengue occurred in Tamil Nadu, South India in 2012 with 12,000 cases and CFR of 0.5%. Molecular characterization of virus present in the sera of dengue patients was undertaken to determine if there were changes in the virus population. All four serotypes were circulating but DENV-1 was dominant, present in 52% of the serotyped samples. Furthermore, the genotype of only DENV-1 had changed; the Asian genotype had displaced the American/African. Phylogenetic analysis revealed that the Asian genotype was introduced from Singapore and shared 99% similarity with viruses, associated with large outbreaks in Singapore and Sri Lanka. We report for the first time the emergence of the Asian genotype of DENV-1 in southern India causing an extensive and severe outbreak. The study proves how movement of DENV can affect dengue outbreaks and underscores the need for close molecular monitoring of DENV. Copyright © 2017 Elsevier Inc. All rights reserved.
West Nile Virus Outbreak in North American Owls, Ontario, 2002
Barker, Ian K.; Lindsay, Robbin; Dibernardo, Antonia; McKeever, Katherine; Hunter, Bruce
2004-01-01
From July to September 2002, an outbreak of West Nile virus (WNV) caused a high number of deaths in captive owls at the Owl Foundation, Vineland, Ontario, Canada. Peak death rates occurred in mid-August, and the epidemiologic curve resembled that of corvids in the surrounding Niagara region. The outbreak occurred in the midst of a louse fly (Icosta americana, family Hippoboscidae) infestation. Of the flies tested, 16 (88.9 %) of 18 contained WNV RNA. Species with northern native breeding range and birds >1 year of age were at significantly higher risk for WNV-related deaths. Species with northern native breeding range and of medium-to-large body size were at significantly higher risk for exposure to WNV. Taxonomic relations (at the subfamily level) did not significantly affect exposure to WNV or WNV-related deaths. Northern native breeding range and medium-to-large body size were associated with earlier death within the outbreak period. Of the survivors, 69 (75.8 %) of 91 were seropositive for WNV. PMID:15663850
A large rubella outbreak with spread from the workplace to the community.
Danovaro-Holliday, M C; LeBaron, C W; Allensworth, C; Raymond, R; Borden, T G; Murray, A B; Icenogle, J P; Reef, S E
2000-12-06
Childhood vaccination has reduced rubella disease to low levels in the United States, but outbreaks continue to occur. The largest outbreak in the past 5 years occurred in Nebraska in 1999. To examine risk factors for disease, susceptibility of the risk population, role of vaccine failure, and the need for new vaccination strategies in response to the Nebraska rubella outbreak. Investigation of 83 confirmed rubella cases occurring in Douglas County, Nebraska, between March 23 and August 24, 1999; serosurvey of 413 pregnant women in the outbreak locale between October 1998 and March 1999 (prior to outbreak) and April and November 1999 (during and after outbreak). Case characteristics, compared with that of the general county population; area childhood rubella vaccination rates; and susceptibility among pregnant women before vs during and after the outbreak. All 83 rubella cases were unvaccinated or had unknown vaccination status and fell into 3 groups: (1) 52 (63%) were young adults (median age, 26 years), 83% of whom were born in Latin American countries where rubella vaccination was not routine. They were either employed in meatpacking plants or were their household contacts. Attack rates in the plants were high (14.4 per 1000 vs 0. 19 per 1000 for general county population); (2) 16 (19%), including 14 children (9 of whom were aged <12 months) and 2 parents, were US-born and non-Hispanic, who acquired the disease through contacts at 2 day care facilities (attack rate, 88.1 per 1000); and (3) 15 (18%) were young adults (median age, 22 years) whose major disease risk was residence in population-dense census tracts where meatpacking-related cases resided (R(2) = 0.343; P<.001); 87% of these persons were born in Latin America. Among pregnant women, susceptibility rates were 13% before the outbreak and 11% during and after the outbreak. Six (25%) of 24 susceptible women tested were seropositive for rubella IgM. Rubella vaccination rates were 90.2% for preschool children and 99.8% for school-aged children. A large rubella outbreak occurred among unvaccinated persons in a community with high immunity levels. Crowded working and living conditions facilitated transmission, but vaccine failure did not. Workplace vaccination could be considered to prevent similar outbreaks. JAMA. 2000;284:2733-2739.
Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R
2013-01-01
Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.
Todkill, D; Elliot, A J; Morbey, R; Harris, J; Hawker, J; Edeghere, O; Smith, G E
2016-08-01
Syndromic surveillance systems in England have demonstrated utility in the early identification of seasonal gastrointestinal illness (GI) tracking its spatio-temporal distribution and enabling early public health action. There would be additional public health utility if syndromic surveillance systems could detect or track subnational infectious disease outbreaks. To investigate using syndromic surveillance for this purpose we retrospectively identified eight large GI outbreaks between 2009 and 2014 (four randomly and four purposively sampled). We then examined syndromic surveillance information prospectively collected by the Real-time Syndromic Surveillance team within Public Health England for evidence of possible outbreak-related changes. None of the outbreaks were identified contemporaneously and no alerts were made to relevant public health teams. Retrospectively, two of the outbreaks - which happened at similar times and in proximal geographical locations - demonstrated changes in the local trends of relevant syndromic indicators and exhibited a clustering of statistical alarms, but did not warrant alerting local health protection teams. Our suite of syndromic surveillance systems may be more suited to their original purposes than as means of detecting or monitoring localized, subnational GI outbreaks. This should, however, be considered in the context of this study's limitations; further prospective work is needed to fully explore the use of syndromic surveillance for this purpose. Provided geographical coverage is sufficient, syndromic surveillance systems could be able to provide reassurance of no or minor excess healthcare systems usage during localized GI incidents.
Tuberculosis and the role of war in the modern era.
Drobniewski, F A; Verlander, N Q
2000-12-01
Tuberculosis (TB) remains a major global health problem; historically, major wars have increased TB notifications. This study evaluated whether modern conflicts worldwide affected TB notifications between 1975 and 1995. Dates of conflicts were obtained and matched with national TB notification data reported to the World Health Organization. Overall notification rates were calculated pre and post conflict. Poisson regression analysis was applied to all conflicts with sufficient data for detailed trend analysis. Thirty-six conflicts were identified, for which 3-year population and notification data were obtained. Overall crude TB notification rates were 81.9 and 105.1/100,000 pre and post start of conflict in these countries. Sufficient data existed in 16 countries to apply Poisson regression analysis to model 5-year pre and post start of conflict trends. This analysis indicated that the risk of presenting with TB in any country 2.5 years after the outbreak of conflict relative to 2.5 years before the outbreak was 1.016 (95%CI 0.9435-1.095). The modelling suggested that in the modern era war may not significantly damage efforts to control TB in the long term. This might be due to the limited scale of most of these conflicts compared to the large-scale civilian disruption associated with 'world wars'. The management of TB should be considered in planning post-conflict refugee and reconstruction programmes.
Allam, Mushal; Tau, Nomsa; Smouse, Shannon L; Mtshali, Phillip S; Mnyameni, Florah; Khumalo, Zamantungwa T H; Ismail, Arshad; Govender, Nevashan; Thomas, Juno; Smith, Anthony M
2018-06-21
We report whole-genome sequences for 10 Listeria monocytogenes sequence type 6 isolates associated with a large listeriosis outbreak in South Africa, which occurred over the period of 2017 to 2018. The possibility of listeriosis spreading beyond South Africa's borders as a result of exported contaminated food products prompted us to make the genome sequences publicly available. Copyright © 2018 Allam et al.
Glatman-Freedman, Aharona; Kaufman, Zalman; Kopel, Eran; Bassal, Ravit; Taran, Diana; Valinsky, Lea; Agmon, Vered; Shpriz, Manor; Cohen, Daniel; Anis, Emilia; Shohat, Tamy
2016-08-01
To enhance timely surveillance of bacterial enteric pathogens, space-time cluster analysis was introduced in Israel in May 2013. Stool isolation data of Salmonella, Shigella, and Campylobacter from patients of a large Health Maintenance Organization were analyzed weekly by ArcGIS and SaTScan, and cluster results were sent promptly to local departments of health (LDOHs). During eighteen months, we identified 52 Shigella sonnei clusters, two Salmonella clusters, and no Campylobacter clusters. S. sonnei clusters lasted from one to 33 days and included three to 30 individuals. Thirty-one (60%) of the S. sonnei clusters were known to LDOHs prior to cluster analysis. Clusters not previously known by the LDOHs prompted epidemiologic investigations. In 31 of the 37 (84%) confirmed clusters, educational institutes (nursery schools, kindergartens, and a primary school) were involved. Cluster analysis demonstrated capability to complement enteric disease surveillance. Scaling up the system can further enhance timely detection and control of outbreaks. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Benjamin C. Bright; Jeffrey A. Hicke; Andrew T. Hudak
2012-01-01
Mountain pine beetle outbreaks have caused widespread tree mortality in North American forests in recent decades, yet few studies have documented impacts on carbon cycling. In particular, landscape scales intermediate between stands and regions have not been well studied. Remote sensing is an effective tool for quantifying impacts of insect outbreaks on forest...
Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas
2017-01-01
A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016–2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation. PMID:29258650
Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas
2017-12-01
A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016-2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation.
Imaging and identification of waterborne parasites using a chip-scale microscope.
Lee, Seung Ah; Erath, Jessey; Zheng, Guoan; Ou, Xiaoze; Willems, Phil; Eichinger, Daniel; Rodriguez, Ana; Yang, Changhuei
2014-01-01
We demonstrate a compact portable imaging system for the detection of waterborne parasites in resource-limited settings. The previously demonstrated sub-pixel sweeping microscopy (SPSM) technique is a lens-less imaging scheme that can achieve high-resolution (<1 µm) bright-field imaging over a large field-of-view (5.7 mm×4.3 mm). A chip-scale microscope system, based on the SPSM technique, can be used for automated and high-throughput imaging of protozoan parasite cysts for the effective diagnosis of waterborne enteric parasite infection. We successfully imaged and identified three major types of enteric parasite cysts, Giardia, Cryptosporidium, and Entamoeba, which can be found in fecal samples from infected patients. We believe that this compact imaging system can serve well as a diagnostic device in challenging environments, such as rural settings or emergency outbreaks.
Investigating Coral Disease Spread Across the Hawaiian Archipelago
NASA Astrophysics Data System (ADS)
Sziklay, Jamie
Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front of infected coral and had fewer intact polyps than in healthy coral fragments. These results suggested that disease progression within colonies affected with chronic and acute Montipora white syndromes are highly localized rather than systemic and their bacterial pathogens directly attack the coral tissue rather than zooxanthellae. Overall, my dissertation research indicates that watershed condition and coral community configuration can facilitate and/or inhibit coral disease spread, and that disease transmission may be more spatially constrained than previously thought.
Donato, Celeste M; Cowley, Daniel; Snelling, Thomas L; Akopov, Asmik; Kirkness, Ewen F; Kirkwood, Carl D
2014-07-01
In 2010, a large outbreak of rotavirus gastroenteritis occurred in the Alice Springs region of the Northern Territory, Australia. The outbreak occurred 43 months after the introduction of the G1P[8] rotavirus vaccine Rotarix(®). Forty-three infants were hospitalized during the outbreak and analysis of fecal samples from each infant revealed a G1P[8] rotavirus strain. The outbreak strain was adapted to cell culture and neutralization assays were performed using VP7 and VP4 neutralizing monoclonal antibodies. The outbreak strain exhibited a distinct neutralization resistance pattern compared to the Rotarix(®) vaccine strain. Whole genome sequencing of the 2010 outbreak virus strain demonstrated numerous amino acid differences compared to the Rotarix(®) vaccine strain in the characterized neutralization epitopes of the VP7 and VP4 proteins. Phylogenetic analysis of the outbreak strain revealed a close genetic relationship to global strains, in particular RVA/Human-wt/BEL/BE0098/2009/G1P[8] and RVA/Human-wt/BEL/BE00038/2008/G1P[8] for numerous genes. The 2010 outbreak strain was likely introduced from a globally circulating population of strains rather than evolving from an endemic Australian strain. The outbreak strain possessed antigenic differences in the VP7 and VP4 proteins compared to the Rotarix(®) vaccine strain. The outbreak was associated with moderate vaccine coverage and possibly low vaccine take in the population.
Analysis and Modeling of Influenza Outbreaks as Driven by Weather
NASA Astrophysics Data System (ADS)
Thrastarson, H. T.; Teixeira, J.; Serman, E. A.; Parekh, A.; Yeo, E.
2017-12-01
Seasonal influenza outbreaks are a major source of illness, mortality and economic burden worldwide. Attributing what drives the seasonality of the outbreaks is still an unsettled problem. But in temperate regions absolute humidity conditions are a strong candidate (Shaman et al., 2010) and some studies have associated temperature conditions with influenza outbreaks. We use humidity and temperature data from NASA's AIRS (Atmospheric Infra-Red Sounder) instrument as well as data for influenza incidence in the US and South Africa to explore the connection between weather and influenza seasonality at different spatial scales. We also incorporate influenza surveillance data, satellite data and humidity forecasts into a numerical epidemiological prediction system. Our results give support for the role of local weather conditions as drivers of the seasonality of influenza in temperate regions. This can have implications for public health efforts where forecasting of the timing and intensity of influenza outbreaks has a great potential role (e.g., aiding management and organization of vaccines, drugs and other resources).
Epidemic Varicella Zoster Virus among University Students, India.
Meyers, Josh; Logaraj, Muthunarayanan; Ramraj, Balaji; Narasimhan, Padmanesan; MacIntyre, C Raina
2018-02-01
We investigated a yearlong varicella zoster virus outbreak in a highly susceptible young adult population at a large university in India. Outbreaks of varicella infection among adults are not well described in the literature. Infection control measures and vaccination policy for this age group and setting are needed.
Epidemic Varicella Zoster Virus among University Students, India
Logaraj, Muthunarayanan; Ramraj, Balaji; Narasimhan, Padmanesan; MacIntyre, C. Raina
2018-01-01
We investigated a yearlong varicella zoster virus outbreak in a highly susceptible young adult population at a large university in India. Outbreaks of varicella infection among adults are not well described in the literature. Infection control measures and vaccination policy for this age group and setting are needed. PMID:29350152
Agroecological niches and thrips (Thysanoptera: Thripidae) dynamics
Michael E. Irwin
1991-01-01
In 1975, Illinois experienced an exceptionally mild winter, followed by a warm spring. This sequence of climatic events resulted in a massive outbreak of the soybean thrips, Sericothrips variabilis (Beach), along with large numbers of the flower thrips, Frankliniella tritici (Fitch). The outbreak covered an area of over 600...
Riddle, Mark S; Smoak, Bonnie L; Thornton, Scott A; Bresee, Joseph S; Faix, Dennis J; Putnam, Shannon D
2006-01-01
Background Infectious gastrointestinal illness (IGI) outbreaks have been reported in U.S. Navy ships and could potentially have an adverse mission impact. Studies to date have been anecdotal. Methods We conducted a retrospective analysis of weekly reported disease and non-battle injury health data collected in 2000 – 2001 from 44 U.S. Navy ships while sailing in the 5th Fleet (Persian Gulf and nearby seas). Results During this period, 11 possible IGI outbreaks were identified. Overall, we found 3.3 outbreaks per 100 ship-weeks, a mean outbreak duration of 4.4 weeks, and a mean cumulative ship population attack rate of 3.6%. Morbidity, represented by days lost due to personnel being placed on sick-in-quarters status, was higher during outbreak weeks compared to non-outbreak weeks (p = 0.002). No clear seasonal distribution was identified. Conclusion Explosive outbreaks due to viruses and bacteria with the potential of incapacitating large proportions of the crew raise serious concerns of mission impact and military readiness. PMID:16504135
Connecting the study of wild influenza with the potential for pandemic disease
Runstadler, Jonathan; Hill, Nichola; Hussein, Islam T.M.; Puryear, Wendy; Keogh, Mandy
2013-01-01
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4–5 years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains. PMID:23541413
Epidemics and dimensionality in hierarchical networks
NASA Astrophysics Data System (ADS)
Zheng, Da-Fang; Hui, P. M.; Trimper, Steffen; Zheng, Bo
2005-07-01
Epidemiological processes are studied within a recently proposed hierarchical network model using the susceptible-infected-refractory dynamics of an epidemic. Within the network model, a population may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveal that for H>1, global spreading results regardless of the degree of homophily of the individuals forming a social circle. For H=1, a transition from global to local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large-scale outbreaks of infectious diseases (viruses).
Pandemic Influenza and Pregnancy: An Opportunity to Reassess Maternal Bioethics
Beigi, Richard H.
2009-01-01
Large-scale infectious epidemics present the medical community with numerous medical and ethical challenges. Recent attention has focused on the likelihood of an impending influenza pandemic caused by the H5N1 virus. Pregnant women in particular present policymakers with great challenges to planning for such a public health emergency. By recognizing the specific considerations needed for this population, we can preemptively address the issues presented by infectious disease outbreaks. We reviewed the important ethical challenges presented by pregnant women and highlighted the considerations for all vulnerable groups when planning for a pandemic at both the local and the national level. PMID:19461111
Pet Food Safety A Shared Concern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Robert L; Baker, Robert C; Charlton, Adrian J
2011-01-01
The safety of the food supply is a subject of intense interest to consumers, particularly as a result of large scale outbreaks that involve hundreds and sometimes thousands of consumers. During the last decade this concern about food safety has expanded to include the diets of companion animals as a result of several incidences of chemical toxicities and infectious disease transmission. This has led to increased research into the causes and controls for these hazards for both companion animals and their owners. The following summary provides an introduction to the issues, challenges, and new tools being developed to ensure thatmore » commercial pet foods are both nutritious and safe.« less
Amendola, Antonella; Bianchi, Silvia; Frati, Elena R; Ciceri, Giulia; Faccini, Marino; Senatore, Sabrina; Colzani, Daniela; Lamberti, Anna; Baggieri, Melissa; Cereda, Danilo; Gramegna, Maria; Nicoletti, Loredana; Magurano, Fabio; Tanzi, Elisabetta
2017-08-17
A large measles outbreak has been ongoing in Milan and surrounding areas. From 1 March to 30 June 2017, 203 measles cases were laboratory-confirmed (108 sporadic cases and 95 related to 47 clusters). Phylogenetic analysis revealed the co-circulation of two different genotypes, D8 and B3. Both genotypes caused nosocomial clusters in two hospitals. The rapid analysis of epidemiological and phylogenetic data allowed effective surveillance and tracking of transmission pathways. This article is copyright of The Authors, 2017.
Amendola, Antonella; Bianchi, Silvia; Frati, Elena R; Ciceri, Giulia; Faccini, Marino; Senatore, Sabrina; Colzani, Daniela; Lamberti, Anna; Baggieri, Melissa; Cereda, Danilo; Gramegna, Maria; Nicoletti, Loredana; Magurano, Fabio; Tanzi, Elisabetta
2017-01-01
A large measles outbreak has been ongoing in Milan and surrounding areas. From 1 March to 30 June 2017, 203 measles cases were laboratory-confirmed (108 sporadic cases and 95 related to 47 clusters). Phylogenetic analysis revealed the co-circulation of two different genotypes, D8 and B3. Both genotypes caused nosocomial clusters in two hospitals. The rapid analysis of epidemiological and phylogenetic data allowed effective surveillance and tracking of transmission pathways. PMID:28840825
Benefit-Cost Analysis of Foot-and-Mouth Disease Vaccination at the Farm-Level in South Vietnam.
Truong, Dinh Bao; Goutard, Flavie Luce; Bertagnoli, Stéphane; Delabouglise, Alexis; Grosbois, Vladimir; Peyre, Marisa
2018-01-01
This study aimed to analyze the financial impact of foot-and-mouth disease (FMD) outbreaks in cattle at the farm-level and the benefit-cost ratio (BCR) of biannual vaccination strategy to prevent and eradicate FMD for cattle in South Vietnam. Production data were collected from 49 small-scale dairy farms, 15 large-scale dairy farms, and 249 beef farms of Long An and Tay Ninh province using a questionaire. Financial data of FMD impacts were collected using participatory tools in 37 villages of Long An province. The net present value, i.e., the difference between the benefits (additional revenue and saved costs) and costs (additional costs and revenue foregone), of FMD vaccination in large-scale dairy farms was 2.8 times higher than in small-scale dairy farms and 20 times higher than in beef farms. The BCR of FMD vaccination over 1 year in large-scale dairy farms, small-scale dairy farms, and beef farms were 11.6 [95% confidence interval (95% CI) 6.42-16.45], 9.93 (95% CI 3.45-16.47), and 3.02 (95% CI 0.76-7.19), respectively. The sensitivity analysis showed that varying the vaccination cost had more effect on the BCR of cattle vaccination than varying the market price. This benefit-cost analysis of biannual vaccination strategy showed that investment in FMD prevention can be financially profitable, and therefore sustainable, for dairy farmers. For beef cattle, it is less certain that vaccination is profitable. Additional benefit-cost analysis study of vaccination strategies at the national-level would be required to evaluate and adapt the national strategy to achieve eradication of this disease in Vietnam.
Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks
Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A.; Fowler, James H.
2014-01-01
Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale networks. PMID:24718030
Using friends as sensors to detect global-scale contagious outbreaks.
Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A; Fowler, James H
2014-01-01
Recent research has focused on the monitoring of global-scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global-scale networks.
Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew
2016-01-01
Importance This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. Objective To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Design Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. Setting United States. Outbreak period was March 1, 2013 through July 11, 2014 Patients A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Results Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Conclusions Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken was the cause of this outbreak. The outbreak involved multiple PFGE patterns, a variety of chicken products, and 3 production establishments, suggesting a reservoir for contamination upstream from the production establishments. Sources of bacteria and genes responsible for resistance, such as farms providing birds for slaughter or environmental reservoir on farms that raise chickens, might explain how multiple PFGE patterns were linked to chicken from 3 separate production establishments and many different poultry products. PMID:27631492
Dengue Contingency Planning: From Research to Policy and Practice.
Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J; Sánchez Tejeda, Gustavo; Lloyd, Linda S; Hakim, Lokman; Bowman, Leigh R; Horstick, Olaf; Coelho, Giovanini
2016-09-01
Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.
Njim, Tsi; Aminde, Leopold Ndemnge; Feteh, Fambombi Vitalis; Ngum, Joel Mbigha; Moustapha, Chandini Aliyou
2015-01-01
Measles is a highly contagious viral infection and still a leading cause of vaccine-preventable deaths in Africa; especially in unvaccinated populations. We reviewed the medical reports of the measles outbreak that occurred in Misaje, in the North west region of Cameroon from 11/03/2015 to 14/05/2015. Six measles cases were recorded during this period; three of them complicated by bacterial infections. Measles should be considered as a differential diagnosis for any febrile rash especially among poorly vaccinated populations. Primary preventive methods implemented by clinicians could help control outbreaks; especially with delays in public health intervention. Also, gaps in health policies in Cameroon should be addressed to scale up vaccination coverage in remote communities like Misaje to reduce the incidence of measles outbreaks.
Chen, Mingliang; Yao, Weilei; Wang, Xiaohong; Li, Yuefang; Chen, Min; Wang, Gangyi; Zhang, Xi; Pan, Hao; Hu, Jiayu; Zeng, Mei
2012-09-01
An unprecedented, large outbreak of childhood scarlet fever occurred in Shanghai between April and July 2011. Investigation of the epidemiology could enhance our understanding of the factors related to the outbreak. We retrospectively analyzed the demographic and seasonal characteristics of children with scarlet fever and the outcome. During the peak month of the 2011 outbreak, 45 GAS isolates recovered from pediatric patients and 13 (43.3%) GAS isolates recovered from 30 asymptomatic student contacts were characterized by emm typing, superantigen profiles, pulsed-field gel electrophoresis genotypes, mutilocus sequence typing and antimicrobial susceptibility. The 2011 outbreak of scarlet fever started in April and peaked in May and June. Boys outnumbered girls (65.1% versus 34.9%). Preschool and primary school children accounted for 96% of cases. No severe outcome was found. emm1, emm12 and emm75 were identified among 58 GAS isolates, and 53 (91.4%) isolates belonged to emm12, st36. Ten pulsed-field gel electrophoresis genotypes were identified among emm12 GAS isolates, 43 (81.1%) shared SPYS16.001 genotype and the remaining 7 genotypes detected were related to SPYS16.001 closely or possibly. No streptococcal pyrogenic exotoxin A and streptococcal pyrogenic exotoxin M were detected in 58 isolates. All emm12 GAS isolates were resistant to azithromycin and clindamycin. emm12 GAS strain caused the large 2011 outbreak of scarlet fever in Shanghai. Antibiotic resistance to macrolides and clindamycin in GAS is prevalent in Shanghai.
Outbreak of Salmonella infantis infection in a large animal veterinary teaching hospital.
Tillotson, K; Savage, C J; Salman, M D; Gentry-Weeks, C R; Rice, D; Fedorka-Cray, P J; Hendrickson, D A; Jones, R L; Nelson, W; Traub-Dargatz, J L
1997-12-15
During the past 11 years, there have been numerous reports of outbreaks of salmonellosis involving horses in veterinary teaching hospitals. Some of these outbreaks have been associated with Salmonella serotypes not commonly associated with infection of horses. Salmonella infantis is among the more common Salmonella serotypes isolated from human beings, and is an important pathogen in the broiler chicken industry. However, it was not commonly isolated from horses or cattle on a national basis between 1993 and 1995. In this report, we describe an outbreak of S infantis infection among large animals, primarily horses, in a veterinary teaching hospital and the control measures that were implemented. Factors that appeared to be key in control of this outbreak in this hospital included providing biosecurity training sessions for hospital personnel, adopting a standard operating procedure manual for biosecurity procedures, installing additional handwashing sinks throughout the facility, painting the interior of the facility with a nontoxic readily cleanable paint, replacing the dirt flooring in 4 stalls with concrete flooring, and removing noncleanable surfaces such as rubber stall mats, wooden hay storage bins, and open grain bins. Our experience with this outbreak suggests that although it is virtually impossible to eliminate Salmonella organisms from the environment, minimizing contamination is possible. Prevention of nosocomial infection must be approached in a multifaceted manner and care must be taken to search out covert sources of contamination, especially if standard intervention procedures do not prevent spread of the disease.
Du, Pengcheng; Zheng, Han; Zhou, Jieping; Lan, Ruiting; Ye, Changyun; Jing, Huaiqi; Jin, Dong; Cui, Zhigang; Bai, Xuemei; Liang, Jianming; Liu, Jiantao; Xu, Lei; Zhang, Wen; Chen, Chen
2017-01-01
Streptococcus suis sequence type 7 emerged and caused 2 of the largest human infection outbreaks in China in 1998 and 2005. To determine the major risk factors and source of the infections, we analyzed whole genomes of 95 outbreak-associated isolates, identified 160 single nucleotide polymorphisms, and classified them into 6 clades. Molecular clock analysis revealed that clade 1 (responsible for the 1998 outbreak) emerged in October 1997. Clades 2–6 (responsible for the 2005 outbreak) emerged separately during February 2002–August 2004. A total of 41 lineages of S. suis emerged by the end of 2004 and rapidly expanded to 68 genome types through single base mutations when the outbreak occurred in June 2005. We identified 32 identical isolates and classified them into 8 groups, which were distributed in a large geographic area with no transmission link. These findings suggest that persons were infected in parallel in respective geographic sites. PMID:27997331
van Helden, L S; Sinclair, M; Koen, P; Grewar, J D
2016-06-01
In 2011, the commercial ostrich production industry of South Africa experienced an outbreak of highly pathogenic avian influenza (HPAI), subtype H5N2. Surveillance using antibody and antigen detection revealed 42 infected farms with a between-farm prevalence in the affected area of 16%. The outbreak was controlled using depopulation of infected farms, resulting in the direct loss of 10% of the country's domestic ostrich population. Various factors in the ostrich production system were observed that could have contributed to the spread of the virus between farms, including the large number of legal movements of ostriches between farms, access of wild birds to ostrich camps and delays in depopulation of infected farms. Negative effects on the ostrich industry and the local economy of the ostrich-producing area were observed as a result of the outbreak and the disease control measures applied. Prevention and control measures applied as a result of avian influenza in South Africa were informed by this large outbreak and the insights into epidemiology of avian influenza in ostriches that it provided, resulting in stricter biosecurity measures required on every registered ostrich farm in the country. Copyright © 2016 Elsevier B.V. All rights reserved.
Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador, Brazil
Prates, Ana Paula P. B.; Paploski, Igor A. D.; Tauro, Laura B.; Silva, Monaise M. O.; Santana, Perla; Rego, Marta F. S.; Reis, Mitermayer G.; Kitron, Uriel
2017-01-01
Background Chikungunya virus (CHIKV) entered Brazil in 2014, causing a large outbreak in Feira de Santana, state of Bahia. Although cases have been recorded in Salvador, the capital of Bahia, located ~100 km of Feira de Santana, CHIKV transmission has not been perceived to occur epidemically, largely contrasting with the Zika virus (ZIKV) outbreak and ensuing complications reaching the city in 2015. Methodology/Principal Findings This study aimed to determine the intensity of CHIKV transmission in Salvador between November 2014 and April 2016. Results of all the CHIKV laboratory tests performed in the public sector were obtained and the frequency of positivity was analyzed by epidemiological week. Of the 2,736 tests analyzed, 456 (16.7%) were positive. An increasing in the positivity rate was observed, starting in January/2015, and peaking at 68% in August, shortly after the exanthematous illness outbreak attributed to ZIKV. Conclusions/Significance Public health authorities and health professionals did not immediately detect the increase in CHIKV cases, likely because all the attention was directed to the ZIKV outbreak and ensuing complications. It is important that regions in the world that harbor arbovirus vectors and did not experience intense ZIKV and CHIKV transmission be prepared for the potential co-emergence of these two viruses. PMID:28114414
Planning for large epidemics and pandemics: challenges from a policy perspective.
Jain, Vageesh; Duse, Adriano; Bausch, Daniel G
2018-05-24
Less than two decades into the 21st century, the world has already witnessed numerous large epidemics or pandemics. These events have highlighted inadequacies in both national and international capacity for outbreak prevention, detection, and response. Here, we review some of the major challenges from a policy perspective. The most important challenges facing policymakers include financing outbreak preparedness and response in a complex political environment with limited resources, coordinating response efforts among a growing and diverse range of national and international actors, accurately assessing national outbreak preparedness, addressing the shortfall in the global biomedical workforce, building surge capacity of both human and material resources, balancing investments in public health and curative services, building capacity for outbreak-related research and development, and reinforcing measures for infection prevention and control. In recent years, numerous epidemics and pandemics have caused not only considerable loss of life but also billions of dollars of economic loss. Although the events have served as a wake-up call and led to the implementation of relevant policies and counter-measures, such as the Global Health Security Agenda, many questions remain and much work to be done. Wise policies and approaches for outbreak control exist, but will require the political will to implement them.
Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T
2018-03-01
Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (<130 yr) and old (>130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (<30 yr) following outbreak as compared to young stands not affected by outbreak, after which the abundance of fine surface fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect stands in earlier stages of development. The current study shows that the effects of SB outbreaks on forest structure and on fuel profiles are strongly contingent on pre-outbreak conditions as determined by pre-outbreak disturbance history. © 2018 by the Ecological Society of America.
Sharapov, Umid M; Wendel, Arthur M; Davis, Jeffrey P; Keene, William E; Farrar, Jeffrey; Sodha, Samir; Hyytia-Trees, Eija; Leeper, Molly; Gerner-Smidt, Peter; Griffin, Patricia M; Braden, Chris
2016-12-01
During September to October, 2006, state and local health departments and the Centers for Disease Control and Prevention investigated a large, multistate outbreak of Escherichia coli O157:H7 infections. Case patients were interviewed regarding specific foods consumed and other possible exposures. E. coli O157:H7 strains isolated from human and food specimens were subtyped using pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analyses (MLVA). Two hundred twenty-five cases (191 confirmed and 34 probable) were identified in 27 states; 116 (56%) case patients were hospitalized, 39 (19%) developed hemolytic uremic syndrome, and 5 (2%) died. Among 176 case patients from whom E. coli O157:H7 with the outbreak genotype (MLVA outbreak strain) was isolated and who provided details regarding spinach exposure, 161 (91%) reported fresh spinach consumption during the 10 days before illness began. Among 116 patients who provided spinach brand information, 106 (91%) consumed bagged brand A. E. coli O157:H7 strains were isolated from 13 bags of brand A spinach collected from patients' homes; isolates from 12 bags had the same MLVA pattern. Comprehensive epidemiologic and laboratory investigations associated this large multistate outbreak of E. coli O157:H7 infections with consumption of fresh bagged spinach. MLVA, as a supplement to pulsed-field gel electrophoresis genotyping of case patient isolates, was important to discern outbreak-related cases. This outbreak resulted in enhanced federal and industry guidance to improve the safety of leafy green vegetables and launched an independent collaborative approach to produce safety research in 2007.
Paweska, J T
2015-08-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease affecting domestic and wild ruminants, camels and humans. The causative agent of RVF, the RVF virus (RVFV), has the capacity to cause large and severe outbreaks in animal and human populations and to cross significant natural geographic barriers. Rift Valley fever is usually inapparent in non-pregnant adult animals, but pregnant animals and newborns can be severely affected; outbreaks are characterised by a sudden onset of abortions and high neonatal mortality. The majority of human infections are subclinical or associated with moderate to severe, non-fatal, febrile illness, but some patients may develop a haemorrhagic syndrome and/or ocular and neurological lesions. In both animals and humans, the primary site of RVFV replication and tissue pathology is the liver. Outbreaks of RVF are associated with persistent high rainfalls leading to massive flooding and the emergence of large numbers of competent mosquito vectors that transmit the virus to a wide range of susceptible vertebrate species. Outbreaks of RVF have devastating economic effects on countries for which animal trade constitutes the main source of national revenue. The propensity of the virus to spread into new territories and re-emerge in traditionally endemic regions, where it causes large outbreaks in human and animal populations, presents a formidable challenge for public and veterinary health authorities. The presence of competent mosquito vectors in RVF-free countries, the wide range of mammals susceptible to the virus, altering land use, the global changes in climate, and increased animal trade and travel are some of the factors which might contribute to international spread of RVF.
Cunniffe, Nik J; Stutt, Richard O J H; DeSimone, R Erik; Gottwald, Tim R; Gilligan, Christopher A
2015-04-01
Although local eradication is routinely attempted following introduction of disease into a new region, failure is commonplace. Epidemiological principles governing the design of successful control are not well-understood. We analyse factors underlying the effectiveness of reactive eradication of localised outbreaks of invading plant disease, using citrus canker in Florida as a case study, although our results are largely generic, and apply to other plant pathogens (as we show via our second case study, citrus greening). We demonstrate how to optimise control via removal of hosts surrounding detected infection (i.e. localised culling) using a spatially-explicit, stochastic epidemiological model. We show how to define optimal culling strategies that take account of stochasticity in disease spread, and how the effectiveness of disease control depends on epidemiological parameters determining pathogen infectivity, symptom emergence and spread, the initial level of infection, and the logistics and implementation of detection and control. We also consider how optimal culling strategies are conditioned on the levels of risk acceptance/aversion of decision makers, and show how to extend the analyses to account for potential larger-scale impacts of a small-scale outbreak. Control of local outbreaks by culling can be very effective, particularly when started quickly, but the optimum strategy and its performance are strongly dependent on epidemiological parameters (particularly those controlling dispersal and the extent of any cryptic infection, i.e. infectious hosts prior to symptoms), the logistics of detection and control, and the level of local and global risk that is deemed to be acceptable. A version of the model we developed to illustrate our methodology and results to an audience of stakeholders, including policy makers, regulators and growers, is available online as an interactive, user-friendly interface at http://www.webidemics.com/. This version of our model allows the complex epidemiological principles that underlie our results to be communicated to a non-specialist audience.
Cunniffe, Nik J.; Stutt, Richard O. J. H.; DeSimone, R. Erik; Gottwald, Tim R.; Gilligan, Christopher A.
2015-01-01
Although local eradication is routinely attempted following introduction of disease into a new region, failure is commonplace. Epidemiological principles governing the design of successful control are not well-understood. We analyse factors underlying the effectiveness of reactive eradication of localised outbreaks of invading plant disease, using citrus canker in Florida as a case study, although our results are largely generic, and apply to other plant pathogens (as we show via our second case study, citrus greening). We demonstrate how to optimise control via removal of hosts surrounding detected infection (i.e. localised culling) using a spatially-explicit, stochastic epidemiological model. We show how to define optimal culling strategies that take account of stochasticity in disease spread, and how the effectiveness of disease control depends on epidemiological parameters determining pathogen infectivity, symptom emergence and spread, the initial level of infection, and the logistics and implementation of detection and control. We also consider how optimal culling strategies are conditioned on the levels of risk acceptance/aversion of decision makers, and show how to extend the analyses to account for potential larger-scale impacts of a small-scale outbreak. Control of local outbreaks by culling can be very effective, particularly when started quickly, but the optimum strategy and its performance are strongly dependent on epidemiological parameters (particularly those controlling dispersal and the extent of any cryptic infection, i.e. infectious hosts prior to symptoms), the logistics of detection and control, and the level of local and global risk that is deemed to be acceptable. A version of the model we developed to illustrate our methodology and results to an audience of stakeholders, including policy makers, regulators and growers, is available online as an interactive, user-friendly interface at http://www.webidemics.com/. This version of our model allows the complex epidemiological principles that underlie our results to be communicated to a non-specialist audience. PMID:25874622
Ballard, Jennifer R.; Tesh, Robert B.; Brown, Justin D.; Ruder, Mark G.; Keel, M. Kevin; Munk, Brandon A.; Mickley, Randall M.; Gibbs, Samantha E. J.; Travassos da Rosa, Amelia P. A.; Ellis, Julie C.; Ip, Hon S.; Shearn-Bochsler, Valerie I.; Rogers, Matthew B.; Ghedin, Elodie; Holmes, Edward C.; Parrish, Colin R.; Dwyer, Chris
2014-01-01
ABSTRACT Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. IMPORTANCE The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health. PMID:25392223
Allison, Andrew B; Ballard, Jennifer R; Tesh, Robert B; Brown, Justin D; Ruder, Mark G; Keel, M Kevin; Munk, Brandon A; Mickley, Randall M; Gibbs, Samantha E J; Travassos da Rosa, Amelia P A; Ellis, Julie C; Ip, Hon S; Shearn-Bochsler, Valerie I; Rogers, Matthew B; Ghedin, Elodie; Holmes, Edward C; Parrish, Colin R; Dwyer, Chris
2015-01-15
Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Environmental Monitoring of Endemic Cholera
NASA Astrophysics Data System (ADS)
ElNemr, W.; Jutla, A. S.; Constantin de Magny, G.; Hasan, N. A.; Islam, M.; Sack, R.; Huq, A.; Hashem, F.; Colwell, R.
2012-12-01
Cholera remains a major public health threat. Since Vibrio cholerae, the causative agent of the disease, is autochthonous to riverine, estuarine, and coastal waters, it is unlikely the bacteria can be eradicated from its natural habitat. Prediction of disease, in conjunction with preventive vaccination can reduce the prevalence rate of a disease. Understanding the influence of environmental parameters on growth and proliferation of bacteria is an essential first step in developing prediction methods for outbreaks. Large scale geophysical variables, such as SST and coastal chlorophyll, are often associated with conditions favoring growth of V. cholerae. However, local environmental factors, meaning biological activity in ponds from where the bulk of populations in endemic regions derive water for daily usage, are either neglected or oversimplified. Using data collected from several sites in two geographically distinct locations in South Asia, we have identified critical local environmental factors associated with cholera outbreak. Of 18 environmental variables monitored for water sources in Mathbaria (a coastal site near the Bay of Bengal) and Bakergonj (an inland site) of Bangladesh, water depth and chlorophyll were found to be important factors associated with initiation of cholera outbreaks. Cholera in coastal regions appears to be related to intrusion. However, monsoonal flooding creates conditions for cholera epidemics in inland regions. This may be one of the first attempts to relate in-situ environmental observations with cholera. We anticipate that it will be useful for further development of prediction models in the resource constrained regions.
Franco-Paredes, Carlos; Lammoglia, Lorena; Santos-Preciado, José Ignacio
2005-11-01
The New World was ravaged by smallpox for several centuries after the Spanish conquest. Jenner's discovery of the smallpox vaccine made possible the prevention and control of smallpox epidemics. In response to a large outbreak of smallpox in the Spanish colonies, King Charles IV appointed Francisco Xavier de Balmis to lead an expedition that would introduce Jenner's vaccine to these colonies. During the journey, the vaccine was kept viable by passing it from arm to arm in orphaned children, who were brought along expressly for that purpose and remained under the care of the orphanage's director. This expedition was the first large scale mass vaccination of its kind. The historic legacy of this pioneering event in international health should be revisited in the current era of persistent inequalities in global health.
Reemerging Sudan Ebola Virus Disease in Uganda, 2011
Shoemaker, Trevor; Balinandi, Stephen; Campbell, Shelley; Wamala, Joseph Francis; McMullan, Laura K.; Downing, Robert; Lutwama, Julius; Mbidde, Edward; Ströher, Ute; Rollin, Pierre E.; Nichol, Stuart T.
2012-01-01
Two large outbreaks of Ebola hemorrhagic fever occurred in Uganda in 2000 and 2007. In May 2011, we identified a single case of Sudan Ebola virus disease in Luwero District. The establishment of a permanent in-country laboratory and cooperation between international public health entities facilitated rapid outbreak response and control activities. PMID:22931687
Relun, A; Dorso, L; Douart, A; Chartier, C; Guatteo, R; Mazuet, C; Popoff, M R; Assié, S
2017-12-01
Type D bovine botulism outbreaks associated with poultry litter are increasingly reported in European countries, but the circumstances of exposure to Clostridium botulinum toxins remain unclear. In spring 2015, a large type D/C bovine botulism outbreak affected a farm with dairy and poultry operations. Epidemiological and laboratory investigations strongly suggest that the outbreak was caused by feeding cattle with insufficiently acidified grass silage that was contaminated by type D/C C. botulinum spores. The source of the spores remains unclear, but could have been a stack of poultry litter stored in the grass silage pasture before harvesting. The presence of putrefied poultry carcasses mixed in with the litter is relatively unlikely considering the careful daily removal of poultry carcasses. These findings reinforce the importance of proper ensiling of feed materials and highlight the need for safe disposal of poultry litter, even in the case of good management of poultry deadstock, in order to prevent bovine botulism.
Middle East respiratory syndrome coronavirus: current situation and travel-associated concerns.
Al-Tawfiq, Jaffar A; Omrani, Ali S; Memish, Ziad A
2016-06-01
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 brought back memories of the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. More than 1500 MERS-CoV cases were recorded in 42 months with a case fatality rate (CFR) of 40%. Meanwhile, 8000 cases of SARS-CoV were confirmed in six months with a CFR of 10%. The clinical presentation of MERS-CoV ranges from mild and non-specific presentation to progressive and severe pneumonia. No predictive signs or symptoms exist to differentiate MERS-CoV from community-acquired pneumonia in hospitalized patients. An apparent heterogeneity was observed in transmission. Most MERS-CoV cases were secondary to large outbreaks in healthcare settings. These cases were secondary to community-acquired cases, which may also cause family outbreaks. Travel-associated MERS infection remains low. However, the virus exhibited a clear tendency to cause large outbreaks outside the Arabian Peninsula as exemplified by the outbreak in the Republic of Korea. In this review, we summarize the current knowledge about MERS-CoV and highlight travel-related issues.
Willem de Smalen, Allard; Mor, Siobhan M.
2017-01-01
Rift Valley fever (RVF) is an emerging, vector-borne viral zoonosis that has significantly impacted public health, livestock health and production, and food security over the last three decades across large regions of the African continent and the Arabian Peninsula. The potential for expansion of RVF outbreaks within and beyond the range of previous occurrence is unknown. Despite many large national and international epidemics, the landscape epidemiology of RVF remains obscure, particularly with respect to the ecological roles of wildlife reservoirs and surface water features. The current investigation modeled RVF risk throughout Africa and the Arabian Peninsula as a function of a suite of biotic and abiotic landscape features using machine learning methods. Intermittent wetland, wild Bovidae species richness and sheep density were associated with increased landscape suitability to RVF outbreaks. These results suggest the role of wildlife hosts and distinct hydrogeographic landscapes in RVF virus circulation and subsequent outbreaks may be underestimated. These results await validation by studies employing a deeper, field-based interrogation of potential wildlife hosts within high risk taxa. PMID:28742814
Korotkova, Ekaterina A.; Gmyl, Anatoly P.; Yakovenko, Maria L.; Ivanova, Olga E.; Eremeeva, Tatyana P.; Kozlovskaya, Liubov I.; Shakaryan, Armen K.; Lipskaya, Galina Y.; Parshina, Irina L.; Loginovskikh, Nataliya V.; Morozova, Nadezhda S.
2016-01-01
ABSTRACT Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. IMPORTANCE The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses. PMID:27099315
Korotkova, Ekaterina A; Gmyl, Anatoly P; Yakovenko, Maria L; Ivanova, Olga E; Eremeeva, Tatyana P; Kozlovskaya, Liubov I; Shakaryan, Armen K; Lipskaya, Galina Y; Parshina, Irina L; Loginovskikh, Nataliya V; Morozova, Nadezhda S; Agol, Vadim I
2016-07-01
Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly diverged (Sabin-like) viruses on the one hand and those caused by significantly diverged VDPVs on the other. This classification is based on the number of mutations in the viral genome region encoding a viral structural protein. Until now, only sporadic poliomyelitis cases due to Sabin-like polioviruses had been described, and in distinction from the VDPV-triggered outbreaks, they did not require broad-scale epidemiological responses. Here, an unusual outbreak of poliomyelitis caused by a Sabin-like virus is reported, which had an exceptionally high disease/infection ratio. This outbreak blurred the borderline between Sabin-like polioviruses and VDPVs both in pathogenicity and in the kind of responses required, as well as underscoring important gaps in understanding the pathogenicity, epidemiology, and evolution of vaccine-derived polioviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mummert, Anna; Weiss, Howard
2013-01-01
During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel, and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our models show that the most effective strategy to reduce infections is to provide this information as early as possible, though providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks, we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect on the overall morbidity and mortality. PMID:23990974
Mummert, Anna; Weiss, Howard
2013-01-01
During outbreaks of infectious diseases with high morbidity and mortality, individuals closely follow media reports of the outbreak. Many will attempt to minimize contacts with other individuals in order to protect themselves from infection and possibly death. This process is called social distancing. Social distancing strategies include restricting socializing and travel, and using barrier protections. We use modeling to show that for short-term outbreaks, social distancing can have a large influence on reducing outbreak morbidity and mortality. In particular, public health agencies working together with the media can significantly reduce the severity of an outbreak by providing timely accounts of new infections and deaths. Our models show that the most effective strategy to reduce infections is to provide this information as early as possible, though providing it well into the course of the outbreak can still have a significant effect. However, our models for long-term outbreaks indicate that reporting historic infection data can result in more infections than with no reporting at all. We examine three types of media influence and we illustrate the media influence with a simulated outbreak of a generic emerging infectious disease in a small city. Social distancing can never be complete; however, for a spectrum of outbreaks, we show that leaving isolation (stopping applying social distancing measures) for up to 4 hours each day has modest effect on the overall morbidity and mortality.
[Norovirus outbreaks in hospitals and nursing homes in Catalonia, Spain].
Godoy, Pere; Domínguez, Angela; Alvarez, Josep; Camps, Neus; Barrabeig, Irene; Bartolomé, Rosa; Sala, María Rosa; Ferre, Dolors; Pañella, Helena; Torres, Joan; Minguell, Sofía; Alsedà, Miquel; Pumares, Analía
2009-01-01
The low infectious dose and multiple transmission routes favour the appearance of norovirus outbreaks. The objective of this study was to compare the incidence of norovirus outbreaks in hospitals and nursing homes in Catalonia. A descriptive study of norovirus outbreaks between 15/10/2004 and 30/10/2005 was carried out. An epidemiological survey was completed for each outbreak. Norovirus in clinical samples was determined by PCR techniques. The incidence in each centre and the annual incidence of outbreaks by centre were calculated. Differences were calculated using the chi-square test and the Student's t test, taking a p value of > 0.05 as significant. Seventeen outbreaks (6 in hospitals and 11 in nursing homes) were detected. The global attack rate was 33.4% (652/1951) and was slightly higher in nursing homes (35.2%) than in hospitals (31.4%). A total of 94.1% (16/17) of outbreaks were caused by person-to-person transmission and only 5.9% (1/17) by foods. The mean number of days between the first and last case was 11.4 (SD = 6.9). The mean duration of symptoms was 2.39 days (SD=1.6), and was higher hospitals, 2.63 (SD=1.7), than in nursing homes, 1.97 (SD=1.7) (p < 0.0001). Norovirus is responsible for a large number of outbreaks due to person-to-person transmission. Control should be standardized to reduce the number and duration of outbreaks.
Harvey, Brian J; Donato, Daniel C; Romme, William H; Turner, Monica G
The degree to which recent bark beetle (Dendroctonus ponderosae) outbreaks may influence fire severity and postfire tree regeneration is of heightened interest to resource managers throughout western North America, but empirical data on actual fire effects are lacking. Outcomes may depend on burning conditions (i.e., weather during fire), outbreak severity, or intervals between outbreaks and subsequent fire. We studied recent fires that burned through green-attack/red-stage (outbreaks <3 years before fire) and gray-stage (outbreaks 3–15 years before fire) subalpine forests dominated by lodgepole pine (Pinus contorta var. latifolia) in Greater Yellowstone, Wyoming, USA, to determine if fire severity was linked to prefire beetle outbreak severity and whether these two disturbances produced compound ecological effects on postfire tree regeneration. With field data from 143 postfire plots that burned under different conditions, we assessed canopy and surface fire severity, and postfire tree seedling density against prefire outbreak severity. In the green-attack/red stage, several canopy fire-severity measures increased with prefire outbreak severity under moderate burning conditions. Under extreme conditions, few fire-severity measures were related to prefire outbreak severity, and effect sizes were of marginal biological significance. The percentage of tree stems and basal area killed by fire increased with more green-attack vs. red-stage trees (i.e., the earliest stages of outbreak). In the gray stage, by contrast, most fire-severity measures declined with increasing outbreak severity under moderate conditions, and fire severity was unrelated to outbreak severity under extreme burning conditions. Postfire lodgepole pine seedling regeneration was unrelated to prefire outbreak severity in either post-outbreak stage, but increased with prefire serotiny. Results suggest bark beetle outbreaks can affect fire severity in subalpine forests under moderate burning conditions, but have little effect on fire severity under extreme burning conditions when most large wildfires occur in this system. Thus, beetle outbreak severity was moderately linked to fire severity, but the strength and direction of the linkage depended on both endogenous (outbreak stage) and exogenous (fire weather) factors. Closely timed beetle outbreak and fire did not impart compound effects on tree regeneration, suggesting the presence of a canopy seedbank may enhance resilience to their combined effects.
Kamigaki, Taro; Seino, Jin; Tohma, Kentaro; Nukiwa-Soma, Nao; Otani, Kanako; Oshitani, Hitoshi
2014-01-14
The Great East Japan Earthquake of magnitude 9.0 that struck on 11 March 2011 resulted in more than 18000 deaths or cases of missing persons. The large-scale tsunami that followed the earthquake devastated many coastal areas of the Tohoku region, including Miyagi Prefecture, and many residents of the tsunami-affected areas were compelled to reside in evacuation centres (ECs). In Japan, seasonal influenza epidemics usually occur between December and March. At the time of the Great East Japan Earthquake on 11 March 2011, influenza A (H3N2) was still circulating and there was a heightened concern regarding severe outbreaks due to influenza A (H3N2). After local hospital staff and public health nurses detected influenza cases among the evacuees, an outbreak investigation was conducted in five ECs that had reported at least one influenza case from 23 March to 11 April 2011. Cases were confirmed by point-of-care tests and those residues were obtained and subjected to reverse transcription PCR and/or real time RT-PCR for sub-typing of influenza. There were 105 confirmed cases detected during the study period with a mean attack rate of 5.3% (range, 0.8%-11.1%). An epidemiological tree for two ECs demonstrated same-room and familial links that accounted for 88.5% of cases. The majority of cases occurred in those aged 15-64 years, who were likely to have engaged in search and rescue activities. No deaths were reported in this outbreak. Familial link accounted for on average 40.5% of influenza cases in two ECs and rooms where two or more cases were reported accounted for on average 85% in those ECs. A combination of preventative measures, including case cohorting, personal hygiene, wearing masks, and early detection and treatment, were implemented during the outbreak period. Influenza can cause outbreaks in a disaster setting when the disaster occurs during an epidemic influenza season. The transmission route is more likely to be associated with sharing room and space and with familial links. The importance of influenza surveillance and early treatments should be emphasized in EC settings for implementing preventive control measures.
Kuhn, Jens H.; Andersen, Kristian G.; Baize, Sylvain; Bào, Yīmíng; Bavari, Sina; Berthet, Nicolas; Blinkova, Olga; Brister, J. Rodney; Clawson, Anna N.; Fair, Joseph; Gabriel, Martin; Garry, Robert F.; Gire, Stephen K.; Goba, Augustine; Gonzalez, Jean-Paul; Günther, Stephan; Happi, Christian T.; Jahrling, Peter B.; Kapetshi, Jimmy; Kobinger, Gary; Kugelman, Jeffrey R.; Leroy, Eric M.; Maganga, Gael Darren; Mbala, Placide K.; Moses, Lina M.; Muyembe-Tamfum, Jean-Jacques; N’Faly, Magassouba; Nichol, Stuart T.; Omilabu, Sunday A.; Palacios, Gustavo; Park, Daniel J.; Paweska, Janusz T.; Radoshitzky, Sheli R.; Rossi, Cynthia A.; Sabeti, Pardis C.; Schieffelin, John S.; Schoepp, Randal J.; Sealfon, Rachel; Swanepoel, Robert; Towner, Jonathan S.; Wada, Jiro; Wauquier, Nadia; Yozwiak, Nathan L.; Formenty, Pierre
2014-01-01
In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures. PMID:25421896
Zhang, Teng; Jin, Qianyue; Ding, Peiyang; Wang, Yinbiao; Chai, Yongxiao; Li, Yafei; Liu, Xiao; Luo, Jun; Zhang, Gaiping
2016-11-18
In several parts of China, there have been a large number of hydropericardium syndrome (HPS) outbreaks caused by serotype 4 fowl adenovirus (FAdV-4) in broiler chickens since 2015. These outbreak-associated FAdV-4 strains were distinct from previous circulating strains which did not lead to severe HPS outbreaks. To better understand the molecular epidemiology of the currently circulating FAdV strains for effective diagnosis and treatment of HPS, we isolated 12 HPS outbreak-associated FAdV-4 strains from different regions in central China and investigated their molecular characteristics by performing phylogenetic analyses based on the hexon genes. Our results indicated the FAdV-4 strains in this study all belonged to serotype FAdV-4, species FAdV-C. And in comparison with ON1, KR5, MX-SHP95, PK-01, PJ-06 strains within the cluster where outbreak-associated FAdV-4 strains were located, the nucleotide sequence divergence were 1.31, 1.10, 1.42, 2.77 and 2.84%, respectively. Phylogenetic analyses revealed the hexon genes of the 12 outbreak-associated strains clustered to a relatively independent branch of the tree, and evolved from the same ancestor and we suggested that these outbreak-associated FAdV-4 strains originate from earlier strains in India.
Mouchtouri, Varvara A; Verykouki, Eleni; Zamfir, Dumitru; Hadjipetris, Christos; Lewis, Hannah C; Hadjichristodoulou, Christos
2017-11-01
When an increased number of acute gastroenteritis (AG) cases is detected among tourists staying at the same accommodation, outbreak management plans must be activated in a timely manner to prevent large outbreaks. Syndromic surveillance data collected between 1 January 2010 and 31 December 2013 by five seagoing cruise ships were analysed to identify attack rate thresholds for early outbreak detection. The overall incidence rate of AG was 2.81 cases per 10,000 traveller-days (95% confidence interval (CI): 0.00-17.60), while the attack rate was 19.37 cases per 10,000 travellers (95% CI: 0.00-127.69). The probability of an outbreak occurring was 11% if 4 per 1,000 passengers reported symptoms within the first 2 days of the voyage, and this increased to 23 % if 5 per 1,000 passengers reported such within the first 3 days. The risk ratio (RR) for outbreak occurrence was 2.35, 5.66 and 8.63 for 1, 2 and 3 days' delay of symptoms reporting respectively, suggesting a dose-response relationship. Shipping companies' policies and health authorities' efforts may consider these thresholds for initiating outbreak response measures based on the number of cases according to day of cruise. Efforts should focus on ensuring travellers report symptoms immediately and comply with isolation measures.
Emergence of norovirus GI.2 outbreaks in military camps in Singapore.
Ho, Zheng Jie Marc; Vithia, Gunalan; Ng, Ching Ging; Maurer-Stroh, Sebastian; Tan, Clive M; Loh, Jimmy; Lin, Tzer Pin Raymond; Lee, Jian Ming Vernon
2015-02-01
Simultaneous acute gastroenteritis (AGE) outbreaks occurred at two military camps. This study details the epidemiological findings, explores possible origins, and discusses preventive measures. Investigations included attack rate surveys, symptom surveys, hygiene inspections, and the testing of water, food, and stool samples. DNA/RNA was extracted from stool samples and amplified via real-time reverse transcription PCR (RT-PCR). Partial and full-length capsid nucleotide sequences were obtained, phylogenetic relationships inferred, and homology modelling of antigenic sites performed. The military outbreaks involved 775 persons and were preceded by two AGE outbreaks at restaurants in the local community. The outbreak was longer and larger in the bigger camp (21 days, attack rate 15.0%) than the smaller camp (6 days, attack rate 8.3%). Of 198 stool samples, norovirus GI.2 was detected in 32.5% (larger camp) and 28.6% (smaller camp). These were essentially identical to preceding community outbreaks. Antigenic site homology modelling also showed differences between identified and more common AGE outbreak strains (norovirus GII.4). Differences observed highlight difficulties in controlling person-to-person outbreaks among large groups in close proximity (e.g., military trainees). Distinct differences in antigenic sites may have contributed to increased immunological susceptibility of the soldiers to infection. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grönthal, Thomas; Moodley, Arshnee; Nykäsenoja, Suvi; Junnila, Jouni; Guardabassi, Luca; Thomson, Katariina; Rantala, Merja
2014-01-01
The purpose of this study was to describe a nosocomial outbreak caused by methicillin resistant Staphylococcus pseudintermedius (MRSP) ST71 SCCmec II-III in dogs and cats at the Veterinary Teaching Hospital of the University of Helsinki in November 2010 - January 2012, and to determine the risk factors for acquiring MRSP. In addition, measures to control the outbreak and current policy for MRSP prevention are presented. Data of patients were collected from the hospital patient record software. MRSP surveillance data were acquired from the laboratory information system. Risk factors for MRSP acquisition were analyzed from 55 cases and 213 controls using multivariable logistic regression in a case-control study design. Forty-seven MRSP isolates were analyzed by pulsed field gel electrophoresis and three were further analyzed with multi-locus sequence and SCCmec typing. Sixty-three MRSP cases were identified, including 27 infections. MRSPs from the cases shared a specific multi-drug resistant antibiogram and PFGE-pattern indicated clonal spread. Four risk factors were identified; skin lesion (OR = 6.2; CI95% 2.3-17.0, P = 0.0003), antimicrobial treatment (OR = 3.8, CI95% 1.0-13.9, P = 0.0442), cumulative number of days in the intensive care unit (OR = 1.3, CI95% 1.1-1.6, P = 0.0007) or in the surgery ward (OR = 1.1, CI95% 1.0-1.3, P = 0.0401). Tracing and screening of contact patients, enhanced hand hygiene, cohorting and barrier nursing, as well as cleaning and disinfection were used to control the outbreak. To avoid future outbreaks and spread of MRSP a search-and-isolate policy was implemented. Currently nearly all new MRSP findings are detected in screening targeted to risk patients on admission. Multidrug resistant MRSP is capable of causing a large outbreak difficult to control. Skin lesions, antimicrobial treatment and prolonged hospital stay increase the probability of acquiring MRSP. Rigorous control measures were needed to control the outbreak. We recommend the implementation of a search-and-isolate policy to reduce the burden of MRSP.
Friesema, I; de Jong, A; Hofhuis, A; Heck, M; van den Kerkhof, H; de Jonge, R; Hameryck, D; Nagel, K; van Vilsteren, G; van Beek, P; Notermans, D; van Pelt, W
2014-10-02
On 15 August 2012, an increase in the number of Salmonella Thompson cases was noticed by the Salmonella surveillance in the Netherlands. A case–control study was performed, followed by a food investigation. In total 1,149 cases were laboratory-confirmed between August and December 2012 of which four elderly (76–91 years) were reported to have died due to the infection. The cause of the outbreak was smoked salmon processed at a single site. The smoked salmon had been continuously contaminated in the processing lines through reusable dishes, which turned out to be porous and had become loaded with bacteria. This is the largest outbreak of salmonellosis ever recorded in the Netherlands. The temporary closure of the processing site and recall of the smoked salmon stopped the outbreak. An estimated four to six million Dutch residents were possibly exposed to the contaminated smoked salmon and an estimated 23,000 persons would have had acute gastroenteritis with S. Thompson during this outbreak. This outbreak showed that close collaboration between diagnostic laboratories, regional public health services, the national institute for public health and the food safety authorities is essential in outbreak investigations.
NASA Astrophysics Data System (ADS)
Viana, Liviany; Herdies, Dirceu; Muller, Gabriela
2017-04-01
An observational study was carried out to quantify the events of cold air outbreak moving above the Equator from 1980 to 2013 during the austral winter period (May, June, July, August and September), and later analyzed the behavior of the circulation responsible for this displacement. The observational datasets from the Sector of Climatological studies of the Institute of Airspace Control of the city of Iauarete (0.61N, 69.0W; 120m), located at the extreme northern of the Brazilian Amazon Basin, were used for the analyzes. The meteorological variables used were the temperatures minimum, maximum and maximum atmospheric pressure. A new methodology was used to identify these events, calculated by the difference between the monthly average and 2 (two) standard deviations for the extremes of the air temperature, and the sum of 1 (one) standard deviation for the maximum atmospheric pressure. As a result, a total of 11 cold events were recorded that reached the extreme northern of the Brazilian Amazon Basin, with values recorded at a minimum temperature of 17.8 °C, at the maximum temperature of 21.0 °C and maximum atmospheric pressure reaching 1021.2 hPa. These reductions and augmentation are equivalent to the negative anomalies of 5.9 and 8.7 °C at the minimum and maximum temperatures, respectively, while a positive anomaly of 7.1 hPa was observed at the maximum pressure. In relation to the dynamic behavior of large-scale circulation, a Rossby wave-type configuration propagating from west to east over subtropical latitudes was observed from the European Center for Medium-Range Weather Forecast (ECMWF) since the days before the arrival of the event in the city of Iauarete. This behavior was observed both in the anomalies of the gepotencial (250 hPa and 850 hPa) and in the southern component of the wind (250 hPa and 850 hPa), both presenting statistical significance of 99 % (Student's T test). Therefore, a new criterion for the identification of "friagens" in the tropical latitude has been able to represent the effects of colds air outbreak and the advancement of the cold air mass, which are subsidized by the large-scale circulation, and consequently contribute to the modifications in the weather and the life of the population over this Equatorial region.
Hewitt, J. H.; Begg, N.; Hewish, J.; Rawaf, S.; Stringer, M.; Theodore-Gandi, B.
1986-01-01
Five large outbreaks of food poisoning are described in which clinical, epidemiological or laboratory data indicated Clostridium perfringens as the causative organism. The foodstuff common to all incidents was boiled salmon served cold as an hors d 'oeuvre. In all cases the fish had been subject to a long period of cooling or storage between boiling and consumption. It is thought that multiplication of the organism occurred during this time. Recommendations are made for the avoidance of further similar incidents. PMID:2874173
NASA Technical Reports Server (NTRS)
Hall, R. C. (Principal Investigator); Wert, S. L.; Koerber, T. W.
1974-01-01
The author has identified the following significant results. Analysis of ERTS-1 imagery with underflight aerial photo support including U-2, in the Sierra Nevada Mountains of California, indicates promising possibilities of detecting and monitoring forest insect outbreaks visually with some mechanical support utilizing the VP-8 image analyzer. Visually, it is possible at a scale of 1:1,000,000 to discriminate between large areas of damaged and undamaged forests; timbered and non-timbered areas; pasture land and cultivated fields; desert and riparian vegetation. At a scale of 1:80,000 it is possible to distinguish among three classes of tree mortality; defoliated and undefoliated areas; non-host mixed conifers; and mountain meadows, rock domes, lakes and glaciers. Machine tests showed significant differences in image densities among various bands and mortality areas.
Giraudon, I; Cathcart, S; Blomqvist, S; Littleton, A; Surman-Lee, S; Mifsud, A; Anaraki, S; Fraser, G
2009-06-01
To describe the epidemiology of an outbreak of Salmonella enteritidis phage type 1 (PT1) infection associated with a fast food premises, and to identify the causative factors leading to an acute outbreak with high attack rate and severe illness including hospital admission. Integrated descriptive study of epidemiology, food and environmental microbiology, and professional environmental health assessment, supplemented by a case-case analytical study. Cases were identified through multiple sources and were interviewed to identify food items consumed. Descriptive epidemiology of all cases and a case-case analytical study of risk factors for severe illness were undertaken. Microbiological investigation included analysis and typing of pathogens from stools, blood and environmental surfaces. Professional environmental heath assessment of the premises was undertaken. S. enteritidis PT1 was recovered from two-thirds of faecal samples. Three cases had dual infection with enterotoxin-producing Clostridium perfringens. S. enteritidis PT1 was isolated from 14 of 40 food samples examined and C. perfringens was isolated from eight food samples. Environmental health inspection of the premises revealed multiple deficiencies, including deficits in food preparation and hygiene consistent with multiple cross-contamination, and time-temperature abuse of sauces widely used across menu items. Severe cases were associated with consumption of chips and salad. Outbreaks from fast food premises have been infrequently described. This outbreak demonstrates the potential for fast food premises, with multiple deficiencies in food preparation and hygiene, to produce large, intense community outbreaks with high attack rates and severe illness, highly confined in space and time.
Whooping cough in nursery school children
Roberts, Anne; Williams, W. O.
1981-01-01
This paper describes an outbreak of whooping cough in a nursery school during a large epidemic in West Glamorgan. Explosive outbreaks of whooping cough occurred in nursery schools in the area when the majority of children had not been vaccinated. It is recommended that the period of quarantine for whooping cough should be four weeks. Imagesp472-a PMID:7328524
Climate change and epidemics in Chinese history: A multi-scalar analysis.
Lee, Harry F; Fei, Jie; Chan, Christopher Y S; Pei, Qing; Jia, Xin; Yue, Ricci P H
2017-02-01
This study seeks to provide further insight regarding the relationship of climate-epidemics in Chinese history through a multi-scalar analysis. Based on 5961 epidemic incidents in China during 1370-1909 CE we applied Ordinary Least Square regression and panel data regression to verify the climate-epidemic nexus over a range of spatial scales (country, macro region, and province). Results show that epidemic outbreaks were negatively correlated with the temperature in historical China at various geographic levels, while a stark reduction in the correlational strength was observed at lower geographic levels. Furthermore, cooling drove up epidemic outbreaks in northern and central China, where population pressure reached a clear threshold for amplifying the vulnerability of epidemic outbreaks to climate change. Our findings help to illustrate the modifiable areal unit and the uncertain geographic context problems in climate-epidemics research. Researchers need to consider the scale effect in the course of statistical analyses, which are currently predominantly conducted on a national/single scale; and also the importance of how the study area is delineated, an issue which is rarely discussed in the climate-epidemics literature. Future research may leverage our results and provide a cross-analysis with those derived from spatial analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate-disease connections: Rift Valley Fever in Kenya
NASA Technical Reports Server (NTRS)
Anyamba, A.; Linthicum, K. J.; Tucker, C. J.
2001-01-01
All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.
Climate-disease connections: Rift Valley Fever in Kenya.
Anyamba, A; Linthicum, K J; Tucker, C J
2001-01-01
All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.
Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks
Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.
2012-01-01
Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093
Climate teleconnections and recent patterns of human and animal disease outbreaks.
Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L
2012-01-01
Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.
Fiore, L; Genovese, D; Diamanti, E; Catone, S; Ridolfi, B; Ibrahimi, B; Konomi, R; van der Avoort, H G; Hovi, T; Crainic, R; Simeoni, P; Amato, C
1998-07-01
Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus.
Fiore, L.; Genovese, D.; Diamanti, E.; Catone, S.; Ridolfi, B.; Ibrahimi, B.; konomi, R.; van der Avoort, H. G. A. M.; Hovi, T.; Crainic, R.; Simeoni, P.; Amato, C.
1998-01-01
Mass vaccination has led poliomyelitis to become a rare disease in a large part of the world, including Western Europe. However, in the past 20 years wild polioviruses imported from countries where polio is endemic have been responsible for outbreaks in otherwise polio-free European countries. We report on the characterization of poliovirus isolates from a large outbreak of poliomyelitis that occurred in Albania in 1996 and that also spread to the neighboring countries of Yugoslavia and Greece. The epidemics involved 145 subjects, mostly young adults, and caused persisting paralysis in 87 individuals and 16 deaths. The agent responsible for the outbreak was isolated from 74 patients and was identified as wild type 1 poliovirus by both immunological and molecular methods. Sequence analysis of the genome demonstrated the involvement of a single virus strain throughout the epidemics, and genotyping analysis showed 95% homology of the strain with a wild type 1 poliovirus strain isolated in Pakistan in 1995. Neutralization assays with both human sera and monoclonal antibodies were performed to analyze the antigenic structure of the epidemic strain, suggesting its peculiar antigenic characteristics. The presented data underline the current risks of outbreaks due to imported wild poliovirus and emphasize the need to improve vaccination efforts and also the need to implement surveillance in countries free of indigenous wild poliovirus. PMID:9650935
Spatial-temporal analysis of the of the risk of Rift Valley Fever in Kenya
NASA Astrophysics Data System (ADS)
Bett, B.; Omolo, A.; Hansen, F.; Notenbaert, A.; Kemp, S.
2012-04-01
Historical data on Rift Valley Fever (RVF) outbreaks in Kenya covering the period 1951 - 2010 were analyzed using a logistic regression model to identify factors associated with RVF occurrence. The analysis used a division, an administrative unit below a district, as the unit of analysis. The infection status of each division was defined on a monthly time scale and used as a dependent variable. Predictors investigated include: monthly precipitation (minimum, maximum and total), normalized difference vegetation index, altitude, agro-ecological zone, presence of game, livestock and human population densities, the number of times a division has had an outbreak before and time interval in months between successive outbreaks (used as a proxy for immunity). Both univariable and multivariable analyses were conducted. The models used incorporated an auto-regressive correlation matrix to account for clustering of observations in time, while dummy variables were fitted in the multivariable model to account for spatial relatedness/topology between divisions. This last procedure was followed because it is expected that the risk of RVF occurring in a given division increases when its immediate neighbor gets infected. Functional relationships between the continuous and the outcome variables were assessed to ensure that the linearity assumption was met. Deviance and leverage residuals were also generated from the final model and used for evaluating the goodness of fit of the model. Descriptive analyzes indicate that a total of 91 divisions in 42 districts (of the original 69 districts in place by 1999) reported RVF outbreaks at least once over the period. The mean interval between outbreaks was determined to be about 43 months. Factors that were positively associated with RVF occurrence include increased precipitation, high outbreak interval and the number of times a division has been infected or reported an outbreak. The model will be validated and used for developing an RVF forecasting system. This forecasting system can then be used with the existing regional RVF prediction tools such as EMPRES-i to downscale RVF risk predictions to country-specific scales and subsequently link them with decision support systems. The ultimate aim is to increase the capacity of the national institutions to formulate appropriate RVF mitigation measures.
Benedict, Katharine M; Reses, Hannah; Vigar, Marissa; Roth, David M; Roberts, Virginia A; Mattioli, Mia; Cooley, Laura A; Hilborn, Elizabeth D; Wade, Timothy J; Fullerton, Kathleen E; Yoder, Jonathan S; Hill, Vincent R
2017-11-10
Provision of safe water in the United States is vital to protecting public health (1). Public health agencies in the U.S. states and territories* report information on waterborne disease outbreaks to CDC through the National Outbreak Reporting System (NORS) (https://www.cdc.gov/healthywater/surveillance/index.html). During 2013-2014, 42 drinking water-associated † outbreaks were reported, accounting for at least 1,006 cases of illness, 124 hospitalizations, and 13 deaths. Legionella was associated with 57% of these outbreaks and all of the deaths. Sixty-nine percent of the reported illnesses occurred in four outbreaks in which the etiology was determined to be either a chemical or toxin or the parasite Cryptosporidium. Drinking water contamination events can cause disruptions in water service, large impacts on public health, and persistent community concern about drinking water quality. Effective water treatment and regulations can protect public drinking water supplies in the United States, and rapid detection, identification of the cause, and response to illness reports can reduce the transmission of infectious pathogens and harmful chemicals and toxins.
Newkirk, Ryan W; Hedberg, Craig W
2012-02-01
The main objective of this study was to develop an understanding of the descriptive epidemiology of foodborne botulism in the context of outbreak detection and food defense. This study used 1993-2008 data from the Centers for Disease Control and Prevention (CDC) Annual Summaries of Notifiable Diseases, 2003-2006 data from the Bacterial Foodborne and Diarrheal Disease National Case Surveillance Annual Reports, and 1993-2008 data from the Annual Listing of Foodborne Disease Outbreaks. Published outbreak investigation reports were identified through a PubMed search of MEDLINE citations for botulism outbreaks. Fifty-eight foodborne botulism outbreaks were reported to CDC between 1993 and 2008. Four hundred sixteen foodborne botulism cases were documented; 205 (49%) were associated with outbreaks. Familial connections and co-hospitalization of initial presenting cases were common in large outbreaks (>5 cases). In these outbreaks, the time from earliest exposure to outbreak recognition varied dramatically (range, 48-216 h). The identification of epidemiologic linkages between foodborne botulism cases is a critical part of diagnostic evaluation and outbreak detection. Investigation of an intentionally contaminated food item with a long shelf life and widespread distribution may be delayed until an astute physician suspects foodborne botulism; suspicion of foodborne botulism occurs more frequently when more than one case is hospitalized concurrently. In an effort to augment national botulism surveillance and antitoxin release systems and to improve food defense and public health preparedness efforts, medical organizations and Homeland Security officials should emphasize the education and training of medical personnel to improve foodborne botulism diagnostic capabilities to recognize single foodborne botulism cases and to look for epidemiologic linkages between suspected cases.
Outbreak of measles in a non-immunizing population, Alberta 2013.
Kershaw, T; Suttorp, V; Simmonds, K; St Jean, T
2014-06-12
An outbreak of measles was declared in southern Alberta on October 18, 2013, after a case had been reported to the local public health unit in a non-immunized teenager with recent travel to the Netherlands. The teenager had had contact with a large number of unimmunized people while infectious; therefore, the risk of spread was high. The potential for an outbreak of measles in this area had been identified by the lead Medical Officer of Health for South Zone, and planning for an outbreak had begun in August 2013. Several public health measures were implemented to control the outbreak: mass immunization clinics; an outbreak dose of measles mumps and rubella (MMR) vaccine for infants 6-12 months old; communication within the affected and surrounding communities; a dedicated measles hotline; a Mobile Measles Assessment Team; and a Measles Assessment Centre. A total of 42 confirmed cases were identified during the outbreak between October 16 and November 25. Just over half the cases were male (52.4%). The average age was 12 (range < 1 to 24 years) and the median age 13 years. There was one hospitalization, and no deaths occurred. All cases were unimmunized. Cases were located in five communities immediately surrounding Lethbridge. All but two cases were epidemiologically linked within 10 households. The planning that occurred before the outbreak was essential in containing the outbreak to 10 households. To prevent future outbreaks of measles, exploring strategies for increasing immunization coverage rates in unimmunized populations is essential. When immunization acceptance is not uniform, other public health strategies should be planned for and implemented in order to prevent additional spread.
Ailes, Elizabeth; Budge, Philip; Shankar, Manjunath; Collier, Sarah; Brinton, William; Cronquist, Alicia; Chen, Melissa; Thornton, Andrew; Beach, Michael J; Brunkard, Joan M
2013-01-01
In 2008, a large Salmonella outbreak caused by contamination of the municipal drinking water supply occurred in Alamosa, Colorado. The objectives of this assessment were to determine the full economic costs associated with the outbreak and the long-term health impacts on the community of Alamosa. We conducted a postal survey of City of Alamosa (2008 population: 8,746) households and businesses, and conducted in-depth interviews with local, state, and nongovernmental agencies, and City of Alamosa healthcare facilities and schools to assess the economic and long-term health impacts of the outbreak. Twenty-one percent of household survey respondents (n = 369/1,732) reported diarrheal illness during the outbreak. Of those, 29% (n = 108) reported experiencing potential long-term health consequences. Most households (n = 699/771, 91%) reported municipal water as their main drinking water source at home before the outbreak; afterwards, only 30% (n = 233) drank unfiltered municipal tap water. The outbreak's estimated total cost to residents and businesses of Alamosa using a Monte Carlo simulation model (10,000 iterations) was approximately $1.5 million dollars (range: $196,677-$6,002,879), and rose to $2.6 million dollars (range: $1,123,471-$7,792,973) with the inclusion of outbreak response costs to local, state and nongovernmental agencies and City of Alamosa healthcare facilities and schools. This investigation documents the significant economic and health impacts associated with waterborne disease outbreaks and highlights the potential for loss of trust in public water systems following such outbreaks.
Documentation of Measles Elimination in Iran: Evidences from 2012 to 2014.
Karami, Manoochehr; Zahraei, Seyed Mohsen; Sabouri, Azam; Soltanshahi, Rambod; Biderafsh, Azam; Piri, Naser; Lee, Jong-Koo
2017-08-05
Documentation of achieving the goal of measles elimination to justify to international organizations including the WHO is a priority for public health authorities. This study aimed to address the status of Iran in the achievement of the measles elimination goal from 2012-2014. A descriptive study METHODS: Data on the measles outbreaks were extracted from the national notifiable measles surveillance system in Iran from 2012 to 2014. The required documents regarding the achievement of measles elimination, including Effective Reproduction Number (R) and the distribution of outbreak size, was addressed. The R was calculated using the proportion of imported cases as 1 - P, where P is equal to the proportion of cases that were imported. The distribution of the measles outbreaks size was described using descriptive statistics to show their magnitudes. The proportion of large outbreaks with more than 10 cases was considered as a proxy of the R value. The total number of measles cases was 232 cases (including 186 outbreak related cases) in 2012 and 142 cases in 2014, including108 outbreak related cases. The distribution of the measles outbreak size of occurred outbreaks from that period indicated that there were 37 outbreaks with three or more than three cases. The R value in 2012 was 0.87 and the corresponding value for 2014 was 0.76. According to the magnitude of effective reproduction number and distribution of outbreaks' size, measles has been eliminated in Iran. However, it is necessary to consider the potential endemic activity of measles because of no authorized immigration.
Cost-Analysis of Seven Nosocomial Outbreaks in an Academic Hospital.
Dik, Jan-Willem H; Dinkelacker, Ariane G; Vemer, Pepijn; Lo-Ten-Foe, Jerome R; Lokate, Mariëtte; Sinha, Bhanu; Friedrich, Alex W; Postma, Maarten J
2016-01-01
Nosocomial outbreaks, especially with (multi-)resistant microorganisms, are a major problem for health care institutions. They can cause morbidity and mortality for patients and controlling these costs substantial amounts of funds and resources. However, how much is unclear. This study sets out to provide a comparable overview of the costs of multiple outbreaks in a single academic hospital in the Netherlands. Based on interviews with the involved staff, multiple databases and stored records from the Infection Prevention Division all actions undertaken, extra staff employment, use of resources, bed-occupancy rates, and other miscellaneous cost drivers during different outbreaks were scored and quantified into Euros. This led to total costs per outbreak and an estimated average cost per positive patient per outbreak day. Seven outbreaks that occurred between 2012 and 2014 in the hospital were evaluated. Total costs for the hospital ranged between €10,778 and €356,754. Costs per positive patient per outbreak day, ranged between €10 and €1,369 (95% CI: €49-€1,042), with a mean of €546 and a median of €519. Majority of the costs (50%) were made because of closed beds. This analysis is the first to give a comparable overview of various outbreaks, caused by different microorganisms, in the same hospital and all analyzed with the same method. It shows a large variation within the average costs due to different factors (e.g. closure of wards, type of ward). All outbreaks however cost considerable amounts of efforts and money (up to €356,754), including missed revenue and control measures.
French, C E; Coope, C; Conway, L; Higgins, J P T; McCulloch, J; Okoli, G; Patel, B C; Oliver, I
2017-01-01
In recent years, infections with carbapenemase-producing Enterobacteriaceae (CPE) have been increasing globally and present a major public health challenge. To review the international literature: (i) to describe CPE outbreaks in acute hospital settings globally; and (ii) to identify the control measures used during these outbreaks and report on their effectiveness. A systematic search of MEDLINE and EMBASE databases, abstract lists for key conferences and reference lists of key reviews was undertaken, and information on unpublished outbreaks was sought for 2000-2015. Where relevant, risk of bias was assessed using the Newcastle-Ottawa scale. A narrative synthesis of the evidence was conducted. Ninety-eight outbreaks were eligible. These occurred worldwide, with 53 reports from Europe. The number of cases (CPE infection or colonization) involved in outbreaks varied widely, from two to 803. In the vast majority of outbreaks, multi-component infection control measures were used, commonly including: patient screening; contact precautions (e.g. gowns, gloves); handwashing interventions; staff education or monitoring; enhanced environmental cleaning/decontamination; cohorting of patients and/or staff; and patient isolation. Seven studies were identified as providing the best-available evidence on the effectiveness of control measures. These demonstrated that CPE outbreaks can be controlled successfully using a range of appropriate, commonly used, infection control measures. However, risk of bias was considered relatively high for these studies. The findings indicate that CPE outbreaks can be controlled using combinations of existing measures. However, the quality of the evidence base is weak and further high-quality research is needed, particularly on the effectiveness of individual infection control measures. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Rainey, Jeanette J; Phelps, Tiffani; Shi, Jianrong
2016-01-01
Because mass gatherings create environments conducive for infectious disease transmission, public health officials may recommend postponing or canceling large gatherings during a moderate or severe pandemic. Despite these recommendations, limited empirical information exists on the frequency and characteristics of mass gathering-related respiratory disease outbreaks occurring in the United States. We conducted a systematic literature review to identify articles about mass gathering-related respiratory disease outbreaks occurring in the United States from 2005 to 2014. A standard form was used to abstract information from relevant articles identified from six medical, behavioral and social science literature databases. We also analyzed data from the National Outbreaks Reporting System (NORS), maintained by the Centers for Disease Control and Prevention since 2009, to estimate the frequency of mass gathering-related respiratory disease outbreaks reported to the system. We identified 21 published articles describing 72 mass gathering-related respiratory disease outbreaks. Of these 72, 40 (56%) were associated with agriculture fairs and Influenza A H3N2v following probable swine exposure, and 25 (35%) with youth summer camps and pandemic Influenza A H1N1. Outbreaks of measles (n = 1) and mumps (n = 2) were linked to the international importation of disease. Between 2009 and 2013, 1,114 outbreaks were reported to NORS, including 96 respiratory disease outbreaks due to Legionella. None of these legionellosis outbreaks was linked to a mass gathering according to available data. Mass gathering-related respiratory disease outbreaks may be uncommon in the United States, but have been reported from fairs (zoonotic transmission) as well as at camps where participants have close social contact in communal housing. International importation can also be a contributing factor. NORS collects information on certain respiratory diseases and could serve as a platform to monitor mass gathering-related respiratory outbreaks in the future.
Rainey, Jeanette J.; Phelps, Tiffani; Shi, Jianrong
2016-01-01
Background Because mass gatherings create environments conducive for infectious disease transmission, public health officials may recommend postponing or canceling large gatherings during a moderate or severe pandemic. Despite these recommendations, limited empirical information exists on the frequency and characteristics of mass gathering-related respiratory disease outbreaks occurring in the United States. Methods We conducted a systematic literature review to identify articles about mass gathering-related respiratory disease outbreaks occurring in the United States from 2005 to 2014. A standard form was used to abstract information from relevant articles identified from six medical, behavioral and social science literature databases. We also analyzed data from the National Outbreaks Reporting System (NORS), maintained by the Centers for Disease Control and Prevention since 2009, to estimate the frequency of mass gathering-related respiratory disease outbreaks reported to the system. Results We identified 21 published articles describing 72 mass gathering-related respiratory disease outbreaks. Of these 72, 40 (56%) were associated with agriculture fairs and Influenza A H3N2v following probable swine exposure, and 25 (35%) with youth summer camps and pandemic Influenza A H1N1. Outbreaks of measles (n = 1) and mumps (n = 2) were linked to the international importation of disease. Between 2009 and 2013, 1,114 outbreaks were reported to NORS, including 96 respiratory disease outbreaks due to Legionella. None of these legionellosis outbreaks was linked to a mass gathering according to available data. Conclusion Mass gathering-related respiratory disease outbreaks may be uncommon in the United States, but have been reported from fairs (zoonotic transmission) as well as at camps where participants have close social contact in communal housing. International importation can also be a contributing factor. NORS collects information on certain respiratory diseases and could serve as a platform to monitor mass gathering-related respiratory outbreaks in the future. PMID:27536770
Dengue Contingency Planning: From Research to Policy and Practice
Runge-Ranzinger, Silvia; Kroeger, Axel; Olliaro, Piero; McCall, Philip J.; Sánchez Tejeda, Gustavo; Lloyd, Linda S.; Hakim, Lokman; Bowman, Leigh R.; Horstick, Olaf; Coelho, Giovanini
2016-01-01
Background Dengue is an increasingly incident disease across many parts of the world. In response, an evidence-based handbook to translate research into policy and practice was developed. This handbook facilitates contingency planning as well as the development and use of early warning and response systems for dengue fever epidemics, by identifying decision-making processes that contribute to the success or failure of dengue surveillance, as well as triggers that initiate effective responses to incipient outbreaks. Methodology/Principal findings Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed. Conclusions/Significance Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan. PMID:27653786
Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.
Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V
2017-04-01
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.
New, Dallas; Elkin, Brett; Armstrong, Terry; Epp, Tasha
2017-10-01
Anthrax, caused by the spore-forming bacterium Bacillus anthracis, poses a threat to wood bison (Bison bison athabascae) conservation. We used descriptive epidemiology to characterize a large outbreak of anthrax in the Mackenzie bison population in the Northwest Territories, Canada, in 2012 and investigated historical serologic exposure of the bison to the bacterium in nonoutbreak years. Between late June and early August 2012, 451 bison carcasses were detected; mortality peaked from 13-19 July. A substantial number of calves, yearlings, and adult females died in the 2012 outbreak, unlike in two previous anthrax outbreaks in this population that killed mostly mature males. On the basis of the difference in estimates of population size prior to the outbreak (2012) and after the outbreak (2013), it is possible that not all dead bison were found during the outbreak. We assessed serologic history of exposure to B. anthracis by using samples from the Mackenzie wood bison population collected between 1986 and 2009. Overall, 87 of 278 samples were positive (31%). Seroprevalence was lower in females (18%, 10/55) than males (36%, 72/203). The highest proportion of positive submissions (90%) was from 1994, the year following the only anthrax outbreak within the historical data set. Both adult males and females had a higher likelihood of being seropositive than the younger age categories. There was a trend toward declining antibody levels between the 1993 and 2012 outbreak years.
A large foodborne outbreak on a small Pacific island.
Thein, C C; Trinidad, R M; Pavlin, B I
2010-04-01
On March 25, 2009, the Ebeye Leroj Kitlang Memorial Health Center on the island of Ebeye in the Republic of the Marshall Islands was overwhelmed with over 100 patients presenting for vomiting and diarrhea. Epidemiologic investigation revealed that there were 174 cases among 187 attendees at a local funeral earlier in the day. Most cases had eaten served sandwiches containing egg products that had undergone severe time-temperature abuse. While no causal agents were identified, the epidemiology and clinical presentation is compatible with foodborne toxins, most likely enterotoxins of either Staphylococcus aureus or Bacillus cereus. Mitigation measures undertaken by public health centered on education of food preparers and the general public regarding safe food preparation practices. This large outbreak serves to remind us that, while there are simple and highly effective measures to prevent such foodborne disease outbreaks, we in the public health sector have a duty to improve the community's knowledge and understanding of these measures.
Trewby, Hannah; Nadin-Davis, Susan A; Real, Leslie A; Biek, Roman
2017-09-01
Disease control programs aim to constrain and reduce the spread of infection. Human disease interventions such as wildlife vaccination play a major role in determining the limits of a pathogen's spatial distribution. Over the past few decades, a raccoon-specific variant of rabies virus (RRV) has invaded large areas of eastern North America. Although expansion into Canada has been largely prevented through vaccination along the US border, several outbreaks have occurred in Canada. Applying phylogeographic approaches to 289 RRV whole-genome sequences derived from isolates collected in Canada and adjacent US states, we examined the processes underlying these outbreaks. RRV incursions were attributable predominantly to systematic virus leakage of local strains across areas along the border where vaccination has been conducted but also to single stochastic events such as long-distance translocations. These results demonstrate the utility of phylogeographic analysis of pathogen genomes for understanding transboundary outbreaks.
Mapping global environmental suitability for Zika virus
Messina, Jane P; Kraemer, Moritz UG; Brady, Oliver J; Pigott, David M; Shearer, Freya M; Weiss, Daniel J; Golding, Nick; Ruktanonchai, Corrine W; Gething, Peter W; Cohn, Emily; Brownstein, John S; Khan, Kamran; Tatem, Andrew J; Jaenisch, Thomas; Murray, Christopher JL; Marinho, Fatima; Scott, Thomas W; Hay, Simon I
2016-01-01
Zika virus was discovered in Uganda in 1947 and is transmitted by Aedes mosquitoes, which also act as vectors for dengue and chikungunya viruses throughout much of the tropical world. In 2007, an outbreak in the Federated States of Micronesia sparked public health concern. In 2013, the virus began to spread across other parts of Oceania and in 2015, a large outbreak in Latin America began in Brazil. Possible associations with microcephaly and Guillain-Barré syndrome observed in this outbreak have raised concerns about continued global spread of Zika virus, prompting its declaration as a Public Health Emergency of International Concern by the World Health Organization. We conducted species distribution modelling to map environmental suitability for Zika. We show a large portion of tropical and sub-tropical regions globally have suitable environmental conditions with over 2.17 billion people inhabiting these areas. DOI: http://dx.doi.org/10.7554/eLife.15272.001 PMID:27090089
NASA Astrophysics Data System (ADS)
Allen, C. D.
2013-12-01
Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress for many areas globally, the growing water-stress risks to forest health in such regions are becoming clearer. However, the effects of drought stress on forest dynamics are ameliorated through diverse compensatory and resilience-enhancing mechanisms and processes which operate at scales ranging from intracellular tree physiologies and individual tree developmental and morphological adjustments to species population-level demographic and genetic responses to forest stand-level structural and compositional responses up to landscape-scale tree host-insect pest outbreak dynamics and forest-climate ecohydrological feedbacks. In addition, significant uncertainties exist regarding how various other global atmospheric changes (e.g., CO2 enrichment, increased N deposition, and elevated surface-level ozone) will interact with the world's diverse spectrum of tree species to also affect global forest dynamics. Research efforts to address such core scientific uncertainties associated with modeling drought-induced tree mortality and resultant forest dynamics will be discussed.
Cooperative SIS epidemics can lead to abrupt outbreaks
NASA Astrophysics Data System (ADS)
Ghanbarnejad, Fakhteh; Chen, Li; Cai, Weiran; Grassberger, Peter
2015-03-01
In this paper, we study spreading of two cooperative SIS epidemics in mean field approximations and also within an agent based framework. Therefore we investigate dynamics on different topologies like Erdos-Renyi networks and regular lattices. We show that cooperativity of two diseases can lead to strongly first order outbreaks, while the dynamics still might present some scaling laws typical for second order phase transitions. We argue how topological network features might be related to this interesting hybrid behaviors.
Opare, Jkl; Ohuabunwo, C; Afari, E; Wurapa, F; Sackey, So; Der, J; Afakye, K; Odei, E
2012-09-01
In October 2010 an outbreak of cholera began among a group of small-scale gold miners in the East-Akim Municipality (EAM), Eastern Region. We investigated to verify the diagnosis, identify risk factors and recommend control measures. We conducted a descriptive investigation, active case-search and an unmatched case-control study. A cholera case-patient was a person with acute watery diarrhoea, with or without vomiting in EAM from 1st October to 20(th) November, 2010. Stool from case-patients and water samples were taken for laboratory diagnosis. We performed univariate and bivariate analysis using epi-info version 3.3. Of 136 case-patients, 77 (56.6%) were males, of which 40% were miners or from miners households. Index case, a 20 yr-old male miner from Apapam village reported on October 13(th), and case-patients peaked (18.4%) 20 days later. Attack rate was 2/1000 population with no fatality. Ages ranged from 1-84 years; mean of 34±18 yrs. Age-group 20-29 yrs was mostly affected (30.1%) with Apapam village having most case-patients (19.9%). Vibrio cholera serotype ogawa was isolated from stool samples. The main water source, Birim river was polluted by small-scale miners through defecation, post-defecation baths and sand-washings. Compared to controls, case-patients were more likely to have drunk from Birim-River [OR= 6.99, 95% CI: 2.75-18]. Vibrio cholera serotype ogawa caused the EAM cholera-outbreak affecting many young adult-males. Drinking water from contaminated community-wide -River was the major risk factors. Boiling or chlorination of water was initiated based on our recommendations and this controlled the outbreak.
Planning for smallpox outbreaks
NASA Astrophysics Data System (ADS)
Ferguson, Neil M.; Keeling, Matt J.; John Edmunds, W.; Gani, Raymond; Grenfell, Bryan T.; Anderson, Roy M.; Leach, Steve
2003-10-01
Mathematical models of viral transmission and control are important tools for assessing the threat posed by deliberate release of the smallpox virus and the best means of containing an outbreak. Models must balance biological realism against limitations of knowledge, and uncertainties need to be accurately communicated to policy-makers. Smallpox poses the particular challenge that key biological, social and spatial factors affecting disease spread in contemporary populations must be elucidated largely from historical studies undertaken before disease eradication in 1979. We review the use of models in smallpox planning within the broader epidemiological context set by recent outbreaks of both novel and re-emerging pathogens.
A large outbreak of Salmonella enteritidis phage type 4 associated with eggs from overseas.
Stevens, A.; Joseph, C.; Bruce, J.; Fenton, D.; O'Mahony, M.; Cunningham, D.; O'Connor, B.; Rowe, B.
1989-01-01
In February 1989 the largest reported outbreak to date in the United Kingdom of Salmonella enteritidis phage type 4 (PT4) infection occurred following a wedding reception at a hotel. One hundred and seventy-three people met the case definition of illness of whom 118 had the organism isolated from their stools. A further 17 were found to be S. enteritidis PT4 positive, but were asymptomatic. Lightly-cooked, egg-based sauces were the epidemiologically proven vehicles of infection. Investigations showed this outbreak to be the first to implicate imported European eggs as the source of infection. An unusual feature of this outbreak was a reported incubation period of less than 3 h for some of the confirmed cases of salmonellosis. PMID:2691263
Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J
2018-06-02
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.
Mouchtouri, Varvara A; Verykouki, Eleni; Zamfir, Dumitru; Hadjipetris, Christos; Lewis, Hannah C; Hadjichristodoulou, Christos
2017-01-01
When an increased number of acute gastroenteritis (AG) cases is detected among tourists staying at the same accommodation, outbreak management plans must be activated in a timely manner to prevent large outbreaks. Syndromic surveillance data collected between 1 January 2010 and 31 December 2013 by five seagoing cruise ships were analysed to identify attack rate thresholds for early outbreak detection. The overall incidence rate of AG was 2.81 cases per 10,000 traveller-days (95% confidence interval (CI): 0.00–17.60), while the attack rate was 19.37 cases per 10,000 travellers (95% CI: 0.00–127.69). The probability of an outbreak occurring was 11% if 4 per 1,000 passengers reported symptoms within the first 2 days of the voyage, and this increased to 23 % if 5 per 1,000 passengers reported such within the first 3 days. The risk ratio (RR) for outbreak occurrence was 2.35, 5.66 and 8.63 for 1, 2 and 3 days’ delay of symptoms reporting respectively, suggesting a dose–response relationship. Shipping companies’ policies and health authorities’ efforts may consider these thresholds for initiating outbreak response measures based on the number of cases according to day of cruise. Efforts should focus on ensuring travellers report symptoms immediately and comply with isolation measures. PMID:29162205
Feglo, Patrick Kwame; Sewurah, Miriam
2018-01-18
The purpose of this study was to investigate the virulent factors of Vibrio cholerae which caused an unprecedented large cholera outbreak in Ghana in 2014 and progressed into 2015, affected 28,975 people with 243 deaths. The V. cholerae isolates were identified to be the classical V. cholerae 01 biotype El Tor, serotype Ogawa, responsible for the large cholera outbreak in Ghana. These El Tor strains bear CtxAB and Tcp virulent genes, making the strains highly virulent. The strains also bear SXT transmissible element coding their resistance to antibiotics, causing high proportions of the strains to be multidrug resistant, with resistant proportions of 95, 90 and 75% to trimethoprim/sulfamethoxazole, ampicillin and ceftriaxone respectively. PFGE patterns indicated that the isolates clustered together with the same pattern and showed clusters similar to strains circulating in DR Congo, Cameroun, Ivory Coast and Togo. The strains carried virulence genes which facilitated the disease causation and spread. This is the first time these virulent genes were determined on the Ghanaian Vibrio strains.
Anti-foot-and-mouth disease virus effects of Chinese herbal kombucha in vivo.
Fu, Naifang; Wu, Juncai; Lv, Lv; He, Jijun; Jiang, Shengjun
2015-01-01
The foot and mouth disease virus (FMDV) is sensitive to acids and can be inactivated by exposure to low pH conditions. Spraying animals at risk of infection with suspensions of acid-forming microorganisms has been identified as a potential strategy for preventing FMD. Kombucha is one of the most strongly acid-forming symbiotic probiotics and could thus be an effective agent with which to implement this strategy. Moreover, certain Chinese herbal extracts are known to have broad-spectrum antiviral effects. Chinese herbal kombucha can be prepared by fermenting Chinese herbal extracts with a kombucha culture. Previous studies demonstrated that Chinese herbal kombucha prepared in this way efficiently inhibits FMDV replication in vitro. To assess the inhibitory effects of Chinese herbal kombucha against FMDV in vitro, swine challenged by intramuscular injection with 1000 SID50 of swine FMDV serotype O strain O/China/99 after treatment with Chinese herbal kombucha were partially protected against infection, as demonstrated by a lack of clinical symptoms and qRT-PCR analysis. In a large scale field trial, spraying cattle in an FMD outbreak zone with kombucha protected against infection. Chinese herbal kombucha may be a useful probiotic agent for managing FMD outbreaks.
Anti-foot-and-mouth disease virus effects of Chinese herbal kombucha in vivo
Fu, Naifang; Wu, Juncai; Lv, Lv; He, Jijun; Jiang, Shengjun
2015-01-01
Abstract The foot and mouth disease virus (FMDV) is sensitive to acids and can be inactivated by exposure to low pH conditions. Spraying animals at risk of infection with suspensions of acid-forming microorganisms has been identified as a potential strategy for preventing FMD. Kombucha is one of the most strongly acid-forming symbiotic probiotics and could thus be an effective agent with which to implement this strategy. Moreover, certain Chinese herbal extracts are known to have broad-spectrum antiviral effects. Chinese herbal kombucha can be prepared by fermenting Chinese herbal extracts with a kombucha culture. Previous studies demonstrated that Chinese herbal kombucha prepared in this way efficiently inhibits FMDV replication in vitro. To assess the inhibitory effects of Chinese herbal kombucha against FMDV in vitro, swine challenged by intramuscular injection with 1000 SID50 of swine FMDV serotype O strain O/China/99 after treatment with Chinese herbal kombucha were partially protected against infection, as demonstrated by a lack of clinical symptoms and qRT-PCR analysis. In a large scale field trial, spraying cattle in an FMD outbreak zone with kombucha protected against infection. Chinese herbal kombucha may be a useful probiotic agent for managing FMD outbreaks. PMID:26691487
Persistent Cold Air Outbreaks over North America Under Climate Warming
NASA Astrophysics Data System (ADS)
Gao, Y.; Leung, L. R.; Lu, J.
2014-12-01
This study evaluates the change of cold air outbreaks (CAO) over North America using Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble of global climate simulations as well as regional high resolution climate simulations. In future, while robust decrease of CAO duration dominates in most of the North America, the decrease over northwestern U.S. was found to have much smaller magnitude than the surrounding regions. We found statistically significant increase of the sea level pressure over gulf of Alaska, leading to the advection of cold air to northwestern U.S.. By shifting the probability distribution of present temperature towards future warmer conditions, we identified the changes in large scale circulation contribute to about 50% of the enhanced sea level pressure. Using the high resolution regional climate model results, we found that increases of existing snowpack could potentially trigger the increase of CAO in the near future over the southwestern U.S. and Rocky Mountain through surface albedo effects. By the end of this century, the top 5 most extreme historical CAO events may still occur and wind chill warning will continue to have societal impacts over North America in particular over northwestern United States.
How are climate and marine biological outbreaks functionally linked?
Hayes, M.L.; Bonaventura, J.; Mitchell, T.P.; Prospero, J.M.; Shinn, E.A.; Van Dolah, F.; Barber, R.T.
2001-01-01
Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.
Assessment of the response to cholera outbreaks in two districts in Ghana.
Ohene, Sally-Ann; Klenyuie, Wisdom; Sarpeh, Mark
2016-11-02
Despite recurring outbreaks of cholera in Ghana, very little has been reported on assessments of outbreak response activities undertaken in affected areas. This study assessed the response activities undertaken in two districts, Akatsi District in Volta Region and Komenda-Edina-Eguafo-Abirem (KEEA) Municipal in Central Region during the 2012 cholera epidemic in Ghana. We conducted a retrospective assessment of the events, strengths and weaknesses of the cholera outbreak response activities in the two districts making use of the WHO cholera evaluation tool. Information sources included surveillance and facility records, reports and interviews with relevant health personnel involved in the outbreak response from both district health directorates and health facilities. We collected data on age, sex, area of residence, date of reporting to health facility of cholera cases, district population data and information on the outbreak response activities and performed descriptive analyses of the outbreak data by person, time and place. The cholera outbreak in Akatsi was explosive with a high attack rate (AR) of 374/100,000 and case fatality rate (CFR) of 1.2 % while that in KEEA was on a relatively smaller scale AR of 23/100,000 but with a high case fatality rate of 18.8 %. For both districts, we identified multiple strengths in the response to the outbreak including timely notification of the district health officials which triggered prompt investigation of the suspected outbreak facilitating confirmation of cholera and initiation of public health response activities. Others were coordination of the activities by multi-sectoral committees, instituting water, sanitation and hygiene measures and appropriate case management at health facilities. We also found areas that needed improvement in both districts including incomplete surveillance data, sub-optimal community based surveillance considering the late reporting and the deaths in the community and the inadequate community knowledge about cholera preventive measures. The assessment of the cholera outbreak response in the two districts highlighted strengths in the epidemic control activities. There was however need to strengthen preparedness especially in the area of improving community surveillance and awareness about cholera prevention and the importance of seeking prompt treatment in health facilities in the event of an outbreak.
Johnsen, Bjørn Odd; Lingaas, Egil; Torfoss, Dag; Strøm, Erik H; Nordøy, Ingvild
2010-12-01
Listeria monocytogenes is a foodborne pathogen with a high mortality rate. We report a large, nosocomial outbreak of Listeria monocytogenes infection. Patients with L. monocytogenes isolated from a sterile site, or from faeces when diarrhoea and fever were present, were included. Clinical data were collected from the patient records. The incubation period was calculated as the time between exposure and start of symptoms. Seventeen patients (11 women, median age 64 years) were infected of whom 15 patients were at increased risk for listeriosis. Eleven patients received empiric antibiotic treatment, eight of them with cephalosporins. Three patients died with a resulting mortality rate of 18%. The source of the outbreak was a Camembert cheese made from pasteurised milk containing up to 360 million colony forming units per portion. The median incubation period was 3-4 days. The incubation period in this outbreak was significantly shorter than previously reported, a fact that may be due to the high number of ingested bacteria. Furthermore, food restrictions in hospitals seem warranted, as do treatment with antibiotics effective against L. monocytogenes in at-risk populations. Copyright © 2010 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
You can run, you can hide: The epidemiology and statistical mechanics of zombies
NASA Astrophysics Data System (ADS)
Alemi, Alexander A.; Bierbaum, Matthew; Myers, Christopher R.; Sethna, James P.
2015-11-01
We use a popular fictional disease, zombies, in order to introduce techniques used in modern epidemiology modeling, and ideas and techniques used in the numerical study of critical phenomena. We consider variants of zombie models, from fully connected continuous time dynamics to a full scale exact stochastic dynamic simulation of a zombie outbreak on the continental United States. Along the way, we offer a closed form analytical expression for the fully connected differential equation, and demonstrate that the single person per site two dimensional square lattice version of zombies lies in the percolation universality class. We end with a quantitative study of the full scale US outbreak, including the average susceptibility of different geographical regions.
Yoon, Mi-Kyung; Kim, Soon-Young; Ko, Hye-Sun; Lee, Myung-Soo
2016-01-01
Korea has experienced diverse kind of disasters these days. Among them the 2015 middle eastern respiratory syndrome (MERS) outbreak imposed great psychological stress on almost all Korean citizens. Following the MERS outbreak, government is reviewing overall infectious disease management system and prioritizing the establishment of mental health service systems for infectious disease. This study makes suggestions for implementing disaster-related mental health service systems by analyzing the example of Gyeonggi Province, which proactively intervened with residents' psychological problems caused by the large-scale outbreak of an infectious disease. Mental health service system for MERS victims had the following two parts: a mental health service for people who had been placed in quarantine and a service provided to families of patients who had died or recovered patients. The government of Gyeonggi province, public health centers, regional and local Community Mental Health Centers and the National Center for Crisis Mental Health Management participated in this service system. Among 1221 Gyeonggi people placed in quarantine and who experienced psychological and emotional difficulties, 350 required continuing services; 124 of this group received continuing services. That is, 35 % of people who required psychological intervention received contact from service providers and received the required services. This study reflects a proactive monitoring system for thousands of people placed under quarantine for the first time in Korea. It is significant that the service utilization rate by a proactive manner, that is the professionals administering it actively approached and contacted people with problems rather than passively providing information was much higher than other general mental health situation in Korea. The core value of public mental health services is adequate public accessibility; it is therefore essential for governments to strengthen their professional competence and establish effective systems. These criteria should also be applied to psychological problems caused by disastrous infectious disease outbreaks.
Lewnard, Joseph A.; Antillón, Marina; Gonsalves, Gregg; Miller, Alice M.; Ko, Albert I.; Pitzer, Virginia E.
2016-01-01
Background Introduction of Vibrio cholerae to Haiti during the deployment of United Nations (UN) peacekeepers in 2010 resulted in one of the largest cholera epidemics of the modern era. Following the outbreak, a UN-commissioned independent panel recommended three pre-deployment intervention strategies to minimize the risk of cholera introduction in future peacekeeping operations: screening for V. cholerae carriage, administering prophylactic antimicrobial chemotherapies, or immunizing with oral cholera vaccines. However, uncertainty regarding the effectiveness of these approaches has forestalled their implementation by the UN. We assessed how the interventions would have impacted the likelihood of the Haiti cholera epidemic. Methods and Findings We developed a stochastic model for cholera importation and transmission, fitted to reported cases during the first weeks of the 2010 outbreak in Haiti. Using this model, we estimated that diagnostic screening reduces the probability of cases occurring by 82% (95% credible interval: 75%, 85%); however, false-positive test outcomes may hamper this approach. Antimicrobial chemoprophylaxis at time of departure and oral cholera vaccination reduce the probability of cases by 50% (41%, 57%) and by up to 61% (58%, 63%), respectively. Chemoprophylaxis beginning 1 wk before departure confers a 91% (78%, 96%) reduction independently, and up to a 98% reduction (94%, 99%) if coupled with vaccination. These results are not sensitive to assumptions about the background cholera incidence rate in the endemic troop-sending country. Further research is needed to (1) validate the sensitivity and specificity of rapid test approaches for detecting asymptomatic carriage, (2) compare prophylactic efficacy across antimicrobial regimens, and (3) quantify the impact of oral cholera vaccine on transmission from asymptomatic carriers. Conclusions Screening, chemoprophylaxis, and vaccination are all effective strategies to prevent cholera introduction during large-scale personnel deployments such as that precipitating the 2010 Haiti outbreak. Antimicrobial chemoprophylaxis was estimated to provide the greatest protection at the lowest cost among the approaches recently evaluated by the UN. PMID:26812236
Alawieh, Ali; Sabra, Zahraa; Langley, E Farris; Bizri, Abdul Rahman; Hamadeh, Randa; Zaraket, Fadi A
2017-11-25
After the re-introduction of poliovirus to Syria in 2013, Lebanon was considered at high transmission risk due to its proximity to Syria and the high number of Syrian refugees. However, after a large-scale national immunization initiative, Lebanon was able to prevent a potential outbreak of polio among nationals and refugees. In this work, we used a computational individual-simulation model to assess the risk of poliovirus threat to Lebanon prior and after the immunization campaign and to quantitatively assess the healthcare impact of the campaign and the required standards that need to be maintained nationally to prevent a future outbreak. Acute poliomyelitis surveillance in Lebanon was along with the design and coverage rate of the recent national polio immunization campaign were reviewed from the records of the Lebanese Ministry of Public Health. Lebanese population demographics including Syrian and Palestinian refugees were reviewed to design individual-based models that predicts the consequences of polio spread to Lebanon and evaluate the outcome of immunization campaigns. The model takes into account geographic, demographic and health-related features. Our simulations confirmed the high risk of polio outbreaks in Lebanon within 10 days of case introduction prior to the immunization campaign, and showed that the current immunization campaign significantly reduced the speed of the infection in the event poliomyelitis cases enter the country. A minimum of 90% national immunization coverage was found to be required to prevent exponential propagation of potential transmission. Both surveillance and immunization efforts should be maintained at high standards in Lebanon and other countries in the area to detect and limit any potential outbreak. The use of computational population simulation models can provide a quantitative approach to assess the impact of immunization campaigns and the burden of infectious diseases even in the context of population migration.
[The Emergence of Ebola virus in humans: a long process not yet fully understood].
Leroy, Éric Maurice
2015-01-01
Since 1976 Ebola virus regularly has caused small deadly outbreaks in Central Africa, usually controlled in a few months. For the first time, an Ebola epidemic of exceptional magnitude dramatically engulfed several countries in West Africa since December 2013. Major failures of implementing measures to prevent human-to-human transmissions are the main cause of this large-scale Ebola outbreak. After about one-week incubation period, the Ebola virus disease is characterized by a sudden onset of high fever leading to multiple hemorrhages and to widespread organ failure. Several bat species constitute the main reservoirs of Ebola viruses. Human contamination would occur either directly from bats, widely consumed by the local populations, or through animal species susceptible to Ebola infection, such as chimpanzees and gorillas. Alongside this "natural cycle", an "epidemic cycle" involving domestic animals living in villages such as dogs or pigs, is seriously suggested. Thus, according to the diversity of concerned animals and their clinical infectionform, modalities of human contamination can be multiple and are still largely unknown. In this context, all efforts that could be made to unravel the mystery of the Ebola virus emergence in humans and clarify modalities of the virus transmission, would allow for predicting or for anticipating the future occurrence of epidemics. This review aims to provide an exhaustive inventory of the Ebola ecology to highlight events governing the virus transmission to humans that still remain unsolved.
NASA Astrophysics Data System (ADS)
Cooper, L. A.; Ballantyne, A. P.; Landguth, E.; Holden, Z. A.
2014-12-01
Forest disturbances have important impacts on regional and global carbon-climate feedbacks. Tree mortality resulting from disturbance can cause large areas to transition from carbon (C) sinks to C sources. Although severe acute disturbance, such as fire, has been quantified extensively in the literature, the impacts of disturbance that cause more spatially heterogeneous, gradual, mortality, such as beetle kill, are more difficult to quantify and have not been studied as extensively. Combining a 13 year time series of 250 meter, 16-day, MODIS Enhanced Vegetation Index (EVI) data with field data on insect mortality collected by the U.S. Forest Service Forest Inventory and Analysis (FIA) program, we have produced large-scale maps of dead woody biomass resulting from insect epidemics. Using a change detection algorithm, we were able to determine the timing and severity of changes in EVI due to insect epidemics across the western United States. A model was created to predict biomass based on EVI and a variety of environmental variables. Using the difference between post- and pre-outbreak EVI values, we were able to estimate the loss of biomass during insect outbreaks. These biomass data were then converted to carbon as a percentage of dry biomass using the Jenkins equations. This spatially explicit map of C currently stored in beetle kill wood will allow us to assess the vulnerability of this C to re-entering the atmosphere as CO2 via combustion or decomposition.
DeSilva, M B; Schafer, S; Kendall Scott, M; Robinson, B; Hills, A; Buser, G L; Salis, K; Gargano, J; Yoder, J; Hill, V; Xiao, L; Roellig, D; Hedberg, K
2016-01-01
Cryptosporidium, a parasite known to cause large drinking and recreational water outbreaks, is tolerant of chlorine concentrations used for drinking water treatment. Human laboratory-based surveillance for enteric pathogens detected a cryptosporidiosis outbreak in Baker City, Oregon during July 2013 associated with municipal drinking water. Objectives of the investigation were to confirm the outbreak source and assess outbreak extent. The watershed was inspected and city water was tested for contamination. To determine the community attack rate, a standardized questionnaire was administered to randomly sampled households. Weighted attack rates and confidence intervals (CIs) were calculated. Water samples tested positive for Cryptosporidium species; a Cryptosporidium parvum subtype common in cattle was detected in human stool specimens. Cattle were observed grazing along watershed borders; cattle faeces were observed within watershed barriers. The city water treatment facility chlorinated, but did not filter, water. The community attack rate was 28·3% (95% CI 22·1-33·6), sickening an estimated 2780 persons. Watershed contamination by cattle probably caused this outbreak; water treatments effective against Cryptosporidium were not in place. This outbreak highlights vulnerability of drinking water systems to pathogen contamination and underscores the need for communities to invest in system improvements to maintain multiple barriers to drinking water contamination.
Comparison of sexual mixing patterns for syphilis in endemic and outbreak settings.
Doherty, Irene A; Adimora, Adaora A; Muth, Stephen Q; Serre, Marc L; Leone, Peter A; Miller, William C
2011-05-01
In a largely rural region of North Carolina during 1998-2002, outbreaks of heterosexually transmitted syphilis occurred, tied to crack cocaine use and exchange of sex for drugs and money. Sexual partnership mixing patterns are an important characteristic of sexual networks that relate to transmission dynamics of sexually transmitted infections (STIs). Using contact tracing data collected by disease intervention specialists, we estimated Newman assortativity coefficients and compared values in counties experiencing syphilis outbreaks to nonoutbreak counties, with respect to race/ethnicity, race/ethnicity and age, and the cases' number of social/sexual contacts, infected contacts, sex partners, and infected sex partners, and syphilis disease stage (primary, secondary, early latent). Individuals in the outbreak counties had more contacts and mixing by the number of sex partners was disassortative in outbreak counties and assortative nonoutbreak counties. Although mixing by syphilis disease stage was minimally assortative in outbreak counties, it was disassortative in nonoutbreak areas. Partnerships were relatively discordant by age, especially among older white men, who often chose considerably younger female partners. Whether assortative mixing exacerbates or attenuates the reach of STIs into different populations depends on the characteristic/attribute and epidemiologic phase. Examination of sexual partnership characteristics and mixing patterns offers insights into the growth of STI outbreaks that complement other research methods.
Altmann, Mathias; Suarez-Bustamante, Miguel; Soulier, Celine; Lesavre, Celine; Antoine, Caroline
2017-10-13
Although cases were reported only in 2010 and 2011, cholera is probably endemic in Yemen. In the context of a civil war, a cholera outbreak was declared in different parts of the country October 6th, 2016. This paper describes the ACF outbreak response in Hodeidah city from October 28th, 2016 to February 28th, 2017 in order to add knowledge to this large outbreak. The ACF outbreak response in Hodeidah city included a case management component and prevention measures in the community. In partnership with the Ministry of Public Health and Population of Yemen (MoPHP), the case management component included a Cholera Treatment Center (CTC) implemented in the Al Thoraw hospital, 11 Oral Rehydration Therapy Corners (ORTCs) and an active case finding system. In partnership with other stakeholders, prevention measures in the community, including access to safe water and hygiene promotion, were implemented in the most affected communities of the city. From October 28th, 2016 until February 28th, 2017, ACF provided care to 8,270 Acute Watery Diarrhea (AWD) cases, of which 5,210 (63%) were suspected cholera cases, in the CTC and the 11 ORTCs implemented in Hodeidah city. The attack rate was higher among people living in Al Hali district, with a peak in November 2016. At the CTC, 8% of children under 5 years-old also presented with Severe Acute Malnutrition (SAM). The Case-Fatality Rate (CFR) was low (0.07%) but 15% of admitted cases defaulted for cultural and security reasons. Environmental management lacked the information to appropriately target affected areas. Financial resources did not allow complete coverage of the city. Response to the first wave of a large cholera outbreak in Hodeidah city was successful in maintaining a CFR <1% in the CTC. However, considering the actual context of Yemen and its water infrastructure, much more efforts are needed to control the current outbreak resurgence.
Altmann, Mathias; Suarez-Bustamante, Miguel; Soulier, Celine; Lesavre, Celine; Antoine, Caroline
2017-01-01
Introduction: Although cases were reported only in 2010 and 2011, cholera is probably endemic in Yemen. In the context of a civil war, a cholera outbreak was declared in different parts of the country October 6th, 2016. This paper describes the ACF outbreak response in Hodeidah city from October 28th, 2016 to February 28th, 2017 in order to add knowledge to this large outbreak. Methods: The ACF outbreak response in Hodeidah city included a case management component and prevention measures in the community. In partnership with the Ministry of Public Health and Population of Yemen (MoPHP), the case management component included a Cholera Treatment Center (CTC) implemented in the Al Thoraw hospital, 11 Oral Rehydration Therapy Corners (ORTCs) and an active case finding system. In partnership with other stakeholders, prevention measures in the community, including access to safe water and hygiene promotion, were implemented in the most affected communities of the city. Results: From October 28th, 2016 until February 28th, 2017, ACF provided care to 8,270 Acute Watery Diarrhea (AWD) cases, of which 5,210 (63%) were suspected cholera cases, in the CTC and the 11 ORTCs implemented in Hodeidah city. The attack rate was higher among people living in Al Hali district, with a peak in November 2016. At the CTC, 8% of children under 5 years-old also presented with Severe Acute Malnutrition (SAM). The Case-Fatality Rate (CFR) was low (0.07%) but 15% of admitted cases defaulted for cultural and security reasons. Environmental management lacked the information to appropriately target affected areas. Financial resources did not allow complete coverage of the city. Conclusion: Response to the first wave of a large cholera outbreak in Hodeidah city was successful in maintaining a CFR <1% in the CTC. However, considering the actual context of Yemen and its water infrastructure, much more efforts are needed to control the current outbreak resurgence. PMID:29188130
Hanning, Irene B; Nutt, J D; Ricke, Steven C
2009-01-01
Foodborne Salmonella spp. is a leading cause of foodborne illness in the United States each year. Traditionally, most cases of salmonellosis were thought to originate from meat and poultry products. However, an increasing number of salmonellosis outbreaks are occurring as a result of contaminated produce. Several produce items specifically have been identified in outbreaks, and the ability of Salmonella to attach or internalize into vegetables and fruits may be factors that make these produce items more likely to be sources of Salmonella. In addition, environmental factors including contaminated water sources used to irrigate and wash produce crops have been implicated in a large number of outbreaks. Salmonella is carried by both domesticated and wild animals and can contaminate freshwater by direct or indirect contact. In some cases, direct contact of produce or seeds with contaminated manure or animal wastes can lead to contaminated crops. This review examines outbreaks of Salmonella due to contaminated produce, the potential sources of Salmonella, and possible control measures to prevent contamination of produce.
Ryan, Una; Lawler, Sheleigh; Reid, Simon
2017-02-01
Cryptosporidium is the leading cause of swimming pool outbreaks of gastroenteritis. Transmission occurs through the ingestion of oocysts that are passed in the faeces of an infected person or animal when an accidental faecal release event occurs. Cryptosporidium parasites present specific challenges for infection control as oocysts are highly resistant to chlorine levels used for pool disinfection, infected individuals can shed large numbers of oocysts, there is a long incubation period and shedding of oocysts occurs even after symptom resolution. The purposes of this review are to identify key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis and to outline needs for research and collaboration to advance co-ordinated management practices. We reviewed swimming pool-associated cryptosporidiosis outbreaks, disinfection teachniques, current regulations and the role of staff and patrons. Key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis are a lack of uniform national and international standards, poor adherence and understanding of regulations governing staff and patron behaviour, and low levels of public knowledge and awareness.
Investigation of a Q fever outbreak in a Scottish co-located slaughterhouse and cutting plant.
Wilson, L E; Couper, S; Prempeh, H; Young, D; Pollock, K G J; Stewart, W C; Browning, L M; Donaghy, M
2010-12-01
Outbreaks of Q fever are rare in the UK. In 2006, the largest outbreak of Q fever in Scotland occurred at a co-located slaughterhouse and cutting plant with 110 cases. Preliminary investigations pointed to the sheep lairage being the potential source of exposure to the infective agent. A retrospective cohort study was carried out among workers along with environmental sampling to guide public health interventions. A total of 179 individuals were interviewed of whom 66 (37%) were migrant workers. Seventy-five (41.9%) were serologically confirmed cases. Passing through a walkway situated next to the sheep lairage, a nearby stores area, and being male were independently associated with being serologically positive for Q fever. The large proportion of migrant workers infected presented a significant logistical problem during outbreak investigation and follow up. The topic of vaccination against Q fever for slaughterhouse workers is contentious out with Australasia, but this outbreak highlights important occupational health issues. © 2009 Blackwell Verlag GmbH.
Best practice assessment of disease modelling for infectious disease outbreaks.
Dembek, Z F; Chekol, T; Wu, A
2018-05-08
During emerging disease outbreaks, public health, emergency management officials and decision-makers increasingly rely on epidemiological models to forecast outbreak progression and determine the best response to health crisis needs. Outbreak response strategies derived from such modelling may include pharmaceutical distribution, immunisation campaigns, social distancing, prophylactic pharmaceuticals, medical care, bed surge, security and other requirements. Infectious disease modelling estimates are unavoidably subject to multiple interpretations, and full understanding of a model's limitations may be lost when provided from the disease modeller to public health practitioner to government policymaker. We review epidemiological models created for diseases which are of greatest concern for public health protection. Such diseases, whether transmitted from person-to-person (Ebola, influenza, smallpox), via direct exposure (anthrax), or food and waterborne exposure (cholera, typhoid) may cause severe illness and death in a large population. We examine disease-specific models to determine best practices characterising infectious disease outbreaks and facilitating emergency response and implementation of public health policy and disease control measures.
Baker, Arthur W; Haridy, Salah; Salem, Joseph; Ilieş, Iulian; Ergai, Awatef O; Samareh, Aven; Andrianas, Nicholas; Benneyan, James C; Sexton, Daniel J; Anderson, Deverick J
2017-11-24
Traditional strategies for surveillance of surgical site infections (SSI) have multiple limitations, including delayed and incomplete outbreak detection. Statistical process control (SPC) methods address these deficiencies by combining longitudinal analysis with graphical presentation of data. We performed a pilot study within a large network of community hospitals to evaluate performance of SPC methods for detecting SSI outbreaks. We applied conventional Shewhart and exponentially weighted moving average (EWMA) SPC charts to 10 previously investigated SSI outbreaks that occurred from 2003 to 2013. We compared the results of SPC surveillance to the results of traditional SSI surveillance methods. Then, we analysed the performance of modified SPC charts constructed with different outbreak detection rules, EWMA smoothing factors and baseline SSI rate calculations. Conventional Shewhart and EWMA SPC charts both detected 8 of the 10 SSI outbreaks analysed, in each case prior to the date of traditional detection. Among detected outbreaks, conventional Shewhart chart detection occurred a median of 12 months prior to outbreak onset and 22 months prior to traditional detection. Conventional EWMA chart detection occurred a median of 7 months prior to outbreak onset and 14 months prior to traditional detection. Modified Shewhart and EWMA charts additionally detected several outbreaks earlier than conventional SPC charts. Shewhart and SPC charts had low false-positive rates when used to analyse separate control hospital SSI data. Our findings illustrate the potential usefulness and feasibility of real-time SPC surveillance of SSI to rapidly identify outbreaks and improve patient safety. Further study is needed to optimise SPC chart selection and calculation, statistical outbreak detection rules and the process for reacting to signals of potential outbreaks. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rückert, Christian; Nübel, Ulrich; Blom, Jochen; Wirth, Thierry; Jaenicke, Sebastian; Schuback, Sieglinde; Rüsch-Gerdes, Sabine; Supply, Philip; Kalinowski, Jörn; Niemann, Stefan
2013-01-01
Background Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested the potential of using next generation genome sequencing for identification of outbreak-related transmission chains. Methods and Findings During long-term (1997 to 2010) prospective population-based molecular epidemiological surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed “Hamburg clone”) started expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance. Conclusions Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context. Please see later in the article for the Editors' Summary PMID:23424287
Liu, Tao; Zhu, Guanghu; He, Jianfeng; Song, Tie; Zhang, Meng; Lin, Hualiang; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Li, Zhihao; Xie, Runsheng; Zhong, Haojie; Wu, Xiaocheng; Hu, Wenbiao; Zhang, Yonghui; Ma, Wenjun
2017-08-02
Dengue fever is a severe public heath challenge in south China. A dengue outbreak was reported in Chaozhou city, China in 2015. Intensified interventions were implemented by the government to control the epidemic. However, it is still unknown the degree to which intensified control measures reduced the size of the epidemics, and when should such measures be initiated to reduce the risk of large dengue outbreaks developing? We selected Xiangqiao district as study setting because the majority of the indigenous cases (90.6%) in Chaozhou city were from this district. The numbers of daily indigenous dengue cases in 2015 were collected through the national infectious diseases and vectors surveillance system, and daily Breteau Index (BI) data were reported by local public health department. We used a compartmental dynamic SEIR (Susceptible, Exposed, Infected and Removed) model to assess the effectiveness of control interventions, and evaluate the control effect of intervention timing on dengue epidemic. A total of 1250 indigenous dengue cases was reported from Xiangqiao district. The results of SEIR modeling using BI as an indicator of actual control interventions showed a total of 1255 dengue cases, which is close to the reported number (n = 1250). The size and duration of the outbreak were highly sensitive to the intensity and timing of interventions. The more rigorous and earlier the control interventions implemented, the more effective it yielded. Even if the interventions were initiated several weeks after the onset of the dengue outbreak, the interventions were shown to greatly impact the prevalence and duration of dengue outbreak. This study suggests that early implementation of rigorous dengue interventions can effectively reduce the epidemic size and shorten the epidemic duration.
Illinois department of public health H1N1/A pandemic communications evaluation survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, D.; Decision and Information Sciences
Because of heightened media coverage, a 24-hour news cycle and the potential miscommunication of health messages across all levels of government during the onset of the H1N1 influenza outbreak in spring 2009, the Illinois Department of Public Health (IDPH) decided to evaluate its H1N1 influenza A communications system. IDPH wanted to confirm its disease information and instructions were helping stakeholders prepare for and respond to a novel influenza outbreak. In addition, the time commitment involved in preparing, issuing, monitoring, updating, and responding to H1N1 federal guidelines/updates and media stories became a heavy burden for IDPH staff. The process and resultsmore » of the H1N1 messaging survey represent a best practice that other health departments and emergency management agencies can replicate to improve coordination efforts with stakeholder groups during both emergency preparedness and response phases. Importantly, the H1N1 survey confirmed IDPH's messages were influencing stakeholders decisions to activate their pandemic plans and initiate response operations. While there was some dissatisfaction with IDPH's delivery of information and communication tools, such as the fax system, this report should demonstrate to IDPH that its core partners believe it has the ability and expertise to issue timely and accurate instructions that can help them respond to a large-scale disease outbreak in Illinois. The conclusion will focus on three main areas: (1) the survey development process, (2) survey results: best practices and areas for improvement and (3) recommendations: next steps.« less
Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections
Rinaldo, Andrea; Bertuzzo, Enrico; Mari, Lorenzo; Righetto, Lorenzo; Blokesch, Melanie; Gatto, Marino; Casagrandi, Renato; Murray, Megan; Vesenbeckh, Silvan M.; Rodriguez-Iturbe, Ignacio
2012-01-01
Mathematical models can provide key insights into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. We study the ex post reliability of predictions of the 2010–2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. We consider the impact of different approaches to the modeling of spatial spread of Vibrio cholerae and mechanisms of cholera transmission, accounting for the dynamics of susceptible and infected individuals within different local human communities. To explain resurgences of the epidemic, we go on to include waning immunity and a mechanism explicitly accounting for rainfall as a driver of enhanced disease transmission. The formal comparative analysis is carried out via the Akaike information criterion (AIC) to measure the added information provided by each process modeled, discounting for the added parameters. A generalized model for Haitian epidemic cholera and the related uncertainty is thus proposed and applied to the year-long dataset of reported cases now available. The model allows us to draw predictions on longer-term epidemic cholera in Haiti from multiseason Monte Carlo runs, carried out up to January 2014 by using suitable rainfall fields forecasts. Lessons learned and open issues are discussed and placed in perspective. We conclude that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. PMID:22505737
Genetic evolution of Human Enterovirus A71 subgenotype C4 in Shenzhen, China, 1998-2013.
He, Yaqing; Zou, Linjie; Chong, Marc Ka Chun; Men, Ruoting; Xu, Wenbo; Yang, Hong; Yao, Xiangjie; Chen, Long; Xian, Huixia; Zhang, Hailong; Luo, Min; Cheng, Jinquan; Ma, Hanwu; Feng, Qianjin; Huang, Yun; Wang, Yujie; Yeoh, Eng-Kiong; Zee, Benny Chung-Ying; Zhou, Yuanping; He, Ming-Liang; Wang, Maggie Haitian
2016-06-01
Human Enterovirus A71 (EV-A71) is one of the severest enteroviruses that causes hand, foot, and mouth disease (HFMD) among children. This study identified the mutations of EV-A71 VP1 amino acid residues over a number of years and explored the possible association of identified mutations and HFMD epidemic outbreaks in Shenzhen, China. A total of 3760 stool specimens were collected from HFMD patients by Shenzhen Centers for Disease Control and Prevention (CDC) between 1998 and 2013. In total 289 VP1 strains were sequenced in this study, and amino acids mutation frequency was calculated. There were 2040 China nationwide sequences downloaded from Genebank as replication data. In our samples, 1036 subjects (27.6%) were EV-A71 infected. Three amino acid positions on VP1 protein were found to have high mutation prevalence. These are Q22H, S283T, and A289H. Site 22 showed a fast mutation fixation in the year 2008, at the time of the large scale epidemic outbreak in Shenzhen. Analysis of the nationwide data replicated the same trend of mutation prevalence of the three sites. The switching from Q to H on site 22 of the EV-A71 VP1 strain might be associated with the HFMD outbreak in Shenzhen in 2008. The identified amino acid sites 22, 283 and 289 provided information for developing anti-viral drugs against EV-A71 in the future. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Involuntary mass spirit possession among the Miskitu.
Wedel, Johan
2012-01-01
This paper seeks to understand the outbreaks and the development of grisi siknis, a form of mass spirit possession among the Miskitu of north-eastern Nicaragua. Earlier documented outbreaks typically involved a few adolescents, however, in recent years, violent large-scale epidemics have taken place, involving many people of all ages. This has coincided with recent developments in Miskitu society marked by conflicts, contradictions and tense social relations. The anthropological field technique of participant-observation was used. The research took place during 11 months from 2005 to 2008 in the port town of Puerto Cabezas. A total of 38 informants were interviewed. Group discussions, narratives and informal and semi-structured interviews were carried out, as well as participation in healing rituals. The paper shows that socio-economic, cultural, personal as well as environmental factors all contribute to outbreaks of grisi siknis. The affliction has previously been considered a 'culture-bound syndrome' only occurring among the Miskitu. However, when viewed in a more contemporary context and cross-cultural perspective, grisi siknis shows similarities with other forms of involuntary mass spirit possession, particularly in the ways it is manifested, experienced and appears to be spreading. The paper argues that the phenomenon should no longer be considered a 'culture-bound condition' but in fact a Miskitu version of involuntary mass spirit possession. Further research that seeks to understand other forms of involuntary mass spirit possession should emphasize the social, personal and environmental context as well as cross-cultural comparisons in order to encompass fully the role of culture in relation to illness and suffering.
Development of a fast and efficient method for hepatitis A virus concentration from green onion.
Zheng, Yan; Hu, Yuan
2017-11-01
Hepatitis A virus (HAV) can cause serious liver disease and even death. HAV outbreaks are associated with the consumption of raw or minimally processed produce, making it a major public health concern. Infections have occurred despite the fact that effective HAV vaccine has been available. Development of a rapid and sensitive HAV detection method is necessary for an investigation of an HAV outbreak. Detection of HAV is complicated by the lack of a reliable culture method. In addition, due to the low infectious dose of HAV, these methods must be very sensitive. Current methods rely on efficient sample preparation and concentration steps followed by sensitive molecular detection techniques. Using green onions which was involved in most recent HAV outbreaks as a representative produce, a method of capturing virus particles was developed using carboxyl-derivatized magnetic beads in this study. Carboxyl beads, like antibody-coated beads or cationic beads, detect HAV at a level as low as 100 pfu/25g of green onions. RNA from virus concentrated in this manner can be released by heat-shock (98°C 5min) for molecular detection without sacrificing sensitivity. Bypassing the RNA extraction procedure saves time and removes multiple manipulation steps, which makes large scale HAV screening possible. In addition, the inclusion of beef extract and pectinase rather than NP40 in the elution buffer improved the HAV liberation from the food matrix over current methods by nearly 10 fold. The method proposed in this study provides a promising tool to improve food risk assessment and protect public health. Published by Elsevier B.V.
Grönthal, Thomas; Moodley, Arshnee; Nykäsenoja, Suvi; Junnila, Jouni; Guardabassi, Luca; Thomson, Katariina; Rantala, Merja
2014-01-01
Introduction The purpose of this study was to describe a nosocomial outbreak caused by methicillin resistant Staphylococcus pseudintermedius (MRSP) ST71 SCCmec II-III in dogs and cats at the Veterinary Teaching Hospital of the University of Helsinki in November 2010 – January 2012, and to determine the risk factors for acquiring MRSP. In addition, measures to control the outbreak and current policy for MRSP prevention are presented. Methods Data of patients were collected from the hospital patient record software. MRSP surveillance data were acquired from the laboratory information system. Risk factors for MRSP acquisition were analyzed from 55 cases and 213 controls using multivariable logistic regression in a case-control study design. Forty-seven MRSP isolates were analyzed by pulsed field gel electrophoresis and three were further analyzed with multi-locus sequence and SCCmec typing. Results Sixty-three MRSP cases were identified, including 27 infections. MRSPs from the cases shared a specific multi-drug resistant antibiogram and PFGE-pattern indicated clonal spread. Four risk factors were identified; skin lesion (OR = 6.2; CI95% 2.3–17.0, P = 0.0003), antimicrobial treatment (OR = 3.8, CI95% 1.0–13.9, P = 0.0442), cumulative number of days in the intensive care unit (OR = 1.3, CI95% 1.1–1.6, P = 0.0007) or in the surgery ward (OR = 1.1, CI95% 1.0–1.3, P = 0.0401). Tracing and screening of contact patients, enhanced hand hygiene, cohorting and barrier nursing, as well as cleaning and disinfection were used to control the outbreak. To avoid future outbreaks and spread of MRSP a search-and-isolate policy was implemented. Currently nearly all new MRSP findings are detected in screening targeted to risk patients on admission. Conclusion Multidrug resistant MRSP is capable of causing a large outbreak difficult to control. Skin lesions, antimicrobial treatment and prolonged hospital stay increase the probability of acquiring MRSP. Rigorous control measures were needed to control the outbreak. We recommend the implementation of a search-and-isolate policy to reduce the burden of MRSP. PMID:25333798
When are pathogen genome sequences informative of transmission events?
Ferguson, Neil; Jombart, Thibaut
2018-01-01
Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individuals in a transmission tree can only be resolved by genetic data if mutations have accumulated between the sampled pathogen genomes. To quantify and compare the useful genetic diversity expected from genetic data in different pathogen outbreaks, we introduce here the concept of ‘transmission divergence’, defined as the number of mutations separating whole genome sequences sampled from transmission pairs. Using parameter values obtained by literature review, we simulate outbreak scenarios alongside sequence evolution using two models described in the literature to describe transmission divergence of ten major outbreak-causing pathogens. We find that while mean values vary significantly between the pathogens considered, their transmission divergence is generally very low, with many outbreaks characterised by large numbers of genetically identical transmission pairs. We describe the impact of transmission divergence on our ability to reconstruct outbreaks using two outbreak reconstruction tools, the R packages outbreaker and phybreak, and demonstrate that, in agreement with previous observations, genetic sequence data of rapidly evolving pathogens such as RNA viruses can provide valuable information on individual transmission events. Conversely, sequence data of pathogens with lower mean transmission divergence, including Streptococcus pneumoniae, Shigella sonnei and Clostridium difficile, provide little to no information about individual transmission events. Our results highlight the informational limitations of genetic sequence data in certain outbreak scenarios, and demonstrate the need to expand the toolkit of outbreak reconstruction tools to integrate other types of epidemiological data. PMID:29420641
Outbreaks-of Ebola virus disease in the West African sub-region.
Osungbade, K O; Oni, A A
2014-06-01
Five West African countries, including Nigeria are currently experiencing the largest, most severe, most complex outbreak of Ebola virus disease in history. This paper provided a chronology of outbreaks of Ebola virus disease in the West African sub-region and provided an update on efforts at containing the present outbreak. Literature from Pubmed (MEDLINE), AJOL, Google Scholar and Cochrane database were reviewed. Outbreaks of Ebola, virus disease had frequently occurred mainly in Central and East African countries. Occasional outbreaks reported from outside of Africa were due to laboratory contamination and imported monkeys in quarantine facilities. The ongoing outbreak in West Africa is the largest and first in the sub-region; the number of suspected cases and deaths from this single current outbreak is already about three times the total of all cases and deaths from previous known outbreaks in 40 years. Prevention and control efforts are hindered not only by lack of a known vaccine and virus-specific treatment, but also by weak health systems, poor sanitation, poor personal hygiene and cultural beliefs and practices, including myths and misconceptions about Ebola virus disease--all of which are prevalent in affected countries. Constrained by this situation, the World Health Organisation departed from the global standard and recommended the use of not yet proven treatments to treat or prevent the disease in humans on ethical and evidential grounds. The large number of people affected by the present outbreak in West Africa and the high case-fatality rate calls for accelerated evaluation and development of the investigational medical interventions for life saving and curbing the epidemic. Meanwhile, existing interventions such as early detection and isolation, contact tracing and monitoring, and adherence to rigorous procedures of infection prevention and control should be intensified.
Garske, Tini; Van Kerkhove, Maria D; Yactayo, Sergio; Ronveaux, Olivier; Lewis, Rosamund F; Staples, J Erin; Perea, William; Ferguson, Neil M
2014-05-01
Yellow fever is a vector-borne disease affecting humans and non-human primates in tropical areas of Africa and South America. While eradication is not feasible due to the wildlife reservoir, large scale vaccination activities in Africa during the 1940s to 1960s reduced yellow fever incidence for several decades. However, after a period of low vaccination coverage, yellow fever has resurged in the continent. Since 2006 there has been substantial funding for large preventive mass vaccination campaigns in the most affected countries in Africa to curb the rising burden of disease and control future outbreaks. Contemporary estimates of the yellow fever disease burden are lacking, and the present study aimed to update the previous estimates on the basis of more recent yellow fever occurrence data and improved estimation methods. Generalised linear regression models were fitted to a dataset of the locations of yellow fever outbreaks within the last 25 years to estimate the probability of outbreak reports across the endemic zone. Environmental variables and indicators for the surveillance quality in the affected countries were used as covariates. By comparing probabilities of outbreak reports estimated in the regression with the force of infection estimated for a limited set of locations for which serological surveys were available, the detection probability per case and the force of infection were estimated across the endemic zone. The yellow fever burden in Africa was estimated for the year 2013 as 130,000 (95% CI 51,000-380,000) cases with fever and jaundice or haemorrhage including 78,000 (95% CI 19,000-180,000) deaths, taking into account the current level of vaccination coverage. The impact of the recent mass vaccination campaigns was assessed by evaluating the difference between the estimates obtained for the current vaccination coverage and for a hypothetical scenario excluding these vaccination campaigns. Vaccination campaigns were estimated to have reduced the number of cases and deaths by 27% (95% CI 22%-31%) across the region, achieving up to an 82% reduction in countries targeted by these campaigns. A limitation of our study is the high level of uncertainty in our estimates arising from the sparseness of data available from both surveillance and serological surveys. With the estimation method presented here, spatial estimates of transmission intensity can be combined with vaccination coverage levels to evaluate the impact of past or proposed vaccination campaigns, thereby helping to allocate resources efficiently for yellow fever control. This method has been used by the Global Alliance for Vaccines and Immunization (GAVI Alliance) to estimate the potential impact of future vaccination campaigns.
Garske, Tini; Van Kerkhove, Maria D.; Yactayo, Sergio; Ronveaux, Olivier; Lewis, Rosamund F.; Staples, J. Erin; Perea, William; Ferguson, Neil M.
2014-01-01
Background Yellow fever is a vector-borne disease affecting humans and non-human primates in tropical areas of Africa and South America. While eradication is not feasible due to the wildlife reservoir, large scale vaccination activities in Africa during the 1940s to 1960s reduced yellow fever incidence for several decades. However, after a period of low vaccination coverage, yellow fever has resurged in the continent. Since 2006 there has been substantial funding for large preventive mass vaccination campaigns in the most affected countries in Africa to curb the rising burden of disease and control future outbreaks. Contemporary estimates of the yellow fever disease burden are lacking, and the present study aimed to update the previous estimates on the basis of more recent yellow fever occurrence data and improved estimation methods. Methods and Findings Generalised linear regression models were fitted to a dataset of the locations of yellow fever outbreaks within the last 25 years to estimate the probability of outbreak reports across the endemic zone. Environmental variables and indicators for the surveillance quality in the affected countries were used as covariates. By comparing probabilities of outbreak reports estimated in the regression with the force of infection estimated for a limited set of locations for which serological surveys were available, the detection probability per case and the force of infection were estimated across the endemic zone. The yellow fever burden in Africa was estimated for the year 2013 as 130,000 (95% CI 51,000–380,000) cases with fever and jaundice or haemorrhage including 78,000 (95% CI 19,000–180,000) deaths, taking into account the current level of vaccination coverage. The impact of the recent mass vaccination campaigns was assessed by evaluating the difference between the estimates obtained for the current vaccination coverage and for a hypothetical scenario excluding these vaccination campaigns. Vaccination campaigns were estimated to have reduced the number of cases and deaths by 27% (95% CI 22%–31%) across the region, achieving up to an 82% reduction in countries targeted by these campaigns. A limitation of our study is the high level of uncertainty in our estimates arising from the sparseness of data available from both surveillance and serological surveys. Conclusions With the estimation method presented here, spatial estimates of transmission intensity can be combined with vaccination coverage levels to evaluate the impact of past or proposed vaccination campaigns, thereby helping to allocate resources efficiently for yellow fever control. This method has been used by the Global Alliance for Vaccines and Immunization (GAVI Alliance) to estimate the potential impact of future vaccination campaigns. Please see later in the article for the Editors' Summary PMID:24800812
Hannett, George E.; Stone, Ward B.; Davis, Stephen W.; Wroblewski, Danielle
2011-01-01
The genetic relatedness of Clostridium botulinum type E isolates associated with an outbreak of wildlife botulism was studied using random amplification of polymorphic DNA (RAPD). Specimens were collected from November 2000 to December 2008 during a large outbreak of botulism affecting birds and fish living in and around Lake Erie and Lake Ontario. In our present study, a total of 355 wildlife samples were tested for the presence of botulinum toxin and/or organisms. Type E botulinum toxin was detected in 110 samples from birds, 12 samples from fish, and 2 samples from mammals. Sediment samples from Lake Erie were also examined for the presence of C. botulinum. Fifteen of 17 sediment samples were positive for the presence of C. botulinum type E. Eighty-one C. botulinum isolates were obtained from plants, animals, and sediments; of these isolates, 44 C. botulinum isolates produced type E toxin, as determined by mouse bioassay, while the remaining 37 isolates were not toxic for mice. All toxin-producing isolates were typed by RAPD; that analysis showed 12 different RAPD types and multiple subtypes. Our study thus demonstrates that multiple genetically distinct strains of C. botulinum were involved in the present outbreak of wildlife botulism. We found that C. botulinum type E is present in the sediments of Lake Erie and that a large range of bird and fish species is affected. PMID:21115703
Genomic Epidemiology of a Dengue Virus Epidemic in Urban Singapore▿ †
Schreiber, Mark J.; Holmes, Edward C.; Ong, Swee Hoe; Soh, Harold S. H.; Liu, Wei; Tanner, Lukas; Aw, Pauline P. K.; Tan, Hwee Cheng; Ng, Lee Ching; Leo, Yee Sin; Low, Jenny G. H.; Ong, Adrian; Ooi, Eng Eong; Vasudevan, Subhash G.; Hibberd, Martin L.
2009-01-01
Dengue is one of the most important emerging diseases of humans, with no preventative vaccines or antiviral cures available at present. Although one-third of the world's population live at risk of infection, little is known about the pattern and dynamics of dengue virus (DENV) within outbreak situations. By exploiting genomic data from an intensively studied major outbreak, we are able to describe the molecular epidemiology of DENV at a uniquely fine-scaled temporal and spatial resolution. Two DENV serotypes (DENV-1 and DENV-3), and multiple component genotypes, spread concurrently and with similar epidemiological and evolutionary profiles during the initial outbreak phase of a major dengue epidemic that took place in Singapore during 2005. Although DENV-1 and DENV-3 differed in viremia and clinical outcome, there was no evidence for adaptive evolution before, during, or after the outbreak, indicating that ecological or immunological rather than virological factors were the key determinants of epidemic dynamics. PMID:19211734
Olabode, Abayomi S; Jiang, Xiaowei; Robertson, David L; Lovell, Simon C
2015-08-01
The 2014 epidemic of Ebola virus disease (EVD) has had a devastating impact in West Africa. Sequencing of ebolavirus (EBOV) from infected individuals has revealed extensive genetic variation, leading to speculation that the virus may be adapting to humans, accounting for the scale of the 2014 outbreak. We computationally analyze the variation associated with all EVD outbreaks, and find none of the amino acid replacements lead to identifiable functional changes. These changes have minimal effect on protein structure, being neither stabilizing nor destabilizing, are not found in regions of the proteins associated with known functions and tend to cluster in poorly constrained regions of proteins, specifically intrinsically disordered regions. We find no evidence that the difference between the current and previous outbreaks is due to evolutionary changes associated with transmission to humans. Instead, epidemiological factors are likely to be responsible for the unprecedented spread of EVD. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Aaron S. Weed; Barbara J. Bentz; Matthew P. Ayres; Thomas P. Holmes
2015-01-01
Milder winters have contributed to recent outbreaks of Dendroctonus ponderosae in Canada, but have not been evaluated as a factor permitting concurrent outbreaks across its large range (ca.1500 9 1500 km) in the western United States (US). We examined the trend in minimum air temperatures in D. ponderosae habitats across the western US and assessed whether warming...
Proportion of Deaths and Clinical Features in Bundibugyo Ebola Virus Infection, Uganda
Farnon, Eileen C.; Wamala, Joseph; Okware, Sam; Cannon, Deborah L.; Reed, Zachary; Towner, Jonathan S.; Tappero, Jordan W.; Lutwama, Julius; Downing, Robert; Nichol, Stuart T.; Ksiazek, Thomas G.; Rollin, Pierre E.
2010-01-01
The first known Ebola hemorrhagic fever (EHF) outbreak caused by Bundibugyo Ebola virus occurred in Bundibugyo District, Uganda, in 2007. Fifty-six cases of EHF were laboratory confirmed. Although signs and symptoms were largely nonspecific and similar to those of EHF outbreaks caused by Zaire and Sudan Ebola viruses, proportion of deaths among those infected was lower (≈40%). PMID:21122234
J.R. Withrow; E.L. Smith; F.H. Koch; D. Yemshanov
2015-01-01
In pest risk assessment it is frequently necessary to make time-critical decisions regarding management of expanding pest populations. When an invasive pest outbreak is expanding rapidly, preemptive quarantine of areas that are under imminent threat of infestation is one of only a few available management tools that can be implemented quickly to help control the...
USDA-ARS?s Scientific Manuscript database
Noroviruses (NoV) annually cause millions of cases of gastrointestinal disease in the United States. Although NoV outbreaks are generally associated with raw shellfish, particularly oysters, outbreaks have also been known to occur from other common-source food-borne vehicles such as lettuce, frozen...
[Hospital hygiene - outbreak management of nosocomial infections].
Kerwat, Klaus; Wulf, Hinnerk
2012-04-01
According to §6, section 3 of the German Protection against Infections Act [Infektionsschutzgesetz (IfSG)] an outbreak is defined as the occurrence in large numbers of nosocomial infections for which an epidemiological relationship is probable or can be assumed. About 2-10% of nosocomial infections in hospitals (about 5% in intensive care wards) occur within the framework of an outbreak. The heaped occurrence of nosocomial infections can be declared according to the prescribed surveillance of nosocomial infections (§23 IfSG) when, in the course of this assessment, a statistically significant increase in the rate of infections becomes apparent. On the other hand, the occurrence of an outbreak can also be recognized through the vigilance of all involved personnel and a general sensibilization towards this subject. The names of patients involved in outbreaks need not be reported to the responsible health authorities. As a consequence of the report the health authorities become involved in the investigation to determine the cause and its elimination, and to provide support and advice. The outbreak management should be oriented on the respective recommendations of the Robert Koch Institute. © Georg Thieme Verlag Stuttgart · New York.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks.
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O; Cohn, Emily; Mekaru, Sumiko R; Brownstein, John S; Ramakrishnan, Naren
2017-01-19
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Spatial epidemiology of suspected clinical leptospirosis in Sri Lanka.
Robertson, C; Nelson, T A; Stephen, C
2012-04-01
Leptospirosis is one of the most widespread zoonoses in the world. A large outbreak of suspected human leptospirosis began in Sri Lanka during 2008. This study investigated spatial variables associated with suspected leptospirosis risk during endemic and outbreak periods. Data were obtained for monthly numbers of reported cases of suspected clinical leptospirosis for 2005-2009 for all of Sri Lanka. Space-time scan statistics were combined with regression modelling to test associations during endemic and outbreak periods. The cross-correlation function was used to test association between rainfall and leptospirosis at four locations. During the endemic period (2005-2007), leptospirosis risk was positively associated with shorter average distance to rivers and with higher percentage of agriculture made up of farms <0·20 hectares. Temporal correlation analysis of suspected leptospirosis cases and rainfall revealed a 2-month lag in rainfall-case association during the baseline period. Outbreak locations in 2008 were characterized by shorter distance to rivers and higher population density. The analysis suggests the possibility of household transmission in densely populated semi-urban villages as a defining characteristic of the outbreak. The role of rainfall in the outbreak remains to be investigated, although analysis here suggests a more complex relationship than simple correlation.
Datta, Siddhartha Sankar; Toikilik, Steven; Ropa, Berry; Chidlow, Glenys; Lagani, William
2012-10-01
A large outbreak of pertussis was detected during March 2011 in Goilala, a remote district of the Central Province in Papua New Guinea, characterized by rugged topography with no road access from the provincial headquarters. This outbreak investigation highlights the difficulties in reporting and responding to outbreaks in these settings. The suspected pertussis cases, reported by health workers from the Ononge health centre area, were investigated and confirmed for the presence of Bordetella pertussis DNA using the polymerase chain reaction (PCR) method. There were 205 suspected pertussis cases, with a case-fatality rate (CFR) of 3%. All cases were unvaccinated. The Central Province conducted a response vaccination programme providing 65% of children less than five years of age with diphtheria-pertussis-tetanus-HepB-Hib vaccine at a cost of US$ 12.62 per child. The incurred cost of vaccination in response to this outbreak was much higher than the US$ 3.80 per child for routine outreach patrol. To prevent further outbreaks of vaccine-preventable diseases in these areas, local health centres must ensure routine vaccination is strengthened through the "Reaching Every District" initiative of the National Department of Health.
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
NASA Astrophysics Data System (ADS)
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations.
Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-01-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods. PMID:28348865
Temporal Topic Modeling to Assess Associations between News Trends and Infectious Disease Outbreaks
Ghosh, Saurav; Chakraborty, Prithwish; Nsoesie, Elaine O.; Cohn, Emily; Mekaru, Sumiko R.; Brownstein, John S.; Ramakrishnan, Naren
2017-01-01
In retrospective assessments, internet news reports have been shown to capture early reports of unknown infectious disease transmission prior to official laboratory confirmation. In general, media interest and reporting peaks and wanes during the course of an outbreak. In this study, we quantify the extent to which media interest during infectious disease outbreaks is indicative of trends of reported incidence. We introduce an approach that uses supervised temporal topic models to transform large corpora of news articles into temporal topic trends. The key advantages of this approach include: applicability to a wide range of diseases and ability to capture disease dynamics, including seasonality, abrupt peaks and troughs. We evaluated the method using data from multiple infectious disease outbreaks reported in the United States of America (U.S.), China, and India. We demonstrate that temporal topic trends extracted from disease-related news reports successfully capture the dynamics of multiple outbreaks such as whooping cough in U.S. (2012), dengue outbreaks in India (2013) and China (2014). Our observations also suggest that, when news coverage is uniform, efficient modeling of temporal topic trends using time-series regression techniques can estimate disease case counts with increased precision before official reports by health organizations. PMID:28102319
Lethal canine distemper virus outbreak in cynomolgus monkeys in Japan in 2008.
Sakai, Kouji; Nagata, Noriyo; Ami, Yasushi; Seki, Fumio; Suzaki, Yuriko; Iwata-Yoshikawa, Naoko; Suzuki, Tadaki; Fukushi, Shuetsu; Mizutani, Tetsuya; Yoshikawa, Tomoki; Otsuki, Noriyuki; Kurane, Ichiro; Komase, Katsuhiro; Yamaguchi, Ryoji; Hasegawa, Hideki; Saijo, Masayuki; Takeda, Makoto; Morikawa, Shigeru
2013-01-01
Canine distemper virus (CDV) has recently expanded its host range to nonhuman primates. A large CDV outbreak occurred in rhesus monkeys at a breeding farm in Guangxi Province, China, in 2006, followed by another outbreak in rhesus monkeys at an animal center in Beijing in 2008. In 2008 in Japan, a CDV outbreak also occurred in cynomolgus monkeys imported from China. In that outbreak, 46 monkeys died from severe pneumonia during a quarantine period. A CDV strain (CYN07-dV) was isolated in Vero cells expressing dog signaling lymphocyte activation molecule (SLAM). Phylogenic analysis showed that CYN07-dV was closely related to the recent CDV outbreaks in China, suggesting continuing chains of CDV infection in monkeys. In vitro, CYN07-dV uses macaca SLAM and macaca nectin4 as receptors as efficiently as dog SLAM and dog nectin4, respectively. CYN07-dV showed high virulence in experimentally infected cynomolgus monkeys and excreted progeny viruses in oral fluid and feces. These data revealed that some of the CDV strains, like CYN07-dV, have the potential to cause acute systemic infection in monkeys.
Dallman, Tim; Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-08-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.
Emergence and epidemiology of ciguatera in the coastal cities of southern China.
Chan, Thomas Y K
2015-03-02
In the present review of 23 published case studies, the main objective is to report the emergence and epidemiology of ciguatera in the coastal cities of southern China. There was a sudden surge in ciguatera outbreaks in 2004. Ciguatera mostly occurred in the Guangdong Province. In Shenzhen, the incidence of ciguatera in 2004 was estimated to be over 7.5 per million people. In Foshan and Zhongshan, three large outbreaks each affecting over 100-200 subjects (caused by tiger grouper served at banquets) accounted for the much higher incidence of ciguatera in 2004 (>48.7 and >129.9 per million people). Humphead wrasse and areolated coral grouper were the other important ciguatoxic fish. In some subjects, risk factors for increased likelihood of (severe) ciguatera were present, namely concomitant alcohol consumption and ingestion of large reef fishes and CTX-rich fish parts. To prevent large outbreaks and severe illness, large apex predators from coral reefs should never be served at banquets and the public should realize the increased risk of severe symptoms due to ingestion of CTX-rich fish parts with alcohol. The systematic collection of accurate details, implementation of risk assessment process and continuing education for the public on prevention are of obvious importance.
Emergence and Epidemiology of Ciguatera in the Coastal Cities of Southern China
Chan, Thomas Y. K.
2015-01-01
In the present review of 23 published case studies, the main objective is to report the emergence and epidemiology of ciguatera in the coastal cities of southern China. There was a sudden surge in ciguatera outbreaks in 2004. Ciguatera mostly occurred in the Guangdong Province. In Shenzhen, the incidence of ciguatera in 2004 was estimated to be over 7.5 per million people. In Foshan and Zhongshan, three large outbreaks each affecting over 100–200 subjects (caused by tiger grouper served at banquets) accounted for the much higher incidence of ciguatera in 2004 (>48.7 and >129.9 per million people). Humphead wrasse and areolated coral grouper were the other important ciguatoxic fish. In some subjects, risk factors for increased likelihood of (severe) ciguatera were present, namely concomitant alcohol consumption and ingestion of large reef fishes and CTX-rich fish parts. To prevent large outbreaks and severe illness, large apex predators from coral reefs should never be served at banquets and the public should realize the increased risk of severe symptoms due to ingestion of CTX-rich fish parts with alcohol. The systematic collection of accurate details, implementation of risk assessment process and continuing education for the public on prevention are of obvious importance. PMID:25738329
Assessing Measles Transmission in the United States Following a Large Outbreak in California
Blumberg, Seth; Worden, Lee; Enanoria, Wayne; Ackley, Sarah; Deiner, Michael; Liu, Fengchen; Gao, Daozhou; Lietman, Thomas; Porco, Travis
2015-01-01
The recent increase in measles cases in California may raise questions regarding the continuing success of measles control. To determine whether the dynamics of measles is qualitatively different in comparison to previous years, we assess whether the 2014-2015 measles outbreak associated with an Anaheim theme park is consistent with subcriticality by calculating maximum-likelihood estimates for the effective reproduction numbe given this year’s outbreak, using the Galton-Watson branching process model. We find that the dynamics after the initial transmission event are consistent with prior transmission, but does not exclude the possibilty that the effective reproduction number has increased. PMID:26052471
Impact of human mobility on the emergence of dengue epidemics in Pakistan
Wesolowski, Amy; Qureshi, Taimur; Boni, Maciej F.; Sundsøy, Pål Roe; Johansson, Michael A.; Rasheed, Syed Basit; Engø-Monsen, Kenth; Buckee, Caroline O.
2015-01-01
The recent emergence of dengue viruses into new susceptible human populations throughout Asia and the Middle East, driven in part by human travel on both local and global scales, represents a significant global health risk, particularly in areas with changing climatic suitability for the mosquito vector. In Pakistan, dengue has been endemic for decades in the southern port city of Karachi, but large epidemics in the northeast have emerged only since 2011. Pakistan is therefore representative of many countries on the verge of countrywide endemic dengue transmission, where prevention, surveillance, and preparedness are key priorities in previously dengue-free regions. We analyze spatially explicit dengue case data from a large outbreak in Pakistan in 2013 and compare the dynamics of the epidemic to an epidemiological model of dengue virus transmission based on climate and mobility data from ∼40 million mobile phone subscribers. We find that mobile phone-based mobility estimates predict the geographic spread and timing of epidemics in both recently epidemic and emerging locations. We combine transmission suitability maps with estimates of seasonal dengue virus importation to generate fine-scale dynamic risk maps with direct application to dengue containment and epidemic preparedness. PMID:26351662
Seecharran, Tristan; Kalin-Manttari, Laura; Koskela, Katja; Nikkari, Simo; Dickins, Benjamin; Corander, Jukka; Skurnik, Mikael
2017-01-01
Yersinia pseudotuberculosis is a Gram-negative intestinal pathogen of humans and has been responsible for several nationwide gastrointestinal outbreaks. Large-scale population genomic studies have been performed on the other human pathogenic species of the genus Yersinia, Yersinia pestis and Yersinia enterocolitica allowing a high-resolution understanding of the ecology, evolution and dissemination of these pathogens. However, to date no purpose-designed large-scale global population genomic analysis of Y. pseudotuberculosis has been performed. Here we present analyses of the genomes of 134 strains of Y. pseudotuberculosis isolated from around the world, from multiple ecosystems since the 1960s. Our data display a phylogeographic split within the population, with an Asian ancestry and subsequent dispersal of successful clonal lineages into Europe and the rest of the world. These lineages can be differentiated by CRISPR cluster arrays, and we show that the lineages are limited with respect to inter-lineage genetic exchange. This restriction of genetic exchange maintains the discrete lineage structure in the population despite co-existence of lineages for thousands of years in multiple countries. Our data highlights how CRISPR can be informative of the evolutionary trajectory of bacterial lineages, and merits further study across bacteria. PMID:29177091
Ishikawa, Hirofumi; Shimogawara, Rieko; Fueda, Kaoru
2017-01-01
In the summer of 2014, an outbreak of autochthonous dengue fever occurred in Yoyogi Park and its vicinity, Tokyo, Japan. In this study, we investigated how the dengue fever outbreak progressed in Yoyogi Park using a mathematical model. This study was limited to the transmission of the dengue virus in Yoyogi Park and its vicinity. We estimated the distributions of the intrinsic incubation period and infection dates on the basis of epidemiological information on the dengue outbreak in 2014. We searched for an assumption that satisfactorily explains the outbreak in 2014 using rough estimates of secondary and tertiary infection cases. We constructed a mathematical model for the transmission of the dengue virus between humans and Aedes albopictus. We carried out 1,000-trial stochastic simulations for all combinations of three kinds of assumption about Ae. albopictus and asymptomatic infection with each of three levels. Simulation results showed that the scale of the outbreak was markedly affected by the daily survival rate of Ae. albopictus. The outbreak involved a small number of secondary infection cases, reached a peak at tertiary infection, and transformed to termination at the fourth infection. Under some assumptions, the daily progress of onset cases was within a range between the 1st-3rd quartiles of 1,000 trials for 87% of dates and within a range between the minimum and maximum for all dates. It is important to execute plans to detect asymptomatic cases and reduce the survival rate of Ae. albopictus to prevent the spread of tertiary infections unless an outbreak is suppressed at the secondary infection stage.
Maslanka, S E; Kerr, J G; Williams, G; Barbaree, J M; Carson, L A; Miller, J M; Swaminathan, B
1999-07-01
Clostridium perfringens is a common cause of food-borne illness. The illness is characterized by profuse diarrhea and acute abdominal pain. Since the illness is usually self-limiting, many cases are undiagnosed and/or not reported. Investigations are often pursued after an outbreak involving large numbers of people in institutions, at restaurants, or at catered meals. Serotyping has been used in the past to assist epidemiologic investigations of C. perfringens outbreaks. However, serotyping reagents are not widely available, and many isolates are often untypeable with existing reagents. We developed a pulsed-field gel electrophoresis (PFGE) method for molecular subtyping of C. perfringens isolates to aid in epidemiologic investigations of food-borne outbreaks. Six restriction endonucleases (SmaI, ApaI, FspI, MluI, KspI, and XbaI) were evaluated with a select panel of C. perfringens strains. SmaI was chosen for further studies because it produced 11 to 13 well-distributed bands of 40 to approximately 1,100 kb which provided good discrimination between isolates. Seventeen distinct patterns were obtained with 62 isolates from seven outbreak investigations or control strains. In general, multiple isolates from a single individual had indistinguishable PFGE patterns. Epidemiologically unrelated isolates (outbreak or control strains) had unique patterns; isolates from different individuals within an outbreak had similar, if not identical, patterns. PFGE identifies clonal relationships of isolates which will assist epidemiologic investigations of food-borne-disease outbreaks caused by C. perfringens.
Kinetic energy budget during strong jet stream activity over the eastern United States
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1980-01-01
Kinetic energy budgets are computed during a cold air outbreak in association with strong jet stream activity over the eastern United States. The period is characterized by large generation of kinetic energy due to cross-contour flow. Horizontal export and dissipation of energy to subgrid scales of motion constitute the important energy sinks. Rawinsonde data at 3 and 6 h intervals during a 36 h period are used in the analysis and reveal that energy fluctuations on a time scale of less than 12 h are generally small even though the overall energy balance does change considerably during the period in conjunction with an upper level trough which moves through the region. An error analysis of the energy budget terms suggests that this major change in the budget is not due to random errors in the input data but is caused by the changing synoptic situation. The study illustrates the need to consider the time and space scales of associated weather phenomena in interpreting energy budgets obtained through use of higher frequency data.
Tzeng, Jann-Inn; Chu, Chi-Hong; Chen, Shu-Wun; Yeh, Chia-Ming; Chiu, Chern-Hsun; Chiou, Chien-Shun; Lin, Jiunn-Horng; Chu, Chishih
2012-12-01
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) is a highly invasive zoonotic pathogen that causes bacteremia in humans and pigs. The prevalence of S. Choleraesuis in man has gradually decreased since the outbreak of foot and mouth disease in pigs in 1997 in southern Taiwan. The goal of this study was to investigate the change in prevalence of S. Choleraesuis carrying the virulence plasmid (pSCV) in human and swine isolates collected in 1995-2005 and characterize these. 380 isolates were collected from human and swine blood samples. Large pSCVs were determined by PCR and Southern blot analysis. Antimicrobial susceptibility and resistance genes, and the phylogenetic association of these large pSCV were analyzed. The number of isolates harboring the large pSCV was significantly reduced, and their prevalence differed between human and swine isolates. These large pSCVs were a recombinant of original 50-kb pSCV and R plasmid. In addition, some large pSCVs lacked two pSCV-specific deletion regions from pef to repC and from traT to samA. These large pSCVs carried the resistance genes bla(TEM,)aadA2, and sulI, as well as class I integrons of 0.65 and/or 1.9 kb in size, but were inconjugatible. Phylogenetic analysis demonstrated that the large pSCV evolves independently in human and swine isolates. S. Choleraesuis with large pSCV was significantly reduced after the foot and mouth disease outbreak and may evolve in human and swine specific isolates. Copyright © 2011. Published by Elsevier B.V.
Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew
2006-01-01
Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830
Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew
2006-03-27
To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.
Olu, Olushayo; Cormican, Martin; Kamara, Kande-Bure; Butt, Waqar
2015-01-01
Community Care Centres (CCCs) represent an innovative response to the containment of infection and the care of those infected in the context of an an Ebola Virus Disease (EVD) outbreak of unprecedented scale. This paper describes the implementation of this response in the Port Loko district of Sierra Leone in the last quarter of 2014. CCCs were effective in encouraging EVD patients to come forward, thus removing risk of transmission to their families and communities however there is significant scope for improvement in care for patients in the centres if the model is applied in future outbreaks of infectious disease. Changes in lay out of the centres, in staff training and support, in logistics and patient education are recommended. PMID:26740842
Olu, Olushayo; Cormican, Martin; Kamara, Kande-Bure; Butt, Waqar
2015-01-01
Community Care Centres (CCCs) represent an innovative response to the containment of infection and the care of those infected in the context of an an Ebola Virus Disease (EVD) outbreak of unprecedented scale. This paper describes the implementation of this response in the Port Loko district of Sierra Leone in the last quarter of 2014. CCCs were effective in encouraging EVD patients to come forward, thus removing risk of transmission to their families and communities however there is significant scope for improvement in care for patients in the centres if the model is applied in future outbreaks of infectious disease. Changes in lay out of the centres, in staff training and support, in logistics and patient education are recommended.
Norovirus outbreak associated with a hotel in the west of Ireland, 2006.
Michel, A; Fitzgerald, R; Whyte, D; Fitzgerald, A; Beggan, E; O'Connell, N; Greally, T
2007-07-01
An outbreak of gastrointestinal disease (nausea, vomiting or diarrhoea) occurred among a party of wedding guests, staff and other guests in a hotel in the west of Ireland, in October 2006. Upon notification, a multi-disciplinary outbreak control team was convened to investigate and control the outbreak. In all, 98 people were ascertained ill. The median duration of illness was 48 hours. The attack rate ranged between 48 and 85%. The hotel voluntarily notified health authorities and co-operated fully with investigation and control measures. Strict prevention and control measures were instituted promptly, including air ventilation, enhanced hand hygiene, isolation of cases, temporary "cooked food only", temporary alternative accommodation and specialised cleaning. Three cases of norovirus infection were laboratory-confirmed. There was no evidence of food- or water-borne transmission. Clinical and epidemiological findings indicated person-to-person transmission of norovirus. This report highlights the potential for large social gatherings to facilitate the spread of viral gastroenteritis by person-to-person transmission and via contaminated environment. Effective community management of this outbreak appears to have prevented its having an impact on local acute hospital services. The authors conclude that in addition to the existing national guidelines on the management of outbreaks of norovirus in healthcare settings, agreed guidelines for the management of norovirus outbreaks in the hotel and tourism industry are needed in Ireland.
IHEKWEAZU, C.; CARROLL, K.; ADAK, B.; SMITH, G.; PRITCHARD, G. C.; GILLESPIE, I. A.; VERLANDER, N. Q.; HARVEY-VINCE, L.; REACHER, M.; EDEGHERE, O.; SULTAN, B.; COOPER, R.; MORGAN, G.; KINROSS, P. T. N.; BOXALL, N. S.; IVERSEN, A.; BICKLER, G.
2012-01-01
SUMMARY In the summer of 2009, an outbreak of verocytotoxigenic Escherichia coli O157 (VTEC O157) was identified in visitors to a large petting farm in South East England. The peak attack rate was 6/1000 visitors, and highest in those aged <2 years (16/1000). We conducted a case-control study with associated microbiological investigations, on human, animal and environmental samples. We identified 93 cases; 65 primary, 13 secondary and 15 asymptomatic. Cases were more likely to have visited a specific barn, stayed for prolonged periods and be infrequent farm visitors. The causative organism was identified as VTEC O157 PT21/28 with the same VNTR profile as that isolated in faecal specimens from farm animals and the physical environment, mostly in the same barn. Contact with farm livestock, especially ruminants, should be urgently reviewed at the earliest suspicion of a farm-related VTEC O157 outbreak and appropriate risk management procedures implemented without delay. PMID:22093751
Ihekweazu, C; Carroll, K; Adak, B; Smith, G; Pritchard, G C; Gillespie, I A; Verlander, N Q; Harvey-Vince, L; Reacher, M; Edeghere, O; Sultan, B; Cooper, R; Morgan, G; Kinross, P T N; Boxall, N S; Iversen, A; Bickler, G
2012-08-01
In the summer of 2009, an outbreak of verocytotoxigenic Escherichia coli O157 (VTEC O157) was identified in visitors to a large petting farm in South East England. The peak attack rate was 6/1000 visitors, and highest in those aged <2 years (16/1000). We conducted a case-control study with associated microbiological investigations, on human, animal and environmental samples. We identified 93 cases; 65 primary, 13 secondary and 15 asymptomatic. Cases were more likely to have visited a specific barn, stayed for prolonged periods and be infrequent farm visitors. The causative organism was identified as VTEC O157 PT21/28 with the same VNTR profile as that isolated in faecal specimens from farm animals and the physical environment, mostly in the same barn. Contact with farm livestock, especially ruminants, should be urgently reviewed at the earliest suspicion of a farm-related VTEC O157 outbreak and appropriate risk management procedures implemented without delay.
Vasant, Bhakti R; Stafford, Russell J; Jennison, Amy V; Bennett, Sonya M; Bell, Robert J; Doyle, Christine J; Young, Jeannette R; Vlack, Susan A; Titmus, Paul; El Saadi, Debra; Jarvinen, Kari A J; Coward, Patricia; Barrett, Janine; Staples, Megan; Graham, Rikki M A; Smith, Helen V; Lambert, Stephen B
2017-10-01
During a large outbreak of Shiga toxin-producing Escherichia coli illness associated with an agricultural show in Australia, we used whole-genome sequencing to detect an IS1203v insertion in the Shiga toxin 2c subunit A gene of Shiga toxin-producing E. coli. Our study showed that clinical illness was mild, and hemolytic uremic syndrome was not detected.
Wadl, Maria; Altmann, Doris; Benzler, Justus; Eckmanns, Tim; Krause, Gérard; Spode, Anke; an der Heiden, Matthias
2011-01-01
In the context of a large outbreak of Shiga toxin–producing Escherichia coli O104:H4 in Germany, we quantified the timeliness of the German surveillance system for hemolytic uremic syndrome and Shiga toxin–producing E. coli notifiable diseases during 2003–2011. Although reporting occurred faster than required by law, potential for improvement exists at all levels of the information chain. PMID:22000368
Venkatraman, Navin; Silman, Daniel; Folegatti, Pedro M; Hill, Adrian V S
2017-08-02
We have just witnessed the largest and most devastating outbreak of Ebola virus disease, which highlighted the urgent need for development of an efficacious vaccine that could be used to curtail future outbreaks. Prior to 2014, there had been limited impetus worldwide to develop a vaccine since the virus was first discovered in 1976. Though too many lives were lost during this outbreak, it resulted in the significantly accelerated clinical development of a number of candidate vaccines through an extraordinary collaborative global effort coordinated by the World Health Organisation (WHO) and involving a number of companies, trial centres, funders, global stakeholders and agencies. We have acquired substantial safety and immunogenicity data on a number of vaccines in Caucasian and African populations. The rapid pace of events led to the initiation of the landmark efficacy trial testing the rVSV-vectored vaccine, which showed high level efficacy in an outbreak setting when deployed using an innovative ring vaccination strategy. Though the Public Health Emergency of International Concern (PHEIC) declared by the WHO has now been lifted, the global scientific community faces numerous challenges ahead to ensure that there is a licensed, deployable vaccine available for use in future outbreaks for at least the Zaire and Sudan strains of Ebola virus. There remain several unanswered questions on the durability of protection, mechanistic immunological correlates and preferred deployment strategies. This review outlines a brief history of the development of Ebola vaccines, the significant progress made since the scale of the outbreak became apparent, some lessons learnt and how they could shape future development of vaccines and the management of similar outbreaks. Copyright © 2017. Published by Elsevier Ltd.
Karlsen, Stein Rune; Jepsen, Jane Uhd; Odland, Arvid; Ims, Rolf Anker; Elvebakk, Arve
2013-11-01
The increased spread of insect outbreaks is among the most severe impacts of climate warming predicted for northern boreal forest ecosystems. Compound disturbances by insect herbivores can cause sharp transitions between vegetation states with implications for ecosystem productivity and climate feedbacks. By analysing vegetation plots prior to and immediately after a severe and widespread outbreak by geometrid moths in the birch forest-tundra ecotone, we document a shift in forest understorey community composition in response to the moth outbreak. Prior to the moth outbreak, the plots divided into two oligotrophic and one eutrophic plant community. The moth outbreak caused a vegetation state shift in the two oligotrophic communities, but only minor changes in the eutrophic community. In the spatially most widespread communities, oligotrophic dwarf shrub birch forest, dominance by the allelopathic dwarf shrub Empetrum nigrum ssp. hermaphroditum, was effectively broken and replaced by a community dominated by the graminoid Avenella flexuosa, in a manner qualitatively similar to the effect of wild fires in E. nigrum communities in coniferous boreal forest further south. As dominance by E. nigrum is associated with retrogressive succession the observed vegetation state shift has widespread implications for ecosystem productivity on a regional scale. Our findings reveal that the impact of moth outbreaks on the northern boreal birch forest system is highly initial-state dependent, and that the widespread oligotrophic communities have a low resistance to such disturbances. This provides a case for the notion that climate impacts on arctic and northern boreal vegetation may take place most abruptly when conveyed by changed dynamics of irruptive herbivores.
Gross, Kevin; Rosenheim, Jay A
2011-10-01
Secondary pest outbreaks occur when the use of a pesticide to reduce densities of an unwanted target pest species triggers subsequent outbreaks of other pest species. Although secondary pest outbreaks are thought to be familiar in agriculture, their rigorous documentation is made difficult by the challenges of performing randomized experiments at suitable scales. Here, we quantify the frequency and monetary cost of secondary pest outbreaks elicited by early-season applications of broad-spectrum insecticides to control the plant bug Lygus spp. (primarily L. hesperus) in cotton grown in the San Joaquin Valley, California, USA. We do so by analyzing pest-control management practices for 969 cotton fields spanning nine years and 11 private ranches. Our analysis uses statistical methods to draw formal causal inferences from nonexperimental data that have become popular in public health and economics, but that are not yet widely known in ecology or agriculture. We find that, in fields that received an early-season broad-spectrum insecticide treatment for Lygus, 20.2% +/- 4.4% (mean +/- SE) of late-season pesticide costs were attributable to secondary pest outbreaks elicited by the early-season insecticide application for Lygus. In 2010 U.S. dollars, this equates to an additional $6.00 +/- $1.30 (mean +/- SE) per acre in management costs. To the extent that secondary pest outbreaks may be driven by eliminating pests' natural enemies, these figures place a lower bound on the monetary value of ecosystem services provided by native communities of arthropod predators and parasitoids in this agricultural system.
Fernandes, Anand M.; Balasegaram, Sooria; Willis, Caroline; Wimalarathna, Helen M. L.; Maiden, Martin C.; McCarthy, Noel D.
2015-01-01
Background. Cattle are the second most common source of human campylobacteriosis. However, routes to account for this scale of transmission have not been identified. In contrast to chicken, red meat is not heavily contaminated at point of sale. Although effective pasteurization prevents milk-borne infection, apparently sporadic infections may include undetected outbreaks from raw or perhaps incompletely pasteurized milk. Methods. A rise in Campylobacter gastroenteritis in an isolated population was investigated using whole-genome sequencing (WGS), an epidemiological study, and environmental investigations. Results. A single strain was identified in 20 cases, clearly distinguishable from other local strains and a reference population by WGS. A case-case analysis showed association of infection with the outbreak strain and milk from a single dairy (odds ratio, 8; Fisher exact test P value = .023). Despite temperature records indicating effective pasteurization, mechanical faults likely to lead to incomplete pasteurization of part of the milk were identified by further testing and examination of internal components of dairy equipment. Conclusions. Here, milk distribution concentrated on a small area, including school-aged children with low background incidence of campylobacteriosis, facilitated outbreak identification. Low-level contamination of widely distributed milk would not produce as detectable an outbreak signal. Such hidden outbreaks may contribute to the substantial burden of apparently sporadic Campylobacter from cattle where transmission routes are not certain. The effective discrimination of outbreak isolates from a reference population using WGS shows that integrating these data and approaches into surveillance could support the detection as well as investigation of such outbreaks. PMID:26063722
Low-altitude outbreaks of human fascioliasis related with summer rainfall in Gilan province, Iran.
Salahi-Moghaddam, Abdoreza; Habibi-Nokhandam, Majid; Fuentes, Màrius V
2011-11-01
Following human fascioliasis outbreaks in 1988 and 1999 in Gilan province, northern Iran, efforts are now made to shed light on the seasonal pattern of fascioliasis transmission in this endemic area, taking into account snail host populations, climatic conditions and human cases. Populations of the intermediate host snail (Lymnaea spp.) peak in May and November, while there is a fourfold increase in the rate of human fascioliasis in February compared to that of September. Transmission is likely to occur mainly in late autumn and sporadically in late spring. Rainfall, seasonally analysed in periods of 3 years, indicates that accumulated summer rainfall may be related with the 1988 and 1999 human fascioliasis outbreaks. Although a more detailed picture, based on the analysis of further abiotic and biotic factors influencing fascioliasis transmission in this area, is required to substantiate this hypothesis, our results serve as the first step of a geographical information system project concerning the epidemiological study of fascioliasis in Iran. This local-scale study concerning the effects of climate change and natural disasters on the spread of fascioliasis aims to facilitate the understanding of what goes on at the regional scale in this respect.
Surveillance for waterborne-disease outbreaks--United States, 1995-1996.
Levy, D A; Bens, M S; Craun, G F; Calderon, R L; Herwaldt, B L
1998-12-11
Since 1971, CDC and the U.S. Environmental Protection Agency have maintained a collaborative surveillance system for collecting and periodically reporting data that relate to occurrences and causes of waterborne-disease outbreaks (WBDOs). This summary includes data for January 1995 through December 1996 and previously unreported outbreaks in 1994. The surveillance system includes data about outbreaks associated with drinking water and recreational water. State, territorial, and local public health departments are primarily responsible for detecting and investigating WBDOs and for voluntarily reporting them to CDC on a standard form. For the period 1995-1996, 13 states reported a total of 22 outbreaks associated with drinking water. These outbreaks caused an estimated total of 2,567 persons to become ill. No deaths were reported. The microbe or chemical that caused the outbreak was identified for 14 (63.6%) of the 22 outbreaks. Giardia lamblia and Shigella sonnei each caused two (9.1%) of the 22 outbreaks; Escherichia coli O157:H7, Plesiomonas shigelloides, and a small round structured virus were implicated for one outbreak (4.5%) each. One of the two outbreaks of giardiasis involved the largest number of cases, with an estimated 1,449 ill persons. Seven outbreaks (31.8% of 22) of chemical poisoning, which involved a total of 90 persons, were reported. Copper and nitrite were associated with two outbreaks (9.1% of 22) each and sodium hydroxide, chlorine, and concentrated liquid soap with one outbreak (4.5%) each. Eleven (50.0%) of the 22 outbreaks were linked to well water, eight in noncommunity and three in community systems. Only three of the 10 outbreaks associated with community water systems were caused by problems at water treatment plants; the other seven resulted from problems in the water distribution systems and plumbing of individual facilities (e.g., a restaurant). Six of the seven outbreaks were associated with chemical contamination of the drinking water; the seventh outbreak was attributed to a small round structured virus. Four of the seven outbreaks occurred because of backflow or backsiphonage through a cross-connection, and two occurred because of high levels of copper that leached into water after the installation of new plumbing. For three of the four outbreaks caused by contamination from a cross-connection, an improperly installed vacuum breaker or a faulty backflow prevention device was identified; no protection against backsiphonage was found for the fourth outbreak. Thirty-seven outbreaks from 17 states were attributed to recreational water exposure and affected an estimated 9,129 persons, including 8,449 persons in two large outbreaks of cryptosporidiosis. Twenty-two (59.5%) of these 37 were outbreaks of gastroenteritis; nine (24.3%) were outbreaks of dermatitis; and six (16.2%) were single cases of primary amebic meningoencephalitis caused by Naegleria fowleri, all of which were fatal. The etiologic agent was identified for 33 (89.2%) of the 37 outbreaks. Six (27.3%) of the 22 outbreaks of gastroenteritis were caused by Cryptosporidium parvum and six (27.3%) by E. coli O157:H7. All of the latter were associated with unchlorinated water (i.e., in lakes) or inadequately chlorinated water (i.e., in a pool). Thirteen (59.1%) of these 22 outbreaks were associated with lake water, eight (36.4%) with swimming or wading pools, and one(4.5%) with a hot spring. Of the nine outbreaks of dermatitis, seven (77.8%) were outbreaks of Pseudomonas dermatitis associated with hot tubs, and two (22.2%) were lake-associated outbreaks of swimmer's itch caused by Schistosoma species. WBDOs caused by E. coli O157:H7 were reported more frequently than in previous years and were associated primarily with recreational lake water. This finding suggests the need for better monitoring of water quality and identification of sources of
Human resources for health: lessons from the cholera outbreak in Papua New Guinea
Bieb, Sibauk; Clark, Geoff; Miller, Geoff; MacIntyre, Raina; Zwi, Anthony
2013-01-01
Issue Papua New Guinea is striving to achieve the minimum core requirements under the International Health Regulations in surveillance and outbreak response, and has experienced challenges in the availability and distribution of health professionals. Context Since mid-2009, a large cholera outbreak spread across lowland regions of the country and has been associated with more than 15 500 notifications at a case fatality ratio of 3.2%. The outbreak placed significant pressure on clinical and public health services. Action We describe some of the challenges to cholera preparedness and response in this human resource-limited setting, the strategies used to ensure effective cholera management and lessons learnt. Outcome Cholera task forces were useful to establish a clear system of leadership and accountability for cholera outbreak response and ensure efficiencies in each technical area. Cholera outbreak preparedness and response was strongest when human resource and health systems functioned well before the outbreak. Communication relied on coordination of existing networks and methods for empowering local leaders and villagers to modify behaviours of the population. Discussion In line with the national health emergencies plan, the successes of human resource strategies during the cholera outbreak should be built upon through emergency exercises, especially in non-affected provinces. Population needs for all public health professionals involved in health emergency preparedness and response should be mapped, and planning should be implemented to increase the numbers in relevant areas. Human resource planning should be integrated with health emergency planning. It is essential to maintain and strengthen the human resource capacities and experiences gained during the cholera outbreak to ensure a more effective response to the next health emergency. PMID:24319607
Human resources for health: lessons from the cholera outbreak in Papua New Guinea.
Rosewell, Alexander; Bieb, Sibauk; Clark, Geoff; Miller, Geoff; MacIntyre, Raina; Zwi, Anthony
2013-01-01
Papua New Guinea is striving to achieve the minimum core requirements under the International Health Regulations in surveillance and outbreak response, and has experienced challenges in the availability and distribution of health professionals. Since mid-2009, a large cholera outbreak spread across lowland regions of the country and has been associated with more than 15 500 notifications at a case fatality ratio of 3.2%. The outbreak placed significant pressure on clinical and public health services. We describe some of the challenges to cholera preparedness and response in this human resource-limited setting, the strategies used to ensure effective cholera management and lessons learnt. Cholera task forces were useful to establish a clear system of leadership and accountability for cholera outbreak response and ensure efficiencies in each technical area. Cholera outbreak preparedness and response was strongest when human resource and health systems functioned well before the outbreak. Communication relied on coordination of existing networks and methods for empowering local leaders and villagers to modify behaviours of the population. In line with the national health emergencies plan, the successes of human resource strategies during the cholera outbreak should be built upon through emergency exercises, especially in non-affected provinces. Population needs for all public health professionals involved in health emergency preparedness and response should be mapped, and planning should be implemented to increase the numbers in relevant areas. Human resource planning should be integrated with health emergency planning. It is essential to maintain and strengthen the human resource capacities and experiences gained during the cholera outbreak to ensure a more effective response to the next health emergency.
Stephens, Nicola; Sault, Cameron; Firestone, Simon M; Lightfoot, Diane; Bell, Cameron
2007-03-01
This report describes one of the largest egg-associated outbreaks of foodborne illness in Australia for many years. Between June and December 2005, five outbreaks of Salmonella Typhimurium phage type 135 were identified in Tasmania, leading to 125 laboratory-confirmed cases. Public health investigations included case and food handler interviews, cohort studies, environmental health investigations of food businesses, microbiological testing, traceback, and inspections and drag swabbing of an egg farm. These investigations enabled identification of foods containing raw egg or foods contaminated through inadequate food handling and/or storage procedures as possible vehicles for infection. A particular poultry farm was reported as the common source of eggs. Interventions targeting the general public and food handlers to promote better handling of egg products, and advice to egg producers regarding harm minimisation strategies led to the series of outbreaks being brought under control.
Multiple origins of foot-and-mouth disease virus serotype Asia 1 outbreaks, 2003-2007.
Valarcher, Jean Francois; Knowles, Nick J; Zakharov, Valery; Scherbakov, Alexey; Zhang, Zhidong; Shang, You Jun; Liu, Zai Xin; Liu, Xiang Tao; Sanyal, Aniket; Hemadri, Divakar; Tosh, Chakradhar; Rasool, Thaha J; Pattnaik, Bramhadev; Schumann, Kate R; Beckham, Tammy R; Linchongsubongkoch, Wilai; Ferris, Nigel P; Roeder, Peter L; Paton, David J
2009-07-01
We investigated the molecular epidemiology of foot-and-mouth disease virus (FMDV) serotype Asia 1, which caused outbreaks of disease in Asia during 2003-2007. Since 2004, the region affected by outbreaks of this serotype has increased from disease-endemic countries in southern Asia (Afghanistan, India, Iran, Nepal, Pakistan) northward to encompass Kyrgyzstan, Tajikistan, Uzbekistan, several regions of the People's Republic of China, Mongolia, Eastern Russia, and North Korea. Phylogenetic analysis of complete virus capsid protein 1 (VP1) gene sequences demonstrated that the FMDV isolates responsible for these outbreaks belonged to 6 groups within the Asia 1 serotype. Some contemporary strains were genetically closely related to isolates collected historically from the region as far back as 25 years ago. Our analyses also indicated that some viruses have spread large distances between countries in Asia within a short time.
Investigation of an outbreak of Salmonella enterica serovar Newport infection.
Irvine, W N; Gillespie, I A; Smyth, F B; Rooney, P J; McClenaghan, A; Devine, M J; Tohani, V K
2009-10-01
A large outbreak of Salmonella enterica serotype Newport infection occurred in Northern Ireland during September and October 2004. Typing of isolates from patients confirmed that this strain was indistinguishable from that in concurrent outbreaks in regions of England, in Scotland and in the Isle of Man. A total of 130 cases were distributed unequally across local government district areas in Northern Ireland. The epidemic curve suggested a continued exposure over about 4 weeks. A matched case-control study of 23 cases and 39 controls found a statistically significant association with a history of having eaten lettuce in a meal outside the home and being a case (odds ratio 23.7, 95% confidence interval 1.4-404.3). This exposure was reported by 57% of cases. Although over 300 food samples were tested, none yielded any Salmonella spp. Complexity and limited traceability in salad vegetable distribution hindered further investigation of the ultimate source of the outbreak.
Climate Change, Extreme Weather Events, and Fungal Disease Emergence and Spread
NASA Technical Reports Server (NTRS)
Tucker, Compton J.; Yager, Karina; Anyamba, Assaf; Linthicum, Kenneth J.
2011-01-01
Empirical evidence from multiple sources show the Earth has been warming since the late 19th century. More recently, evidence for this warming trend is strongly supported by satellite data since the late 1970s from the cryosphere, atmosphere, oceans, and land that confirms increasing temperature trends and their consequences (e.g., reduced Arctic sea ice, rising sea level, ice sheet mass loss, etc.). At the same time, satellite observations of the Sun show remarkably stable solar cycles since the late 1970s, when direct observations of the Sun's total solar irradiance began. Numerical simulation models, driven in part by assimilated satellite data, suggest that future-warming trends will lead to not only a warmer planet, but also a wetter and drier climate depending upon location in a fashion consistent with large-scale atmospheric processes. Continued global warming poses new opportunities for the emergence and spread of fungal disease, as climate systems change at regional and global scales, and as animal and plant species move into new niches. Our contribution to this proceedings is organized thus: First, we review empirical evidence for a warming Earth. Second, we show the Sun is not responsible for the observed warming. Third, we review numerical simulation modeling results that project these trends into the future, describing the projected abiotic environment of our planet in the next 40 to 50 years. Fourth, we illustrate how Rift Valley fever outbreaks have been linked to climate, enabling a better understanding of the dynamics of these diseases, and how this has led to the development of an operational predictive outbreak model for this disease in Africa. Fifth, We project how this experience may be applicable to predicting outbreaks of fungal pathogens in a warming world. Lastly, we describe an example of changing species ranges due to climate change, resulting from recent warming in the Andes and associated glacier melt that has enabled amphibians to colonize higher elevation lakes, only to be followed shortly by the emergence of fungal disease in the new habitats.
GOST: A generic ordinal sequential trial design for a treatment trial in an emerging pandemic.
Whitehead, John; Horby, Peter
2017-03-01
Conducting clinical trials to assess experimental treatments for potentially pandemic infectious diseases is challenging. Since many outbreaks of infectious diseases last only six to eight weeks, there is a need for trial designs that can be implemented rapidly in the face of uncertainty. Outbreaks are sudden and unpredictable and so it is essential that as much planning as possible takes place in advance. Statistical aspects of such trial designs should be evaluated and discussed in readiness for implementation. This paper proposes a generic ordinal sequential trial design (GOST) for a randomised clinical trial comparing an experimental treatment for an emerging infectious disease with standard care. The design is intended as an off-the-shelf, ready-to-use robust and flexible option. The primary endpoint is a categorisation of patient outcome according to an ordinal scale. A sequential approach is adopted, stopping as soon as it is clear that the experimental treatment has an advantage or that sufficient advantage is unlikely to be detected. The properties of the design are evaluated using large-sample theory and verified for moderate sized samples using simulation. The trial is powered to detect a generic clinically relevant difference: namely an odds ratio of 2 for better rather than worse outcomes. Total sample sizes (across both treatments) of between 150 and 300 patients prove to be adequate in many cases, but the precise value depends on both the magnitude of the treatment advantage and the nature of the ordinal scale. An advantage of the approach is that any erroneous assumptions made at the design stage about the proportion of patients falling into each outcome category have little effect on the error probabilities of the study, although they can lead to inaccurate forecasts of sample size. It is important and feasible to pre-determine many of the statistical aspects of an efficient trial design in advance of a disease outbreak. The design can then be tailored to the specific disease under study once its nature is better understood.
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A
2017-03-01
Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.
The macro-economic impact of a foot-and-mouth disease incursion in New Zealand.
Belton, D J
2004-01-01
The 2001 outbreak of Foot-and-Mouth Disease (FMD) in the United Kingdom heightened public concern in New Zealand about the economic consequences of an outbreak of FMD, and resulted in the Reserve Bank and Treasury conducting an assessment of the macro-economic impact of a small FMD outbreak in New Zealand. The study was based on a relatively small outbreak in which 50 properties were infected over a period of two months. Cumulative losses calculated over two years from the beginning of the hypothetical outbreak were estimated at around NZ dollars 10 billion, a figure twice as large as the initial Ministry of Agriculture and Forestry estimate. The main reason for this difference is that the Reserve Bank study included the additional macro-economic effects of a slump in domestic demand. The study also demonstrated that in New Zealand under the conditions of the current OIE Terrestrial Animal Health Code for FMD, the economic impact of any programme to control FMD by vaccination in which vaccinated animals are not slaughtered, is significantly worse than rapid eradication by stamping out.
A campylobacter outbreak associated with stir-fried food.
Evans, M. R.; Lane, W.; Frost, J. A.; Nylen, G.
1998-01-01
An outbreak of gastrointestinal illness affecting 12 of 29 customers of a 'Hawaiian' theme restaurant specializing in stir-fried food occurred in Cardiff, Wales in February 1997. Campylobacter jejuni serotype HS50 phage type 49 (PT49) was isolated from 5 cases. A total of 47 isolates of C. jejuni HS50 PT49 were identified from Wales during 1997, of which 11 were isolated in late February or early March and from the Cardiff area. In the outbreak, illness was associated with eating stir-fried chicken pieces (relative risk 4.81, 95% confidence interval (CI) 0.76-30.44, P=0.03) and a dose-response relationship between risk of illness and amount of chicken consumed was observed (chi2-test for linear trend 3.96, P=0.047). Undercooking of chicken was probably due to a combination of inadequate cooking time and use of large chicken pieces. This is the first time that stir-fried food has been associated with a campylobacter outbreak. The incident also illustrates the value of routine campylobacter subtyping in supporting outbreak investigation. PMID:9825777
The 2010 outbreak of poliomyelitis in Tajikistan: epidemiology and lessons learnt.
Yakovenko, M L; Gmyl, A P; Ivanova, O E; Eremeeva, T P; Ivanov, A P; Prostova, M A; Baykova, O Y; Isaeva, O V; Lipskaya, G Y; Shakaryan, A K; Kew, O M; Deshpande, J M; Agol, V I
2014-02-20
A large outbreak of poliomyelitis, with 463 laboratory-confirmed and 47 polio-compatible cases, took place in 2010 in Tajikistan. Phylogenetic analysis of the viral VP1 gene suggested a single importation of wild poliovirus type 1 from India in late 2009, its further circulation in Tajikistan and expansion into neighbouring countries, namely Kazakhstan, Russia, Turkmenistan and Uzbekistan. Whole-genome sequencing of 14 isolates revealed recombination events with enterovirus C with cross-overs within the P2 region. Viruses with one class of recombinant genomes co-circulated with the parental virus, and representatives of both caused paralytic poliomyelitis. Serological analysis of 327 sera from acute flaccid paralysis cases as well as from patients with other diagnoses and from healthy people demonstrated inadequate immunity against polio in the years preceding the outbreak. Evidence was obtained suggesting that vaccination against poliomyelitis, in rare cases, may not prevent the disease. Factors contributing to the peculiarities of this outbreak are discussed. The outbreak emphasises the necessity of continued vaccination against polio and the need, at least in risk areas, of quality control of this vaccination through well planned serological surveillance.
Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy
2008-08-15
Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, R.R.; Paul, H.G.
1996-09-01
Larval densities of the western spruce budworm (Choristoneura occidentalis Freeman) were monitored for 12 years (1984-95) on permanent sample plots in northeastern Oregon. The time series spanned a period of general budworm infestations when populations increased rapidly from low densities, plateaued for a time at high-outbreak densities, and then declind suddenly. Midway through the period (1988), an area with half of the sample plots was sprayed with the microbial insecticide Bacillus thuringiensis (B.t.) in an operational suppression project. The other sample plots were part of an untreated area. In the treated area, B.t. spray reduced numbers of larvae by moremore » than 90 percent; however, populations returned to an outbreak density within 3 years. In the untreated area, populations remained at outbreak densities and continued to fluctuate due to natural feedback processes. Natural decline of the population (1992-95) in the monitored area was largely unexplained and coincided with an overall collapse of the budworm outbreak in the Blue Mountains.« less
Clostridium perfringens in London, July 2009: two weddings and an outbreak.
Eriksen, J; Zenner, D; Anderson, S R; Grant, K; Kumar, D
2010-06-24
Food poisoning outbreaks caused by Clostridium perfringens enterotoxin occur occasionally in Europe but have become less common in recent years. This paper presents the microbiological and epidemiological results of a large C. perfringens outbreak occurring simultaneously at two weddings that used the same caterer. The outbreak involved several London locations and required coordination across multiple agencies. A case-control study (n=134) was carried out to analyse possible associations between the food consumed and becoming ill. Food, environmental and stool samples were tested for common causative agents, including enterotoxigenic C. perfringens. The clinical presentation and the epidemiological findings were compatible with C. perfringens food poisoning and C. perfringens enterotoxin was detected in stool samples from two cases. The case-control study found statistically significant associations between becoming ill and eating either a specific chicken or lamb dish prepared by the same food handler of the implicated catering company. A rapid outbreak investigation with preliminary real-time results and the successful collaboration between the agencies and the caterer led to timely identification and rectification of the failures in the food handling practices.
Brevik, Øyvind Jakobsen; Frisch, Kathleen; Watanabe, Kuninori; Duesund, Henrik; Nylund, Are
2017-01-01
Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish’s skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria. PMID:29095885
Småge, Sverre Bang; Brevik, Øyvind Jakobsen; Frisch, Kathleen; Watanabe, Kuninori; Duesund, Henrik; Nylund, Are
2017-01-01
Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish's skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria.