NASA Astrophysics Data System (ADS)
Thorslund, J.; Jarsjo, J.; Destouni, G.
2017-12-01
The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.
NASA Astrophysics Data System (ADS)
Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim
2017-06-01
Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.
DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS
The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...
NASA Astrophysics Data System (ADS)
Leng, Bi-Bin; Gong, Jian; Zhang, Wen-bo; Ji, Xue-Qiang
2017-11-01
According to the environmental pollution caused by large-scale pig breeding, the SPSS statistical software and factor analysis method were used to calculate the environmental pollution bearing index of China’s breeding scale from 2006 to 2015. The results showed that with the increase of scale the density of live pig farming and the amount of fertilizer application in agricultural production increased. However, due to the improvement of national environmental awareness, industrial waste water discharge is greatly reduced. China's hog farming environmental pollution load index is rising.
Environmental status of livestock and poultry sectors in China under current transformation stage.
Qian, Yi; Song, Kaihui; Hu, Tao; Ying, Tianyu
2018-05-01
Intensive animal husbandry had aroused great environmental concerns in many developed countries. However, some developing countries are still undergoing the environmental pollution from livestock and poultry sectors. Driven by the large demand, China has experienced a remarkable increase in dairy and meat production, especially in the transformation stage from conventional household breeding to large-scale industrial breeding. At the same time, a large amount of manure from the livestock and poultry sector is released into waterbodies and soil, causing eutrophication and soil degradation. This condition will be reinforced in the large-scale cultivation where the amount of manure exceeds the soil nutrient capacity, if not treated or utilized properly. Our research aims to analyze whether the transformation of raising scale would be beneficial to the environment as well as present the latest status of livestock and poultry sectors in China. The estimation of the pollutants generated and discharged from livestock and poultry sector in China will facilitate the legislation of manure management. This paper analyzes the pollutants generated from the manure of the five principal commercial animals in different farming practices. The results show that the fattening pigs contribute almost half of the pollutants released from manure. Moreover, the beef cattle exert the largest environmental impact for unitary production, about 2-3 times of pork and 5-20 times of chicken. The animals raised with large-scale feedlots practice generate fewer pollutants than those raised in households. The shift towards industrial production of livestock and poultry is easier to manage from the environmental perspective, but adequate large-scale cultivation is encouraged. Regulation control, manure treatment and financial subsidies for the manure treatment and utilization are recommended to achieve the ecological agriculture in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Diffuse pollution of soil and water: Long term trends at large scales?
NASA Astrophysics Data System (ADS)
Grathwohl, P.
2012-04-01
Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.
Ruuskanen, Suvi; Laaksonen, Toni; Morales, Judith; Moreno, Juan; Mateo, Rafael; Belskii, Eugen; Bushuev, Andrey; Järvinen, Antero; Kerimov, Anvar; Krams, Indrikis; Morosinotto, Chiara; Mänd, Raivo; Orell, Markku; Qvarnström, Anna; Slate, Fred; Tilgar, Vallo; Visser, Marcel E; Winkel, Wolfgang; Zang, Herwig; Eeva, Tapio
2014-03-01
Birds have been used as bioindicators of pollution, such as toxic metals. Levels of pollutants in eggs are especially interesting, as developing birds are more sensitive to detrimental effects of pollutants than adults. Only very few studies have monitored intraspecific, large-scale variation in metal pollution across a species' breeding range. We studied large-scale geographic variation in metal levels in the eggs of a small passerine, the pied flycatcher (Ficedula hypoleuca), sampled from 15 populations across Europe. We measured 10 eggshell elements (As, Cd, Cr, Cu, Ni, Pb, Zn, Se, Sr, and Ca) and several shell characteristics (mass, thickness, porosity, and color). We found significant variation among populations in eggshell metal levels for all metals except copper. Eggshell lead, zinc, and chromium levels decreased from central Europe to the north, in line with the gradient in pollution levels over Europe, thus suggesting that eggshell can be used as an indicator of pollution levels. Eggshell lead levels were also correlated with soil lead levels and pH. Most of the metals were not correlated with eggshell characteristics, with the exception of shell mass, or with breeding success, which may suggest that birds can cope well with the current background exposure levels across Europe.
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Continental fresh water transports and loads excess nutrients and pollutants from various land surface sources, through the landscape, into downstream inland and coastal water environments. Our ability to understand, predict and control the eutrophication and the pollution pressures on inland, coastal and marine water ecosystems relies on our ability to quantify these mass flows. This paper synthesizes a series of hydro- biogeochemical studies of nutrient and pollutant sources, transport-transformations and mass flows in catchment areas across a range of scales, from continental, through regional and national, to individual drainage basin scales. Main findings on continental scales include correlations between country/catchment area, population and GDP and associated pollutant and nutrient loading, which differ significantly between world regions with different development levels. On regional scales, essential systematic near-coastal gaps are identified in the national monitoring of nutrient and pollutant loads from land to the sea. Combination of the unmonitored near-coastal area characteristics with the relevant regional nutrient and pollutant load correlations with these characteristics shows that the unmonitored nutrient and pollutant mass loads to the sea may often be as large as, or greater than the monitored river loads. Process studies on individual basin- scales show long-term nutrient and pollutant memories in the soil-groundwater systems of the basins, which may continue to uphold large mass loading to inland and coastal waters long time after mitigation of the sources. Linked hydro-biogeochemical-economic model studies finally demonstrate significant comparative advantages of policies that demand explicit quantitative account of the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model limitations, instead of the now common neglect or subjective implicit handling of such uncertainties in strategies and practices for combating water pollution and eutrophication.
LARGE-SCALE PREDICTIONS OF MOBILE SOURCE CONTRIBUTIONS TO CONCENTRATIONS OF TOXIC AIR POLLUTANTS
This presentation shows concentrations and deposition of toxic air pollutants predicted by a 3-D air quality model, the Community Multi Scale Air Quality (CMAQ) modeling system. Contributions from both on-road and non-road mobile sources are analyzed.
Thatcher, T L; Wilson, D J; Wood, E E; Craig, M J; Sextro, R G
2004-08-01
Scale modeling is a useful tool for analyzing complex indoor spaces. Scale model experiments can reduce experimental costs, improve control of flow and temperature conditions, and provide a practical method for pretesting full-scale system modifications. However, changes in physical scale and working fluid (air or water) can complicate interpretation of the equivalent effects in the full-scale structure. This paper presents a detailed scaling analysis of a water tank experiment designed to model a large indoor space, and experimental results obtained with this model to assess the influence of furniture and people in the pollutant concentration field at breathing height. Theoretical calculations are derived for predicting the effects from losses of molecular diffusion, small scale eddies, turbulent kinetic energy, and turbulent mass diffusivity in a scale model, even without Reynolds number matching. Pollutant dispersion experiments were performed in a water-filled 30:1 scale model of a large room, using uranine dye injected continuously from a small point source. Pollutant concentrations were measured in a plane, using laser-induced fluorescence techniques, for three interior configurations: unobstructed, table-like obstructions, and table-like and figure-like obstructions. Concentrations within the measurement plane varied by more than an order of magnitude, even after the concentration field was fully developed. Objects in the model interior had a significant effect on both the concentration field and fluctuation intensity in the measurement plane. PRACTICAL IMPLICATION: This scale model study demonstrates both the utility of scale models for investigating dispersion in indoor environments and the significant impact of turbulence created by furnishings and people on pollutant transport from floor level sources. In a room with no furniture or occupants, the average concentration can vary by about a factor of 3 across the room. Adding furniture and occupants can increase this spatial variation by another factor of 3.
NASA Astrophysics Data System (ADS)
Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.
2007-12-01
Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and urbanization. In the outflow region, air pollutants characteristics depend largely on the air mass climatology. In most cases, increases of air pollutants level are observed with the transport events directly from the source region.
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
Long range transport of air pollutants in Europe and acid precipitation in Norway
Jack Nordo
1976-01-01
Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...
Soils as sinks or sources for diffuse pollution of the water cycle
NASA Astrophysics Data System (ADS)
Grathwohl, Peter
2010-05-01
Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow and reactive transport. Field observations must allow long-term monitoring (e.g. in hydrological observatories, TERENO etc.), new cross-compartment monitoring strategies need to be applied, and massive parallel numerical codes for prediction of reactive transport of potential water pollutants at catchment scale have to be developed. This is also a prerequisite to assess the impact of climate change as well as land use change on future surface and groundwater quality.
Mapping the groundwater vulnerability for pollution at the pan African scale.
Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik
2016-02-15
We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater pollution will be integrated in the assessment methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Priorities for toxic wastewater management in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, A.
1996-12-31
This study assesses the number of industries in Pakistan, the total discharge of wastewater, the biological oxygen demand (BOD) load, and the toxicity of the wastewater. The industrial sector is a major contributor to water pollution, with high levels of BOD, heavy metals, and toxic compounds. Only 30 industries have installed water pollution control equipment, and most are working at a very low operational level. Priority industrial sectors for pollution control are medium- to large-scale textile industries and small-scale tanneries and electroplating industries. Each day the textile industries discharge about 85,000 m{sup 3} of wastewater with a high BOD, whilemore » the electroplating industries discharge about 23,000 m{sup 3} of highly toxic and hazardous wastewater. Various in-plant modifications can reduce wastewater discharges. Economic incentives, like tax rebates, subsidies, and soft loans, could be an option for motivating medium- to large-scale industries to control water pollution. Central treatment plants may be constructed for treating wastewater generated by small-scale industries. The estimated costs for the treatment of textile and electroplating wastewater are given. The legislative structure in Pakistan is insufficient for control of industrial pollution; not only do existing laws need revision, but more laws and regulations are needed to improve the state of affairs, and enforcement agencies need to be strengthened. 15 refs., 1 fig., 9 tabs.« less
77 FR 66837 - Workshop To Define Approaches To Assess the Effectiveness of Policies To Reduce PM2.5
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... composition of air pollution in urban areas that will occur over both time and space. The purposes of this... implementation of these large-scale changes in levels of air pollution. Consistent with the recent North American... verify the relationship between reductions in air pollution emissions, ambient concentrations, human...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
.... Chronic marine pollution stresses fish and wildlife resources, possibly delaying recovery of resources... chronic marine pollution are believed to be at least as important as those of large-scale spills. The... and lower Cook Inlet. The Council seeks to further reduce pollution in the marine environment to...
Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai
2013-02-01
The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content
NASA Astrophysics Data System (ADS)
Hanna, Steven R.; Young, George S.
2017-01-01
What do the terms "top-down", "inverse", "backwards", "adjoint", "sensor data fusion", "receptor", "source term estimation (STE)", to name several appearing in the current literature, have in common? These varied terms are used by different disciplines to describe the same general methodology - the use of observations of air pollutant concentrations and knowledge of wind fields to identify air pollutant source locations and/or magnitudes. Academic journals are publishing increasing numbers of papers on this topic. Examples of scenarios related to this growing interest, ordered from small scale to large scale, are: use of real-time samplers to quickly estimate the location of a toxic gas release by a terrorist at a large public gathering (e.g., Haupt et al., 2009);
NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING
Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...
Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating
NASA Astrophysics Data System (ADS)
Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.
2010-11-01
Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.
Workshop on Spanning Regional-to-Global Pollution
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Newman, Paul A.; Gleason, James F.; Brune, William H.; Dickerson, Russell R.
2002-01-01
Pollution is often considered a localized phenomenon, but it is now clear that it travels from region-to-region, country to country, and even continent to continent. In addition to urban pollution in developed countries, large emissions from developing nations and large-scale biomass fires add to the global pollution burden. Ozone and aerosols are two components of pollution that contribute to radiative forcing of the earth s climate. In turn, as climate changes, rates of chemical and microphysical reactions may be perturbed. Considering the earth as a coupled chemical-microphysical-climate system poses challenges for models and observations alike. These issues were the topic of a Workshop held in May 2002 at NASA GSFC s Laboratory for Atmospheres. Highlights of the Workshop are summarized in this article.
COMMUNITY STRESSORS AND SUSCEPTIBILITY TO AIR POLLUTION IN URBAN ASTHMA
Given our large sample size within and across communities, our unique data on year-round fine-scale variability in multiple air pollutants, and our strong experience in community –based environmental health education and outreach, we believe that our study will provid...
NETWORK DESIGN FOR OZONE MONITORING
The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks from air pollution. A major cr...
The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...
Park, Il-Soo; Lee, Suk-Jo; Kim, Cheol-Hee; Yoo, Chul; Lee, Yong-Hee
2004-06-01
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.
NASA Astrophysics Data System (ADS)
Panagopoulos, Yiannis; Gassman, Philip W.; Jha, Manoj K.; Kling, Catherine L.; Campbell, Todd; Srinivasan, Raghavan; White, Michael; Arnold, Jeffrey G.
2015-05-01
Nonpoint source pollution from agriculture is the main source of nitrogen and phosphorus in the stream systems of the Corn Belt region in the Midwestern US. This region is comprised of two large river basins, the intensely row-cropped Upper Mississippi River Basin (UMRB) and Ohio-Tennessee River Basin (OTRB), which are considered the key contributing areas for the Northern Gulf of Mexico hypoxic zone according to the US Environmental Protection Agency. Thus, in this area it is of utmost importance to ensure that intensive agriculture for food, feed and biofuel production can coexist with a healthy water environment. To address these objectives within a river basin management context, an integrated modeling system has been constructed with the hydrologic Soil and Water Assessment Tool (SWAT) model, capable of estimating river basin responses to alternative cropping and/or management strategies. To improve modeling performance compared to previous studies and provide a spatially detailed basis for scenario development, this SWAT Corn Belt application incorporates a greatly refined subwatershed structure based on 12-digit hydrologic units or 'subwatersheds' as defined by the US Geological Service. The model setup, calibration and validation are time-demanding and challenging tasks for these large systems, given the scale intensive data requirements, and the need to ensure the reliability of flow and pollutant load predictions at multiple locations. Thus, the objectives of this study are both to comprehensively describe this large-scale modeling approach, providing estimates of pollution and crop production in the region as well as to present strengths and weaknesses of integrated modeling at such a large scale along with how it can be improved on the basis of the current modeling structure and results. The predictions were based on a semi-automatic hydrologic calibration approach for large-scale and spatially detailed modeling studies, with the use of the Sequential Uncertainty Fitting algorithm (SUFI-2) and the SWAT-CUP interface, followed by a manual water quality calibration on a monthly basis. The refined modeling approach developed in this study led to successful predictions across most parts of the Corn Belt region and can be used for testing pollution mitigation measures and agricultural economic scenarios, providing useful information to policy makers and recommendations on similar efforts at the regional scale.
NASA Astrophysics Data System (ADS)
Drobinski, P.; SaïD, F.; Ancellet, G.; Arteta, J.; Augustin, P.; Bastin, S.; Brut, A.; Caccia, J. L.; Campistron, B.; Cautenet, S.; Colette, A.; Coll, I.; Corsmeier, U.; Cros, B.; Dabas, A.; Delbarre, H.; Dufour, A.; Durand, P.; GuéNard, V.; Hasel, M.; Kalthoff, N.; Kottmeier, C.; Lasry, F.; Lemonsu, A.; Lohou, F.; Masson, V.; Menut, L.; Moppert, C.; Peuch, V. H.; Puygrenier, V.; Reitebuch, O.; Vautard, R.
2007-07-01
In the French Mediterranean basin the large city of Marseille and its industrialized suburbs (oil plants in the Fos-Berre area) are major pollutant sources that cause frequent and hazardous pollution episodes, especially in summer when intense solar heating enhances the photochemical activity and when the sea breeze circulation redistributes pollutants farther north in the countryside. This paper summarizes the findings of 5 years of research on the sea breeze in southern France and related mesoscale transport and dilution of pollutants within the Field Experiment to Constraint Models of Atmospheric Pollution and Emissions Transport (ESCOMPTE) program held in June and July 2001. This paper provides an overview of the experimental and numerical challenges identified before the ESCOMPTE field experiment and summarizes the key findings made in observation, simulation, and theory. We specifically address the role of large-scale atmospheric circulation to local ozone vertical distribution and the mesoscale processes driving horizontal advection of pollutants and vertical transport and mixing via entrainment at the top of the sea breeze or at the front and venting along the sloped terrain. The crucial importance of the interactions between processes of various spatial and temporal scales is thus highlighted. The advances in numerical modeling and forecasting of sea breeze events and ozone pollution episodes in southern France are also underlined. Finally, we conclude and point out some open research questions needing further investigation.
Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey
2014-04-15
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.
Bridging the scales in a eulerian air quality model to assess megacity export of pollution
NASA Astrophysics Data System (ADS)
Siour, G.; Colette, A.; Menut, L.; Bessagnet, B.; Coll, I.; Meleux, F.
2013-08-01
In Chemistry Transport Models (CTMs), spatial scale interactions are often represented through off-line coupling between large and small scale models. However, those nested configurations cannot give account of the impact of the local scale on its surroundings. This issue can be critical in areas exposed to air mass recirculation (sea breeze cells) or around regions with sharp pollutant emission gradients (large cities). Such phenomena can still be captured by the mean of adaptive gridding, two-way nesting or using model nudging, but these approaches remain relatively costly. We present here the development and the results of a simple alternative multi-scale approach making use of a horizontal stretched grid, in the Eulerian CTM CHIMERE. This method, called "stretching" or "zooming", consists in the introduction of local zooms in a single chemistry-transport simulation. It allows bridging online the spatial scales from the city (∼1 km resolution) to the continental area (∼50 km resolution). The CHIMERE model was run over a continental European domain, zoomed over the BeNeLux (Belgium, Netherlands and Luxembourg) area. We demonstrate that, compared with one-way nesting, the zooming method allows the expression of a significant feedback of the refined domain towards the large scale: around the city cluster of BeNeLuX, NO2 and O3 scores are improved. NO2 variability around BeNeLux is also better accounted for, and the net primary pollutant flux transported back towards BeNeLux is reduced. Although the results could not be validated for ozone over BeNeLux, we show that the zooming approach provides a simple and immediate way to better represent scale interactions within a CTM, and constitutes a useful tool for apprehending the hot topic of megacities within their continental environment.
We present a robust methodology for examining the relationship between synoptic-scale atmospheric transport patterns and pollutant concentration levels observed at a site. Our approach entails calculating a large number of back-trajectories from the observational site over a long...
Applications and Prospective of Peroxidase Biocatalysis in the Environmental Field
NASA Astrophysics Data System (ADS)
Torres-Duarte, Cristina; Vazquez-Duhalt, Rafael
Environmental protection is, doubtless, one of the most important challenges for the human kind. The huge amount of pollutants derived from industrial activities represents a threat for the environment and ecologic equilibrium. Phenols and halogenated phenols, polycyclic aromatic hydrocarbons, endocrine disruptive chemicals, pesticides, dioxins, polychlorinated biphenyls, industrial dyes, and other xenobiotics are among the most important pollutants. A large variety of these xenobiotics are substrates for peroxidases and thus susceptible to enzymatic transformation. The literature reports mainly the use of horseradish peroxidase, manganese peroxidase, lignin peroxidase, and chloroperoxidase on the transformation of these pollutants. Peroxidases are enzymes able to transform a variety of compounds following a free radical mechanism, giving oxidized or polymerized products. The peroxidase transformation of these pollutants is accompanied by a reduction in their toxicity, due to a biological activity loss, a reduction in the bioavailability or due to the removal from aqueous phase, especially when the pollutant is found in water. In addition, when the pollutants are present in soil, peroxidases catalyze a covalent binding to soil organic matter. In most of cases, oxidized products are less toxic and easily biodegradable than the parent compounds. In spite of their versatility and potential use in environmental processes, peroxidases are not applied at large scale yet. Diverse challenges, such as stability, redox potential, and the production of large amounts, should be solved in order to apply peroxidases in the pollutant transformation. In this chapter, we critically review the transformation of different xenobiotics by peroxidases, with special attention on the identified transformation products, the probable reaction mechanisms, and the toxicity reports. Finally, the design and development of an environmental biocatalyst is discussed. The design challenges are mainly focused on the enzyme stability in the presence of hydrogen peroxide and operational conditions, an enzyme with high redox potential to be able to oxidize a wide range of xenobiotics or pollutants, and the protein overexpression at large-scale in industrial microorganisms is discussed.
1982-02-01
AD A113 .5. ORANGE COUNTY POLLUTION CONTROL DEPT ORLANDO FL F/S 6/6 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR-ETC(U) FEB 82 H D...Large-Scale Operations Management Test of use of the white amur for control of problem aquatic plants in Lake Conway, Fla. Report 1 of the series presents...as follows: Miller, D. 1982. "Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants; Report 2, First
NASA Astrophysics Data System (ADS)
Cheng, Wai Chi; Liu, Chun-Ho
2010-05-01
To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant
NASA Astrophysics Data System (ADS)
Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu
2017-09-01
Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.
Izrael, Y A; Nazarov, I M; Ryaboshapko, A G
1982-12-01
The authors consider some possible ways of regulating three types of atmospheric emission of pollutants: - emission of substances causing pollution of the natural environment on the global scale (global pollutants); - emission of substances causing pollution on a regional scale, most often including territories of several countries (international pollutants); - emission of substances causing negative effects in a relatively limited region, for example within border area of two adjoining countries. Substances (gaseous, as a rule) of a long life-time in the atmosphere that can contaminate natural media on a global scale irrespective of the place of emission refer to the first class of pollutants that are subject to emission regulation at an international level and to quota establishement for individual countries. They are carbon dioxide, freon, krypton-85.Various approaches to determining permissible emission and to quota establishing are discussed in the paper.The second group includes substances of a limited, yet rather long, life-time whose emission intensity makes a notable contribution to environmental pollution of a large region including territories of several countries. Here it is needed to regulate internationally not the atmospheric emission as it is but pollutant transport over national boundaries (sulphur and nitrogen oxides, pesticides, heavy metals).The third group includes substances of relatively short time of life producing local effects. Emission regulation in such cases should be based upon bilateral agreements with due account of countries' mutual interests.
Allometric scaling of UK urban emissions: interpretation and implications for air quality management
NASA Astrophysics Data System (ADS)
MacKenzie, Rob; Barnes, Matt; Whyatt, Duncan; Hewitt, Nick
2016-04-01
Allometry uncovers structures and patterns by relating the characteristics of complex systems to a measure of scale. We present an allometric analysis of air quality for UK urban settlements, beginning with emissions and moving on to consider air concentrations. We consider both airshed-average 'urban background' concentrations (cf. those derived from satellites for NO2) and local pollution 'hotspots'. We show that there is a strong and robust scaling (with respect to population) of the non-point-source emissions of the greenhouse gases carbon dioxide and methane, as well as the toxic pollutants nitrogen dioxide, PM2.5, and 1,3-butadiene. The scaling of traffic-related emissions is not simply a reflection of road length, but rather results from the socio-economic patterning of road-use. The recent controversy regarding diesel vehicle emissions is germane to our study but does not affect our overall conclusions. We next develop an hypothesis for the population-scaling of airshed-average air concentrations, with which we demonstrate that, although average air quality is expected to be worse in large urban centres compared to small urban centres, the overall effect is an economy of scale (i.e., large cities reduce the overall burden of emissions compared to the same population spread over many smaller urban settlements). Our hypothesis explains satellite-derived observations of airshed-average urban NO2 concentrations. The theory derived also explains which properties of nature-based solutions (urban greening) can make a significant contribution at city scale, and points to a hitherto unforeseen opportunity to make large cities cleaner than smaller cities in absolute terms with respect to their airshed-average pollutant concentration.
Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John
2011-12-15
This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.
Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research.
Larkin, A; Hystad, P
2017-12-01
We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research. Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur. Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.
Emissions of air pollutants from scented candles burning in a test chamber
NASA Astrophysics Data System (ADS)
Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe
2012-08-01
Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.
The expanding scope of air pollution monitoring can facilitate sustainable development.
Knox, Andrew; Mykhaylova, Natalia; Evans, Greg J; Lee, Colin J; Karney, Bryan; Brook, Jeffrey R
2013-03-15
This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable. Copyright © 2012 Elsevier B.V. All rights reserved.
Students' Ideas and Attitudes about Air Quality
ERIC Educational Resources Information Center
Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin
2004-01-01
The results of a large scale (N=1001) cross-sectional (Years 6, 8 and 10) study of students' ideas about the composition of unpolluted air, the nature of air pollution, the biological consequences of air pollution, and about acid rain and the Greenhouse Effect are reported. A range of persistent alternative conceptions were identified, in some…
Studies in Environment--Volume III: Pollution and the Municipality.
ERIC Educational Resources Information Center
Cooper, Pamela C.; And Others
Recent studies have focused attention on the fact that residents of inner-city neighborhoods are subject to greater amounts of pollutants than are other neighborhoods of large cities. In this study, the premise is set forth and investigated at the metropolitan scale, seeking to discover differences of impact between the center city and its…
Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)
NASA Astrophysics Data System (ADS)
Isakov, V.
2010-12-01
Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features, regional-scale transport, and photochemical transformations. Since these needs are currently not met by a single model, hybrid air quality modeling has recently been developed to combine these capabilities. In this paper, we present the results of two studies where we applied the hybrid modeling approach to provide spatial and temporal details in air quality concentrations to support exposure and health studies: a) an urban-scale air quality accountability study involving near-source exposures to multiple ambient air pollutants, and b) an urban-scale epidemiological study involving human health data based on emergency department visits.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng
2011-07-01
Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.
Turbulent Plume Dispersion over Two-dimensional Idealized Urban Street Canyons
NASA Astrophysics Data System (ADS)
Wong, C. C. C.; Liu, C. H.
2012-04-01
Human activities are the primary pollutant sources which degrade the living quality in the current era of dense and compact cities. A simple and reasonably accurate pollutant dispersion model is helpful to reduce pollutant concentrations in city or neighborhood scales by refining architectural design or urban planning. The conventional method to estimate the pollutant concentration from point/line sources is the Gaussian plume model using empirical dispersion coefficients. Its accuracy is pretty well for applying to rural areas. However, the dispersion coefficients only account for the atmospheric stability and streamwise distance that often overlook the roughness of urban surfaces. Large-scale buildings erected in urban areas significantly modify the surface roughness that in turn affects the pollutant transport in the urban canopy layer (UCL). We hypothesize that the aerodynamic resistance is another factor governing the dispersion coefficient in the UCL. This study is thus conceived to study the effects of urban roughness on pollutant dispersion coefficients and the plume behaviors. Large-eddy simulations (LESs) are carried out to examine the plume dispersion from a ground-level pollutant source over idealized 2D street canyons in neutral stratification. Computations with a wide range of aspect ratios (ARs), including skimming flow to isolated flow regimes, are conducted. The vertical profiles of pollutant distribution for different values of friction factor are compared that all reach a self-similar Gaussian shape. Preliminary results show that the pollutant dispersion is closely related to the friction factor. For relatively small roughness, the factors of dispersion coefficient vary linearly with the friction factor until the roughness is over a certain level. When the friction factor is large, its effect on the dispersion coefficient is less significant. Since the linear region covers at least one-third of the full range of friction factor in our empirical analysis, urban roughness is a major factor for dispersion coefficient. The downstream air quality could then be a function of both atmospheric stability and urban roughness.
Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng
2017-03-03
In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world.
Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng
2017-01-01
In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world. PMID:28273834
NASA Astrophysics Data System (ADS)
Gately, Conor; Hutyra, Lucy
2016-04-01
In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.
NASA Astrophysics Data System (ADS)
Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.
2015-12-01
In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.
NASA Astrophysics Data System (ADS)
Destouni, G.
2008-12-01
Excess nutrient and pollutant releases from various point and diffuse sources at and below the land surface, associated with land use, industry and households, pose serious eutrophication and pollution risks to inland and coastal water ecosystems worldwide. These risks must be assessed, for instance according to the EU Water Framework Directive (WFD). The WFD demands economically efficient, basin-scale water management for achieving and maintaining good physico-chemical and ecological status in all the inland and coastal waters of EU member states. This paper synthesizes a series of hydro-biogeochemical and linked economic efficiency studies of basin-scale waterborne nutrient and pollutant flows, the development over the last decades up to the current levels of these flows, the main monitoring and modelling uncertainties associated with their quantification, and the effectiveness and economic efficiency of different possible abatement strategies for abating them in order to meet WFD requirements and other environmental goals on local, national and international levels under climate and other regional change. The studies include different Swedish and Baltic Sea drainage basins. Main findings include quantification of near-coastal monitoring gaps and long-term nutrient and pollutant memory in the subsurface (soil-groundwater-sediment) water systems of drainage basins. The former may significantly mask nutrient and pollutant loads to the sea while the latter may continue to uphold large loads to inland and coastal waters long time after source mitigation. A methodology is presented for finding a rational trade-off between the two resource-demanding options to reduce, or accept and explicitly account for the uncertainties implied by these monitoring gaps and long-term nutrient-pollution memories and time lags, and other knowledge, data and model uncertainties that limit the effectiveness and efficiency of water pollution and eutrophication management.
Chen, Mo; Lu, Wenxi; Hou, Zeyu; Zhang, Yu; Jiang, Xue; Wu, Jichun
2017-01-01
Different gold mining and smelting processes can lead to distinctive heavy metal contamination patterns and results. This work examined heavy metal pollution from a large-scale cyanidation gold mining operation, which is distinguished from artisanal and small-scale amalgamation gold mining, in Jilin Province, China. A total of 20 samples including one background sample were collected from the surface of the mining area and the tailings pond in June 2013. These samples were analyzed for heavy metal concentrations and degree of pollution as well as sources of Cr, Cu, Zn, Pb, Ni, Cd, As, and Hg. The mean concentrations of Pb, Hg, and Cu (819.67, 0.12, and 46.92 mg kg -1 , respectively) in soil samples from the gold mine area exceeded local background values. The mean Hg content was less than the first-class standard of the Environmental Quality for Soils, which suggested that the cyanidation method is helpful for reducing Hg pollution. The geochemical accumulation index and enrichment factor results indicated clear signs that enrichment was present for Pb, Cu, and Hg, with the presence of serious Pb pollution and moderate presence to none of Hg and Cu pollution. Multivariate statistical analysis showed that there were three metal sources: (1) Pb, Cd, Cu, and As came from anthropogenic sources; (2) Cr and Zn were naturally occurring; whereas (3) Hg and Ni had a mix of anthropogenic and natural sources. Moreover, the tailings dam plays an important role in intercepting the tailings. Furthermore, the potential ecological risk assessment results showed that the study area poses a potentially strong risk to the ecological health. Furthermore, Pb and Hg (due to high concentration and high toxicity, respectively) are major pollutants on the risk index, and both Pb and Hg pollution should be of great concern at the Haigou gold mines in Jilin, China.
NASA Astrophysics Data System (ADS)
Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.
2015-12-01
The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.
EPA, in collaboration with FHWA, has been involved in a large-scale monitoring research study in an effort to characterize highway vehicle emissions in a near-road environment. The pollutants of interest include particulate matter with aerodynamic diameter less than 2.5 microns ...
Urban planning and interactions with atmospheric pollution in Arve valley
NASA Astrophysics Data System (ADS)
Langlois de Septenville, William; Cossart, Étienne
2017-04-01
Atmospheric pollution is a major concern of urbanised areas and territory managers have to conduct efficient policies to decrease population exposure and vulnerability. Even if pollution peaks are subject to an important mediatisation and to a large part of preventive actions, background pollution remains responsible of the largest sanitary effects. They depend on (1) the concentration and the duration of the exposure and (2) to the kind of pollutants considered. Many sources of pollutants can be identified in urban areas as heating, industry or traffic; and each of them generates specific particles. Currently, the major part of pollution risk studies focuses on modelling particle emissions and their dissemination in the environment. These kinds of studies highlight the hazard intensity and its spatiality, commonly named the hazard exposure. Another part of risk studies, less frequent, considers the vulnerability. Vulnerability is a complex concept that involves a wide range of scales and objects ranging from biophysical parameters to social characteristics. They notably concern accessibility to information, knowledge and perceptions about the risk. The Arve valley (south-east of France) is subject to heavy pollution concentrations. High levels recording in this area have imposed the implementation of an Atmosphere Protection Plan. This type of plan is triggered if a peak occurs and enforces provisional binding measures for polluters, such as highway speed limitation for traffic emissions. These measures are only focused on emissions and have no effect for reducing vulnerability and exposition, for a long- and short-term time scales. An opportunity to ensure this objective is to consider how local urban morphologies can combine exposition and vulnerability situations. Indeed, cities have been planned without taking into account atmospheric pollution and morphologies. This context may conduct to the increase in both of these two risk components and producing hotspots of air pollution risk situations. In this poster, we purpose to present a methodology for analysing the relationships between actual city morphologies and pollutants. To ensure this objective, we consider the spatial characteristics of vulnerabilities. We also consider urban morphology responsible for a large part of the population exposure, particularly because it influences people's mobility and the frequentation of specific areas. Last part of the analysis will integrate the local street morphologies and their ability to concentrate pollutants, mainly focusing on traffic emissions. For example, close and large buildings may create areas where the low ventilation increases concentration of pollutants.
NASA Astrophysics Data System (ADS)
Zhao, Suping; Yu, Ye; Qin, Dahe; Yin, Daiying; He, Jianjun
2017-12-01
To solve traffic congestion and to improve urban air quality, long-lasting and large-scale even-odd license plate controlled plan was implemented by local government during 20 November to 26 December 2016 in urban Lanzhou, a semi-arid valley city of northwest China. The traffic control measures provided an invaluable opportunity to evaluate its effects on urban air quality in less developed cities of northwest China. Based on measured simultaneously air pollutants and meteorological parameters, the abatement of traffic-related pollutants induced by the implemented control measures such as CO, PM2.5 and PM10 (the particulate matter with diameter less than 2.5 μm and 10 μm) concentrations were firstly quantified by comparing the air quality data in urban areas with those in rural areas (uncontrolled zones). The concentrations of CO, NO2 from motor vehicles and fine particulate matter (PM2.5) were shown to have significant decreases of 15%-23% during traffic control period from those measured before control period with hourly maximum CO, PM2.5, and NO2/SO2 reduction of 43%, 35% and 141.4%, respectively. The influence of the control measures on AQI (air quality index) and ozone was less as compared to its effect on other air pollutants. Therefore, to alleviate serious winter haze pollution in China and to protect human health, the stringent long-term and large-scale even-odd license plate controlled plan should be implemented aperiodically in urban areas, especially for the periods with poor diffusion conditions.
NASA Astrophysics Data System (ADS)
Huang, Y.; Liu, M.; Wada, Y.; He, X.; Sun, X.
2017-12-01
In recent decades, with rapid economic growth, industrial development and urbanization, expanding pollution of polycyclic aromatic hydrocarbons (PAHs) has become a diversified and complicated phenomenon in China. However, the availability of sufficient monitoring activities for PAHs in multi-compartment and the corresponding multi-interface migration processes are still limited, especially at a large geographic area. In this study, we couple the Multimedia Fate Model (MFM) to the Community Multi-Scale Air Quality (CMAQ) model in order to consider the fugacity and the transient contamination processes. This coupled dynamic contaminant model can evaluate the detailed local variations and mass fluxes of PAHs in different environmental media (e.g., air, surface film, soil, sediment, water and vegetation) across different spatial (a county to country) and temporal (days to years) scales. This model has been applied to a large geographical domain of China at a 36 km by 36 km grid resolution. The model considers response characteristics of typical environmental medium to complex underlying surface. Results suggest that direct emission is the main input pathway of PAHs entering the atmosphere, while advection is the main outward flow of pollutants from the environment. In addition, both soil and sediment act as the main sink of PAHs and have the longest retention time. Importantly, the highest PAHs loadings are found in urbanized and densely populated regions of China, such as Yangtze River Delta and Pearl River Delta. This model can provide a good scientific basis towards a better understanding of the large-scale dynamics of environmental pollutants for land conservation and sustainable development. In a next step, the dynamic contaminant model will be integrated with the continental-scale hydrological and water resources model (i.e., Community Water Model, CWatM) to quantify a more accurate representation and feedbacks between the hydrological cycle and water quality at even larger geographical domains. Keywords: PAHs; Community multi-scale air quality model; Multimedia fate model; Land use
Large-Scale Aerosol Modeling and Analysis
2007-09-30
deserts of the world: Arabian Gulf, Sea of Japan, China Sea , Mediterranean Sea , and the Tropical Atlantic Ocean. NAAPS also accurately predicts the...fate of large-scale smoke and pollution plumes. With its global and continuous coverage, 1 Report Documentation Page Form ApprovedOMB No. 0704-0188...origin of dust plumes impacting naval operations in the Red Sea , Mediterranean, eastern Atlantic, Gulf of Guinea, Sea of Japan, Yellow Sea , and East
EPA'S LANDSCAPE SCIENCES RESEARCH: NUTRIENT POLLUTION, FLOODING, AND HABITAT
There is a growing need to understand the pattern of landscape change at regional scales and to determine how such changes affect environmental values. Key to conducting these assessments is the development of land-cover databases that permit large-scale analyses, such as an exam...
Regional and long-range transport scenarios for photo-oxidants on the Mediterranean basin in summer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millan, M.; Mantilla, E.; Salvador, R.
1996-12-31
Atmospheric research, begun in 1988, has shown that the dynamics of air pollutants in the Mediterranean basin in summer are governed by processes ranging from local to large meso-scale with diurnal cycles. Large scale convection over some regions, and up-slope winds in others, can inject aged pollutants into the Mid-troposphere, where they can participate in long-range processes within Southern and Central Europe. Two scenarios have been identified for the regional and long-range transport of photo-oxidants and other pollutants within, and out of, the Western Mediterranean basin. The first scenario involves the pollutants injected over the Spanish Central Plateau directly intomore » the mid-troposphere, and the second, the reservoir layers created along the Mediterranean coast. In the second scenario the key components are: the semi-permanent high(er) pressure area over the colder waters in the Gulf of Lion-Western Mediterranean basin, the mountain ranges which surround it, and the coastal processes. During the day the coastal circulations renovate the upper reservoir layers while the lower ones are drawn inland with the sea-breeze, and effective flow is mostly perpendicular to the coast.« less
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
Ge, Yuan; Wang, Xiaochang; Zheng, Yucong; Dzakpasu, Mawuli; Zhao, Yaqian; Xiong, Jiaqing
2015-09-01
The choice of substrates with high adsorption capacity, yet readily available and economical is vital for sustainable pollutants removal in constructed wetlands (CWs). Two identical large-scale demonstration horizontal subsurface flow (HSSF) CWs (surface area, 340 m(2); depth, 0.6 m; HLR, 0.2 m/day) with gravel or slag substrates were evaluated for their potential use in remediating polluted urban river water in the prevailing climate of northwest China. Batch experiments to elucidate phosphorus adsorption mechanisms indicated a higher adsorption capacity of slag (3.15 g/kg) than gravel (0.81 g/kg), whereby circa 20 % more total phosphorus (TP) removal was recorded in HSSF-slag than HSSF-gravel. TP removal occurred predominantly via CaO-slag dissolution followed by Ca phosphate precipitation. Moreover, average removals of chemical oxygen demand and biochemical oxygen demand were approximately 10 % higher in HSSF-slag than HSSF-gravel. Nevertheless, TP adsorption by slag seemed to get quickly saturated over the monitoring period, and the removal efficiency of the HSSF-slag approached that of the HSSF-gravel after 1-year continuous operation. In contrast, the two CWs achieved similar nitrogen removal during the 2-year monitoring period. Findings also indicated that gravel provided better support for the development of other wetland components such as biomass, whereby the biomass production and the amount of total nitrogen (TN; 43.1-59.0 g/m(2)) and TP (4.15-5.75 g/m(2)) assimilated by local Phragmites australis in HSSF-gravel were higher than that in HSSF-slag (41.2-52.0 g/m(2) and 3.96-4.07 g/m(2), respectively). Overall, comparable pollutant removal rates could be achieved in large-scale HSSF CWs with either gravel or slag as substrate and provide a possible solution for polluted urban river remediation in northern China.
NASA Astrophysics Data System (ADS)
Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu
2017-09-01
An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.
A numerical study on flow and pollutant transport in Singapore coastal waters.
Xu, Ming; Chua, Vivien P
2016-10-15
Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
1982-08-01
AD-A-11 701 ORANGE COUNTY POLLUTION CONTROL DEPT ORLANDO FL F/0 6/6 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR--ETC(U) AUG 82 H...8217 OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR FOR CONTROL -OF PROBLEM AQ.UATIC PLANTS SECOND YEAR POSTSTOCKING RESULTS Volume, Vt The Water...and Subetie) S. TYPE OF REPORT & PERIOD COVERED LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF Report 3 of a series THE WHITE AMUR FOR CONTROL OF
NASA Astrophysics Data System (ADS)
Azuma, Yoshimi; Nakamura, Maya; Kuji, Makoto
2012-11-01
Southeast Asia is one of the biggest regions of biomass burning with forest fires and slash-and-burn farming. From the fire events, a large amount of air pollutants are emitted such as carbon monoxide (CO), nitrogen oxide (NOx) and aerosol (black carbon; BC). Biomass burning generally causes not only local, but also transboundary air pollution, and influences the atmospheric environment in the world accordingly. However, impact of air pollutants' emissions from large-scale fire in Southeast Asia is not well investigated compared to other regions such as South America and Africa. In this study, characteristics of the atmospheric environment were investigated with correlative analyses among several satellite data (MOPITT, OMI, and MODIS) and emission inventory (GFEDv3) in Southeast Asia from October 2004 to June 2008 on a monthly basis. As a result, it is suggested that the transboundary air pollution from the biomass burning regions occurred over Southeast Asia, which caused specifically higher air pollutants' concentration at Hanoi, Vietnam in spring dry season.
Connections Between Stratospheric Pollution and the Asian Summer Monsoon
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Tsigaridis, Konstas
2015-01-01
The Asian Monsoon leads to rapid vertical transport of gases and aerosols into the upper troposphere. Some of the pollution might be transported above cloud levels, which will allow it to spread globally and possibly at some occasions reach into the stratosphere. In this study we will use the GISS climate model to investigate the interactions between pollution and convective transport as well as secondary aerosol formation. Pollution resulting from anthropogenic activity as well as from natural sources such as small and large volcanic eruptions, dust storms and forest fires will be quantified. This modeling study will be accompanied by satellite observations from space that monitor aerosol optical thickness (AOT), and absorption AOT (AAOT) in two and three dimensions. Our goal is a better process level understanding of the evolution of natural and anthropogenic aerosol plumes in conjunction with the Asian Monsoon. Hence, we aim to explain their large-scale expansion, which eventually determines their impacts on climate.
Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area
NASA Astrophysics Data System (ADS)
Du, Tangzheng; Liu, Chun-Ho
2013-04-01
Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.
Connections between Pollution and the Asian Monsoon Circulation
NASA Astrophysics Data System (ADS)
Bauer, S.
2015-12-01
The Asian Monsoon leads to rapid vertical transport of gases and aerosols into the upper troposphere. Some of the pollution might be transported above cloud levels, which will allow it to spread globally and possibly at some occasions reach into the stratosphere. In this study we will use the GISS climate model to investigate the interactions between pollution and convective transport as well as secondary aerosol formation. Pollution resulting from anthropogenic activity as well as from natural sources such as small and large volcanic eruptions, dust storms and forest fires will be quantified. This modeling study will be accompanied by satellite observations from space that monitor aerosol optical thickness (AOT), and absorption AOT (AAOT) in two and three dimensions. Our goal is a better process level understanding of the evolution of natural and anthropogenic aerosol plumes in conjunction with the Asian Monsoon. Hence, we aim to explain their large-scale expansion, which eventually determines their impacts on climate.
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
Soil and tree ring chemistry changes in an oak forest.
Quentin D. Read
2009-01-01
Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...
Large-scale terrestrial solar cell power generation cost: A preliminary assessment
NASA Technical Reports Server (NTRS)
Spakowski, A. E.; Shure, L. I.
1972-01-01
A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.
The influence of large-scale wind power on global climate.
Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J
2004-11-16
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.
Health risks from large-scale water pollution: trends in Central Asia.
Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor
2011-02-01
Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale
NASA Astrophysics Data System (ADS)
Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm
2016-11-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.
Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.
Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou
2017-01-01
Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.
Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado
2016-09-01
Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou
2017-01-01
Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944
Changes in O3 and NO2 due to emissions from Fracking in the UK.
NASA Astrophysics Data System (ADS)
Archibald, Alexander; Ordonez, Carlos
2016-04-01
Poor air quality is a problem that affects millions of people around the world. Understanding the driving forces behind air pollution is complicated as the precursor gases which combine to produce air pollutants react in a highly non-linear manner and are subject to a range of atmospheric transport mechanisms compounded by the weather. A great deal of money has been spent on mitigating air pollution and so it's important to assess the impacts that new technologies that emit air pollutant precursors may have on local and regional air pollution. One of the most highly discussed new technologies that could impact air quality is the adoption of wide-scale hydraulic fracturing or "fracking" for natural gas. Indeed in regions of the USA where fracking is commonplace large levels of ozone (O3 - a key air pollutant) have been observed and attributed directly to the fracking process. In this study, a numerical modelling framework was used to assess possible impacts of fracking in the UK where at present no large scale fracking facilities are in operation. A number of emissions scenarios were developed for the principle gas phase air pollution precursors: the oxides of nitrogen (NOx) and volatile organic compounds (VOCs). These emissions scenarios were then used in a state-of-the-art numerical air quality model (the UK Met Office operational air quality forecasting model AQUM) to determine potential impacts related to fracking on UK air quality. Comparison of base model results and observations for the year 2013 of NOx, O3 and VOCs from the UK Automatic Urban and Rural Network (AURN) showed that AQUM has good skill at simulating these gas phase air pollutants (O3 r=0.64, NMGE=0.3; NO2 r=0.62, NMGE=0.51). Analysis of the simulations with fracking emissions demonstrate that there are large changes in 1hr max NO2 (11.6±6.6 ppb) with modest increases in monthly mean NO2, throughout the British Isles (150±100 ppt). These results highlight that stringent measures should be applied to prevent deleterious impacts on air quality from emissions related to fracking in the UK.
NASA Technical Reports Server (NTRS)
1975-01-01
Unregulated uses of the oceans may threaten the global ecological balance, alter plant and animal life and significantly impact the global climatic systems. Recent plans to locate large scale structures on the oceans and to exploit the mineral riches of the seas pose even greater risk to the ecological system. Finally, increasing use of the oceans for large scale transport greatly enhances the probability of collision, polluting spills and international conflict.
Kas'ianov, V I
2005-01-01
The paper presents the results of a study of the impact of large-scale solid waste storage on ascariasis morbidity in the population. The use of sewage sediments as an organic soil fertilizer to grow strawberries and table greens is shown to substantially increase the risk of Ascaris infection in the population. Storage of solid domestic garbage on specialized dumping grounds does not lead to mass environmental pollution with geohelminthic eggs.
Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.
2016-01-01
Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Sungmin; Candelone, J.P.; Patterson, C.C.
1996-04-12
Determination of copper concentrations in Greenland ice dated from seven millennia ago to the present showed values exceeding natural levels, beginning about 2500 years ago. This early large-scale pollution of the atmosphere of the Northern Hemisphere is attributed to emissions from the crude, highly polluting smelting technologies used for copper production during Roman and medieval times, especially in Europe and China. This study opens the way to a quantitative assessment of the history of early metal production, which was instrumental in the development of human cultures during ancient eras. 27 refs., 1 fig., 2 tabs.
Large-scale weather dynamics during the 2015 haze event in Singapore
NASA Astrophysics Data System (ADS)
Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori
2017-04-01
The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical column moisture flux trajectory around Singapore region. Some of its phases are identified to be responsible in transporting the haze from its source to Singapore. The haze source was identified by compositing number of hotspots in grid-space based on the three time scales of PSI. Further discussion about equatorial waves during the haze event will also be presented.
Environmental effects and large space systems
NASA Technical Reports Server (NTRS)
Garrett, H. B.
1981-01-01
When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.
Satellite skill in detecting extreme episodes in near-surface air quality
NASA Astrophysics Data System (ADS)
Ruiz, D. J.; Prather, M. J.
2017-12-01
Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X. Liu's dataset using an improved algorithm for detection of tropospheric O3. Surface site observations outside NA and EU are taken from research stations where possible.
Satellite measurements of large-scale air pollution - Methods
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.
1990-01-01
A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.
Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Xu, Pingru; Qian, Yu
2016-05-01
Recently, China has frequently experienced large-scale, severe and persistent haze pollution due to surging urbanization and industrialization and a rapid growth in the number of motor vehicles and energy consumption. The vehicle emission due to the consumption of a large number of fossil fuels is no doubt a critical factor of the haze pollution. This work is focused on the causation mechanism of haze pollution related to the vehicle emission for Guangzhou city by employing the Fault Tree Analysis (FTA) method for the first time. With the establishment of the fault tree system of "Haze weather-Vehicle exhausts explosive emission", all of the important risk factors are discussed and identified by using this deductive FTA method. The qualitative and quantitative assessments of the fault tree system are carried out based on the structure, probability and critical importance degree analysis of the risk factors. The study may provide a new simple and effective tool/strategy for the causation mechanism analysis and risk management of haze pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, M.; Bi, J.; Huang, Y.; Kinney, P. L.
2016-12-01
Jiangsu, which has three national low-carbon pilot cities, is set to be a model province in China for achieving peak carbon targets before 2030. However, according to local planning of responding to climate change, carbon emissions are projected to keep going up before 2020 even the strictest measures are implemented. In other words, innovative measures must be in action after 2020. This work aimed at assessing the air quality and health co-benefits of alternative post-2020 measures to help remove barriers of policy implementation through tying it to local incentives for air quality improvement. To achieve the aim, we select 2010 as baseline year and develop Bussiness As Usual (BAU) and Traditional Carbon Reduction (TCR) scenarios before 2020. Under BAU, only existing climate and air pollution control policies are considered; under TCR, potential climate policies in local planning and existing air pollution control policies are considered. After 2020, integrated gasification combined cycle (IGCC) plant with carbon capture and storage (CCS) technology and large-scale substitution of renewable energy seem to be two promising pathways for achieving peak carbon targets. Therefore, two additional scenarios (TCR-IGCC and TCR-SRE) are set after 2020. Based on the projections of future energy balances and industrial productions, we estimate the pollutant emissions and simulate PM2.5 and ozone concentrations by 2017, 2020, 2030 and 2050 using CMAQ. Then using health impact assessment approach, the premature deaths are estimated and monetized. Results show that the carbon peak in Jiangsu will be achieved before 2030 only under TCR-IGCC and TCR-SRE scenarios. Under three policy scenarios, Jiangsu's carbon emission control targets would have substantial effects on primary air pollutant emissions far beyond those we estimate would be needed to meet the PM2.5 concentration targets in 2017. Compared with IGCC with CCS, large-scale substitutions of renewable energy bring comparable pollutant emission reductions but more health benefits because it reduces more emissions from traffic sources which are more harmful to health. However, large-scale substitution of renewable energy posed challenges on energy supply capacity, which need to be seriously considered in future policy decision.
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Zhao, Laijun
2018-02-01
China's Beijing-Tianjin-Hebei (BTH) region suffers from the country's worst air pollution. The problem has caused widespread concern both at home and abroad. Based on long-term and massive data mining of PM2.5 and PM10 concentration, we found that these pollutants showed similar variations in four seasons, but the most severe pollution was in winter. Through cluster analysis of the winter daily average concentration (DAC) of the two pollutants, we defined regions with similar variations in pollutant concentrations in winter. For the most polluted cities in BTH, the relationship between correlation coefficients for winter DAC and the distance between cities revealed that PM2.5 has regional, large-scale characteristics, with concentrated outbreaks, whereas PM10 has local, small-scale characteristics, with outbreaks at multiple locations. By selecting the key cities with the strongest linear relationship between the pollutant's DAC of each city and the daily individual air quality index values of the BTH region and through cluster analysis on the correlations between the pollutant DACs of the key cities, we defined regional divisions suitable for Joint Prevention and Control of Atmospheric Pollution (JPCAP) program to control PM2.5 and PM10. Comprehensively considering the degree of influence of regional atmospheric pollution control (RAPC) on air quality in BTH, as well as the elasticity and urgency of RAPC, we defined the control grades of the JPCAP regions. We found both the regions and corresponding control grades were consistent for PM2.5 and PM10. The thinking and methods of atmospheric pollution control we proposed will have broad significance for implementation of RAPC in other regions around the world.
Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.
2009-01-01
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.
The Use of Bacteria for Remediation of Mercury Contaminated Groundwater
Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...
NASA Astrophysics Data System (ADS)
Zhao, Y.; Qiu, L. P.; Xu, R. Y.; Xie, F. J.; Zhang, Q.; Yu, Y. Y.; Nielsen, C. P.; Qin, H. X.; Wang, H. K.; Wu, X. C.; Li, W. Q.; Zhang, J.
2015-11-01
With most eastern Chinese cities facing major air quality challenges, there is a strong need for city-scale emission inventories for use in both chemical transport modeling and the development of pollution control policies. In this paper, a high-resolution emission inventory (with a horizontal resolution of 3 × 3 km) of air pollutants and CO2 for Nanjing, a typical large city in the Yangtze River Delta, is developed, incorporating the best available information on local sources. Emission factors and activity data at the unit or facility level are collected and compiled using a thorough on-site survey of major sources. Over 900 individual plants, which account for 97 % of the city's total coal consumption, are identified as point sources, and all of the emission-related parameters including combustion technology, fuel quality, and removal efficiency of air pollution control devices (APCD) are analyzed. New data-collection approaches including continuous emission monitoring systems and real-time monitoring of traffic flows are employed to improve spatiotemporal distribution of emissions. Despite fast growth of energy consumption between 2010 and 2012, relatively small interannual changes in emissions are found for most air pollutants during this period, attributed mainly to benefits of growing APCD deployment and the comparatively strong and improving regulatory oversight of the large point sources that dominate the levels and spatial distributions of Nanjing emissions overall. The improvement of this city-level emission inventory is indicated by comparisons with observations and other inventories at larger spatial scale. Relatively good spatial correlations are found for SO2, NOx, and CO between the city-scale emission estimates and concentrations at nine state-operated monitoring sites (R = 0.58, 0.46, and 0.61, respectively). The emission ratios of specific pollutants including BC to CO, OC to EC, and CO2 to CO compare well to top-down constraints from ground observations. The interannual variability and spatial distribution of NOx emissions are consistent with NO2 vertical column density measured by the Ozone Monitoring Instrument (OMI). In particular, the Nanjing city-scale emission inventory correlates better with satellite observations than the downscaled Multi-resolution Emission Inventory for China (MEIC) does when emissions from power plants are excluded. This indicates improvement in emission estimation for sectors other than power generation, notably industry and transportation. A high-resolution emission inventory may also provide a basis to consider the quality of instrumental observations. To further improve emission estimation and evaluation, more measurements of both emission factors and ambient levels of given pollutants are suggested; the uncertainties of emission inventories at city scale should also be fully quantified and compared with those at national scale.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Qiu, L.; Xu, R.; Xie, F.; Zhang, Q.; Yu, Y.; Nielsen, C. P.; Qin, H.; Wang, H.; Wu, X.; Li, W.; Zhang, J.
2015-07-01
With most eastern Chinese cities facing major air quality challenges, there is a strong need for city-scale emission inventories for use in both chemical transport modeling and the development of pollution control policies. In this paper, a high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical large city in the Yangtze River Delta, is developed incorporating the best available information on local sources. Emission factors and activity data at the unit or facility level are collected and compiled using a thorough onsite survey of major sources. Over 900 individual plants, which account for 97 % of the city's total coal consumption, are identified as point sources, and all of the emission-related parameters including combustion technology, fuel quality, and removal efficiency of air pollution control devices (APCD) are analyzed. New data-collection approaches including continuous emission monitoring systems and real-time monitoring of traffic flows are employed to improve spatiotemporal distribution of emissions. Despite fast growth of energy consumption between 2010 and 2012, relatively small inter-annual changes in emissions are found for most air pollutants during this period, attributed mainly to benefits of growing APCD deployment and the comparatively strong and improving regulatory oversight of the large point sources that dominate the levels and spatial distributions of Nanjing emissions overall. The improvement of this city-level emission inventory is indicated by comparisons with observations and other inventories at larger spatial scale. Relatively good spatial correlations are found for SO2, NOx, and CO between the city-scale emission estimates and concentrations at 9 state-opertated monitoring sites (R = 0.58, 0.46, and 0.61, respectively). The emission ratios of specific pollutants including BC to CO, OC to EC, and CO2 to CO compare well to top-down constraints from ground observations. The inter-annual variability and spatial distribution of NOx emissions are consistent with NO2 vertical column density measured by the Ozone Monitoring Instrument (OMI). In particular, the Nanjing city-scale emission inventory correlates better with satellite observations than the downscaled Multi-resolution Emission Inventory for China (MEIC) does when emissions from power plants are excluded. This indicates improvement in emission estimation for sectors other than power generation, notably industry and transportation. High-resolution emission inventory may also provide a basis to consider the quality of instrumental observations. To further improve emission estimation and evaluation, more measurements of both emission factors and ambient levels of given pollutants are suggested; the uncertainties of emission inventories at city scale should also be fully quantified and compared with those at national scale.
NASA Astrophysics Data System (ADS)
Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun
2018-05-01
The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Comparative studies of groundwater vulnerability assessment
NASA Astrophysics Data System (ADS)
Maria, Rizka
2018-02-01
Pollution of groundwater is a primary issue because aquifers are susceptible to contamination from land use and anthropogenic impacts. Groundwater susceptibility is intrinsic and specific. Intrinsic vulnerability refers to an aquifer that is susceptible to pollution and to the geological and hydrogeological features. Vulnerability assessment is an essential step in assessing groundwater contamination. This approach provides a visual analysis for helping planners and decision makers to achieve the sustainable management of water resources. Comparative studies are applying different methodologies to result in the basic evaluation of the groundwater vulnerability. Based on the comparison of methods, there are several advantages and disadvantages. SI can be overlaid on DRASTIC and Pesticide DRASTIC to extract the divergence in sensitivity. DRASTIC identifies low susceptibility and underestimates the pollution risk while Pesticide DRASTIC and SI represents better risk and is recommended for the future. SINTACS method generates very high vulnerability zones with surface waters and aquifer interactions. GOD method could be adequate for vulnerability mapping in karstified carbonate aquifers at small-moderate scales, and EPIK method can be used for large scale. GOD method is suitable for designing large area such as land management while DRASTIC has good accuracy and more real use in geoenvironmental detailed studies.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.
Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng
2017-12-15
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies
Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng
2017-01-01
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738
Large-scale pollution of the atmosphere over the remote Atlantic Ocean: Evidence from Bermuda
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, R.R.; Doddridge, B.G.; Kelley, P.
1995-05-20
Ozone acts as a greenhouse gas and controls much of the oxidizing capacity of the atmosphere. Photochemical production of ozone in urban areas (smog) is a serious environmental problem, but how far this process extends on regional or global scales remains a major unanswered question in atmospheric science. In summer, Bermuda basks in pristine marine air, but in spring, episodes of high ozone are common. From meteorological analyses and observation of ozone, carbon monoxide, and reactive nitrogen compounds, the authors conclude that half or more of the excess ozone in Bermuda originates from air pollution over eastern North America. 50more » refs., 7 figs., 2 tabs.« less
Wang, Bao-Zhen; Chen, Zhi
2013-01-01
This article presents a GIS-based multi-source and multi-box modeling approach (GMSMB) to predict the spatial concentration distributions of airborne pollutant on local and regional scales. In this method, an extended multi-box model combined with a multi-source and multi-grid Gaussian model are developed within the GIS framework to examine the contributions from both point- and area-source emissions. By using GIS, a large amount of data including emission sources, air quality monitoring, meteorological data, and spatial location information required for air quality modeling are brought into an integrated modeling environment. It helps more details of spatial variation in source distribution and meteorological condition to be quantitatively analyzed. The developed modeling approach has been examined to predict the spatial concentration distribution of four air pollutants (CO, NO(2), SO(2) and PM(2.5)) for the State of California. The modeling results are compared with the monitoring data. Good agreement is acquired which demonstrated that the developed modeling approach could deliver an effective air pollution assessment on both regional and local scales to support air pollution control and management planning.
NASA Astrophysics Data System (ADS)
Brankov, Elvira
This thesis presents a methodology for examining the relationship between synoptic-scale atmospheric transport patterns and observed pollutant concentration levels. It involves calculating a large number of back-trajectories from the observational site and subjecting them to cluster analysis. The pollutant concentration data observed at that site are then segregated according to the back-trajectory clusters. If the pollutant observations extend over several seasons, it is important to filter out seasonal and long-term components from the time series data before pollutant cluster-segregation, because only the short-term component of the time series data is related to the synoptic-scale transport. Multiple comparison procedures are used to test for significant differences in the chemical composition of pollutant data associated with each cluster. This procedure is useful in indicating potential pollutant source regions and isolating meteorological regimes associated with pollutant transport from those regions. If many observational sites are available, the spatial and temporal scales of the pollution transport from a given direction can be extracted through the time-lagged inter- site correlation analysis of pollutant concentrations. The proposed methodology is applicable to any pollutant at any site if sufficiently abundant data set is available. This is illustrated through examination of five-year long time series data of ozone concentrations at several sites in the Northeast. The results provide evidence of ozone transport to these sites, revealing the characteristic spatial and temporal scales involved in the transport and identifying source regions for this pollutant. Problems related to statistical analyses of censored data are addressed in the second half of this thesis. Although censoring (reporting concentrations in a non-quantitative way) is typical for trace-level measurements, methods for statistical analysis, inference and interpretation of such data are complex and still under development. In this study, multiple comparison of censored data sets was required in order to examine the influence of synoptic- scale circulations on concentration levels of several trace-level toxic pollutants observed in the Northeast (e.g., As, Se, Mn, V, etc.). Since the traditional multiple comparison procedures are not readily applicable to such data sets, a Monte Carlo simulation study was performed to assess several nonparametric methods for multiple comparison of censored data sets. Application of an appropriate comparison procedure to clusters of toxic trace elements observed in the Northeast led to the identification of potential source regions and atmospheric patterns associated with the long-range transport of these pollutants. A method for comparison of proportions and elemental ratio calculations were used to confirm/clarify these inferences with a greater degree of confidence.
REMOVAL OF SO2 FROM INDUSTRIAL WASTE GASES
The paper discusses technology for sulfur dioxide (SO2) pollution control by flue gas cleaning (called 'scrubbing') in the utility industry, a technology that has advanced significantly during the past 5 years. Federal Regulations are resulting in increasingly large-scale applica...
NASA Astrophysics Data System (ADS)
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Gong, Daoyi; Fan, Jiwen
Long-term observational data reveal that both the frequency and amount of light rain have decreased in eastern China (EC) for 1956-2005 with high spatial coherency. This is different from the trend of total rainfall observed in EC, which decreases in northern EC and increases in southern EC. To examine the cause of the light rain trends, we analyzed the long-term variability of atmospheric water vapor and its correlation with light rain events. Results show very weak relationships between large-scale moisture transport and light rain in EC. This suggests that light rain trend in EC is not driven by large-scale circulationmore » changes. Because of human activities, pollutant emission has increased dramatically in China for the last few decades, leading to significant reductions in visibility between 1960 and 2000. Cloud-resolving model simulations show that aerosols corresponding to heavily polluted conditions can significantly increase the cloud droplet number concentration (CDNC) and reduce droplet sizes compared to pristine conditions. This can lead to a significant decline in raindrop concentration and delay raindrop formation because smaller cloud droplets are less efficient in the collision and coalescence processes. Together with weaker convection, the precipitation frequency and amount are significantly reduced in the polluted case. Satellite data also reveal higher CDNC and smaller droplet size over polluted land in EC relative to pristine regions, which is consistent with the model results. This evidence suggests that the significantly increased aerosol particles produced by air pollution are at least partly responsible for the decreased light rain events observed in China over the past fifty years.« less
Visualization and Analysis of Light Pollution: a Case Study in Hong Kong
NASA Astrophysics Data System (ADS)
Wu, B.; Wong, H.
2012-07-01
The effects of light pollution problems in metropolitan areas are investigated in this study. Areas of Hong Kong are used as the source of three typical study cases. One case represents the regional scale, a second represents the district scale, and a third represents the street scale. Two light pollution parameters, Night Sky Brightness (NSB) and Street Light Level (SLL), are the focus of the analyses. Light pollution visualization approaches in relation to the different scales include various light pollution maps. They provide straightforward presentations of the light pollution situations in the study areas. The relationship between light pollution and several social-economic factors such as land use, household income, and types of outdoor lighting in the scale areas given, are examined. Results show that: (1) Land use may be one factor affecting light pollution in the regional scale; (2) A relatively strong correlation exists between light pollution and household income in the district scale; (3) The heaviest light pollution in the street scale is created by spotlights and also the different types of lighting from shops. The impact of the latter is in relation to the shop profile and size.
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime
The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.
Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s.
Faïn, Xavier; Ferrari, Christophe P; Dommergue, Aurélien; Albert, Mary R; Battle, Mark; Severinghaus, Jeff; Arnaud, Laurent; Barnola, Jean-Marc; Cairns, Warren; Barbante, Carlo; Boutron, Claude
2009-09-22
Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees ) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from approximately 1.5 ng m(-3) reaching a maximum of approximately 3 ng m(-3) around 1970 and decreased until stabilizing at approximately 1.7 ng m(-3) around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.
Zheng, Yucong; Wang, Xiaochang C; Dzakpasu, Mawuli; Ge, Yuan; Zhao, Yaqian; Xiong, Jiaqing
2016-01-01
Hybrid constructed wetland (HCW) systems have been used to treat various wastewaters across the world. However, large-scale applications of HCWs are scarce, particularly for on-site improvement of the water quality of highly polluted urban rivers in semi-arid regions. In this study, a large pilot-scale HCW system was constructed to improve the water quality of the Zaohe River in Xi'an, China. With a total area of about 8000 m(2), the pilot HCW system, composed of different configurations of surface and subsurface flow wetlands, was operated for 2 years at an average inflow volume rate of 362 m(3)/day. Local Phragmites australis and Typha orientalis from the riverbank were planted in the HCW system. Findings indicate a higher treatment efficiency for organics and suspended solids than nutrients. The inflow concentrations of 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), NH3-N, and total phosphorus (TP) were 125.6, 350.9, 334.2, 38.5, 27.2, and 3.9 mg/L, respectively. Average removal efficiencies of 94.4, 74.5, 92.0, 56.3, 57.5, and 69.2%, respectively, were recorded. However, the pollutant removal rates were highly seasonal especially for nitrogen. Higher removals were recorded for all pollutants in the autumn while significantly lower removals were recorded in the winter. Plant uptake and assimilation accounted for circa 19-29 and 16-23% of the TN and TP removal, respectively. Moreover, P. australis demonstrated a higher nutrient uptake ability and competitive potential. Overall, the high efficiency of the pilot HCW for improving the water quality of such a highly polluted urban river provided practical evidence of the applicability of the HCW technology for protecting urban water environments.
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity
Harbin Li; Steven G. McNulty
2007-01-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL...
River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.
Monteagudo, Laura; Moreno, José Luis; Picazo, Félix
2012-05-15
The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Beltran, Angelica Mendoza; van Vliet, Jasper
2013-11-01
The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control policies will be implemented. In this study, we explore how different assumptions on future air pollution policy and climate policy lead to different concentrations of air pollutants for a set of RCP-like scenarios developed using the IMAGE model. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W m-2 and 6.0 W m-2. Simulations using the global atmospheric chemistry and transport model TM5 for the present-day climate show that both climate mitigation and air pollution control policies have large-scale effects on pollutant concentrations, often of similar magnitude. If no further air pollution policies would be implemented, pollution levels could be considerably higher than in the RCPs, especially in Asia. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate by 2020, and in the longer term contribute to enhanced warming by methane. These effects tend to cancel each other on a global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W m-2 in the 6.0 W m-2 scenario and -0.16 W m-2 in the 2.6 W m-2 scenario.
First ERTS-1 results in southeastern France: Geology, sedimentology, pollution at sea
NASA Technical Reports Server (NTRS)
Fontanel, A.; Guillemot, J.; Guy, M.
1973-01-01
Results obtained by four ERTS projects in southeastern France are summarized. With regard to geology, ERTS photos of Western Alps are very useful for tectonic interpretation because large features are clearly visible on these photographs even though they are often hidden by small complicated structures if studied on large scale documents. The 18-day repetition coverage was not obtained, and time-varying sedimentological surveys were impossible. Nevertheless, it was possible to delineate the variations of the shorelines in the Rhone Delta for a period covering the least 8,000 years. Some instances of industries discharging pollutant products at sea were detected, as well as very large anomalies of unknown origin. Some examples of coherent optical processing have been made in order to bring out tectonic features in the Alps mountains.
Principle of Parsimony, Fake Science, and Scales
NASA Astrophysics Data System (ADS)
Yeh, T. C. J.; Wan, L.; Wang, X. S.
2017-12-01
Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale heterogeneities as detailed as possible and adapting the Fick's law for effects of small-scale heterogeneity resulting from our inability to characterize them in detail.
[Numerical simulation study of SOA in Pearl River Delta region].
Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song
2009-12-01
Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.
Substituting telecommunications for travel - Feasible or desirable
NASA Technical Reports Server (NTRS)
Van Vleck, E. M.
1974-01-01
This paper reviews recent advances in telecommunications and examines the detailed structure of travel to estimate the feasibility of substituting telecommunications for various travel objectives. The impact of travel is analyzed from a social, economic, energy, and pollution standpoint to assess the desirability of substitution. Perhaps 35-50% of the nation's travel could, in theory, be replaced by very advanced telecommunications (such as a much improved large-screen teleconferencing network), but public resistance would be massive. Much economic dislocation would result since, for example, over 25% of retail sales are travel-related. The energy savings would be modest since only 25% of the nation's energy is consumed by transportation. However, all pollution would be reduced substantially since transportation accounts for 75% of the carbon monoxide, 60% of the hydrocarbon, and 55% of the nitrogen oxide pollution in the nation. Problems related to the implementation of large-scale substitution are discussed.
Donohue, Mary J
2003-06-01
Oceanic circulation patterns deposit significant amounts of marine pollution, including derelict fishing gear from North Pacific Ocean fisheries, in the Hawaiian Archipelago [Mar. Pollut. Bull. 42(12) (2001) 1301]. Management responsibility for these islands and their associated natural resources is shared by several government authorities. Non-governmental organizations (NGOs) and private industry also have interests in the archipelago. Since the marine debris problem in this region is too large for any single agency to manage, a multiagency marine debris working group (group) was established in 1998 to improve marine debris mitigation in Hawaii. To date, 16 federal, state, and local agencies, working with industry and NGOs, have removed 195 tons of derelict fishing gear from the Northwestern Hawaiian Islands. This review details the evolution of the partnership, notes its challenges and rewards, and advocates its continued use as an effective resource management tool.
NASA Astrophysics Data System (ADS)
Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao
2017-02-01
Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.
NASA Astrophysics Data System (ADS)
Fenger, Jes
Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate more traffic and may thus have the opposite effect.
TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS
A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...
Site Specific Management of Cotton Production in the United States
USDA-ARS?s Scientific Manuscript database
Site-specific management or precision agriculture, as it is evolving in large-scale crop production, offers promising new methods for managing cotton production for optimized yields, maximized profitability, and minimized environmental pollution. However, adaptation of site-specific theory and meth...
PESTICIDE LEACHING ANALYTICAL MODEL AND GIS-BASED APPLICATION IN AGRICULTURAL WATERSHEDS
Groundwater contamination by pesticides and other organic pollutants has been detected across agricultural areas and is on the increase. Because groundwater monitoring is too costly to define the geographic extent of contamination at such large scales, indirect methods are needed...
NASA Astrophysics Data System (ADS)
Zhao, Erdong; Guo, Chaoran; Liu, Liwei; Dai, Sichen; Li, Shangqi
2017-04-01
In recent years, China broke out a large-scale of fog and haze, particularly Beijing. Energy production and consumption of fossil fuel combustion emissions is the main source of environmental pollution and haze, and it is most prominent in the power industry. In this paper, we evaluate the relationship between Beijing power structure and the prevention and control of atmospheric pollution by Integrated Policy Assessment Model for China - Second Generation Model (IPAC-SGM). This paper explores the propulsion effect of the new energy industry on Beijing’s air pollution prevention and control by simulating the change of development of electric energy in Beijing under three scenarios which are benchmark scenario, general policy scenario and reinforced policy scenario.
NASA Astrophysics Data System (ADS)
Yin, Mingqiang; Hu, Wen; Wu, Haonan
2018-03-01
The country vigorously promotes the collective operation of traditional culture, which brings a lot of negative externalities of environmental pollution. Environmental pollution causes the difference between social cost and private cost. The cost of pollution is not borne by private enterprises, it is an external cost for the polluters. This paper attempts to take the Chongqing pig farm as an example to select the COD and TN indicators in the wastewater as the focus point of the analysis. We explore the equilibrium point based on the personal cost of Party A and the public welfare cost brought by environmental pollution, and test the rationality and accuracy of the existing norms. On the basis of existing research, the end of the paper tries to explore the better solution according to the law of Pigou and the property rights delimitation.
Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team
2014-11-01
The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.
NASA Astrophysics Data System (ADS)
Gad-El-Hak, Mohamed
"Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.
Urbanization, Trace Metal Pollution, and Malaria Prevalence in the House Sparrow
Bichet, Coraline; Scheifler, Renaud; Cœurdassier, Michaël; Julliard, Romain; Sorci, Gabriele; Loiseau, Claire
2013-01-01
Anthropogenic pollution poses a threat for the environment and wildlife. Trace metals (TMs) are known to have negative effects on haematological status, oxidative balance, and reproductive success in birds. These pollutants particularly increase in concentration in industrialized, urbanized and intensive agricultural areas. Pollutants can also interfere with the normal functioning of the immune system and, as such, alter the dynamics of host-parasite interactions. Nevertheless, the impact of pollution on infectious diseases has been largely neglected in natural populations of vertebrates. Here, we used a large spatial scale monitoring of 16 house sparrow (Passer domesticus) populations to identify environmental variables likely to explain variation in TMs (lead, cadmium, zinc) concentrations in the feathers. In five of these populations, we also studied the potential link between TMs, prevalence of infection with one species of avian malaria, Plasmodium relictum, and body condition. Our results show that lead concentration is associated with heavily urbanized habitats and that areas with large woodland coverage have higher cadmium and zinc feather concentrations. Our results suggest that lead concentration in the feathers positively correlates with P. relictum prevalence, and that a complex relationship links TM concentrations, infection status, and body condition. This is one of the first studies showing that environmental pollutants are associated with prevalence of an infectious disease in wildlife. The mechanisms underlying this effect are still unknown even though it is tempting to suggest that lead could interfere with the normal functioning of the immune system, as shown in other species. We suggest that more effort should be devoted to elucidate the link between pollution and the dynamics of infectious diseases. PMID:23342022
Wu, Wen; Wu, Zhouhu; Song, Zhiwen
2017-07-01
Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.
NASA Astrophysics Data System (ADS)
Dimov, I.; Georgieva, R.; Todorov, V.; Ostromsky, Tz.
2017-10-01
Reliability of large-scale mathematical models is an important issue when such models are used to support decision makers. Sensitivity analysis of model outputs to variation or natural uncertainties of model inputs is crucial for improving the reliability of mathematical models. A comprehensive experimental study of Monte Carlo algorithms based on Sobol sequences for multidimensional numerical integration has been done. A comparison with Latin hypercube sampling and a particular quasi-Monte Carlo lattice rule based on generalized Fibonacci numbers has been presented. The algorithms have been successfully applied to compute global Sobol sensitivity measures corresponding to the influence of several input parameters (six chemical reactions rates and four different groups of pollutants) on the concentrations of important air pollutants. The concentration values have been generated by the Unified Danish Eulerian Model. The sensitivity study has been done for the areas of several European cities with different geographical locations. The numerical tests show that the stochastic algorithms under consideration are efficient for multidimensional integration and especially for computing small by value sensitivity indices. It is a crucial element since even small indices may be important to be estimated in order to achieve a more accurate distribution of inputs influence and a more reliable interpretation of the mathematical model results.
[Study on the quality of digested piggery wastewater in large-scale farms in Jiaxing].
Wei, Dan; Wan, Mei; Liu, Rui; Wang, Gen-Rong; Zhang, Xun-Da; Wen, Xiao-Gang; Zhao, Yuan; Chen, Lü-Jun
2014-07-01
Pollution characteristics of digested piggery wastewater (DPW), including not only the chemical oxygen demand (COD), nitrogen and phosphorus but also the veterinary antibiotics and heavy metals, were investigated in ten large-scale pig farms in Jiaxing City. Results showed that the water quality of DPW greatly varied with farms and seasons. DPW in the spring group showed the highest pollutant concentration, with seven of the ten pig farms demonstrating COD of over 2 000 mg x L(-1), total nitrogen and ammonia nitrogen of over 1 000 mg x L(-1) and total phosphorus of over 60 mg x L(-1). Pollutant concentrations of DPW were lower in the autumn and winter groups, while the lowest was observed in the summer group. Unbalanced nutrient was observed in DPW, the carbon nitrogen ratio showed the lowest value of 0.8-4.3 in the autumn group. Four classes (tetracyclines, quinolones, macrolides and sulfonamides) of ten antibiotics and six heavy metals (Cu, Zn, Pb, Cd, Ni and Cr) were detectable in DPW from all the ten farms. Cu and Zn were the top two dominant heavy metals, with an average concentration of 1.88 mg x L(-1) and 7.63 mg L(-1), respectively. Tetracyclines (including Tetracycline, Oxytetracycline and Chlortetracycline) were always the dominant antibiotics. The total concentration of the ten antibiotics was in the range of 10.1 microg x L(-1) to 1090 microg x L(-1), far exceeding the antibiotics limit of 10 ng x L(-1) in the water environment specified by EU. Efficient but low cost treatment technologies are in urgent need in order to deal with the pollution by DPW, a wastewater that is not only difficult to remove nitrogen and phosphorus, but also seriously polluted by heavy metals and antibiotics.
Microplastic and tar pollution on three Canary Islands beaches: An annual study.
Herrera, A; Asensio, M; Martínez, I; Santana, A; Packard, T; Gómez, M
2018-04-01
Marine debris accumulation was analyzed from three exposed beaches of the Canary Islands (Lambra, Famara and Las Canteras). Large microplastics (1-5mm), mesoplastics (5-25mm) and tar pollution were assessed twice a month for a year. There was great spatial and temporal variability in the Canary Island coastal pollution. Seasonal patterns differed at each location, marine debris concentration depended mainly of local-scale wind and wave conditions. The most polluted beach was Lambra, a remote beach infrequently visited. The types of debris found were mainly preproduction resin pellets, plastic fragments and tar, evidencing that pollution was not of local origin, but it cames from the open sea. The levels of pollution were similar to those of highly industrialized and contaminated regions. This study corroborates that the Canary Islands are an area of accumulation of microplastics and tar rafted from the North Atlantic Ocean by the southward flowing Canary Current. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bindler, Richard; Renberg, Ingemar; Rydberg, Johan; Andrén, Thomas
2009-07-01
Metal pollution is viewed as a modern problem that began in the 19th century and accelerated through the 20th century; however, in many parts of the globe this view is wrong. Here, we studied past waterborne metal pollution in lake sediments from the Bergslagen region in central Sweden, one of many historically important mining regions in Europe. With a focus on lead (including isotopes), we trace mining impacts from a local scale, through a 120-km-long river system draining into Mälaren--Sweden's third largest lake, and finally also the Baltic Sea. Comparison of sediment and peat records shows that pollution from Swedish mining was largely waterborne and that atmospheric deposition was dominated by long-range transport from other regions. Swedish ore lead is detectable from the 10th century, but the greatest impact occurred during the 16th-18th centuries with improvements occurring over recent centuries, i.e., historical pollution > modern industrial pollution.
Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N; Golyshina, Olga V; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I; Golyshin, Peter N; Yakimov, Michail M; Daffonchio, Daniele; Ferrer, Manuel
2015-06-29
Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.
Bargiela, Rafael; Mapelli, Francesca; Rojo, David; Chouaia, Bessem; Tornés, Jesús; Borin, Sara; Richter, Michael; Del Pozo, Mercedes V.; Cappello, Simone; Gertler, Christoph; Genovese, María; Denaro, Renata; Martínez-Martínez, Mónica; Fodelianakis, Stilianos; Amer, Ranya A.; Bigazzi, David; Han, Xifang; Chen, Jianwei; Chernikova, Tatyana N.; Golyshina, Olga V.; Mahjoubi, Mouna; Jaouanil, Atef; Benzha, Fatima; Magagnini, Mirko; Hussein, Emad; Al-Horani, Fuad; Cherif, Ameur; Blaghen, Mohamed; Abdel-Fattah, Yasser R.; Kalogerakis, Nicolas; Barbas, Coral; Malkawi, Hanan I.; Golyshin, Peter N.; Yakimov, Michail M.; Daffonchio, Daniele; Ferrer, Manuel
2015-01-01
Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills. PMID:26119183
NASA Astrophysics Data System (ADS)
Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia
2017-04-01
Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.
NASA Astrophysics Data System (ADS)
Heath, Garvin A.; Nazaroff, William W.
In previous work, we showed that the intake fraction (iF) for nonreactive primary air pollutants was 20 times higher in central tendency for small-scale, urban-sited distributed electricity generation (DG) sources than for large-scale, central station (CS) power plants in California [Heath, G.A., Granvold, P.W., Hoats, A.S., Nazaroff, W.W., 2006. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation. Atmospheric Environment 40, 7164-7177]. The present paper builds on that study, exploring pollutant- and technology-specific aspects of population inhalation exposure from electricity generation. We compare California's existing CS-based system to one that is more reliant on DG units sited in urban areas. We use Gaussian plume modeling and a GIS-based exposure analysis to assess 25 existing CSs and 11 DG sources hypothetically located in the downtowns of California's most populous cities. We consider population intake of three pollutants—PM 2.5, NO x and formaldehyde—directly emitted by five DG technologies—natural gas (NG)-fired turbines, NG internal combustion engines (ICE), NG microturbines, diesel ICEs, and fuel cells with on-site NG reformers. We also consider intake of these pollutants from existing CS facilities, most of which use large NG turbines, as well as from hypothetical facilities located at these same sites but meeting California's best-available control technology standards. After systematically exploring the sensitivity of iF to pollutant decay rate, the iFs for each of the three pollutants for all DG and CS cases are estimated. To efficiently compare the pollutant- and technology-specific exposure potential on an appropriate common basis, a new metric is introduced and evaluated: the intake-to-delivered-energy ratio (IDER). The IDER expresses the mass of pollutant inhaled by an exposed population owing to emissions from an electricity generation unit per quantity of electric energy delivered to the place of use. We find that the central tendency of IDER is much greater for almost every DG technology evaluated than for existing CS facilities in California.
The National Near-Road Mobile Source Air Toxics Study: Las Vegas
EPA, in collaboration with FHWA, has been involved in a large-scale monitoring research study in an effort to characterize highway vehicle emissions in a near-road environment. The pollutants of interest include particulate matter with aerodynamic diameter less than 2.5 microns ...
The Case for the Large Scale Development of Solar Energy
ERIC Educational Resources Information Center
O'Reilly, S. A.
1977-01-01
Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)
Evaluation of Two PCR-based Swine-specific Fecal Source Tracking Assays (Abstract)
Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the utility of these assays in identifying swine fecal contamination on a broad geographic scale is largely unknown. In this study, we evaluated the specificity, distr...
APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers
USDA-ARS?s Scientific Manuscript database
Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...
Kish, George R.; Harrison, Arnell S.; Alderson, Mark
2008-01-01
The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water-resources managers to ensure the future health of the watershed.
Vulnerability of China's nearshore ecosystems under intensive mariculture development.
Liu, Hui; Su, Jilan
2017-04-01
Rapid economic development and increasing population in China have exerted tremendous pressures on the coastal ecosystems. In addition to land-based pollutants and reclamation, fast expansion of large-scale intensive mariculture activities has also brought about additional effects. So far, the ecological impact of rapid mariculture development and its large-scale operations has not drawn enough attention. In this paper, the rapid development of mariculture in China is reviewed, China's effort in the application of ecological mariculture is examined, and the vulnerability of marine ecosystem to mariculture impact is evaluated through a number of examples. Removal or reduced large and forage fish, due to both habitat loss to reclamation/mariculture and overfishing for food or fishmeal, may have far-reaching effects on the coastal and shelf ecosystems in the long run. Large-scale intensive mariculture operations carry with them undesirable biological and biochemical characteristics, which may have consequences on natural ecosystems beyond normally perceived spatial and temporal boundaries. As our understanding of possible impacts of large-scale intensive mariculture is lagging far behind its development, much research is urgently needed.
Coastal Aerosol Distribution by Data Assimilation
2006-09-30
useful for forecasts of dust storms in areas downwind of the large deserts of the world: Arabian Gulf, Sea of Japan, China Sea , Mediterranean Sea ...and the Tropical Atlantic Ocean. NAAPS also accurately predicts the fate of large-scale smoke and pollution plumes. With its global and continuous...The collaboration with Scripps Institute of Oceanography and the University of Warsaw has led to the addition of a sea salt component to NAAPS. The
Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s
Faïn, Xavier; Ferrari, Christophe P.; Dommergue, Aurélien; Albert, Mary R.; Battle, Mark; Severinghaus, Jeff; Arnaud, Laurent; Barnola, Jean-Marc; Cairns, Warren; Barbante, Carlo; Boutron, Claude
2009-01-01
Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg°) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from ≈1.5 ng m−3 reaching a maximum of ≈3 ng m−3 around 1970 and decreased until stabilizing at ≈1.7 ng m−3 around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels. PMID:19805267
Using Microbial Source Tracking to Enhance Environmental Stewardship of Agriculture
NASA Astrophysics Data System (ADS)
Martin, Sherry; Rose, Joan; Flood, Matthew; Aw, Tiong; Hyndman, David
2016-04-01
Large scale agriculture relies on the application of chemical fertilizers and animal manure. It is well known that nutrients in excess of a plant's uptake and soil retention capacity can travel to nearby waterways via surface run-off and groundwater pathways, indirectly fertilizing these aquatic ecosystems. It has not yet been possible to distinguish water quality impacts of fertilizer from those derived from human and animal waste sources. However, new microbial source tracking (MST) tools allow specific identification of fecal pollution. Our objective was to examine pollution risks at the regional scale using MST, mapping and classification and regression tree analysis. We present results Bovine M2 genetic marker data from three flow regimes (baseflow, snow melt, and post-planting rain). Key landscape characteristics were related to the presence of the bovine markers and appear to be related to fate and transport. Impacts at this regional watershed scale will be discussed. Our research aims to identify the impacts of agricultural management practices on water quality by linking nutrient concentrations with fecal pollution sources. We hope that our research will provide guidance that will help improve water quality through agricultural best management practices to reduce pathogen contamination.
Schudel, Gary; Miserendino, Rebecca Adler; Veiga, Marcello M; Velasquez-López, P Colon; Lees, Peter S J; Winland-Gaetz, Sean; Davée Guimarães, Jean Remy; Bergquist, Bridget A
2018-07-01
Mercury (Hg) concentrations and stable isotopes along with other trace metals were examined in environmental samples from Ecuador and Peru's shared Puyango-Tumbes River in order to determine the extent to which artisanal- and small-scale gold mining (ASGM) in Portovelo-Zaruma, Ecuador contributes to Hg pollution in the downstream aquatic ecosystem. Prior studies investigated the relationship between ASGM activities and downstream Hg pollution relying primarily on Hg concentration data. In this study, Hg isotopes revealed an isotopically heavy Hg signature with negligible mass independent fractionation (MIF) in downstream sediments, which was consistent with the signature observed in the ASGM source endmember. This signature was traced as far as ∼120 km downstream of Portovelo-Zaruma, demonstrating that Hg stable isotopes can be used as a tool to fingerprint and trace sources of Hg over vast distances in freshwater environments. The success of Hg isotopes as a source tracer in fresh waters is largely due to the particle-reactive nature of Hg. Furthermore, the magnitude and extent of downstream Hg, lead, copper and zinc contamination coupled with the Hg isotopes suggest that it is unlikely that the smaller artisanal-scale activities, which do not use cyanidation, are responsible for the pollution. More likely it is the scale of ores processed and the cyanide leaching, which can release other metals and enhance Hg transport, used during small-scale gold mining that is responsible. Thus, although artisanal- and small-scale gold mining occur in tandem in Portovelo-Zaruma, a distinction should be made between these two activities. Copyright © 2018 Elsevier Ltd. All rights reserved.
The feasibility of large-scale fungal bioaugmentation was evaluated by assessing the ability of the lignin-degrading fungus Phanerochaete sordida to decrease the soil concentrations of pentachlorophenol (PCP) and 13 priority pollutant polynuclear aromatic (PNA) creosote component...
Resolving Local-Scale Emissions for Modeling Air Quality near Roadways
A large body of literature published in recent years suggests increased health risk due to exposure of people to air pollution in close proximity to roadways. As a result, there is a need to more accurately represent the spatial concentration gradients near roadways in order to ...
A Community-Scale Modeling System to Assess Port-Related Air Quality Impacts
Near-port air pollution has been identified by numerous organizations as a potential public health concern. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission sources at the ports may impact local air quality within several hun...
Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai
2015-06-01
Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L.; Zhang, J.
2015-02-01
In a joint NRL/Manila Observatory mission, as part of the Seven SouthEast Asian Studies program (7-SEAS), a 2-week, late September 2011 research cruise in the northern Palawan archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Niño-Southern Oscillation (ENSO) La Niña year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol life cycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm-3, non-sea-salt PM2.5 < 1 μg m-3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea-salt PM2.5 10-25 μg m-3). These cases corresponded with two different mechanisms of convection suppression: lower free-tropospheric dry-air intrusion from the Indian Ocean, and large-scale TC-induced subsidence. Veering vertical wind shear also resulted in aerosol transport into this region being mainly in the marine boundary layer (MBL), although lower free troposphere transport was possible on the western sides of Sumatra and Borneo. At the hourly time scale, particle concentrations were observed to be modulated by integer factors through convection and associated cold pools. Geostationary satellite observations suggest that convection often takes the form of squall lines, which are bowed up to 500 km across the monsoonal flow and 50 km wide. These squall lines, initiated by cold pools from large thunderstorms and likely sustained by a veering vertical wind shear and aforementioned mid-troposphere dry layers, propagated over 1500 km across the entirety of the SCS/ES, effectively cutting large swaths of MBL aerosol particles out of the region. Our conclusion is that while large-scale flow patterns are very important in modulating convection, and hence in allowing long-range transport of smoke and pollution, more short-lived phenomena can modulate cloud condensation nuclei (CCN) concentrations in the region, resulting in pockets of clean and polluted MBL air. This will no doubt complicate large scale comparisons of aerosol-cloud interaction.
Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian
2017-10-01
On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pollution source localization in an urban water supply network based on dynamic water demand.
Yan, Xuesong; Zhu, Zhixin; Li, Tian
2017-10-27
Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.
Liu, Yi; Sun, Jingjie; Gou, Yannong; Sun, Xiubin; Li, Xiujun; Yuan, Zhongshang; Kong, Lizhi; Xue, Fuzhong
2018-04-17
Although there is growing evidence linking chronic obstructive pulmonary disease (COPD) hospital admissions to the exposure to ambient air pollution, the effect can vary depending on the local geography, pollution type, and pollution level. The number of large-scale multicity studies remains limited in China. This study aims to assess the short-term effects of ambient air pollution (PM 2.5 , PM 10 , SO₂, NO₂) on chronic obstructive pulmonary disease hospital admissions from 2015 to 2016, with a total of 216,159 records collected from 207 hospitals in 17 cities all over the Shandong province, east China. Generalized additive models and penalized splines were applied to study the data whilst controlling for confounding meteorological factors and long-term trends. The air pollution was analyzed with 0–6 day lag effects and the percentage change of hospital admissions was assessed for a 10-μg/m³ increase in the air pollution levels. We also examined the percentage changes for different age groups and gender, respectively. The results showed that air pollution was significantly associated with adverse health outcomes and stronger effects were observed for females. The air pollution health effects were also impacted by geographical factors such that the air pollution had weaker health effects in coastal cities.
Midweek Intensification of Rain in the U.S.: Does Air Pollution Invigorate Storms?
NASA Technical Reports Server (NTRS)
Bell, T. L.; Rosenfeld, D.; Hahnenberger, M.
2005-01-01
The effect of pollution on rainfall has been observed to depend both on the type of pollution and the precipitating environment. The climatological consequences of pollution for rainfall are uncertain. In some urban areas, pollution varies with the day of the week because of weekly variations in human activity, in effect providing a repeated experiment on the effects of pollution. Weekly variations in temperature, pressure, cloud characteristics, hails and lightning are observed in many areas. Observing a weekly cycle in rainfall statistics has proven to be more difficult, although there is some evidence for it. Here we examine rainfall statistics from the Tropical Rainfall Measuring Mission (TRMM) satellite over the southern U.S. and adjacent waters, and find that there is a distinct, statistically significant weekly cycle in summertime rainfall over the southeast U.S., as well as weekly variations in rainfall over the nearby Atlantic and the Gulf of Mexico. Rainfall over land peaks in the middle of the week, suggesting that summer rainfall on large scales may increase as pollution levels rise. Both rain statistics over land and what appear to be compensating effects over adjacent seas support the suggestion that air pollution invigorates convection and outflow aloft.
Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C
2017-04-01
In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (<63 μm, 88.3%-90.7%), and runoff particles contained a higher proportion of nano-scale particles (<1 μm) but a lower proportion of submicron-scale particles (1-16 μm) than rivers. The ratio of turbidity to TSS increased with the proportion of fine particles and was associated with the accumulation of pollutants and settling ability of particles, which shows that it can be used as an index when monitoring runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pollution monitoring of puget sound with honey bees.
Bromenshenk, J J; Carlson, S R; Simpson, J C; Thomas, J M
1985-02-08
To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors.
Fuel savings and emissions reductions from light duty fuel cell vehicles
NASA Astrophysics Data System (ADS)
Mark, J.; Ohi, J. M.; Hudson, D. V., Jr.
1994-04-01
Fuel cell vehicles (FCV's) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCV's has the potential to lessen U.S. dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCV's and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCV's will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCV's, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.
Optimal city size and population density for the 21st century.
Speare A; White, M J
1990-10-01
The thesis that large scale urban areas result in greater efficiency, reduced costs, and a better quality of life is reexamined. The environmental and social costs are measured for different scales of settlement. The desirability and perceived problems of a particular place are examined in relation to size of place. The consequences of population decline are considered. New York city is described as providing both opportunities in employment, shopping, and cultural activities as well as a high cost of living, crime, and pollution. The historical development of large cities in the US is described. Immigration has contributed to a greater concentration of population than would have otherwise have occurred. The spatial proximity of goods and services argument (agglomeration economies) has changed with advancements in technology such as roads, trucking, and electronic communication. There is no optimal city size. The overall effect of agglomeration can be assessed by determining whether the markets for goods and labor are adequate to maximize well-being and balance the negative and positive aspects of urbanization. The environmental costs of cities increase with size when air quality, water quality, sewage treatment, and hazardous waste disposal is considered. Smaller scale and lower density cities have the advantages of a lower concentration of pollutants. Also, mobilization for program support is easier with homogenous population. Lower population growth in large cities would contribute to a higher quality of life, since large metropolitan areas have a concentration of immigrants, younger age distributions, and minority groups with higher than average birth rates. The negative consequences of decline can be avoided if reduction of population in large cities takes place gradually. For example, poorer quality housing can be removed for open space. Cities should, however, still attract all classes of people with opportunities equally available.
Zhang, Kai; Wei, Yan-Li; Zeng, Eddy Y
2013-10-01
Rapid economic growth in South China (including Guangdong Province, Hong Kong, and Macau), particularly within the Pearl River Delta region, has resulted in severe pollution of the natural eco-environment in the last three decades. Large amounts of monitoring data on organic pollution in the Pearl River Delta have been accumulated, which allows us to conduct a fairly comprehensive assessment of the state of the Pearl River Delta and elucidate spatial and temporal patterns of pollution on a regional scale. Of various causes for environmental deterioration, negative impact from persistent organic pollutants (POPs) is a global concern. This review examines the current levels and distribution patterns of several POPs, namely DDT (and its metabolites DDD and DDE), hexachlorocyclohexanes, and polybrominated diphenyl ethers, in various environmental compartments of South China. The general information on environmental occurrence, regional behaviors, ecological effects, and human exposure of these POPs in this region are reviewed. Copyright © 2012 Elsevier B.V. All rights reserved.
Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard
2016-11-15
A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.
NASA Astrophysics Data System (ADS)
Thevenon, F.; Wirth, S. B.; Fujak, M.; Poté, J.; Thierry, A.; Chiaradia, M.; Girardclos, S.
2011-12-01
Continuous sedimentary records of anthropogenic and natural trace elements determined by ICPMS, from 5 large and deep perialpine lakes from Central Europe (Switzerland), evidence the environmental impacts of industrial fossil fuel pollution. In fact, the greatest increase in heavy metal pollution was registered at all the studied sites following the European industrial revolution of ca. AD 1800; with the highest values during the middle part of the 20th century. On a regional scale, anthropogenic heavy metal input subsequently stopped increasing thanks to remediation strategies such as the implementation of wastewater treatment plants (WWTPs). On the other hand, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century involved the sedimentation of highly contaminated sediments in the area surrounding the WWTP outlet pipe discharge; less than 4 km from the main supply of drinking water of Lausanne (127'000 hab.). Microbial analyses furthermore reveal i) high increase in bacterial densities following the lake eutrophication in the 1970s, and that ii) the related sediments can be considered as a reservoir of antibiotic resistant bacteria/genes (of human origin). We finally compare instrumental hydrological data over the last century with variations of lithogenic trace elements (e.g., titanium) as registered in three large lakes (Brienz, Thun and Bienne) connected by the River Aar. This task allows to better constraining the runoff variations on a regional scale over the last decades for the the River Aar, and its possible increase under warming climate conditions in the European Alps.
Determining volume sensitive waters in Beaufort County, SC tidal creeks
Andrew Tweel; Denise Sanger; Anne Blair; John Leffler
2016-01-01
Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.
Space Station: Key to the Future.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The possible applications, advantages and features of an advanced space station to be developed are considered in a non-technical manner in this booklet. Some of the areas of application considered include the following: the detection of large scale dynamic earth processes such as changes in snow pack, crops, and air pollution levels; the…
Maldonado, M I; Malato, S; Pérez-Estrada, L A; Gernjak, W; Oller, I; Doménech, Xavier; Peral, José
2006-11-16
Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (alpha-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html] founded by the European Union that inquires into the potential coupling between chemical and biological oxidations for the removal of toxic or non-biodegradable contaminants from water. The evolution of pollutant concentration, TOC mineralization, generation of inorganic species and consumption of O3 have been followed in order to visualize the chemical treatment effectiveness. Although complete mineralization is hard to accomplish, and large amounts of the oxidant are required to lower the organic content of the solutions, the possibility of ozonation cannot be ruled out if partial degradation is the final goal wanted. In this sense, Zahn-Wellens biodegradability tests of the ozonated MPG solutions have been performed, and the possibility of a further coupling with a secondary biological treatment for complete organic removal is envisaged.
NASA Astrophysics Data System (ADS)
Wollheim, W. M.; Mulukutla, G. K.; Cook, C.; Carey, R. O.
2017-11-01
Nonpoint pollution sources are strongly influenced by hydrology and are therefore sensitive to climate variability. Some pollutants entering aquatic ecosystems, e.g., nitrate, can be mitigated by in-stream processes during transport through river networks. Whole river network nitrate retention is difficult to quantify with observations. High frequency, in situ nitrate sensors, deployed in nested locations within a single watershed, can improve estimates of both nonpoint inputs and aquatic retention at river network scales. We deployed a nested sensor network and associated sampling in the urbanizing Oyster River watershed in coastal New Hampshire, USA, to quantify storm event-scale loading and retention at network scales. An end member analysis used the relative behavior of reactive nitrate and conservative chloride to infer river network fate of nitrate. In the headwater catchments, nitrate and chloride concentrations are both increasingly diluted with increasing storm size. At the mouth of the watershed, chloride is also diluted, but nitrate tended to increase. The end member analysis suggests that this pattern is the result of high retention during small storms (51-78%) that declines to zero during large storms. Although high frequency nitrate sensors did not alter estimates of fluxes over seasonal time periods compared to less frequent grab sampling, they provide the ability to estimate nitrate flux versus storm size at event scales that is critical for such analyses. Nested sensor networks can improve understanding of the controls of both loading and network scale retention, and therefore also improve management of nonpoint source pollution.
Biomonitoring of air pollution as exemplified by recent IAEA programs.
Smodis, B; Parr, R M
1999-01-01
Biomonitoring is an appropriate tool for assessing the levels of atmospheric pollution, having several advantages compared with the use of direct measurements of contaminants (e.g., in airborne particulate matter, atmospheric deposition, precipitation), related primarily to the permanent and common occurrence of the chosen organisms in the field, the ease of sampling, and trace element accumulation. Furthermore, biomonitors may provide a measure of integrated exposure over an extended period of time and are present in remote areas and no expensive technical equipment is involved in collecting them. They accumulate contaminants over the exposure time and concentrate them, thus facilitating analytical measurements. Based on large-scale biomonitoring surveys, polluted areas can be identified, and by applying appropriate statistical tools, information can be obtained on the type of pollution sources and on the transboundary transport of atmospheric pollutants. The International Atomic Energy Agency is including the research on biomonitors in its projects on health-related environmental studies. Biomonitoring activities from several coordinated research projects on air pollution are presented, and results from an international workshop are discussed. In addition, activities in supporting improvement quality in the participating laboratories are outlined.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
Flores-Alsina, Xavier; Saagi, Ramesh; Lindblom, Erik; Thirsing, Carsten; Thornberg, Dines; Gernaey, Krist V; Jeppsson, Ulf
2014-03-15
The objective of this paper is to demonstrate the full-scale feasibility of the phenomenological dynamic influent pollutant disturbance scenario generator (DIPDSG) that was originally used to create the influent data of the International Water Association (IWA) Benchmark Simulation Model No. 2 (BSM2). In this study, the influent characteristics of two large Scandinavian treatment facilities are studied for a period of two years. A step-wise procedure based on adjusting the most sensitive parameters at different time scales is followed to calibrate/validate the DIPDSG model blocks for: 1) flow rate; 2) pollutants (carbon, nitrogen); 3) temperature; and, 4) transport. Simulation results show that the model successfully describes daily/weekly and seasonal variations and the effect of rainfall and snow melting on the influent flow rate, pollutant concentrations and temperature profiles. Furthermore, additional phenomena such as size and accumulation/flush of particulates of/in the upstream catchment and sewer system are incorporated in the simulated time series. Finally, this study is complemented with: 1) the generation of additional future scenarios showing the effects of different rainfall patterns (climate change) or influent biodegradability (process uncertainty) on the generated time series; 2) a demonstration of how to reduce the cost/workload of measuring campaigns by filling the gaps due to missing data in the influent profiles; and, 3) a critical discussion of the presented results balancing model structure/calibration procedure complexity and prediction capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?
Luoma, Samuel N.
1996-01-01
Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.
A Satellite-based Assessment of Trans-Pacific Transport of Pollution Aerosol
NASA Technical Reports Server (NTRS)
Yu, Hongbin; Remer, Lorraine; Chin, Mian; Bian, Huisheng; Kleidman, Richard; Diehl. Thomas
2007-01-01
It has been well documented that pollution aerosol and dust from East Asia can transport across the North Pacific basin, reaching North America and beyond. Such intercontinental transport extends the impact of aerosols for climate change, air quality, atmospheric chemistry, and ocean biology from local and regional scales to hemispheric and global scales. Long term, measurement-based studies are necessary to adequately assess the implications of these wider impacts. A satellite-based assessment can augment intensive field campaigns by expanding temporal and spatial scales and also serve as constraints for model simulations. Satellite imagers have been providing a wealth of evidence for the intercontinental transport of aerosols for more than two decades. Quantitative assessments, however, became feasible only recently as a result of the much improved measurement accuracy and enhanced new capabilities of satellite sensors. In this study, we generated a 4-year (2002 to 2005) climatology of optical depth for pollution aerosol (defined as a mixture of aerosols from urbanlindustrial pollution and biomass burning in this study) over the North Pacific from MODerate resolution Imaging Spectro-radiometer (MODIS) observations of fine- and coarse-mode aerosol optical depths. The pollution aerosol mass loading and fluxes were then calculated using measurements of the dependence of aerosol mass extinction efficiency on relative humidity and of aerosol vertical distributions from field campaigns and available satellite observations in the region. We estimated that about 18 Tg/year pollution aerosol is exported from East Asia to the northwestern Pacific Ocean, of which about 25% reaches the west coast of North America. The pollution fluxes are largest in spring and smallest in summer. For the period we have examined the strongest export and import of pollution particulates occurred in 2003, due largely to record intense Eurasia wildfires in spring and summer. The overall uncertainty of pollution fluxes is estimated at about 80%. A reduction of uncertainty can be achieved with a better characterization of pollution aerosol through integrating emerging A-Train measurements. Simulations by the Goddard Chemistry Aerosol Radiation and Transport (GOCART) and Global Modeling Initiative (GMI) models agree quite well with the satellite-based estimates of annual and latitudeintegrated fluxes, with larger model-satellite differences in latitudinal variations of fluxes.
Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto
2018-04-25
To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.
Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda
2016-01-01
Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205
NASA Astrophysics Data System (ADS)
Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.
2017-12-01
The fast-growing world population will impose a severe pressure on our current global food production system. Meanwhile, boosting crop yield by increasing fertilizer use comes with a cascade of environmental problems including air pollution. In China, agricultural activities contribute to 95% of total ammonia emissions. Such emissions are attributable to 20% of the fine particulate matter (PM2.5) formed in the downwind regions, which imposes severe health risks to the citizens. Field studies of soybean intercropping have demonstrated its potential to enhance crop yield, lower fertilizer use, and thus reduce ammonia emissions by taking advantage of legume nitrogen fixation and enabling mutualistic crop-crop interactions between legumes and non-legume crops. In our work, we revise the process-based biogeochemical model, DeNitrification-DeComposition (DNDC) to capture the belowground interactions of intercropped crops and show that with intercropping, only 58% of fertilizer is required to yield the same maize production of its monoculture counterpart, corresponding to a reduction in ammonia emission by 43% over China. Using the GEOS-Chem global 3-D chemical transport model, we estimate that such ammonia reduction can lessen downwind inorganic PM2.5 by up to 2.1% (equivalent to 1.3 μg m-3), which saves the Chinese air pollution-related health costs by up to US$1.5 billion each year. With the more enhanced crop growth and land management algorithms in the Community Land Model (CLM), we also implement into CLM the new parametrization of the belowground interactions to simulate large-scale adoption of intercropping around the globe and study their beneficial effects on food production, fertilizer usage and ammonia reduction. This study can serve as a scientific basis for policy makers and intergovernmental organizations to consider promoting large-scale intercropping to maintain a sustainable global food supply to secure both future crop production and air quality.
Tropospheric Ozone and Photochemical Smog
NASA Astrophysics Data System (ADS)
Sillman, S.
2003-12-01
The question of air quality in polluted regions represents one of the issues of geochemistry with direct implications for human well-being. Human health and well-being, along with the well-being of plants, animals, and agricultural crops, are dependent on the quality of air we breathe. Since the start of the industrial era, air quality has become a matter of major importance, especially in large cities or urbanized regions with heavy automobile traffic and industrial activity.Concern over air quality existed as far back as the 1600s. Originally, polluted air in cities resulted from the burning of wood or coal, largely as a source of heat. The industrial revolution in England saw a great increase in the use of coal in rapidly growing cities, both for industrial use and domestic heating. London suffered from devastating pollution events during the late 1800s and early 1900s, with thousands of excess deaths attributed to air pollution (Brimblecombe, 1987). With increasing use of coal, other instances also occurred in continental Europe and the USA. These events were caused by directly emitted pollutants (primary pollutants), including sulfur dioxide (SO2), carbon monoxide (CO), and particulates. They were especially acute in cities with northerly locations during fall and winter when sunlight is at a minimum. These original pollution events gave rise to the term "smog" (a combination of smoke and fog). Events of this type have become much less severe since the 1950s in Western Europe and the US, as natural gas replaced coal as the primary source of home heating, industrial smokestacks were designed to emit at higher altitudes (where dispersion is more rapid), and industries were required to install pollution control equipment.Beginning in the 1950s, a new type of pollution, photochemical smog, became a major concern. Photochemical smog consists of ozone (O3) and other closely related species ("secondary pollutants") that are produced photochemically from directly emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in global background ozone can make the effects of local pollution events everywhere more acute, and can also cause ecological damage in remote locations that are otherwise unaffected by urban pollution. Ozone at the global scale is also related to greenhouse warming.This chapter provides an overview of photochemical smog at the urban and regional scale, focused primarily on ozone and including a summary of information about particulates. It includes the following topics: dynamics and extent of pollution events; health and ecological impacts; relation between ozone and precursor emissions, including hydrocarbons and nitrogen oxides (NOx); sources, composition, and fundamental properties of particulates; chemistry of ozone and related species; methods of interpretation based on ambient measurements; and the connection between air pollution events and the chemistry of the global troposphere. Because there are many similarities between the photochemistry of ozone during pollution events and the chemistry of the troposphere in general, this chapter will include some information about global tropospheric chemistry and the links between urban-scale and global-scale events. Additional treatment of the global troposphere is found in Volume 4 of this work. The chemistry of ozone formation discussed here is also related to topics discussed in greater detail elsewhere in this volume (see Chapters 9.10 and 9.12) and in Volume 4.
NASA Astrophysics Data System (ADS)
Gómez, Walter; Chávez, Carlos; Salgado, Hugo; Vásquez, Felipe
2017-11-01
We present the design, implementation, and evaluation of a subsidy program to introduce cleaner and more efficient household wood combustion technologies. The program was conducted in the city of Temuco, one of the most polluted cities in southern Chile, as a pilot study to design a new national stove replacement initiative for pollution control. In this city, around 90% of the total emissions of suspended particulate matter is caused by households burning wood. We created a simulated market in which households could choose among different combustion technologies with an assigned subsidy. The subsidy was a relevant factor in the decision to participate, and the inability to secure credit was a significant constraint for the participation of low-income households. Due to several practical difficulties and challenges associated with the implementation of large-scale programs that encourage technological innovation at the household level, it is strongly advisable to start with a small-scale pilot that can provide useful insights into the final design of a fuller, larger-scale program.
Pollution monitoring of Puget Sound with honey bees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.
To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.
Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz
2017-08-01
Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Air pollution and mortality: A history
NASA Astrophysics Data System (ADS)
Anderson, H. R.
Mortality is the most important health effect of ambient air pollution and has been studied the longest. The earliest evidence relates to fog episodes but with the development of more precise methods of investigation it is still possible to discern short-term temporal associations with daily mortality at the historically low levels of air pollution that now exist in most developed countries. Another early observation was that mortality was higher in more polluted areas. This has been confirmed by modern cohort studies that account for other potential explanations for such associations. There does not appear to be a threshold of effect within the ambient range of concentrations. Advances in the understanding of air pollution and mortality have been driven by the combined development of methods and biomedical concepts. The most influential methodological developments have been in time-series techniques and the establishment of large cohort studies, both of which are underpinned by advances in data processing and statistical analysis. On the biomedical side two important developments can be identified. One has been the application of the concept of multifactorial disease causation to explaining how air pollution may affect mortality at low levels and why thresholds are not obvious at the population level. The other has been an increasing understanding of how air pollution may plausibly have pathophysiological effects that are remote from the lung interface with ambient air. Together, these advances have had a profound influence on policies to protect public health. Throughout the history of air pollution epidemiology, mortality studies have been central and this will continue because of the widespread availability of mortality data on a large population scale and the weight that mortality carries in estimating impacts for policy development.
Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal
2017-11-01
Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups.
Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal
2017-01-01
BACKGROUND Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. METHODS Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. RESULTS The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. CONCLUSION The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups. PMID:29643921
Overview on the Air Pollution Issues of the City Clusters in China and its Control Strategies
NASA Astrophysics Data System (ADS)
Tang, X.
2007-12-01
Mega-cities in China, such as Beijing, Guangzhou, Shenzhen, and Shanghai are located in three large city clusters, Bo-Hai Bay surrounding area, Pearl River Delta (PRD) and Yangtze River Delta. Like the rest of the coastal regions in China, these mega-cities have been experiencing fast economic developments and consequently serious environmental pollution. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants and secondary pollutants, which lead to the development of "air pollution complex" (perhaps typically Chinese) problem. Several campaigns of field experiments covering the regions such as PRD and Beijing City with surrounding areas have been conducted critically to understand the chemical and physical processes leading to the formation of regional scale air pollution since 2004. Some policy-relevant suggestions for air quality attainment have been made after these campaigns, specially the attainment of air quality during 2008 Beijing Olympic game, which has been attracted as an important concern worldwide. A scientific field campaign was conducted during August of 2007 for testing the control strategies suggested for air quality attainment in 2008-Olympic. An overview of the results of PRD and Beijing Campaigns will be presented.
Hu, Yuanan; Cheng, Hefa
2013-04-16
As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.
Regional and National Use of Semi-Natural and Natural Depressional Wetlands in Green Infrastructure
NASA Astrophysics Data System (ADS)
Lane, C.; D'Amico, E.
2016-12-01
Depressional wetlands are frequently amongst the first aquatic systems to be exposed to pollutants from terrestrial source areas. Wetland functions include the finite ability to process nutrients and other pollutants. Through assimilation or sequestration of pollutants, depressional wetlands can affect other waters. While the functions of wetlands are well known, the abundance of depressional wetlands throughout the United States is not well known. Recent estimates conclude that approximately 16% of the freshwater wetlands of the conterminous United States may be depressional wetlands, or putative "geographically isolated wetlands" (Lane and D'Amico JAWRA 2016 52(3):705-722). However, there remains uncertainty in the impact or effects of depressional wetlands on other waters. We present geographic information system analyses showing the abundance and types of depressional wetlands effectively serving as green infrastructure throughout the conterminous U.S. We furthermore analyze the landscape position of depressional wetlands intersecting potentially pollutant-laden surficial flow paths from specific land uses (e.g., depressional wetlands embedded in agricultural landscapes). We discuss how similarities and differences in types and abundances of depressional wetlands between and among ecoregions of the conterminous US provide an opportunity for wise management at broad geographic scales. These data may suggest utility in including wetland depressions in large-scale coupled hydrological and nutrient modeling.
Ma, Yukun; McGree, James; Liu, An; Deilami, Kaveh; Egodawatta, Prasanna; Goonetilleke, Ashantha
2017-10-01
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants present in urban stormwater. Consequently, urban stormwater reuse is constrained due to the human health risk posed by these pollutants. This study developed a scientifically robust approach to assess the risk to human health posed by HMs and PAHs in urban stormwater in order to enhance its reuse. Accordingly, an innovative methodology was created consisting of four stages: quantification of traffic and land use parameters; estimation of pollutant concentrations for model development; risk assessment, and risk map presentation. This methodology will contribute to catchment scale assessment of the risk associated with urban stormwater and for risk mitigation. The risk map developed provides a simple and efficient approach to identify the critical areas within a large catchment. The study also found that heavy molecular weight PAHs (PAHs with 5-6 benzene rings) in urban stormwater pose higher risk to human health compared to light molecular PAHs (PAHs with 2-4 benzene rings). These outcomes will facilitate the development of practical approaches for applying appropriate mitigation measures for the safe management of urban stormwater pollution and for the identification of enhanced reuse opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.
Development and analysis of air quality modeling simulations for hazardous air pollutants
NASA Astrophysics Data System (ADS)
Luecken, D. J.; Hutzell, W. T.; Gipson, G. L.
The concentrations of five hazardous air pollutants were simulated using the community multi-scale air quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results are shown for formaldehyde, acetaldehyde, benzene, 1,3-butadiene and acrolein. Photochemical production in the atmosphere is predicted to dominate ambient formaldehyde and acetaldehyde concentrations, and to account for a significant fraction of ambient acrolein concentrations. Spatial and temporal variations are large throughout the domain over the year. Predicted concentrations are compared with observations for formaldehyde, acetaldehyde, benzene and 1,3-butadiene. Although the modeling results indicate an overall slight tendency towards underprediction, they reproduce episodic and seasonal behavior of pollutant concentrations at many monitors with good skill.
SCIMAP: Modelling Diffuse Pollution in Large River Basins
NASA Astrophysics Data System (ADS)
Milledge, D.; Heathwaite, L.; Lane, S. N.; Reaney, S. M.
2009-12-01
Polluted rivers are a problem for the plants and animals that require clean water to survive. Watershed scale processes can influence instream aquatic ecosystems by delivering fine sediment, solutes and organic matter from diffuse sources. To improve our rivers we need to identify the pollution sources. Models can help us to do this but these rarely address the extent to which risky land uses are hydrologically-connected, and hence able to deliver, to the drainage network. Those that do tend to apply a full hydrological scheme, which is unfeasible for large watersheds. Here we develop a risk-based modelling framework, SCIMAP, for diffuse pollution from agriculture (Nitrate, Phosphate and Fine Sediment). In each case the basis of the analysis is the joint consideration of the probability of a unit of land (25 m2 cell) producing a particular environmental risk and then of that risk reaching the river. The components share a common treatment of hydrological connectivity but differ in their treatment of each pollution type. We test and apply SCIMAP using spatially-distributed instream water quality data for some of the UK’s largest catchments to infer the processes and the associated process parameters that matter in defining their concentrations. We use these to identify a series of risky field locations, where this land use is readily connected to the river system by overland flow.
Implications of alternative assumptions regarding future air pollution control in RCP-like scenarios
NASA Astrophysics Data System (ADS)
Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Mendoza Beltran, Angelica; van Vliet, Jasper
2013-04-01
Estimation of future emissions of short-lived trace gases and aerosols from human activities is a main source of uncertainty in projections of future air quality and climate forcing. The Representative Concentration Pathways (RCPs), however, all assume that worldwide ambitious air pollution control policies will be implemented in the coming decades. In this study, we therefore explore the consequences of four alternative emission scenarios generated using the IMAGE integrated assessment model following the methods used to generate the RCPs. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W/m2 and 6.0 W/m2 (the high air pollution variants assume no improvement in emission factors, representing a hypothetical upper end of emission levels). Analysis using the global atmospheric chemistry and transport model TM5 shows that climate mitigation and air pollution control policy variants studied here have similar large-scale effects on the concentrations of ozone and black carbon; the impact of climate policy, however, has a stronger impact on sulphate concentrations. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate already in 2020, and on the longer term contribute to enhanced warming by methane. These effects tend to cancel each other at the global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W/m2 in the 6.0 W/m2 scenario and -0.16 W/m2 in the 2.6 W/m2 scenario.
Ground Level Ozone Regional Background Characteristics In North-west Pacific Rim
NASA Astrophysics Data System (ADS)
Chiang, C.; Fan, J.; Chang, J. S.
2007-12-01
Understanding the ground level ozone regional background characteristics is essential in understanding the contribution of long-range transport of pollutants from Asia Mainland to air quality in downwind areas. In order to understand this characteristic in north-west Pacific Rim, we conducted a coupled study using ozone observation from regional background stations and 3-D regional-scale chemical transport model simulations. We used O3, CO, wind speed and wind direction data from two regional background stations and ¡§other stations¡¨ over a ten year period and organized several numerical experiments to simulate one spring month in 2003 to obtain a deeper understanding. The so called ¡§other stations¡¨ had actually been named as background stations under various governmental auspices. But we found them to be often under strong influence of local pollution sources with strong diurnal or slightly longer time variations. We found that the Yonagunijima station (24.74 N, 123.02 E) and Heng-Chuen station (21.96 N,120.78 E), about a distance of 400 km apart, have almost the same ozone time series pattern. For these two stations in 2003, correlation coefficients (R2) for annual observed ozone concentration is about 0.64, in the springtime it is about 0.7, and in a one-month period at simulation days it is about 0.76. These two stations have very little small scale variations in all the variables studied. All variations are associated with large scale circulation changes. This is especially so at Yonagunijima station. Using a 3-D regional-scale chemical transport model for East Asia region including contribution from Asia continental outflow and neighboring island pollution areas we found that the Yonagunijima and HengChuen station are indeed free of pollutants from all neighboring areas keeping in mind that pollutants from Taiwan area is never far away. Ozone concentrations in these two stations are dominated by synoptic scale weather patterns, with diffused pollutant contribution from distant sources. When the weather system brings in air mass from the low latitude of western Pacific Ocean, ozone concentrations are about 10-20 ppb. When the China high pressure system moves eastward and with the accompanying Asian continental outflow plume, ozone concentrations are about 65-80 ppb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braennvall, M.L.; Bindler, R.; Renberg, I.
1999-12-15
There is great concern for contamination of sensitive ecosystems in high latitudes by long-range transport of heavy metals and other pollutants derived from industrial areas in lower latitudes. Atmospheric pollution of heavy metals has a very long history, and since metals accumulate in the environment, understanding of present-day pollution conditions requires knowledge of past atmospheric deposition. The authors use analyses of lead concentrations and stable lead isotopes ({sup 206}Pb/{sup 207}Pb ratios) of annually laminated sediments from four lakes in northern Sweden to provide a decadal record of atmospheric lead pollution for the last 3000 years. There is a clear signalmore » in the sediments of airborne pollution from Greek and Roman cultures 2000 years ago, followed by a period of clean conditions 400--900 A.D. From 900 A.D. there was a conspicuous, permanent increase in atmospheric lead pollution fallout, The sediments reveal peaks in atmospheric lead pollution at 1200 and 1530 A.D. comparable to present-day levels. These peaks match the history of metal production in Europe. This study indicates that the contemporary atmospheric pollution climate in northern Europe was established in Medieval time, rather than in the industrial period. Atmospheric lead pollution deposition did not, when seen in a historical perspective, increase as much as usually assumed with the Industrial Revolution.« less
Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review.
Awasthi, Abhishek Kumar; Zlamparet, Gabriel Ionut; Zeng, Xianlai; Li, Jinhui
2017-04-01
Rapid generation of waste printed circuit boards has become a very serious issue worldwide. Numerous techniques have been developed in the last decade to resolve the pollution from waste printed circuit boards, and also recover valuable metals from the waste printed circuit boards stream on a large-scale. However, these techniques have their own certain specific drawbacks that need to be rectified properly. In this review article, these recycling technologies are evaluated based on a strength, weaknesses, opportunities and threats analysis. Furthermore, it is warranted that, the substantial research is required to improve the current technologies for waste printed circuit boards recycling in the outlook of large-scale applications.
Spatial Variation in Particulate Matter Components over a Large Urban Area
Fruin, Scott; Urman, Robert; Lurmann, Fred; McConnell, Rob; Gauderman, James; Rappaport, Ed; Franklin, Meredith; Gilliland, Frank D.; Shafer, Martin; Gorski, Patrick; Avol, Ed
2014-01-01
To characterize exposures to particulate matter (PM) and its components, we performed a large sampling study of small-scale spatial variation in size-resolved particle mass and composition. PM was collected in size ranges of < 0.2, 0.2-to-2.5, and 2.5-to-10 μm on a scale of 100s to 1000s of meters to capture local sources. Within each of eight Southern California communities, up to 29 locations were sampled for rotating, month-long integrated periods at two different times of the year, six months apart, from Nov 2008 through Dec 2009. Additional sampling was conducted at each community’s regional monitoring station to provide temporal coverage over the sampling campaign duration. Residential sampling locations were selected based on a novel design stratified by high- and low-predicted traffic emissions and locations over- and under-predicted from previous dispersion model and sampling comparisons. Primary vehicle emissions constituents, such as elemental carbon (EC), showed much stronger patterns of association with traffic than pollutants with significant secondary formation, such as PM2.5 or water soluble organic carbon. Associations were also stronger during cooler times of the year (Oct through Mar). Primary pollutants also showed greater within-community spatial variation compared to pollutants with secondary formation contributions. For example, the average cool-season community mean and standard deviation (SD) for EC were 1.1 and 0.17 μg/m3, respectively, giving a coefficient of variation (CV) of 18%. For PM2.5, average mean and SD were 14 and 1.3 μg/m3, respectively, with a CV of 9%. We conclude that within-community spatial differences are important for accurate exposure assessment of traffic-related pollutants. PMID:24578605
Potosí, Bolivia, is the site of centuries of historic and present-day mining of the Cerro Rico Mountain, known for its rich polymetallic deposits, and was the site of large-scale Colonial era silver refining operations, both of which have left a legacy of pollution. In this study...
Gas chromatography of volatile organic compounds
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1973-01-01
System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.
USDA-ARS?s Scientific Manuscript database
Large volumes of wastewater from confined pig production are stored in anaerobic lagoons. Control methods are needed to reduce air pollution by foul odors released from these lagoons. In a pilot-scale experiment, we evaluated the effect of pig wastewater pre-treatment on reducing the concentration o...
Computational Complexity of Bosons in Linear Networks
2017-03-01
photon statistics while strongly reducing emission probabilities: thus leading experimental teams pursuing large-scale BOSONSAMPLING have faced a hard...Potentially, this could motivate new validation protocols exploiting statistics that include this temporal degree of freedom. The impact of...photon- statistics polluted by higher-order terms, which can be mistakenly interpreted as decreased photon-indistinguishability. In fact, in many cases
On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons
NASA Astrophysics Data System (ADS)
Liu, Chun-Ho; Wong, Colman C. C.
2014-01-01
Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).
Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang
2018-06-01
China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM 2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM 2.5 and PM 10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM 2.5 accumulation; low wind speed and high relative humidity constrained PM 10 accumulation; and short sunshine duration and high wind speed constrained O 3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.
NASA Astrophysics Data System (ADS)
Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang
2018-06-01
China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong
2013-01-01
Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.
Wycisk, Peter; Stollberg, Reiner; Neumann, Christian; Gossel, Wolfgang; Weiss, Holger; Weber, Roland
2013-04-01
A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.
Grundström, Maria; Dahl, Åslög; Ou, Tinghai; Chen, Deliang; Pleijel, Håkan
2017-01-01
Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch ( Betula ) pollen, urban air pollutants NO 2 , O 3 and PM 10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006-2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO 2 and PM 10 ) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.
Exploring the planetary boundary for chemical pollution.
Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius
2015-05-01
Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Pu; Zhang, Qinghua; Li, Yingming; Matsiko, Julius; Zhang, Ya; Jiang, Guibin
2017-08-16
In recent years, China suffered from extensive air pollution due to the rapidly expanding economic and industrial developments. Its severe impact on human health has raised great concern currently. Persistent toxic substances (PTSs), a large group of environmental pollutants, have also received much attention due to their adverse effects on both the ecosystem and public health. However, limited studies have been conducted to reveal the airborne PTSs associated with air pollution at the national scale in China. In this review, we summarized the occurrence and variation of airborne PTSs in China, especially in megacities. These PTSs included polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), halogenated flame retardants (HFRs), perfluorinated compounds (PFCs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals. The implication of their occurrence associated with air pollution was discussed, and the emission source of these chemicals was concluded. Most reviewed studies have been conducted in east and south China with more developed economy and industry. Severe contamination of airborne PTSs generally occurred in megacities with large populations, such as Guangzhou, Shanghai and Beijing. However, the summarized results suggested that industrial production and product consumption are the major sources of most PTSs in the urban environment, while unintentional emission during anthropogenic activities is an important contributor to airborne PTSs. It is important that fine particles serve as a major carrier of most airborne PTSs, which facilitates the long-range atmospheric transport (LRAT) of PTSs, and therefore, increases the exposure risk of the human body to these pollutants. This implied that not only the concentration and chemical composition of fine particles but also the absorbed PTSs are of particular concern when air pollution occurs.
The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India
NASA Astrophysics Data System (ADS)
Ganesan, A. L.; Chatterjee, A.; Prinn, R. G.; Harth, C. M.; Salameh, P. K.; Manning, A. J.; Hall, B. D.; Mühle, J.; Meredith, L. K.; Weiss, R. F.; O'Doherty, S.; Young, D.
2013-06-01
High-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluoride (SF6) from Darjeeling, India are presented from December 2011 (CH4)/March 2012 (N2O and SF6) through February 2013. These measurements were made on a gas chromatograph equipped with a flame ionization detector and electron capture detector and were calibrated on the Tohoku University, the Scripps Institution of Oceanography (SIO)-98 and SIO-2005 scales for CH4, N2O and SF6, respectively. The observations show large variability and frequent pollution events in CH4 and N2O mole fractions, suggesting significant sources in the regions sampled by Darjeeling throughout the year. In contrast, SF6 mole fractions show little variability and only occasional pollution episodes, likely due to weak sources in the region. Simulations using the Numerical Atmospheric dispersion Modelling Environment (NAME) particle dispersion model suggest that many of the enhancements in the three gases result from the transport of pollutants from the densely populated Indo-Gangetic plains of India to Darjeeling. The meteorology of the region varies considerably throughout the year from Himalayan flows in the winter to the strong South Asian summer monsoon. The model is consistent in simulating a diurnal cycle in CH4 and N2O mole fractions that is present during the winter but absent in the summer and suggests that the signals measured at Darjeeling are dominated by large scale (~100 km) flows rather than local (<10 km) flows.
The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India
NASA Astrophysics Data System (ADS)
Ganesan, A. L.; Chatterjee, A.; Prinn, R. G.; Harth, C. M.; Salameh, P. K.; Manning, A. J.; Hall, B. D.; Mühle, J.; Meredith, L. K.; Weiss, R. F.; O'Doherty, S.; Young, D.
2013-11-01
High-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluoride (SF6) from Darjeeling, India are presented from December 2011 (CH4)/March 2012 (N2O and SF6) through February 2013. These measurements were made on a gas chromatograph equipped with a flame ionization detector and electron capture detector, and were calibrated on the Tohoku University, the Scripps Institution of Oceanography (SIO)-98 and SIO-2005 scales for CH4, N2O and SF6, respectively. The observations show large variability and frequent pollution events in CH4 and N2O mole fractions, suggesting significant sources in the regions sampled by Darjeeling throughout the year. By contrast, SF6 mole fractions show little variability and only occasional pollution episodes, likely due to weak sources in the region. Simulations using the Numerical Atmospheric dispersion Modelling Environment (NAME) particle dispersion model suggest that many of the enhancements in the three gases result from the transport of pollutants from the densely populated Indo-Gangetic Plains of India to Darjeeling. The meteorology of the region varies considerably throughout the year from Himalayan flows in the winter to the strong south Asian summer monsoon. The model is consistent in simulating a diurnal cycle in CH4 and N2O mole fractions that is present during the winter but absent in the summer and suggests that the signals measured at Darjeeling are dominated by large-scale (~100 km) flows rather than local (<10 km) flows.
Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Warner, Ethan; Zhang, Yi Min
Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
USDA-ARS?s Scientific Manuscript database
We extend the analysis of optimal scale in pollution permit markets by allowing for both market power and private information. The effect of these considerations on optimal scale is determined by analyzing pollution of nitrogen from Waste Water Treatment Plants (WWTP) into North Carolina’s Neuse Riv...
NASA Astrophysics Data System (ADS)
Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki
2011-04-01
The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.
Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids.
Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng
2009-08-15
The current study reported the co-remediation effect on the lead-polluted garden soil by zeolite and humic acids (HA), which was from comparing with the remediation of single zeolite in term of the lead fraction of sequential extraction in the soil and the distribution of lead in different parts of rape. Mixed treatment (zeolite and HA) and single treatment (zeolite) were, respectively, applied to the artificially polluted garden soil to examine the difference of their remediation effects in pot experiment. Results indicated that the co-remediation led to significantly greater (p<0.01) reduction in the lead concentration in plants than by singly adding to zeolite. The co-application of zeolite and HA reduced the available fraction of lead compounds, but slightly increased (p<0.01) the water-soluble fraction of lead compounds in the garden soil, compared with the application of single zeolite, especially in the severe lead-polluted soil (> or =1000 mg kg(-1)). This method might be an efficient way to remediate the lead-polluted soils on a large scale, although zeolite is a kind of hazardous material.
Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI
NASA Astrophysics Data System (ADS)
Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.
2014-12-01
The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia
NASA Astrophysics Data System (ADS)
Y-H Lee, Benjamin P.; Davies, Zoe G.; Struebig, Matthew J.
2017-09-01
Forest and peatland fires during the 2015 El Niño drought were amongst the worst on record in Southeast Asia. They were a major contributor of carbon emissions across the region, with the associated smoke-induced haze causing an air pollution crisis that affected millions of people. We present evidence of air pollution impacts on biodiversity. Using daily acoustic recordings in central Singapore, we monitored the dawn chorus before, during and after the haze event. We demonstrate that levels of ecological community acoustic activity dropped dramatically during the haze, and that this decline was significantly associated with levels of air pollution considered ‘unhealthy’ to the human population. Acoustic disruption was apparent across four common indices of soundscape activity, with only a partial recovery to pre-haze levels observed 16 weeks after the smoke had dissipated. These impacts on ecological communities were likely to be even more severe closer to the fires, where air pollution levels were reported to be 15-fold greater than those recorded in Singapore. Our results indicate that large-scale air pollution crises may have hitherto underestimated and potentially far-reaching impacts on biodiversity, especially in parts of the world prone to extensive forest fires.
NASA Astrophysics Data System (ADS)
Pope, Ronald L.
Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity, age, and socioeconomic classes. The results indicate that changing the scale of the analysis can change the equitable relationship between pollution and demographics. The scientific findings of the scale-dependent relationships among air pollution patterns, network design, and population demographics, brought to light through this study, can help policymakers make informed decisions for protecting the human health and the urban environment in the Phoenix metropolitan region and beyond.
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895
Air Pollution Monitoring and Mining Based on Sensor Grid in London.
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-06-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
S. McLaughlin; K. Percy
1999-01-01
The perceived health of forest ecosystems over large temporal and spatial scales can be strongly influenced by the frames of reference chosen to evaluate both forest condition and the functional integrity of sustaining forest processes. North American forests are diverse in range, species composition, past disturbance history, and current management practices....
Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan
2014-01-01
Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).
Microbial desulfurization of coal
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Kalvinskas, J. J.
1978-01-01
Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.
Large-Scale Paraphrasing for Natural Language Understanding
2018-04-01
to manufacture , use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research deemed...station contaminated local fish populations Atomic power generation in Springfield polluted indigenous seafood stocks Radioactive power generation...from PPDB. Springfield’s nuclear power plant contaminated local fish populations nuclear power station nuclear plant power plant fish stocks
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters.
Suaria, Giuseppe; Avio, Carlo G; Mineo, Annabella; Lattin, Gwendolyn L; Magaldi, Marcello G; Belmonte, Genuario; Moore, Charles J; Regoli, Francesco; Aliani, Stefano
2016-11-23
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters
NASA Astrophysics Data System (ADS)
Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano
2016-11-01
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.
Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling.
Lusher, Amy L; Burke, Ann; O'Connor, Ian; Officer, Rick
2014-11-15
Levels of marine debris, including microplastics, are largely un-documented in the Northeast Atlantic Ocean. Broad scale monitoring efforts are required to understand the distribution, abundance and ecological implications of microplastic pollution. A method of continuous sampling was developed to be conducted in conjunction with a wide range of vessel operations to maximise vessel time. Transects covering a total of 12,700 km were sampled through continuous monitoring of open ocean sub-surface water resulting in 470 samples. Items classified as potential plastics were identified in 94% of samples. A total of 2315 particles were identified, 89% were less than 5mm in length classifying them as microplastics. Average plastic abundance in the Northeast Atlantic was calculated as 2.46 particles m(-3). This is the first report to demonstrate the ubiquitous nature of microplastic pollution in the Northeast Atlantic Ocean and to present a potential method for standardised monitoring of microplastic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Air pollution due to the burning of thermoplastics II (author's transl)].
van Grimbergen, M; Reybrouck, G; van de Voorde, H
1975-03-01
Following on from the first publication, (12) concerning the burning of plastics, another 13 chemical pure polymers were burnt in an electric oven to determine the level of solid and gaseous air pollution caused by their stackgases. All 13 polymers are highly combustible but require different burning temperatures (300-900 degrees C) in order to be burnt completely (i.e. without ashrest). With the exception of PMMA and PTFE, all plastics leave a very heavy tar- and soot deposit after burning. At the other end of the scale, burning at low temperature (300 degrees C) gives rise to high concentrations of alipathic aldehyds. The pH of the exhaust-gases, dissolved in water, is neutral to strong acid (PTFE), and will cause a severe corrosion. The nitrogen-containing polymers pollute by forming cyanides, nitrogenoxides and ammonia. PTFE gives off high concentrations of fluorid into the air. PMMA decomposes in its monomer methylmethacrylate and forms large amounts of aliphatic aldehyds. ABS and SBR cause a styrene pollution.
Assimilation of Satellite Data in Regional Air Quality Models
NASA Technical Reports Server (NTRS)
Mcnider, Richard T.; Norris, William B.; Casey, Daniel; Pleim, Jonathan E.; Roselle, Shawn J.; Lapenta, William M.
1997-01-01
In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry.
Distributed intelligent urban environment monitoring system
NASA Astrophysics Data System (ADS)
Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang
2018-02-01
The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion
The use of plasma technology for the treatment of noxious waste
NASA Astrophysics Data System (ADS)
Wilman, Jonathan James
This thesis begins by describing the common types of air pollution and the main effects of these pollutants. Natural and man-made sources are discussed as well as the current types of technology used for reduction of common pollutants. The use of atmospheric pressure non-thermal plasma reactors for the control of pollutants is introduced at this stage. The second chapter describes the different types of atmospheric pressure non-thermal reactor designs and their modes of operation. The fundamental processes behind the production of plasmas are discussed and the chemistry of some simple discharges is also presented. The third chapter begins the experimental and modelling work done at Manchester on the destruction of volatile organic compounds (VOCs) using packed bed reactors and pulsed corona reactors. This chapter is concerned with the destruction of toluene and its behaviour as the oxygen content of the carrier gas, flowing through the reactor, is changed. Work using a pulsed corona reactor is also presented showing the destruction of toluene as a function of the applied specific energy. A model is constructed using mainly atmospheric reactions and the predictions are compared with experimental values. The fourth chapter discusses the destruction of dichloromethane (DCM) as a function of the oxygen content of the carrier gas. A model is constructed, again from mainly atmospheric reactions, and the predictions compared with the experimental data obtained. Methane is chosen as a molecule to study in the fifth chapter. A model is constructed and compared with experimental findings, showing that the chemistry of non-thermal plasmas can be effectively represented using neutral gas phase chemistry. Finally chapter six is concerned with the use of a large scale pulsed corona system for the reduction of NO[x] in industrial flue gas. This system has been tested on a modem incinerator, showing encouraging results. The workings of a modem incinerator are described together with those of the corona facility and any instruments used in these tests. Some experimental results are discussed. The aim of this chapter is to show that plasma reactors can be scaled up for industrial use. This section also discusses the difficulty of analysing and working with industrial gases and large scale apparatus as opposed to laboratory scale experiments.
Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun
2018-04-01
In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM 10 ], sulfur dioxide [SO 2 ], and nitrogen oxides [NO x ]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.
Research on the impacts of large-scale electric vehicles integration into power grid
NASA Astrophysics Data System (ADS)
Su, Chuankun; Zhang, Jian
2018-06-01
Because of its special energy driving mode, electric vehicles can improve the efficiency of energy utilization and reduce the pollution to the environment, which is being paid more and more attention. But the charging behavior of electric vehicles is random and intermittent. If the electric vehicle is disordered charging in a large scale, it causes great pressure on the structure and operation of the power grid and affects the safety and economic operation of the power grid. With the development of V2G technology in electric vehicle, the study of the charging and discharging characteristics of electric vehicles is of great significance for improving the safe operation of the power grid and the efficiency of energy utilization.
Remote sensing applied to numerical modelling. [water resources pollution
NASA Technical Reports Server (NTRS)
Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.
1975-01-01
Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.
Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli
2016-11-15
This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.
NASA Astrophysics Data System (ADS)
Yearsley, J. R.
2017-12-01
The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.
Sun, Yeran; Mobasheri, Amin
2017-03-08
With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the number of non-commuting cycling activities works well in this study. The results highlight: (1) a need for policymakers to consider how to improve cycling infrastructure and road safety in outskirts of cities; and (2) a possible way of estimating the number of non-commuting cycling activities when the trip purpose of cycling data is unknown.
Sun, Yeran; Mobasheri, Amin
2017-01-01
With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the number of non-commuting cycling activities works well in this study. The results highlight: (1) a need for policymakers to consider how to improve cycling infrastructure and road safety in outskirts of cities; and (2) a possible way of estimating the number of non-commuting cycling activities when the trip purpose of cycling data is unknown. PMID:28282865
von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong
2013-02-01
Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.
NASA Astrophysics Data System (ADS)
DeCarlo, P. F.; Jetter, J.; Khan, B.; Zhao, Y.; Yelverton, T.; Hays, M. D.
2011-12-01
Nearly half of the world's population relies on inefficient open fire or rudimentary cookstoves to prepare their food. Combustion of biomass or other fuels results in not only high indoor air pollution, but is also a large source of climate forcing species such as black and organic carbon species to the earth's atmosphere. Large-scale intervention programs are now underway to replace inefficient cooking methods with newer technologies. These intervention programs have as a goal the improvement of indoor air pollution and reduction of negative climate impacts. To characterize the current available alternatives, a major cookstove testing program was conducted at the US EPA. This presentation will focus on the characterization of the emission measurements for a variety of different cookstoves, fuels and cooking cycles. The work will focus on the aerosol optical properties measured with a PASS-3, and the climate impacts of various intervention pathways will be discussed.
Yang, H; Florence, D C; McCoy, E L; Dick, W A; Grewal, P S
2009-01-01
A field-scale bioretention rain garden system was constructed using a novel bi-phasic (i.e. sequence of anaerobic to aerobic) concept for improving retention and removal of storm water runoff pollutants. Hydraulic tests with bromide tracer and simulated runoff pollutants (nitrate-N, phosphate-P, Cu, Pb, and Zn) were performed in the system under a simulated continuous rainfall. The objectives of the tests were (1) to determine hydraulic characteristics of the system, and (2) to evaluate the movement of runoff pollutants through the system. For the 180 mm/24 h rainfall, the bi-phasic bioretention system effectively reduced both peak flow (approximately 70%) and runoff volume (approximately 42%). The breakthrough curves (BTCs) of bromide tracer suggest that the transport pattern of the system is similar to dispersed plug flow under this large runoff event. The BTCs of bromide showed mean 10% and 90% breakthrough times of 5.7 h and 12.5 h, respectively. Under the continuous rainfall, a significantly different transport pattern was found between each runoff pollutant. Nitrate-N was easily transported through the system with potential leaching risk from the initial soil medium, whereas phosphate-P and metals were significantly retained indicating sorption-mediated transport. These findings support the importance of hydraulics, in combination with the soil medium, when creating bioretention systems for bioremediation that are effective for various rainfall sizes and intervals.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
Effects of environment pollution on the ocular surface.
Jung, Se Ji; Mehta, Jodhbir S; Tong, Louis
2018-04-01
The twenty-first century is fraught with dangers like climate change and pollution, which impacts human health and mortality. As levels of pollution increase, respiratory illnesses and cardiovascular ailments become more prevalent. Less understood are the eye-related complaints, which are commonly associated with increasing pollution. Affected people may complain of irritation, redness, foreign body sensation, tearing, and blurring of vision. Sources of pollution are varied, ranging from gases (such as ozone and NO 2 ) and particulate matter produced from traffic, to some other hazards associated with indoor environments. Mechanisms causing ocular surface disease involve toxicity, oxidative stress, and inflammation. Homeostatic mechanisms of the ocular surface may adapt to certain chronic changes in the environment, so affected people may not always be symptomatic. However there are many challenges associated with assessing effects of air pollution on eyes, as pollution is large scale and difficult to control. Persons with chronic allergic or atopic tendencies may have a pre-existing state of heightened mucosal immune response, hence they may have less tolerance for further environmental antigenic stimulation. It is beneficial to identify vulnerable people whose quality of life will be significantly impaired by environmental changes and provide counter measures in the form of protection or treatment. Better technologies in monitoring of pollutants and assessment of the eye will facilitate progress in this field. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon
2012-02-01
SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.
Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK.
Rothwell, James J; Evans, Martin G; Lindsay, John B; Allott, Timothy E H
2007-01-01
Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.
NASA Astrophysics Data System (ADS)
Malsy, Marcus; Reder, Klara; Flörke, Martina
2014-05-01
Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across regions, and across sectors demand for an integrated approach to assess main causes of water quality degradation.
Seklaoui, M'hamed; Boutaleb, Abdelhak; Benali, Hanafi; Alligui, Fadila; Prochaska, Walter
2016-11-01
To date, there have been few detailed studies regarding the impact of mining and metallogenic activities on solid fractions in the Azzaba mercurial district (northeast Algeria) despite its importance and global similarity with large Hg mines. To assess the degree, distribution, and sources of pollution, a physical inventory of apparent pollution was developed, and several samples of mining waste, process waste, sediment, and soil were collected on regional and local scales to determine the concentration of Hg and other metals according to their existing mineralogical association. Several physico-chemical parameters that are known to influence the pollution distribution are realized. The extremely high concentrations of all metals exceed all norms and predominantly characterize the metallurgic and mining areas; the metal concentrations significantly decrease at significant low distances from these sources. The geo-accumulation index, which is the most realistic assessment method, demonstrates that soils and sediments near waste dumps and abandoned Hg mines are extremely polluted by all analyzed metals. The pollution by these metals decreases significantly with distance, which indicates a limited dispersion. The results of a clustering analysis and an integrated pollution index suggest that waste dumps, which are composed of calcine and condensation wastes, are the main source of pollution. Correlations and principal component analysis reveal the important role of hosting carbonate rocks in limiting pollution and differentiating calcine wastes from condensation waste, which has an extremely high Hg concentration (˃1 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindler, R.; Braennvall, M.L.; Renberg, I.
1999-10-01
Knowledge of natural, prepollution concentrations of heavy metals in forest soils and temporal trends of soil pollution are essential for understanding present-day pollution and for establishing realistic goals for reductions of atmospheric pollution deposition. Soils not exposed to deposition of atmospheric pollution no longer exist and, for example, present lead (Pb) pollution conditions in northern European soils are a consequence of nearly 4,000 years of atmospheric pollution. The authors use analyses of Pb concentrations and stable Pb isotopes ({sup 206}Pb/{sup 207}Pb ratios) of ombrotrophic peat and forest soils from southern Sweden and a model for Pb cycling in forest soilsmore » to derive an estimate for the prepollution concentration of Pb in the mor layer of boreal forest soils and to back-calculate Pb concentrations for the last 5,500 years. While the present-day concentrations of the mor layer are typically 40--100 {micro}g g{sup {minus}1} (0.25--1.0 g m{sup {minus}2}), Pb concentrations of pristine forest mor layers in Sweden were quite low, {le}0.1 {micro}g g{sup {minus}1} ({le}1 mg m{sup {minus}2}). Large-scale atmospheric pollution from the Greek and Roman cultures increased Pb concentrations to about 1 {micro}g g{sup {minus}1}. Lead (Pb) concentrations increased to about 4 {micro}g g{sup {minus}1} following the increase of metal production and atmospheric pollution in Medieval Europe.« less
R.E. Dickson; K.F. Lewin; J.G. Isebrands; M.D. Coleman; W.E. Heilman; D.E. Riemenschneider; J. Sober; G.E. Host; D.R. Zak; G.R. Hendrey; K.S. Pregitzer; D.F. Karnosky
2000-01-01
This publication briefly reviews the impact of increasing atmospheric carbon dioxide and tropospheric ozone on global climate change, and the response of forest trees to these atmospheric pollutants and their interactions; points out the need for large-scale field experiments to evaluate the response of plants to these environmental stresses; and describes the...
Katherine Elliott; Jennifer D. Knoepp; James M. Vose; William A. Jackson
2013-01-01
Aims Wilderness and other natural areas are threatened by large-scale disturbances (e.g., wildfire), air pollution, climate change, exotic diseases or pests, and a combination of these stress factors (i.e., stress complexes). Linville Gorge Wilderness (LGW) is one example of a high elevation wilderness in the southern Appalachian region that has been subject to stress...
NASA Astrophysics Data System (ADS)
Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.
2013-12-01
Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.
NASA Astrophysics Data System (ADS)
Mejía, Jaime F.; Choy, Samantha Low; Mengersen, Kerrie; Morawska, Lidia
2011-02-01
The aim of this review is to explore the methodologies employed to assess the exposure of children to air pollutants, in particular traffic emissions, at school, and how these methodologies influence the assessment of the impact of this exposure on the children's health. This involves four main steps: the measurement of air quality at school level, the association between measured air quality and children's exposure, the association between children's exposure and health; and source identification. The comparative advantages and disadvantages of the methods used at each of these steps are discussed. Air quality in schools can be measured at three scales: broad scale, across several city blocks using remote monitors; school-based scale, through ground-level monitors installed within the schools or their immediate surroundings (i.e. only a few metres outside the school); and personal exposure scale using portable monitors attached to a sample of children. Although studies have reported high exposure to PAHs (polycyclic aromatic hydrocarbons), submicrometre (<1.0 μm) and ultrafine particles (<100 nm) at school, no study has investigated the formation of new particles in school facilities and only a handful of studies have analysed children's exposure at school. Associating air quality measurements at the broad and medium scale with children's exposure is challenging: there is spatial and temporal heterogeneity in the distribution of air quality within a school, indoor measurements can often exceed outdoor measurements; and exposure in the classroom is affected by the penetration of outdoor pollutants, wall absorption, emissions from furniture and other materials, level and length of occupancy, and quality of ventilation. This is further exacerbated by the fact that children move around during their school day. Quantifying the contribution of school exposure with observed health symptoms presents further challenges. In addition to ascertaining the impact of non-school-based exposures and co-morbidities, the air pollutant dose intake is affected by daily patterns of physical and traffic activity during and outside school hours which make it difficult to compare the contribution of school-based and non-school-based exposures to the health effect under investigation. Finally, there is strong evidence that low socioeconomic level is highly correlated with the proximity of the school to pollution sources, yet this area of socioeconomic research has been largely unexplored in the assessment of traffic emission exposure.
NASA Astrophysics Data System (ADS)
Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi
2013-04-01
Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these modelling approaches have been developed at small space scales. Their extension to the applicative macroscale of the regional model is not a simple task mainly because of the heterogeneity of vadose zone properties, as well as of non-linearity of hydrological processes. Besides, one of the problems when applying distributed models is that spatial and temporal scales for data to be used as input in the models vary on a wide range of scales and are not always consistent with the model structure. Under these conditions, a strictly deterministic response to questions about the fate of a pollutant in the soil is impossible. At best, one may answer "this is the average behaviour within this uncertainty band". Consequently, the extension of these equations to account for regional-scale processes requires the uncertainties of the outputs be taken into account if the pollution vulnerability maps that may be drawn are to be used as agricultural management tools. A map generated without a corresponding map of associated uncertainties has no real utility. The stochastic stream tube approach is a frequently used to the water flux and solute transport through the vadose zone at applicative scales. This approach considers the field soil as an ensemble of parallel and statistically independent tubes, assuming only vertical flow. The stream tubes approach is generally used in a probabilistic framework. Each stream tube defines local flow properties that are assumed to vary randomly between the different stream tubes. Thus, the approach allows average water and solute behaviour be described, along with the associated uncertainty bands. These stream tubes are usually considered to have parameters that are vertically homogeneous. This would be justified by the large difference between the horizontal and vertical extent of the spatial applicative scale. Vertical is generally overlooked. Obviously, all the model outputs are conditioned by this assumption. The latter, in turn, is more dictated by the lack of information on vertical variability of soil properties. It is our opinion that, with sufficient information on soil horizonation and with an appropriate horizontal resolution, it may be demonstrated that model outputs may be largely sensitive to the vertical variability of stream tubes, even at applicative scales. Horizon differentiation is one of the main observations made by pedologists while describing soils and most analytical data are given according to soil horizons. Over the last decades, soil horizonation has been subjected to regular monitoring for mapping soil variation at regional scales. Accordingly, this study mainly aims to developing a regional-scale simulation approach for vadose zone flow and transport that use real soil profiles data based on information on vertical variability of soils. As to the methodology, the parallel column concept was applied to account for the effect of vertical heterogeneity on variability of water flow and solute transport in the vadose zone. Even if the stream tube approach was mainly introduced for (unrealistic) vertically homogeneous soils, we extended their use to real vertically variable soils. The approach relies on available datasets coming from different sources and offers quantitative answers to soil and groundwater vulnerability to non-point source of chemicals and pathogens at regional scale within a defined confidence interval. This result will be pursued through the design and building up of a spatial database containing 1). Detailed pedological information, 2). Hydrological properties mainly measured in the investigated area in different soil horizons, 3). Water table depth, 4). Spatially distributed climatic temporal series, and 5). Land use. The area of interest for the study is located in the sub-basin of Metaponto agricultural site, located in southern Basilicata Region in Italy, covering approximately 11,698 hectares, crossed by two main rivers, Sinni and Agri and from many secondary water bodies. Distributed output of soil pollutant leaching behaviour, with corresponding statistical uncertainties, will be provided and finally visualized in GIS maps. The example pollutants considered cover much of the practical pollution conditions one may found in the reality. Nevertheless, this regional- scale methodology may be applied to any specific pollutants for any soil, climatic and land use conditions. Also, as the approach is built on physically based equations, it may be extended to the predictions of any water and solute storage and fluxes (i.e., groundwater recharge) in the vadose zone. By integrating the scientific results with economic and political considerations, and with advanced information technologies, the NPS-pollution assessment may become a powerful decision support tool for guiding activities involving soil and groundwater resources and, more in general, for managing environmental resources.
Aura OMI Observations of Global SO2 and NO2 Pollution from 2005 to 2013
NASA Technical Reports Server (NTRS)
Krotkov, Nickolay; Li, Can; Lamsal, Lok; Celarier, Edward; Marchenko, Sergey; Swartz, William H.; Bucsela, Eric; Fioletov, Vitali; McLinden, Chris; Joiner, Joanna;
2014-01-01
The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the NASA Aura satellite and uses reflected sunlight to measure the two critical atmospheric trace gases: nitrogen dioxide (NO2) and sulfur dioxide (SO2) characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage and reduced visibility). Our group at NASA GSFC has developed and maintained OMI standard SO2 and NO2 data products. We have recently released an updated version of the standard NO2 L2 and L3 products (SP v2.1) and continue improving the algorithm. We are currently in the process of releasing next generation pollution SO2 product, based on an innovative Principal Component Analysis (PCA) algorithm, which greatly reduces the noise and biases. These new standard products provide valuable datasets for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed changes in air quality over several regions. Over the US average NO2 and SO2 pollution levels had decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in pollution over Europe. Over China OMI observed an increase of about 60 percent in NO2 pollution between 2005 and 2013, despite a temporal reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of large new coal power plants had been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in global air quality.
Large-scale additive manufacturing with bioinspired cellulosic materials.
Sanandiya, Naresh D; Vijay, Yadunund; Dimopoulou, Marina; Dritsas, Stylianos; Fernandez, Javier G
2018-06-05
Cellulose is the most abundant and broadly distributed organic compound and industrial by-product on Earth. However, despite decades of extensive research, the bottom-up use of cellulose to fabricate 3D objects is still plagued with problems that restrict its practical applications: derivatives with vast polluting effects, use in combination with plastics, lack of scalability and high production cost. Here we demonstrate the general use of cellulose to manufacture large 3D objects. Our approach diverges from the common association of cellulose with green plants and it is inspired by the wall of the fungus-like oomycetes, which is reproduced introducing small amounts of chitin between cellulose fibers. The resulting fungal-like adhesive material(s) (FLAM) are strong, lightweight and inexpensive, and can be molded or processed using woodworking techniques. We believe this first large-scale additive manufacture with ubiquitous biological polymers will be the catalyst for the transition to environmentally benign and circular manufacturing models.
Zaehringer, Julie G; Wambugu, Grace; Kiteme, Boniface; Eckert, Sandra
2018-05-01
Africa has been heavily targeted by large-scale agricultural investments (LAIs) throughout the last decade, with scarcely known impacts on local social-ecological systems. In Kenya, a large number of LAIs were made in the region northwest of Mount Kenya. These large-scale farms produce vegetables and flowers mainly for European markets. However, land use in the region remains dominated by small-scale crop and livestock farms with less than 1 ha of land each, who produce both for their own subsistence and for the local markets. We interviewed 100 small-scale farmers living near five different LAIs to elicit their perceptions of the impacts that these LAIs have on their land use and the overall environment. Furthermore, we analyzed remotely sensed land cover and land use data to assess land use change in the vicinity of the five LAIs. While land use change did not follow a clear trend, a number of small-scale farmers did adapt their crop management to environmental changes such as a reduced river water flows and increased pests, which they attributed to the presence of LAIs. Despite the high number of open conflicts between small-scale land users and LAIs around the issue of river water abstraction, the main environmental impact, felt by almost half of the interviewed land users, was air pollution with agrochemicals sprayed on the LAIs' land. Even though only a low percentage of local land users and their household members were directly involved with LAIs, a large majority of respondents favored the presence of LAIs nearby, as they are believed to contribute to the region's overall economic development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lightning NOx and Impacts on Air Quality
NASA Technical Reports Server (NTRS)
Murray, Lee T.
2016-01-01
Lightning generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. Lightning nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. Lightning globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. Lightning contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. Lightning also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences lightning itself, with implications for regional lightning-nitrogen oxide production and feedbacks on downwind surface pollution. How lightning emissions will change in a warming world remains uncertain.
Improving and monitoring air quality.
DuPont, André
2018-05-01
Since the authorization of the Clean Air Act Amendments of 1990, the air quality in the USA has significantly improved because of strong public support. The lessons learned over the last 25 years are being shared with the policy analysts, technical professionals, and scientist who endeavor to improve air quality in their communities. This paper will review how the USA has achieved the "high" standard of air quality that was envisioned in the early 1990s. This document will describe SO 2 gas emission reduction technology and highlight operation of emission monitoring technology. This paper describes the basic process operation of an air pollution control scrubber. A technical review of measures required to operate and maintain a large-scale pollution control system will be described. Also, the author explains how quality assurance procedures in performance of continuous emission monitoring plays a significant role in reducing air pollution.
Understanding Coral's Short-term Adaptive Ability to Changing Environment
NASA Astrophysics Data System (ADS)
Tisthammer, K.; Richmond, R. H.
2016-02-01
Corals in Maunalua Bay, Hawaii are under chronic pressures from sedimentation and terrestrial runoffs containing multiple pollutants as a result of large scale urbanization that has taken place in the last 100 years. However, some individual corals thrive despite the prolonged exposure to these environmental stressors, which suggests that these individuals may have adapted to withstand such stressors. A recent survey showed that the lobe coral Porites lobata from the `high-stress' nearshore site had an elevated level of stress ixnduced proteins, compared to those from the `low-stress,' less polluted offshore site. To understand the genetic basis for the observed differential stress responses between the nearshore and offshore P. lobata populations, an analysis of the lineage-scale population genetic structure, as well as a reciprocal transplant experiment were conducted. The result of the genetic analysis revealed a clear genetic differentiation between P. lobata from the nearshore site and the offshore site. Following the 30- day reciprocal transplant experiment, protein expression profiles and other stress-related physiological characteristics were compared between the two populations. The experimental results suggest that the nearshore genotype can cope better with sedimentation/pollutants than the offshore genotype. This indicates that the observed genetic differentiation is due to selection for tolerance to these environmental stressors. Understanding the little-known, linage-scale genetic variation in corals offers a critical insight into their short-term adaptive ability, which is indispensable for protecting corals from impending environmental and climate change. The results of this study also offer a valuable tool for resource managers to make effective decisions on coral reef conservation, such as designing marine protected areas that incorporate and maintain such genetic diversity, and establishing acceptable pollution run-off levels.
Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0
NASA Astrophysics Data System (ADS)
Sekiya, Takashi; Miyazaki, Kazuyuki; Ogochi, Koji; Sudo, Kengo; Takigawa, Masayuki
2018-03-01
We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. The 1.1° simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56° resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8° bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.
Schauer, James Jay
2015-01-01
Concerns over the economics, supply chain, and emissions of greenhouse gases associated with the wide use of fossil fuels have led to increasing interest in developing alternative and renewable fuels for stationary power generation and transportation systems. Although there is considerable uncertainty regarding the economic and environmental impacts of alternative and renewable fuels, there is a great need for assessment of potential and emerging fuels to guide research priorities and infrastructure investment. Likewise, there is a great need to identify potential unintended adverse impacts of new fuels and related power systems before they are widely adopted. Historically, the environmental impacts of emerging fuels and power systems have largely focused on carbon dioxide emissions, often called the carbon footprint, which is used to assess impacts on climate change. Such assessments largely ignore the large impacts of emissions of other air pollutants. Given the potential changes in emissions of air pollutants associated with the large-scale use of new and emerging fuels and power systems, there is a great need to better guide efforts to develop new fuels and power systems that can avoid unexpected adverse impacts on the environment and human health. This review covers the nature of emissions, including the key components and impacts from the use of fuels, and the design criteria for future fuels and associated power systems to assure that the non-CO2 adverse impacts of stationary power generation and transportation are minimized.
Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2013-05-01
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.
NASA Astrophysics Data System (ADS)
Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen
2017-11-01
Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air pollutants. Thus, this pattern is quite favorable for the accumulation of pollutants in the YRD, resulting in higher regional mean PM10 (116.5 ± 66.9 µg m-3), PM2.5 (75.9 ± 49.9 µg m-3), and AOD (0.74) values. Moreover, this pattern is also responsible for the occurrence of most large-scale regional PM2.5 (70.4 %) and PM10 (78.3 %) pollution episodes. High wind speed and clean marine air masses may also play important roles in the mitigation of pollution in the YRD. Especially when the clean marine air masses account for a large proportion of all trajectories (i.e., when the YRD is affected by the cyclonic system or oceanic circulation), the air in the YRD has a lesser chance of being polluted. The observed correlation between weather patterns and particle pollution can provide valuable insight into making decisions about pollution control and mitigation strategies.
NASA Astrophysics Data System (ADS)
Fountoukis, Christos; Gladich, Ivan; Ayoub, Mohammed; Kais, Sabre; Ackermann, Luis; Skillern, Adam
2016-04-01
The rapid urbanization, industrialization and economic expansion in the Middle East have led to increased levels of atmospheric pollution with important implications for human health and climate. We applied the online-coupled meteorological and chemical transport Weather Research and Forecasting/Chemistry (WRF-Chem) model over the Middle Eastern domain, to simulate the concentration of gas and aerosols with a special focus over the state of Qatar. WRF-Chem was set to simulate pollutant concentrations along with the meteorology-chemistry interactions through the related direct, indirect and semi-direct feedback mechanisms. A triple-nested domain configuration was used with a high grid resolution (1x1 km2) over the region of Qatar. Model predictions are evaluated against intensive measurements of meteorological parameters (temperature, relative humidity and wind speed) as well as ozone and particulate matter taken from various measurement stations throughout Doha, Qatar during summer 2015. The ability of the model to capture the temporal and spatial variability of the observations is assessed and possible reasons for the model bias are explored through sensitivity tests. Emissions of both fine and coarse mode particles from construction activities in large urban Middle Eastern environments comprise a major pollution source that is unaccounted for in emission inventories used so far in large scale models for this part of the world.
Ozone in Lombardy: Years 1998-1999
NASA Astrophysics Data System (ADS)
Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.
2003-11-01
Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V
2015-12-01
Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.
Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.
Vanden Ende, Wim; Honnay, Olivier
2017-01-01
Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide. PMID:28406910
The analysis of soil cores polluted with certain metals using the Box-Cox transformation.
Meloun, Milan; Sánka, Milan; Nemec, Pavel; Krítková, Sona; Kupka, Karel
2005-09-01
To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples.
Monitoring human exposure to urban air pollutants
Barale, R.; Barrai, I.; Sbrana, I.; Migliore, L.; Marrazzini, A.; Scarcelli, V.; Bacci, E.; Di Sibio, A.; Tessa, A.; Cocchi, L.; Lubrano, V.; Vassalle, C.; He, J.
1993-01-01
A multidisciplinary study on a general population exposed to vehicle exhaust was undertaken in Pisa in 1991. Environmental factors such as air pollution and those associated with lifestyle were studied. Meanwhile, biological and medical indicators of health condition were investigated. Chromosomal aberrations, sister chromatid exchanges (SCEs), and micronuclei in lymphocytes were included for the assessment of the genotoxic risk. Because of the large number (3800) of subjects being investigated, standardization of protocols was compulsory. The results on data reproducibility are reported. To assess the reliability of the protocol on a large scale, the population of Porto Tolle, a village located in northeast Italy, was studied and compared to a subset of the Pisa population. Preliminary results showed that probable differences between the two populations and invididuals were present in terms of SCE frequencies. The study was potentially able to detect the effects of several factors such as age, smoking, genetics, and environment. The in vitro treatment of lymphocytes with diepoxybutane confirmed the presence of more responsive individuals and permitted us to investigate the genetic predisposition to genetic damage. The possible influence of environmental factors was studied by correlation analyses with external exposure to air pollutants as well as with several lifestyle factors. PMID:8143653
Branis, Martin; Linhartova, Martina
2012-09-01
We analyzed differentials in exposure to SO(2), PM(10) and NO(2) among Czech urban populations categorized according to education level, unemployment rate, population size and average annual salary. Altogether 39 cities were included in the analysis. The principal component analysis revealed two factors explaining 72.8% of the data variability. The first factor explaining 44.7% of the data variability included SO(2), PM(10), low education level and high unemployment, documenting that inhabitants with unfavorable socioeconomic status mainly reside in smaller cities with higher concentration levels of combustion-related air pollutants. The second factor explaining 28.1% of the data variability included NO(2), high salary, high education level and large population, suggesting that large cities with residents with higher socioeconomic status are exposed to higher levels of traffic-related air pollution. We conclude that, after more than a decade of free-market economy, the Czech Republic, a former Soviet satellite with a centrally planned economy, displays signs of a certain kind of environmental inequality, since environmental hazards are unevenly distributed among the Czech urban populations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Active Self-Testing Noise Measurement Sensors for Large-Scale Environmental Sensor Networks
Domínguez, Federico; Cuong, Nguyen The; Reinoso, Felipe; Touhafi, Abdellah; Steenhaut, Kris
2013-01-01
Large-scale noise pollution sensor networks consist of hundreds of spatially distributed microphones that measure environmental noise. These networks provide historical and real-time environmental data to citizens and decision makers and are therefore a key technology to steer environmental policy. However, the high cost of certified environmental microphone sensors render large-scale environmental networks prohibitively expensive. Several environmental network projects have started using off-the-shelf low-cost microphone sensors to reduce their costs, but these sensors have higher failure rates and produce lower quality data. To offset this disadvantage, we developed a low-cost noise sensor that actively checks its condition and indirectly the integrity of the data it produces. The main design concept is to embed a 13 mm speaker in the noise sensor casing and, by regularly scheduling a frequency sweep, estimate the evolution of the microphone's frequency response over time. This paper presents our noise sensor's hardware and software design together with the results of a test deployment in a large-scale environmental network in Belgium. Our middle-range-value sensor (around €50) effectively detected all experienced malfunctions, in laboratory tests and outdoor deployments, with a few false positives. Future improvements could further lower the cost of our sensor below €10. PMID:24351634
Deriving spatial trends of air pollution at a neighborhood-scale through mobile monitoring
Abstract: Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires a...
The contribution of megacities to regional sulfur pollution in Asia
NASA Astrophysics Data System (ADS)
Guttikunda, Sarath K.; Carmichael, Gregory R.; Calori, Giuseppe; Eck, Christina; Woo, Jung-Hun
Asia is undergoing rapid urbanization resulting in increasing air pollution threats in its cities. The contribution of megacities to sulfur emissions and pollution in Asia is studied over a 25-year period (1975-2000) using a multi-layer Lagrangian puff transport model. Asian megacities cover <2% of the land area but emit ˜16% of the total anthropogenic sulfur emissions of Asia. It is shown that urban sulfur emissions contribute over 30% to the regional pollution levels in large parts of Asia. The average contribution of megacities over the western Pacific increased from <5% in 1975 to >10% in 2000. Two future emission scenarios are evaluated for 2020—"business as usual (BAU)" and "maximum feasible controls (MAXF)" to establish the range of reductions possible for these cities. The MAXF scenario would result in 2020 S-emissions that are ˜80% lower than those in 2000, at an estimated control cost of US 87 billion per year (1995 US) for all of Asia. An urban scale analysis of sulfur pollution for four megacities—Shanghai, and Chongqing in China; Seoul in South Korea; and Mumbai (formerly Bombay) in India is presented. If pollution levels were allowed to increase under BAU, over 30 million people in these cities alone would be exposed to levels in excess of the WHO guidelines.
Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael
2014-09-01
Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.
A brief review and evaluation of earthworm biomarkers in soil pollution assessment.
Shi, Zhiming; Tang, Zhiwen; Wang, Congying
2017-05-01
Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.
Zhang, Y J; Xue, F X; Bai, Z P
2017-03-06
The impact of maternal air pollution exposure on offspring health has received much attention. Precise and feasible exposure estimation is particularly important for clarifying exposure-response relationships and reducing heterogeneity among studies. Temporally-adjusted land use regression (LUR) models are exposure assessment methods developed in recent years that have the advantage of having high spatial-temporal resolution. Studies on the health effects of outdoor air pollution exposure during pregnancy have been increasingly carried out using this model. In China, research applying LUR models was done mostly at the model construction stage, and findings from related epidemiological studies were rarely reported. In this paper, the sources of heterogeneity and research progress of meta-analysis research on the associations between air pollution and adverse pregnancy outcomes were analyzed. The methods of the characteristics of temporally-adjusted LUR models were introduced. The current epidemiological studies on adverse pregnancy outcomes that applied this model were systematically summarized. Recommendations for the development and application of LUR models in China are presented. This will encourage the implementation of more valid exposure predictions during pregnancy in large-scale epidemiological studies on the health effects of air pollution in China.
How air pollution alters brain development: the role of neuroinflammation.
Brockmeyer, Sam; D'Angiulli, Amedeo
2016-01-01
The present review synthesizes lines of emerging evidence showing how several samples of children populations living in large cities around the world suffer to some degree neural, behavioral and cognitive changes associated with air pollution exposure. The breakdown of natural barriers warding against the entry of toxic particles, including the nasal, gut and lung epithelial barriers, as well as widespread breakdown of the blood-brain barrier facilitatethe passage of airborne pollutants into the body of young urban residents. Extensive neuroinflammation contributes to cell loss within the central nervous system, and likely is a crucial mechanism by which cognitive deficits may arise. Although subtle, neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation risk suggests an integrated neuroscientific approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiologic research. Neuropediatric air pollution research requires extensive multidisciplinary collaborations to accomplish the goal of protecting exposed children through multidimensional interventions having both broad impact and reach. While intervening by improving environmental quality at a global scale is imperative, we also need to devise efficient strategies on how the neurocognitive effects on local pediatric populations should be monitored.
How air pollution alters brain development: the role of neuroinflammation
Brockmeyer, Sam
2016-01-01
Abstract The present review synthesizes lines of emerging evidence showing how several samples of children populations living in large cities around the world suffer to some degree neural, behavioral and cognitive changes associated with air pollution exposure. The breakdown of natural barriers warding against the entry of toxic particles, including the nasal, gut and lung epithelial barriers, as well as widespread breakdown of the blood-brain barrier facilitatethe passage of airborne pollutants into the body of young urban residents. Extensive neuroinflammation contributes to cell loss within the central nervous system, and likely is a crucial mechanism by which cognitive deficits may arise. Although subtle, neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation risk suggests an integrated neuroscientific approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiologic research. Neuropediatric air pollution research requires extensive multidisciplinary collaborations to accomplish the goal of protecting exposed children through multidimensional interventions having both broad impact and reach. While intervening by improving environmental quality at a global scale is imperative, we also need to devise efficient strategies on how the neurocognitive effects on local pediatric populations should be monitored. PMID:28123818
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazillian, Morgan; Pedersen, Ascha Lychett; Pless, Jacuelyn
Shale gas resource potential in China is assessed to be large, and its development could have wide-ranging economic, environmental, and energy security implications. Although commercial scale shale gas development has not yet begun in China, it holds the potential to change the global energy landscape. Chinese decision-makers are wrestling with the challenges associated with bringing the potential to reality: geologic complexity; infrastructure and logistical difficulties; technological, institutional, social and market development issues; and environmental impacts, including greenhouse gas emissions, impacts on water availability and quality, and air pollution. This paper briefly examines the current situation and outlook for shale gasmore » in China, and explores existing and potential avenues for international cooperation. We find that despite some barriers to large-scale development, Chinese shale gas production has the potential to grow rapidly over the medium-term.« less
Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei
2014-01-01
Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Possible Influences of Air Pollution, Dust and Sandstorms on the Indian Monsoon
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, Kyu-Myong; Hsu, Christina N.; Holben, Brent N.
2010-01-01
In Asian monsoon countries, such as China and India, human health and safety problems caused by air pollution are becoming increasingly serious, due to the increased loading of atmospheric pollutants from waste gas emissions and from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash floods or prolonged drought, has caused major loss of human life and damage to crops and.property with devastating societal impacts. Historically, air-pollution and monsoons research are treated as separate problems. However recent studies have suggested that the two problems may be intrinsically linked and need to be studied jointly. Fundamentally, aerosols can affect precipitation through radiative effects cif suspended particles in the atmosphere (direct effect) and/or by interfering and changing: the cloud and precipitation formation processes (indirect effect). Based on their optical properties, aerosols can be classified into two types.: those that absorb solar radiation, and those that do not. Both types of aerosols scatter sunlight and reduce the amount of solar radiation from reaching the Earth's surface, causing it to cool. The surface cooling increases atmospheric stability and reduces convection potential, Absorbing aerosols, however, in addition to cooling the surface, can heat the atmosphere. The heating of the atmosphere may reduce the amount of low clouds by increased evaporation in cloud drops. The heating, however, may induce rising motion, enhance low-level moisture, convergence and, hence, increases rainfall, The latent heating from enhanced rainfall may excite feedback processes in the large-scale circulation, further amplify.the initial response to aerosol heating and producing more rain. Additionally, aerosols can increase the concentration of cloud condensation nuclei (CCN), increase cloud amount and decrease coalescence and collision rates, leading to reduced precipitation. However, in the presence of increasing moist and warm air, the reduced coalescence/collision may lead to supercooled drops at higher altitudes where ice precipitation falls and melts. The latent heat release from freezing aloft and melting below implies greater upward heat transport in polluted clouds and invigorate deep convection. In this way, aerosols may lead to increased local convection. Hence, depending on the ambient large-scale conditions and dynamical feedback processes, aerosols' effect on precipitation can be positive, negative or mixed. In the Asian monsoon and adjacent regions, the aerosol forcing and responses of the water cycle are even more complex, Both direct and indirect effects may take place locally and simultaneously, interacting with each other. in addition to local effects, monsoon rainfall may be affected by aerosols transported from other regions and intensified through large-scale circulation and moisture feedback. Thus, dust transported by the large-scale circulation from the adjacent deserts to northern India may affect rainfall over the Bay of Bengal; sulphate and black carbon front industrial pollution in central, southern China and northern India may affect the rainfall regime over the Korean peninsula and Japan; organic and black carbon front biomass burning from Indo-China may modulate the pre-monsoon rainfall regime over southern China and coastal regions, contributing to variability in differential heating and cooling of the atmosphere and to the land-sea thermal contrast. During the pre-monsoon season and monsoon breaks, it has been suggested that radiative forcing by absorbing aerosols have nearly the same order of magnitude as the forcing due to latent heating from convection and surface fluxes. The magnitude of the total aerosol radiative cooling due to sulphates and soot is of the order of 20-40 W/m2 over the Asian monsoon land region in the pre-monsoon season, compared to about 1-2 W/m2 for global warng. However, the combined forcing at the surface and in the atmosphere, including all species. if aerosols, and details of aerosol mixing, and impacts on the energy and water cycles in the monsoon land regions, are not well known.
Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro; Zaiat, Marcelo
2018-09-01
Sugarcane vinasse has been widely used as a soil fertilizer in the Brazilian sucro-alcohol industry for recycling potassium and water. However, the potential negative effects from long-term soil fertirrigation represent a major drawback regarding this practice, whereas the application of biodigestion represents an efficient method for reducing the polluting organic load and recovering bioenergy from vinasse. Regardless of the predicted use for vinasse, an understanding of the potential of each option is imperative, as the seasonal alterations in the inorganic/organic fractions of vinasse directly affect its management. In this context, this study presents a detailed compositional characterization of sugarcane vinasse from a large-scale Brazilian biorefinery throughout the 2014/2015 harvest to assess the environmental effects (due to fertirrigation) and to estimate the biogas energetic potential. Calculated inputs of organic matter into soils due to vinasse land application were equivalent to the polluting load of populations (117-257inhabha -1 ) at least 2-fold greater than the largest Brazilian capital cities (78-70inhabha -1 ). Two-phase biodigestion could efficiently reduce the polluting load of vinasse (23-52inhabha -1 ) and eliminate the negative effects from direct sulfide emissions in the environment. However, a high risk of soil sodification could result from using high doses of Na-based alkalizing compounds in biodigestion plants. Finally, the optimized recovery of bioenergy through biogas (13.3-26.7MW as electricity) could supply populations as large as 305 thousand inhabitants, so that over 30% of the surplus electricity produced by the studied biorefinery could be obtained from biogas. Overall, applying biodigestion in the treatment of vinasse provides important environmental and energetic gains. However, the benefits of reducing the polluting organic load of vinasse through bioenergy recovery may lose their effect depending on the alkalizing strategy, indicating that the proper use of chemicals in full-scale biodigestion plants is imperative to attain process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Yenisoy-Karakaş, S; Tuncel, S G
2004-08-15
Lichen samples from different parts of the world have been known to accumulate elements to a greater degree than higher plants, if they are exposed to these elements from the atmosphere or from water and sediments. It has been hypothesized that lichens can be used to monitor air pollution around point and area emission sources. Local variation (variation in substrate, age and morphology of lichen samples) of element concentrations would not be large enough to affect the concentration patterns in large areas. We tested this hypothesis in the Aegean region of Turkey, which is very urbanized and industrialized. No such study has been conducted before in this part of the country. A total of 234 samples of the lichen Xanthoria parietina were collected from a 51,800-km2 area. Samples were washed and analyzed by INAA and ICP-AES for 35 elements. The range of the concentrations for most of the elements on a local scale was an order of magnitude lower than for the element concentrations on a regional scale. The mean local coefficient of variance (CV) was found to be 15, providing that the local variation did not affect the concentration of elements in the sampling region. According to cluster analysis, 8 (As, Hg, Pb, Sb, Fe, Mn, Na and K) elements are indicative of important local pollution locations and their zone of impact in the region. By mapping the concentrations of eight indicative elements in lichen Xanthoria parietina of the Aegean region, it was possible to relate deposition to the existence of known sources of pollution in certain areas. Location of pollution sources such as iron-steel plants, and coal burning in the cities, industrial activity and two important coal-fired power plants generally corresponded with locations of highest element accumulations in the lichens.
Liu, Junzhuo; Wang, Fengwu; Liu, Wei; Tang, Cilai; Wu, Chenxi; Wu, Yonghong
2016-05-01
Planted floating treatment bed (FTB) is an innovative technique of removing nutrients from polluted water but limited in deep water and cold seasons. Periphyton was integrated into FTB for a hybrid floating treatment bed (HFTB) to improve its nutrient removal capacity. To assess its potential for treating nutrient-polluted rivers, HFTB was up-scaled from 5L laboratory tanks to 350L outdoor tanks and then to a commercial-scale 900m section of polluted river. Plants and periphyton interacted in HFTB with periphyton limiting plant root growth and plants having shading effects on periphyton. Non-overlapping distribution of plants and periphyton can minimize the negative interactions in HFTB. HFTB successfully kept TN and TP of the river at less than 2.0 and 0.02mgL(-1), respectively. This study indicates that HFTB can be easily up-scaled for nutrients removal from polluted rivers in different seasons providing a long-term, environmentally-friendly method to remediate polluted ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fishman, Jack; Wozniak, Amy; Creilson, Jack
2007-01-01
One of the recommendations of the Decadal Survey that was recently released by the National Academy of Science was that of a geostationary platform from which to obtain trace gas measurements. The use of such a platform is particularly advantageous when applied to understanding the formation of regional air pollution. This study demonstrates the challenges of trying to utilize information from instruments on satellites in low-earth orbit (LEO). We also demonstrate the advantage gained through a simulation that would provide hourly observations. In this case study, we take advantage of the high resolution Level-2 orbital data available from the Ozone Monitoring Instrument (OMI), in conjunction with assimilated stratospheric column ozone fields, to evaluate if meaningful tropospheric ozone information can be obtained on a regional scale. We focus on a period on late June 2005 when a widespread pollution episode enveloped the Houston metropolitan area as well as a large region in southeast Texas.
East Europe Report, Economic and Industrial Affairs, No. 2400.
1983-05-18
ducts, such as, for instance, oil, natural gas , coal, steel and cement. The socialist countries participate in large-scale successful joint programs of...which there are not many in international practice. Regarding their impact and significance, the joint construction and integration of natural gas ...separators; —reduced pollution (fallout of flue ashes and concentration of gaseous pol- lutants, particularly SO2 and N0X in ground layers of the
The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters
Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano
2016-01-01
The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea. PMID:27876837
The farmers' perceptions of ANPS pollution and its influencing factors in Poyang Lake Region, China.
Chen, Meiqiu; Chen, Mengjiao; Lu, Yanfei; Wang, Liguo; Huang, Yujiao
2016-01-01
Individual farmers represent the main management entities of agricultural production under the family-contract responsibility system in China, and thus play crucial roles in the prevention and control of agricultural nonpoint source (ANPS) pollution. The analysis of the farmers' perceptions of ANPS pollution as well as the factors affecting their perceptions can provide valuable information for relevant policy-making to preserve high quality water in Poyang Lake and regional quality of arable land. Through a survey titled 'Farmers' perceptions of ANPS pollution and farming behaviors in the Poyang Lake Region', the data related to the perceptions of farmers on ANPS pollution were collected. The factors that affect their awareness of ANPS pollution were identified with the method of boosted regression trees (BRT). The results indicated that the farmers had awareness of the risk of ANPS pollution to some extent, but they lacked adequate scientific knowledge. Generally, they had no consciousness about how to prevent and control ANPS pollution and did not understand techniques needed for proper scientifically sound application of fertilizers and pesticides. The main factors that influenced their perceptions of ANPS pollution are (from high to low): the ratio of total income which comes from farming, per capita farmland, age, education level, and household income. Some measures targeted to improve the prevention and control of ANPS pollution were proposed: developing modern agricultural techniques and promoting large-scale farming, increasing public campaigns related to ANPS pollution prevention and control with the goal of raising the level of awareness of farmers, and reforming the methods used to promote science and technology in agriculture and encourage the proper use of chemical fertilizers and pesticides.
NASA Technical Reports Server (NTRS)
Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing;
2010-01-01
Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Kuenen, J. J. P.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.; Li, M.
2015-10-01
The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories - including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries - was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.
Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille
2013-08-01
Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Surface air quality implications of volcanic injection heights
NASA Astrophysics Data System (ADS)
Thomas, Manu Anna; Brännström, Niklas; Persson, Christer; Grahn, Håkan; von Schoenberg, Pontus; Robertson, Lennart
2017-10-01
Air quality implications of volcanic eruptions have gained increased attention recently in association with the 2010 Icelandic eruption that resulted in the shut-down of European air space. The emission amount, injection height and prevailing weather conditions determine the extent of the impact through the spatio-temporal distribution of pollutants. It is often argued that in the case of a major eruption in Iceland, like Laki in 1783-1784, that pollutants injected high into the atmosphere lead to substantially increased concentrations of sulfur compounds over continental Europe via long-range transport in the jet stream and eventual large-scale subsidence in a high-pressure system. Using state-of-the-art simulations, we show that the air quality impact of Icelandic volcanoes is highly sensitive to the injection height. In particular, it is the infinitesimal injections into the lower half of the troposphere, rather than the substantial injections into the upper troposphere/lower stratosphere that contribute most to increased pollutant concentrations, resulting in atmospheric haze over mainland Europe/Scandinavia. Besides, the persistent high pressure system over continental Europe/Scandinavia traps the pollutants from dispersing, thereby prolonging the haze.
Effects of scale and Froude number on the hydraulics of waste stabilization ponds.
Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson
2018-01-01
This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.
Health Effects of Air Pollution: A Historical Review and Present Status.
Shima, Masayuki
2017-01-01
During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.
Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang
2017-05-01
A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sela, S.; Woodbury, P. B.; van Es, H. M.
2018-05-01
The US Midwest is the largest and most intensive corn (Zea mays, L.) production region in the world. However, N losses from corn systems cause serious environmental impacts including dead zones in coastal waters, groundwater pollution, particulate air pollution, and global warming. New approaches to reducing N losses are urgently needed. N surplus is gaining attention as such an approach for multiple cropping systems. We combined experimental data from 127 on-farm field trials conducted in seven US states during the 2011–2016 growing seasons with biochemical simulations using the PNM model to quantify the benefits of a dynamic location-adapted management approach to reduce N surplus. We found that this approach allowed large reductions in N rate (32%) and N surplus (36%) compared to existing static approaches, without reducing yield and substantially reducing yield-scaled N losses (11%). Across all sites, yield-scaled N losses increased linearly with N surplus values above ~48 kg ha‑1. Using the dynamic model-based N management approach enabled growers to get much closer to this target than using existing static methods, while maintaining yield. Therefore, this approach can substantially reduce N surplus and N pollution potential compared to static N management.
Potential impacts of urban land expansion on Asian airborne pollutant outflows
NASA Astrophysics Data System (ADS)
Tao, Wei; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Lin; Zhang, Jiachen; Yi, Kan; Tao, Shu
2017-07-01
Eastern part of China (EPC) has experienced rapid urbanization during the past few decades. Here we investigate the impacts of urban land expansion over EPC on the export of Asian pollutants to the western Pacific during January, April, July, and October of 2009 using the Weather Research and Forecasting model coupled to Chemistry (WRF/Chem) and a single-layer urban canopy scheme. Over urbanizing areas, increases in the urban land fraction result in a linearly enhanced uplift of surface primary pollutants to higher altitudes. We further examine how this local effect would change outflows of Asian pollutants to the western Pacific using the tagged black carbon (BC) and carbon monoxide (CO) tracers emitted from EPC (denoted by BCt and COt, respectively). Overall, a 0.1 increase in the fraction of land area that is urban over EPC would linearly (R2 = 0.70-0.96) increase the mean tropospheric eastward export of BCt and COt across meridional planes (i.e., 135°E and 150°E) by 4-40% and 1-6% in different months, respectively. The relative perturbation in exporting efficiency generally maximizes during July while minimizes during April. The urbanization-export relationship is largely driven by the elevation effect and is also impacted by urbanization-forced changes in zonal winds. The spatial pattern of the response of BCt over the downwind Pacific differs from that of COt mainly due to aerosol-cloud interactions. Our findings demonstrate that extensive urban land expansion could substantially impact climate and air quality from a local scale to a regional scale, especially for shorter-lived air pollutants such as BC and other aerosols.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.
Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele
2002-01-01
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L. E.; Zhang, J.
2014-08-01
In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS), a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO) La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN < 150 cm-3, non-sea salt PM2.5=1μg m-3). However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea salt PM2.510-25 μg m-3). These cases corresponded with two different mechanisms of convection suppression: lower free-tropospheric dry-air intrusion from the Indian Ocean, and large-scale TC-induced subsidence. Veering vertical wind shear also resulted in aerosol transport into this region being mainly in the marine boundary layer (MBL), although lower free troposphere transport was possible on the western sides of Sumatra and Borneo. At the hourly time scale, particle concentrations were observed to be modulated by integer factors through convection and associated cold pools. Geostationary satellite observations suggest that convection often takes the form of squall lines, which are bowed up to 500 km across the monsoonal flow and 50 km wide. These squall lines, initiated by cold pools from large thunderstorms and likely sustained by a veering vertical wind shear, propagated over 1500 km across the entirety of the SCS/ES-effectively cutting large swaths of MBL aerosol particles out of the region. Our conclusion is that while large-scale flow patterns are very important in modulating convection and hence allowing long range transport of smoke and pollution, more short-lived phenomena can modulate cloud condensation nuclei (CCN) concentrations in the region, resulting in pockets of clean and polluted MBL air.
NASA Astrophysics Data System (ADS)
Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.
2015-06-01
This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.
Traffic-related particulate air pollution exposure in urban areas
NASA Astrophysics Data System (ADS)
Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.
In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.
NASA Astrophysics Data System (ADS)
Aliyu, Yahaya A.; Botai, Joel O.
2018-04-01
The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.
Environmental parasitology: Parasites as accumulation bioindicators in the marine environment
NASA Astrophysics Data System (ADS)
Nachev, Milen; Sures, Bernd
2016-07-01
Parasites can be used as effective monitoring tools in environmental impact studies as they are able to accumulate certain pollutants (e.g. metals) at levels much higher than those of their ambient environment and of free-living sentinels. Thus, they provide valuable information not only about the chemical conditions of their and their hosts' environment but also deliver insights into the biological availability of allochthonous substances. While a large number of different freshwater parasites (mainly acanthocephalans and cestodes) were investigated in terms of pollutant bioaccumulation, studies based on marine host-parasites systems remain scarce. However, available data show that different marine parasite taxa such as nematodes, cestodes and acanthocephalans exhibit also an excellent metal accumulation capacity. The biological availability of metals and their uptake routes in marine biota and parasites differ from those of freshwater organisms. We assume that a large part of metals and other pollutants are also taken up via the digestive system of the host. Therefore, in addition to environmental conditions the physiology of the host also plays an important role for the accumulation process. Additionally, we highlight some advantages in using parasites as accumulation indicators in marine ecosystems. As parasites occur ubiquitously in marine food webs, the monitoring of metals in their tissues can deliver information about the spatial and trophic distribution of pollutants. Accordingly, parasites as indicators offer an ecological assessment on a broader scale, in contrast to established free-living marine indicators, which are mostly benthic invertebrates and therefore limited in habitat distribution. Globally distributed parasite taxa, which are highly abundant in a large number of host species, are suggested as worldwide applicable sentinels.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Delany, Anthony C.
1990-01-01
Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. The basic processes are illustrated with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale.
2017-01-01
Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms’ production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities. PMID:28792949
Muller, Nicholas Z; Jha, Akshaya
2017-01-01
Modern cities are engines of production, innovation, and growth. However, urbanization also increases both local and global pollution from household consumption and firms' production. Do emissions change proportionately to city size or does pollution tend to outpace or lag urbanization? Do emissions scale differently with population versus economic growth or are emissions, population, and economic growth inextricably linked? How are the scaling relationships between emissions, population, and economic growth affected by environmental regulation? This paper examines the link between urbanization, economic growth and pollution using data from Metropolitan Statistical Areas (MSAs) in the United States between 1999 and 2011. We find that the emissions of local air pollution in these MSAs scale according to a ¾ power law with both population size and gross domestic product (GDP). However, the monetary damages from these local emissions scale linearly with both population and GDP. Counties that have previously been out of attainment with the local air quality standards set by the Clean Air Act show an entirely different relationship: local emissions scale according to the square root of population, while the monetary damages from local air pollution follow a 2/3rds power law with population. Counties out of attainment are subject to more stringent emission controls; we argue based on this that enforcement of the Clean Air Act induces sublinear scaling between emissions, damages, and city size. In contrast, we find that metropolitan GDP scales super-linearly with population in all MSAs regardless of attainment status. Summarizing, our findings suggest that environmental policy limits the adverse effects of urbanization without interfering with the productivity benefits that manifest in cities.
In recent years the applications of regional air quality models are continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physic...
Nano-mineralogy of suspended sediment during the beginning of coal rejects spill.
Civeira, Matheus S; Ramos, Claudete G; Oliveira, Marcos L S; Kautzmann, Rubens M; Taffarel, Silvio R; Teixeira, Elba C; Silva, Luis F O
2016-02-01
Ultrafine and nanometric sediment inputs into river systems can be a major source of nutrients and hazardous elements and have a strong impact on water quality and ecosystem functions of rivers and lakes regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in South America. The objective of this work was to study the coal cleaning rejects (CCRs) spill that occurred from a CCRs impoundment pond into the Tubarão River, South Brazil, provided a unique occasion to study the importance and role of incidental nanoparticles associated with pollutant dispersal from a large-scale, acute aquatic pollution event. Multifaceted geochemical research by X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS, and Raman spectroscopy, provided an in-depth understanding of importance of a nano-mineralogy approach of Aqueous Pollution Scenarios. The electron beam studies showed the presence of a number of potentially hazardous elements (PHEs) in nanoparticles (amorphous and minerals). Some of the neoformed ultrafine/nanoparticles found in the contaminated sediments are the same as those commonly associated with oxidation/transformation of oxides, silicates, sulfides, and sulfates. These data of the secondary ultra/nanoparticles, puts in evidence their ability to control the mobility of PHEs, suggesting possible presentations in environmental technology, including recuperation of sensitive coal mine. The developed methodology facilitated the sediment transport of the catchment providing consistent results and suggesting its usefulness as a tool for temporary rivers management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of Animal Feeding Operations on Water Resources and the Environment
2000-01-01
and others tested swine feed and feed ingredients (grain, soybean meal, milk /whey, fats/oils, and protein products). The most frequent serotype...Swine Hepatitis E Virus (sHEV) is a recently discovered virus endemic to Midwest hog herds. The proposed zoonotic nature of Asian strains of human HEV...ground and surface water proximal to large-scale swine operations. We identified chemical pollutants and zoonotic pathogens in the environment on
Air pollution trends over Indian megacities and their local-to-global implications
NASA Astrophysics Data System (ADS)
Gurjar, B. R.; Ravindra, Khaiwal; Nagpure, Ajay Singh
2016-10-01
More than half of the world's population lives in urban areas. It is estimated that by 2030 there will be 41 megacities and most of them will be located in developing countries. The megacities in India (Delhi, Mumbai, and Kolkata) collectively have >46 million inhabitants. Increasing population and prosperity results in rapid growth of the already large consumption of energy and other resources, which contributes to air pollution, among other problems. Megacity pollution outflow plumes contain high levels of criteria pollutants (e.g. Particulate matter, SO2, NOx), greenhouse gases, ozone precursors and aerosols; which can affect the atmosphere not only on a local scale but also on regional and global scales. In the current study, emissions and concentration trends of criteria and other air pollutants (polycyclic aromatic hydrocarbons, carbon monoxide and greenhouse gases) were examined in the three Indian megacities. Further, various policies and control strategies adopted by Indian Government are also discussed to improve air quality. Decreasing trends of SO2 was observed in all three megacities due to decrease in the sulfur content in coal and diesel. However, increasing trend for NOx was found in these megacities due to increase in number of vehicles registered and high flash point of CNG engines, which leads to higher NOx emission. In terms of SPM and PM10, highest emissions have been found at Kolkata, whereas highest ambient concentrations were recorded in Delhi. For Mumbai and Kolkata fluctuating trends of SPM concentrations were observed between 1991 and 1998 and stable afterwards till 2005; whereas for Delhi, fluctuating trend was observed for the entire study period. However, several steps have been taken to control air pollution in India but there is a need to focus on control of non-exhaust emissions including municipal solid waste and biomass burning in the megacities and surrounding areas.
Monaco, D; Riccio, A; Chianese, E; Adamo, P; Di Rosa, S; Fagnano, M
2015-10-01
In this paper, the behaviour and distribution patterns of heavy hydrocarbons and several polycyclic aromatic hydrocarbon (PAH) priority pollutants, as listed by the US Environmental Protection Agency, were evaluated in 891 soil samples. The samples were collected in three expected polluted rural sites in Campania (southern Italy) as part of the LIFE11 ECOREMED project, funded by the European Commission, to test innovative agriculture-based soil restoration techniques. These sites have been selected because they have been used for the temporary storage of urban and building waste (Teverola), subject to illicit dumping of unknown material (Trentola-Ducenta), or suspected to be polluted by metals due to agricultural practices (Giugliano). Chemical analysis of soil samples allowed the baseline pollution levels to be determined prior to any intervention. It was found that these areas can be considered contaminated for residential use, in accordance with Italian environmental law (Law Decree 152/2006). Statistical analysis applied to the data proved that average mean concentrations of heavy hydrocarbons could be as high as 140 mg/kg of dry soil with peaks of 700 mg/kg of dry soil, for the Trentola-Ducenta site; the median concentration of analytical results for hydrocarbon (HC) concentration for the Trentola-Ducenta and Giugliano sites was 63 and 73.4 mg/kg dry soil, respectively; for Teverola, the median level was 35 mg/kg dry soil. Some PAHs (usually benzo(a)pyrene) also exceeded the maximum allowed level in all sites. From the principal component analysis applied to PAH concentrations, it emerged that pollutants can be supposed to derive from a single source for the three sites. Diagnostic ratios calculated to determine possible PAH sources suggest petroleum combustion or disposal practice. Our sampling protocol also showed large dishomogeneity in soil pollutant spatial distribution, even at a scale as small as 3.3 m, indicating that variability could emerge at very short spatial scales.
Identification and influence of spatio-temporal outliers in urban air quality measurements.
O'Leary, Brendan; Reiners, John J; Xu, Xiaohong; Lemke, Lawrence D
2016-12-15
Forty eight potential outliers in air pollution measurements taken simultaneously in Detroit, Michigan, USA and Windsor, Ontario, Canada in 2008 and 2009 were identified using four independent methods: box plots, variogram clouds, difference maps, and the Local Moran's I statistic. These methods were subsequently used in combination to reduce and select a final set of 13 outliers for nitrogen dioxide (NO 2 ), volatile organic compounds (VOCs), total benzene, toluene, ethyl benzene, and xylene (BTEX), and particulate matter in two size fractions (PM 2.5 and PM 10 ). The selected outliers were excluded from the measurement datasets and used to revise air pollution models. In addition, a set of temporally-scaled air pollution models was generated using time series measurements from community air quality monitors, with and without the selected outliers. The influence of outlier exclusion on associations with asthma exacerbation rates aggregated at a postal zone scale in both cities was evaluated. Results demonstrate that the inclusion or exclusion of outliers influences the strength of observed associations between intraurban air quality and asthma exacerbation in both cities. The box plot, variogram cloud, and difference map methods largely determined the final list of outliers, due to the high degree of conformity among their results. The Moran's I approach was not useful for outlier identification in the datasets studied. Removing outliers changed the spatial distribution of modeled concentration values and derivative exposure estimates averaged over postal zones. Overall, associations between air pollution and acute asthma exacerbation rates were weaker with outliers removed, but improved with the addition of temporal information. Decreases in statistically significant associations between air pollution and asthma resulted, in part, from smaller pollutant concentration ranges used for linear regression. Nevertheless, the practice of identifying outliers through congruence among multiple methods strengthens confidence in the analysis of outlier presence and influence in environmental datasets. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Large-scale marine ecosystem change and the conservation of marine mammals
O'Shea, T.J.; Odell, D.K.
2008-01-01
Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.
Characterization of Somatic Mutations in Air Pollution-Related Lung Cancer.
Yu, Xian-Jun; Yang, Min-Jun; Zhou, Bo; Wang, Gui-Zhen; Huang, Yun-Chao; Wu, Li-Chuan; Cheng, Xin; Wen, Zhe-Sheng; Huang, Jin-Yan; Zhang, Yun-Dong; Gao, Xiao-Hong; Li, Gao-Feng; He, Shui-Wang; Gu, Zhao-Hui; Ma, Liang; Pan, Chun-Ming; Wang, Ping; Chen, Hao-Bin; Hong, Zhi-Peng; Wang, Xiao-Lu; Mao, Wen-Jing; Jin, Xiao-Long; Kang, Hui; Chen, Shu-Ting; Zhu, Yong-Qiang; Gu, Wen-Yi; Liu, Zi; Dong, Hui; Tian, Lin-Wei; Chen, Sai-Juan; Cao, Yi; Wang, Sheng-Yue; Zhou, Guang-Biao
2015-06-01
Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G → A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure-genomic mutation relationship at a large scale.
Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa
2018-10-15
Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3 mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier B.V.
Muñoz, Cynthia C; Vermeiren, Peter
2018-04-01
Knowledge of spatial variation in pollutant profiles among sea turtle nesting locations is limited. This poses challenges in identifying processes shaping this variability and sets constraints to the conservation management of sea turtles and their use as biomonitoring tools for environmental pollutants. We aimed to increase understanding of the spatial variation in polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP) and polychlorinated biphenyl (PCB) compounds among nesting beaches. We link the spatial variation to turtle migration patterns and the persistence of these pollutants. Specifically, using gas chromatography, we confirmed maternal transfer of a large number of compounds (n = 68 out of 69) among 104 eggs collected from 21 nests across three nesting beaches within the Yucatán Peninsula, one of the world's most important rookeries for hawksbill turtles (Eretmochelys imbricata). High variation in PAH profiles was observed among beaches, using multivariate correspondence analysis and univariate Peto-Prentice tests, reflecting local acquisition during recent migration movements. Diagnostic PAH ratios reflected petrogenic origins in Celestún, the beach closest to petroleum industries in the Gulf of Mexico. By contrast, pollution profiles of OCPs and PCBs showed high similarity among beaches, reflecting the long-term accumulation of these pollutants at regional scales. Therefore, spatial planning of protected areas and the use of turtle eggs in biomonitoring needs to account for the spatial variation in pollution profiles among nesting beaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
McCaull, Julian
1976-01-01
Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…
NASA Technical Reports Server (NTRS)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.;
2016-01-01
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transportmore » related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.« less
NASA Astrophysics Data System (ADS)
Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing
2016-11-01
The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds.
Biancani, Leann M.; Flight, Patrick A.; Nacci, Diane E.; Rand, David M.; Crawford, Douglas L.; Oleksiak, Marjorie F.
2018-01-01
Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade. PMID:29892357
Cheng, Xian; Chen, Liding; Sun, Ranhao; Jing, Yongcai
2018-05-15
To control non-point source (NPS) pollution, it is important to estimate NPS pollution exports and identify sources of pollution. Precipitation and terrain have large impacts on the export and transport of NPS pollutants. We established an improved export coefficient model (IECM) to estimate the amount of agricultural and rural NPS total phosphorus (TP) exported from the Luanhe River Basin (LRB) in northern China. The TP concentrations of rivers from 35 selected catchments in the LRB were used to test the model's explanation capacity and accuracy. The simulation results showed that, in 2013, the average TP export was 57.20 t at the catchment scale. The mean TP export intensity in the LRB was 289.40 kg/km 2 , which was much higher than those of other basins in China. In the LRB topographic regions, the TP export intensity was the highest in the south Yanshan Mountains and was followed by the plain area, the north Yanshan Mountains, and the Bashang Plateau. Among the three pollution categories, the contribution ratios to TP export were, from high to low, the rural population (59.44%), livestock husbandry (22.24%), and land-use types (18.32%). Among all ten pollution sources, the contribution ratios from the rural population (59.44%), pigs (14.40%), and arable land (10.52%) ranked as the top three sources. This study provides information that decision makers and planners can use to develop sustainable measures for the prevention and control of NPS pollution in semi-arid regions.
Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu
2013-07-01
The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.
NASA Astrophysics Data System (ADS)
Petit, J.-E.; Amodeo, T.; Meleux, F.; Bessagnet, B.; Menut, L.; Grenier, D.; Pellan, Y.; Ockler, A.; Rocq, B.; Gros, V.; Sciare, J.; Favez, O.
2017-04-01
During March 2015, a severe and large-scale particulate matter (PM) pollution episode occurred in France. Measurements in near real-time of the major chemical composition at four different urban background sites across the country (Paris, Creil, Metz and Lyon) allowed the investigation of spatiotemporal variabilities during this episode. A climatology approach showed that all sites experienced clear unusual rain shortage, a pattern that is also found on a longer timescale, highlighting the role of synoptic conditions over Wester-Europe. This episode is characterized by a strong predominance of secondary pollution, and more particularly of ammonium nitrate, which accounted for more than 50% of submicron aerosols at all sites during the most intense period of the episode. Pollution advection is illustrated by similar variabilities in Paris and Creil (distant of around 100 km), as well as trajectory analyses applied on nitrate and sulphate. Local sources, especially wood burning, are however found to contribute to local/regional sub-episodes, notably in Metz. Finally, simulated concentrations from Chemistry-Transport model CHIMERE were compared to observed ones. Results highlighted different patterns depending on the chemical components and the measuring site, reinforcing the need of such exercises over other pollution episodes and sites.
Xie, Rong-Rong; Pang, Yong; Zhang, Qian; Chen, Ke; Sun, Ming-Yuan
2012-07-01
For the safety of the water environment in Jiashan county in Zhejiang Province, one-dimensional hydrodynamic and water quality models are established based on three large-scale monitoring of hydrology and water quality in Jiashan county, three water environmental sensitive spots including Hongqitang dam Chijia hydrological station and Luxie pond are selected to investigate weight parameters of water quality impact and risk grade determination. Results indicate as follows (1) Internal pollution impact in Jiashan areas was greater than the external, the average weight parameters of internal chemical oxygen demand (COD) pollution is 55.3%, internal ammonia nitrogen (NH(4+)-N) is 67.4%, internal total phosphor (TP) is 63.1%. Non-point pollution impact in Jiashan areas was greater than point pollution impact, the average weight parameters of non-point COD pollutions is 53.7%, non-point NH(4+)-N is 65.9%, non-point TP is 57.8%. (2) The risk of Hongqitang dam and Chijia hydrological station are in the middle risk. The risk of Luxie pond is also in the middle risk in August, and in April and December the risk of Luxie pond is low. The strategic decision will be suggested to guarantee water environment security and social and economic security in the study.
Glasgow, Mark L; Rudra, Carole B; Yoo, Eun-Hye; Demirbas, Murat; Merriman, Joel; Nayak, Pramod; Crabtree-Ide, Christina; Szpiro, Adam A; Rudra, Atri; Wactawski-Wende, Jean; Mu, Lina
2016-06-01
Because of the spatiotemporal variability of people and air pollutants within cities, it is important to account for a person's movements over time when estimating personal air pollution exposure. This study aimed to examine the feasibility of using smartphones to collect personal-level time-activity data. Using Skyhook Wireless's hybrid geolocation module, we developed "Apolux" (Air, Pollution, Exposure), an Android(TM) smartphone application designed to track participants' location in 5-min intervals for 3 months. From 42 participants, we compared Apolux data with contemporaneous data from two self-reported, 24-h time-activity diaries. About three-fourths of measurements were collected within 5 min of each other (mean=74.14%), and 79% of participants reporting constantly powered-on smartphones (n=38) had a daily average data collection frequency of <10 min. Apolux's degree of temporal resolution varied across manufacturers, mobile networks, and the time of day that data collection occurred. The discrepancy between diary points and corresponding Apolux data was 342.3 m (Euclidian distance) and varied across mobile networks. This study's high compliance and feasibility for data collection demonstrates the potential for integrating smartphone-based time-activity data into long-term and large-scale air pollution exposure studies.
Optimizing the scale of markets for water quality trading
NASA Astrophysics Data System (ADS)
Doyle, Martin W.; Patterson, Lauren A.; Chen, Yanyou; Schnier, Kurt E.; Yates, Andrew J.
2014-09-01
Applying market approaches to environmental regulations requires establishing a spatial scale for trading. Spatially large markets usually increase opportunities for abatement cost savings but increase the potential for pollution damages (hot spots), vice versa for spatially small markets. We develop a coupled hydrologic-economic modeling approach for application to point source emissions trading by a large number of sources and apply this approach to the wastewater treatment plants (WWTPs) within the watershed of the second largest estuary in the U.S. We consider two different administrative structures that govern the trade of emission permits: one-for-one trading (the number of permits required for each unit of emission is the same for every WWTP) and trading ratios (the number of permits required for each unit of emissions varies across WWTP). Results show that water quality regulators should allow trading to occur at the river basin scale as an appropriate first-step policy, as is being done in a limited number of cases via compliance associations. Larger spatial scales may be needed under conditions of increased abatement costs. The optimal scale of the market is generally the same regardless of whether one-for-one trading or trading ratios are employed.
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair; Allan, Sarah E; Tidwell, Lane G; Wilson, Glenn; Anderson, Kim A
2014-10-01
Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2-5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
O’Connell, Steven G.; McCartney, Melissa A.; Paulik, L. Blair; Allan, Sarah E.; Tidwell, Lane G.; Wilson, Glenn; Anderson, Kim A.
2014-01-01
Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2–5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring. PMID:25009960
China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-09-18
Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.
Fine-scale detection of pollutants by a benthic marine jellyfish.
Epstein, Hannah E; Templeman, Michelle A; Kingsford, Michael J
2016-06-15
Local sources of pollution can vary immensely on small geographic scales and short time frames due to differences in runoff and adjacent land use. This study examined the rate of uptake and retention of trace metals in Cassiopea maremetens, a benthic marine jellyfish, over a short time frame and in the presence of multiple pollutants. This study also validated the ability of C. maremetens to uptake metals in the field. Experimental manipulation demonstrated that metal accumulation in jellyfish tissue began within 24h of exposure to treated water and trended for higher accumulation in the presence of multiple pollutants. C. maremetens was found to uptake trace metals in the field and provide unique signatures among locations. This fine-scale detection and rapid accumulation of metals in jellyfish tissue can have major implications for both biomonitoring and the trophic transfer of pollutants through local ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of the air quality in the surroundings of an urban park: A micrometeorological approach
NASA Astrophysics Data System (ADS)
Sastre, Mariano; Yagüe, Carlos; Arrillaga, Jon A.; Román-Cascón, Carlos; Maqueda, Gregorio; Artíñano, Begoña; Díaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Barreiro, Marcos; Borge, Rafael; Narros, Adolfo; Pérez, Javier; Quaassdorff, Christina
2017-04-01
In this work we study the differences showed by two types of pollutants, particulate matter (PM) and NOx, by comparing ambient concentration measurements within an urban park versus the corresponding values nearby (but outside) it. The results are linked to both proximity to emission sources, such as road traffic, and the microscale atmospheric conditions. The work is motivated by the fact that poor air quality is a crucial issue of current cities. For some of them it is not uncommon to face this problem with occasional traffic restrictions when high concentrations of pollutants are reached. These events occur more frequently with specific large-scale atmospheric conditions, for example when a strong anticyclone is present. As the meteorological conditions may significantly influence the pollutants concentrations, the research project TECNAIRE-CM (Innovative technologies for the assessment and improvement of urban air quality) aims to provide new approaches to obtain proper descriptions of the urban pollution and its dynamics at different spatial and temporal scales, not only the synoptic scale. So far, a few field campaigns have been developed within TECNAIRE-CM at two locations in the city of Madrid, which are considered hot spots according to the air quality network records. Here we use the data from a field campaign carried out during summer 2016, which consider standard pollution and meteorological measurements, as well as sonic anemometer data. The latter help to include atmospheric turbulence as a significant agent for air quality characterization. The instrumentation was deployed at a location with considerable traffic density, but nearby a border of the main urban park of the city, so that its influence might be investigated. Supplementary data considered for this work correspond to permanent instrumentation within the park. With this extra information we can compare both measurements inside and outside the park. Therefore, we study the effect on wind, turbulence or air quality when we measure at a site either directly exposed to traffic emissions or partly protected and with a reduced influence of typical atmospheric urban phenomena. This work has been funded by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Plastic Pollution Research and Control Act of 1987, and the Ocean Dumping Act, address pollution within... related legislation in 2003-2005 to limit pollution from large passenger and large oceangoing vessels. In...; (3) to further regulate landside sources of pollution; (4) to improve inspection and testing...
The role of Natural Flood Management in managing floods in large scale basins during extreme events
NASA Astrophysics Data System (ADS)
Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David
2016-04-01
There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water in large scale basins in the future. The broader benefits of engineering landscapes to hold water for pollution control, sediment loss and drought minimisation will also be shown.
Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Córdova-Kreylos, Ana Lucía; Cao, Yiping; Green, Peter G.; Hwang, Hyun-Min; Kuivila, Kathryn M.; LaMontagne, Michael G.; Van De Werfhorst, Laurie C.; Holden, Patricia A.; Scow, Kate M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. PMID:16672478
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Tanushree
Large-scale assemblies of people in a confined space can exert significant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying fingerprint volatile organic compounds (VOCs) such as acetone, toluene, and isoprene produced during concerts, movie screenings, and sport events (like the Olympics and the World Cup). This review summarizes the extent of VOC accumulation resulting from a large population in a confined area or in a small open area during sporting and other recreational activities. Apart from VOCs emitted directly from human bodies (e.g.,more » perspiration and exhaled breath), those released indirectly from other related sources (e.g., smoking, waste disposal, discharge of food-waste, and use of personal-care products) are also discussed. Although direct and indirect emissions of VOCs from human may constitute <1% of the global atmospheric VOCs budget, unique spatiotemporal variations in VOCs species within a confined space can have unforeseen impacts on the local atmosphere to lead to acute human exposure to harmful pollutants.« less
Large scale reactive transport of nitrate across the surface water divide
NASA Astrophysics Data System (ADS)
Kortunov, E.; Lu, C.; Amos, R.; Grathwohl, P.
2016-12-01
Groundwater pollution caused by agricultural and atmospheric inputs is a pressing issue in environmental management worldwide. Various researchers have studied different aspects of nitrate contamination since the substantial increase of the agriculture pollution in the second half of the 20th century. This study addresses large scale reactive solute transport in a typical Germany hilly landscapes in a transect crossing 2 valleys: River Neckar and Ammer. The numerical model was constructed compromising a 2-D cross-section accounting for typical fractured mudstones and unconsolidated sediments. Flow modelling showed that the groundwater divide significantly deviates from the surface water divide providing conditions for inter-valley flow and transport. Reactive transport modelling of redox-sensitive solutes (e.g. agriculture nitrate and natural sulfate, DOC, ammonium) with MIN3P was used to elucidate source of nitrate in aquifers and rivers. Since both floodplains, in the Ammer and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural nitrate is reduced therein and does not reach the groundwater. However, nitrate applied in the hillslopes underlain by fractured oxidized mudrock is transported to the high yield sand and gravel aquifer in the Neckar valley. Therefore, the model predicts that nitrate in the Neckar valley comes, to a large extent, from the neighboring Ammer valley. Moreover, nitrate observed in the rivers and drains in the Ammer valley is very likely geogenic since frequent peat layers there release ammonium which is oxidized as it enters the surface water. Such findings are relevant for land and water quality management.
Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.
Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki
2012-11-06
We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.
Evaluation of transboundary environmental issues in Central Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engi, D.; Kapustka, L.A.; Williams, B.A.
1997-05-01
Central Europe has experienced environmental degradation for hundreds of years. The proximity of countries, their shared resources, and transboundary movement of environmental pollution, create the potential for regional environmental strife. The goal of this project was to identify the sources and sinks of environmental pollution in Central Europe and evaluate the possible impact of transboundary movement of pollution on the countries of Central Europe. In meeting the objectives of identifying sources of contaminants, determining transboundary movement of contaminants, and assessing socio-economic implications, large quantities of disparate data were examined. To facilitate use of the data, the authors refined mapping proceduresmore » that enable processing information from virtually any map or spreadsheet data that can be geo-referenced. Because the procedure is freed from a priori constraints of scale that confound most Geographical Information Systems, they have the capacity to generate new projections and apply sophisticated statistical analyses to the data. The analysis indicates substantial environmental problems. While transboundary pollution issues may spawn conflict among the Central European countries and their neighbors, it appears that common environmental problems facing the entire region have had the effect of bringing the countries together, even though opportunities for deteriorating relationships may still arise.« less
Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006
NASA Astrophysics Data System (ADS)
Tong, Yindong; Zhang, Wei; Wang, Xuejun; Couture, Raoul-Marie; Larssen, Thorjørn; Zhao, Yue; Li, Jing; Liang, Huijiao; Liu, Xueyan; Bu, Xiaoge; He, Wei; Zhang, Qianggong; Lin, Yan
2017-07-01
Domestic wastewater and agricultural activities are important sources of nutrient pollutants such as phosphorus and nitrogen. Upon reaching freshwater, these nutrients can lead to extensive growth of harmful algae, which results in eutrophication. Many Chinese lakes are subject to such eutrophication, especially in highly polluted areas, and as such, understanding nutrient fluxes to these lakes offers insights into the varying processes governing pollutant fluxes as well as lake water quality. Here we analyse water quality data, recorded between 2006 and 2014 in 862 freshwater lakes in four geographical regions of China, to assess the input of phosphorus from human activity. We find that improvements in sanitation of both rural and urban domestic wastewater have resulted in large-scale declines in lake phosphorus concentrations in the most populated parts of China. In more sparsely populated regions, diffuse sources such as aquaculture and livestock farming offset this decline. Anthropogenic deforestation and soil erosion may also offset decreases in point sources of pollution. In the light of these regional differences, we suggest that a spatially flexible set of policies for water quality control would be beneficial for the future health of Chinese lakes.
40 CFR 62.14441 - When must I inspect my HMIWI equipment and air pollution control devices?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and air pollution control devices? 62.14441 Section 62.14441 Protection of Environment ENVIRONMENTAL... my HMIWI equipment and air pollution control devices? (a) You must inspect your large, medium, small... inspect the air pollution control devices on your large, medium, small or small rural HMIWI by May 13...
40 CFR 62.14441 - When must I inspect my HMIWI equipment and air pollution control devices?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and air pollution control devices? 62.14441 Section 62.14441 Protection of Environment ENVIRONMENTAL... my HMIWI equipment and air pollution control devices? (a) You must inspect your large, medium, small... inspect the air pollution control devices on your large, medium, small or small rural HMIWI by May 13...
Schulte, Jill K.; Fox, Julie R.; Oron, Assaf P.; Larson, Timothy V.; Simpson, Christopher D.; Paulsen, Michael; Beaudet, Nancy; Kaufman, Joel D.; Magzamen, Sheryl
2016-01-01
With emerging evidence that diesel exhaust exposure poses distinct risks to human health, the need for fine-scale models of diesel exhaust pollutants is growing. We modeled the spatial distribution of several nitrated polycyclic aromatic hydrocarbons (NPAHs) to identify fine-scale gradients in diesel exhaust pollution in two Seattle, WA neighborhoods. Our modeling approach fused land-use regression, meteorological dispersion modeling, and pollutant monitoring from both fixed and mobile platforms. We applied these modeling techniques to concentrations of 1-nitropyrene (1-NP), a highly specific diesel exhaust marker, at the neighborhood scale. We developed models of two additional nitroarenes present in secondary organic aerosol: 2-nitro-pyrene and 2-nitrofluoranthene. Summer predictors of 1-NP, including distance to railroad, truck emissions, and mobile black carbon measurements, showed a greater specificity to diesel sources than predictors of other NPAHs. Winter sampling results did not yield stable models, likely due to regional mixing of pollutants in turbulent weather conditions. The model of summer 1-NP had an R2 of 0.87 and cross-validated R2 of 0.73. The synthesis of high-density sampling and hybrid modeling was successful in predicting diesel exhaust pollution at a very fine scale and identifying clear gradients in NPAH concentrations within urban neighborhoods. PMID:26501773
Batteries for electric road vehicles.
Goodenough, John B; Braga, M Helena
2018-01-15
The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.
Toward a theoretical framework for trustworthy cyber sensing
NASA Astrophysics Data System (ADS)
Xu, Shouhuai
2010-04-01
Cyberspace is an indispensable part of the economy and society, but has been "polluted" with many compromised computers that can be abused to launch further attacks against the others. Since it is likely that there always are compromised computers, it is important to be aware of the (dynamic) cyber security-related situation, which is however challenging because cyberspace is an extremely large-scale complex system. Our project aims to investigate a theoretical framework for trustworthy cyber sensing. With the perspective of treating cyberspace as a large-scale complex system, the core question we aim to address is: What would be a competent theoretical (mathematical and algorithmic) framework for designing, analyzing, deploying, managing, and adapting cyber sensor systems so as to provide trustworthy information or input to the higher layer of cyber situation-awareness management, even in the presence of sophisticated malicious attacks against the cyber sensor systems?
Wang, Qi; Xie, Zhiyi; Li, Fangbai
2015-11-01
This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.
2015-04-01
The mandate of the Task Force Hemispheric Transport of Air Pollution (HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions dataset has been constructed using regional emission gridmaps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories, including the Environmental Protection Agency (EPA)'s for USA, EPA and Environment Canada's for Canada, the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO)'s for Europe, and the Model Inter-comparison Study in Asia (MICS-Asia)'s for China, India and other Asian countries, was gap-filled with the emission gridmaps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South-America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific gridmaps for each substance and year. The HTAP_v2.2 air pollutant gridmaps are considered to combine latest available regional information within a complete global dataset. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission gridmaps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for all air pollutant emissions from the energy and industry sectors, but not from the residential one. A comparison of the population weighted emissions for all world countries, grouped into four classes of similar income, reveals that the per capita emissions are, with increasing income group of countries, increasing in level but also in variation for all air pollutants but not for aerosols.
NASA Astrophysics Data System (ADS)
Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan
2017-04-01
Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants sources, and using a soil properties database is able to model Dust emissions (Laurent B. et al., JGR, 2005). Satellite products are available to evaluate and improve our simulations, as for example the AOD and Angstrom coefficient from the MODIS instrument. Mineral dust pollution represents one of the most important sources of atmospheric pollutant over Chinese territories, but dust emissions and transport present important seasonal variabilities. To evaluate impacts of dust pollutants on inhabited areas' pollutions, we compute dust emissions (Marticorena and Bergametti, JGR, 1995) and transport. Using MODIS instrument information over dust source regions, we control that AOD amplitudes and temporal variations simulated with CHIMERE correspond. We attempt to quantify the impact of mineral dust pollution each month over several urbanized areas using multi-annual simulations (2011, 2013, and 2015). We also investigate the impact of heavy dust events within inhabited areas' pollution. This work is also part of the French funded project "Pollution in Eastern Asia: towards better air quality prevision and impacts' evaluation".
CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY
Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...
Thermal exploitation of wastes with lignite for energy production.
Grammelis, Panagiotis; Kakaras, Emmanuel; Skodras, George
2003-11-01
The thermal exploitation of wastewood with Greek lignite was investigated by performing tests in a laboratory-scale fluidized bed reactor, a 1-MW(th) semi-industrial circulating fluidized bed combustor, and an industrial boiler. Blends of natural wood, demolition wood, railroad sleepers, medium-density fiberboard residues, and power poles with lignite were used, and the co-combustion efficiency and the effect of wastewood addition on the emitted pollutants were investigated. Carbon monoxide, sulfur dioxide, and oxides of nitrogen emissions were continuously monitored, and, during the industrial-scale tests, the toxic emissions (polychlorinated dibenzodioxins and dibenzofurans and heavy metals) were determined. Ash samples were analyzed for heavy metals in an inductively coupled plasma-atomic emission spectroscopy spectrophotometer. Problems were observed during the preparation of wastewood, because species embedded with different compounds, such as railway sleepers and demolition wood, were not easily treated. All wastewood blends were proven good fuels; co-combustion proceeded smoothly and homogeneous temperature and pressure profiles were obtained. Although some fluctuations were observed, low emissions of gaseous pollutants were obtained for all fuel blends. The metal element emissions (in the flue gases and the solid residues) were lower than the legislative limits. Therefore, wastewood co-combustion with lignite can be realized, provided that the fuel handling and preparation can be practically performed in large-scale installations.
NASA Astrophysics Data System (ADS)
Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.
2014-10-01
Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO4 2 - and ammonium NH4+ was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of secondary inorganic species associated with wildfire gaseous emissions and their transformation in aged smoke. Accumulation of carbonyl compounds during extreme smoke event in Moscow resulted from photochemical aging and secondary organic aerosol (SOA) formation in the urban atmosphere. The mixture of carbonaceous particles and dust revealed multicomponent structure of Moscow smoke aerosols, pointing the difference with non-smoke ambient aerosols. The abundance of group containing soot and tar balls approached at least a half of total aerosol concentration during extreme event, relating to elevated OC, EC and SOA. Fly ash groups contained calcium sulfates and carbonates from soil entrainment by hot air convection. Small-scale open fire experiments support the identification of specific chemical features of regional biomass burning and demonstrate the strong impact of large-scale wildfires on aerosol chemistry and air quality in highly polluted megacity.
National review of ambient air toxics observations.
Strum, Madeleine; Scheffe, Richard
2016-02-01
Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.
NASA Astrophysics Data System (ADS)
Chung, Y. S.; Kim, Hak-Sung; Chun, Youngsin
2014-05-01
Dust air pollution has been routinely monitored in central Korea for the last two decades. In 2009, there were eight typical episodes of significant dust loadings in the air: four were caused by dust storms from deserts in Mongolia and Northern China, while the remaining were typical cases of anthropogenic air pollution masses arriving from the Yellow Sea and East China. These natural dust loadings occurred with cool northwesterly airflows in the forward side of an intense anticyclone coming from Mongolia and Siberia. The mean concentrations of the four natural dustfall cases for TSP, PM10 and PM2.5 were 632, 480 and 100 μg m-3, respectively. In contrast, the anthropogenic dust-pollution episodes occurred with the warm westerly and southwesterly airflows in the rear side of an anticyclone. This produced a favorable atmospheric and chemical condition for the build-up of anthropogenic dust air pollution in the Yellow Sea. The mean concentrations of the four anthropogenic dust loadings for TSP, PM10 and PM2.5 were 224, 187 and 137 μg m-3, respectively. The contents of fine dust loadings of PM2.5 were comparatively high in the cases of anthropogenic air pollution. High atmospheric concentrations of fine particles in the atmosphere cause poor visibility and constitute a health hazard. Satellite observations clearly showed the movement of dust-pollution masses from Mongolia and Northern China and from the Yellow Sea and East China that caused these dust pollution episodes in Korea.
Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems.
Su, Lei; Cai, Huiwen; Kolandhasamy, Prabhu; Wu, Chenxi; Rochman, Chelsea M; Shi, Huahong
2018-03-01
Bioindicators play an important role in understanding pollution levels, bioavailability and the ecological risks of contaminants. Several bioindicators have been suggested for understanding microplastic in the marine environment. A bioindicator for microplastics in the freshwater environment does not exist. In our previous studies, we found a high frequency of microplastic pollution in the Asian clam (Corbicula fluminea) in Taihu Lake, China. In the present study, we conducted a large-scale survey of microplastic pollution in Asian clams, water and sediment from 21 sites in the Middle-Lower Yangtze River Basin from August to October of 2016. The Asian clam was available in all sites, which included diverse freshwater systems such as lakes, rivers and estuaries. Microplastics were found at concentrations ranging from 0.3-4.9 items/g (or 0.4-5.0 items/individual) in clams, 0.5-3.1 items/L in water and 15-160 items/kg in sediment. Microfibers were the most dominant types of microplastics found, accounting for 60-100% in clams across all sampling sites. The size of microplastics ranged from 0.021-4.83 mm, and microplastics in the range of 0.25-1 mm were dominant. The abundance, size distribution and color patterns of microplastics in clams more closely resembled those in sediment than in water. Because microplastic pollution in the Asian clam reflected the variability of microplastic pollution in the freshwater environments, we demonstrated the Asian clam as an bioindicator of microplastic pollution in freshwater systems, particularly for sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Desmet, Nele; Seuntjens, Piet
2013-04-01
Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.
Klaminder, Jonatan; Bindler, Richard; Laudon, Hjalmar; Bishop, Kevin; Emteryd, Ove; Renberg, Ingemar
2006-08-01
It is not well-known how the accumulated pool of atmospheric lead pollution in the boreal forest soil will affect the groundwater and surface water chemistry in the future as this lead migrates through the soil profile. This study uses stable lead isotopes (206Pb/207Pb and 208Pb/ 207Pb ratios) to trace the transport of atmospheric lead pollution within the soil of a small catchment and predict future lead level changes in a stream draining the catchment. Low 206Pb/207Pb and 208Pb/207Pb ratios for the lead in the soil water (1.16 +/- 0.02; 2.43 +/- 0.03) and streamwater (1.18 +/- 0.03; 2.42 +/- 0.03) in comparison to that of the mineral soil (>1.4; >2.5) suggest that atmospheric pollution contributes by about 90% (65-100%) to the lead pool found in these matrixes. Calculated transport rates of atmospheric lead along a soil transect indicate that the mean residence time of lead in organic and mineral soil layers is at a centennial to millennial time scale. A maximum release of the present pool of lead pollution in the soil to the stream is predicted to occur within 200-800 years. Even though the uncertainty of the prediction is large, it emphasizes the magnitude of the time lag between the accumulation of atmospheric lead pollution in soils and the subsequent response in streamwater quality.
Measurement of air pollutant emissions from Lome, Cotonou and Accra
NASA Astrophysics Data System (ADS)
Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel
2017-04-01
High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.
Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei
2018-05-03
Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.
Li, Harbin; McNulty, Steven G
2007-10-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.
Towards predictive simulations of soot formation: from surrogate to turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanquart, Guillaume
The combustion of transportation fuels leads to the formation of several kinds of pollutants, among which are soot particles. These particles, also formed during coal combustion and in fires, are the source of several health problems and environmental issues. Unfortunately, our current understanding of the chemical and physical phenomena leading to the formation of soot particles remains incomplete, and as a result, the predictive capability of our numerical tools is lacking. The objective of the work was to reduce the gap in the present understanding and modeling of soot formation both in laminar and turbulent flames. The effort spanned severalmore » length scales from the molecular level to large scale turbulent transport.« less
Propagation of barn owls in captivity
Maestrelli, J.R.
1973-01-01
Some aspects of the biology and life history of native birds often are more readily obtained in captivity than in the field. This is particularly true in evaluating the effects of pesticides or other pollutants on birds, because establishing cause-and-effect relationships requires experimental studies. Few wild species have been bred in captivity with sufficient success to permit the large-scale studies that are needed. This paper reports successful efforts to breed Barn Owls (Tyto alba prolinicola) in captivity and presents biological data concerning reproduction.
Demonstration of Regenerable, Large-Scale Ion Exchange System Using WBA Resin in Rialto, CA
2008-03-05
NDMA – N-nitrosodimethylamine NDPA – N-nitrosodi-n-propylamine NMEA – N-nitrosomethylethylamine NMOR – N-nitrosomorpholine NPDES – National Pollutant...were analyzed using EPA Method 521. NDMA was 2.6 ppt with a detection limit of 2 ppt. All other nitrosamines analyzed (including NDEA, NDBA, NDPA...ppb) using IC/MS/MS. Nitrosamines were analyzed using EPA Method 521. NDMA was 2.6 ppt with a detection limit of 2 ppt. All other nitrosamines
NASA Astrophysics Data System (ADS)
Wong, Colman C. C.; Liu, Chun-Ho
2010-05-01
Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied in the horizontal and the spanwise directions. The prevalent wind was driven by a background pressure gradient in the roughness sublayer only, no background force was prescribed inside the street canyons. While the periodic BC of pollutant was used in the spanwise direction, zero pollutant and an open BC were applied, respectively, at the inflow and outflow of the streamwise extent to avoid pollutant being reflected back into the computational domain. The ground of the first street canyon was assigned as the pollutant source on which a BC of constant pollutant concentration was prescribed. The LES results showed that, in the neutrally stratified ABL, the pollutant distribution in the urban canopy layer resembled the Gaussian plume shape in general even recirculating flows were observed in the street canyons. The roof-level horizontal profile of pollutant concentration in the streamwise direction showed that the sharp drop on the leeward side of each street canyon was likely caused by the air and pollutant entrainments. On the windward side of each street canyon, a mild increase in pollutant concentration was observed that did not follow the Gaussian plume closely. Those deviations extended to a certain height over the roof level of the street canyons. It in turn suggests that the Gaussian pollutant plume model should be applied with caution in the urban canopy layer in the vicinity over urban roughness. To further analyze the effects of urban roughness on the plume dispersion in detail, a few LES calculations with different aspect ratios are currently being undertaken so as to compare with the current LES results.
Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation
NASA Astrophysics Data System (ADS)
Liu, Fangzhou; Leung, Yu Hang; Djurisić, Aleksandra B.; Liao, Changzhong; Shih, Kaimin
2014-03-01
Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed.
The burden of disease from indoor air pollution in developing countries: comparison of estimates.
Smith, Kirk R; Mehta, Sumi
2003-08-01
Four different methods have been applied to estimate the burden of disease due to indoor air pollution from household solid fuel use in developing countries (LDCs). The largest number of estimates involves applying exposure-response information from urban ambient air pollution studies to estimate indoor exposure concentrations of particulate air pollution. Another approach is to construct child survival curves using the results of large-scale household surveys, as has been done for India. A third approach involves cross-national analyses of child survival and household fuel use. The fourth method, referred to as the 'fuel-based' approach, which is explored in more depth here, involves applying relative risk estimates from epidemiological studies that use exposure surrogates, such as fuel type, to estimates of household solid fuel use to determine population attributable fractions by disease and age group. With this method and conservative assumptions about relative risks, 4-5 percent of the global LDC totals for both deaths and DALYs (disability adjusted life years) from acute respiratory infections, chronic obstructive pulmonary disease, tuberculosis, asthma, lung cancer, ischaemic heart disease, and blindness can be attributed to solid fuel use in developing countries. Acute respiratory infections in children under five years of age are the largest single category of deaths (64%) and DALYs (81%) from indoor air pollution, apparently being responsible globally for about 1.2 million premature deaths annually in the early 1990s.
NASA Astrophysics Data System (ADS)
H, S. C.
2016-02-01
Aerosol chemistry is a window to unravel the various environmental health hazard problems. This open forum which deals with the study of formation, interaction, transformation of aerosol species, which could enable in the assessment of biogeochemical cycling of anthropogenic and toxic species. It also preserves the temperature balance and reservoir and sink for nutrients, trace metals and organic species. An inventory of air pollutants is a proactive and necessary first step towards the control of air pollution. Surveys and studies on the sources of pollution and their apportionment to different sources are a pre-requisite for alleviating environmental disorder. The Kochi City (The Queen of Arabian Sea), Kerala, India is a fast growing industrial region where mounting urbanization has been affecting the quality of the atmospheric environment. Cochin estuarine environment is progressively affected by marine pollution concomitant by industrial hazardous chemicals and municipal waste. Further, rapid urbanization and industrialization has lead to lofting and large scale advection of these omnipresent species in the atmosphere. Studies were conducted to assess the significance and potential impact occupied to these ubiquitous species. The major gaseous pollutants include gases like sulphur dioxide, nitrogen dioxide, ammonia and particulate matter (PM). An attempt was performed to unravel the inorganic species in the atmosphere and programmed by means of quantification of PM10 and trace gases. Their distribution pattern and outcomes are inferred.
AIR POLLUTION CLIMATOLOGY OF AN ISOLATED POINT SOURCE USING CONVECTIVE SCALING PARAMETERS
An air pollution climatology, which incorporated convective scaling parameters, is used to investigate the conditions associated with hourly sulfur dioxide concentrations from a coal-fired power plant. ne year of data from the Paradise power plant in central Kentucky (UeSeAs) was...
INITIAL APPL;ICATION OF THE ADAPTIVE GRID AIR POLLUTION MODEL
The paper discusses an adaptive-grid algorithm used in air pollution models. The algorithm reduces errors related to insufficient grid resolution by automatically refining the grid scales in regions of high interest. Meanwhile the grid scales are coarsened in other parts of the d...
REPRESENTATION OF ATMOSPHERIC MOTION IN MODELS OF REGIONAL-SCALE AIR POLLUTION
A method is developed for generating ensembles of wind fields for use in regional scale (1000 km) models of transport and diffusion. The underlying objective is a methodology for representing atmospheric motion in applied air pollution models that permits explicit treatment of th...
Prevented mortality and greenhouse gas emissions from historical and projected nuclear power.
Kharecha, Pushker A; Hansen, James E
2013-05-07
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420,000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
Prevented Mortality and Greenhouse Gas Emissions From Historical and Projected Nuclear Power
NASA Technical Reports Server (NTRS)
Kharecha, Pushker A.; Hansen, James E.
2013-01-01
In the aftermath of the March 2011 accident at Japan's Fukushima Daiichi nuclear power plant, the future contribution of nuclear power to the global energy supply has become somewhat uncertain. Because nuclear power is an abundant, low-carbon source of base-load power, it could make a large contribution to mitigation of global climate change and air pollution. Using historical production data, we calculate that global nuclear power has prevented an average of 1.84 million air pollution-related deaths and 64 gigatonnes of CO2-equivalent (GtCO2-eq) greenhouse gas (GHG) emissions that would have resulted from fossil fuel burning. On the basis of global projection data that take into account the effects of the Fukushima accident, we find that nuclear power could additionally prevent an average of 420 000-7.04 million deaths and 80-240 GtCO2-eq emissions due to fossil fuels by midcentury, depending on which fuel it replaces. By contrast, we assess that large-scale expansion of unconstrained natural gas use would not mitigate the climate problem and would cause far more deaths than expansion of nuclear power.
NASA Astrophysics Data System (ADS)
Kavka, Petr; Zumr, David; Neumann, Martin; Lidmila, Martin; Dufka, Dušan
2017-04-01
Soil erosion of the slopes along the linear construction sites, such as railroads, roads, pipelines or watercourses, is usually underestimated by the construction companies and controlling authorities. But under certain circumstances, when the construction site is not maintained and protected properly, a large amounts of soil may be transported from the sites to the surrounding environment during the intensive rainfall. Transported sediment, often carrying adsorbed pollutants, may reach watercourses and cause water recipient siltation and pollution. Within the applied research project we investigate ways of low cost, quick and easy technical measures that would help to protect the slopes against the splash erosion, rills development and sliding. The methodology is based on testing of various permeable covers, sheets, anchoring and patchy vegetation on a plot and hillslope scales. In this contribution we will present the experimental plot setup, consisting of large soil blocks encapsulated in the monitored steel containers and nozzle rainfall simulator. The presentation is funded by the Technological Agency of the Czech Republic (research project TH02030428) and an internal student CTU grant.
Fe(0) Nanomotors in Ton Quantities (10(20) Units) for Environmental Remediation.
Teo, Wei Zhe; Zboril, Radek; Medrik, Ivo; Pumera, Martin
2016-03-24
Despite demonstrating potential for environmental remediation and biomedical applications, the practical environmental applications of autonomous self-propelled micro-/nanorobots have been limited by the inability to fabricate these devices in large (kilograms/tons) quantities. In view of the demand for large-scale environmental remediation by micro-/nanomotors, which are easily synthesized and powered by nontoxic fuel, we have developed bubble-propelled Fe(0) Janus nanomotors by a facile thermally induced solid-state procedure and investigated their potential as decontamination agents of pollutants. These Fe(0) Janus nanomotors, stabilized by an ultrathin iron oxide shell, were fuelled by their decomposition in citric acid, leading to the asymmetric bubble propulsion. The degradation of azo-dyes was dramatically increased in the presence of moving self-propelled Fe(0) nanomotors, which acted as reducing agents. Such enhanced pollutant decomposition triggered by biocompatible Fe(0) (nanoscale zero-valent iron motors), which can be handled in the air and fabricated in ton quantities for low cost, will revolutionize the way that environmental remediation is carried out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide
2018-02-01
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansson, S.; Bindler, R.
2011-12-01
In the public consciousness Sweden is often viewed as a largely natural landscape. However, many parts of the landscape have undergone substantial changes. For example, in the historically and culturally important Bergslagen region in central Sweden, which played an important role in the economic development of Sweden since the medieval period, agriculture and mining have greatly transformed the landscape over the past 1000 years. Bergslagen is an ore-rich region characterized as a granite-porphyr belt formed 1900 Ma ago, with thousands of mines and mine pits, hundreds of furnaces, smelters and forges distributed throughout the area. Drawing on data from selected lake sediment records from different historical mining districts in Central Sweden (e.g. Norberg mining district - iron ores and Falun mining district - copper ores) the aim of this presentation is to show how small-scale but pervasively widespread mining and metallurgy, along with associated settlement, have transformed the surrounding landscape. These anthropogenic activities led to changes in sedimentation and erosion rates, forest structure, and also causing large-scale metal pollution and ecological changes in recipient watercourses and lakes. This historical pollution was oftentimes on a scale we associate with modern mining pollution. Our research is based on analyses of lake sediment records, which include multi-element analyses of minor and trace elements using XRF, mercury, carbon, and in some lakes also pollen and diatoms. In two lakes in Norberg, recent catastrophic failure (1991) of a sand magazine below a now closed mine led to significant contamination of the two downstream lakes, with Cu and Hg concentrations up to 1800 ppm and 1400 ppb, respectively. These concentrations are 50 and 20 times greater than natural background values. However, such elevated concentrations are also frequently found in sediments dated to the 16th-18th centuries. For example, in one lake in the Norberg iron mining district, Hg concentrations were as high as 1100 ppb in sediments from the 16th century - about 40 times greater than background level. Although the total concentrations of metals in the lake sediments in these areas have decreased since the peak in the 16th-17th centuries, due to declines in mining and metallurgy, and the complete cessation of activities since the mid-20th century, metal concentrations have remained elevated for more than 500 years. Already 500 years ago land use and mining in some cases led to cultural alkalization of lakes, but ultimately acidification of soils and lakes in areas where sulfide ores were mined and processed. Land use and mining pollution also altered biogeochemical conditions in downstream lakes, which have not returned to natural baseline levels although mining and metallurgy have ceased over the last two centuries. Seeing that these results are symptomatic of changes that potentially affected thousands of lakes in this large region of Sweden, we believe that this has important implications for other environmental and also archaeological studies in the area, particularly those aimed at establishing reference conditions for potential future exploitation of ores.
NASA Astrophysics Data System (ADS)
Brandt, Jørgen
2017-04-01
Air pollution has serious impacts on human health, wellbeing and welfare. The main challenge is to understand how to regulate air pollution in an optimal way both on global and local scales. Linking the detailed information of the spatio-temporal distribution of air pollution levels and the chemical composition of the atmospheric particles with register data for mortality and morbidity, we have a unique opportunity in the Nordic countries to gain new understanding of the various health impacts from different kinds of air pollution from different kind of sources. This will provide the basic understanding needed for policy making of strategies to optimally reduce the air pollution challenge and to assess the related impacts on the distribution of health impacts and related societal costs and welfare. The large interdisciplinary NordicWelfAir project (http://nordicwelfair.au.dk), funded by NordForsk, will take advantage of the unique Nordic data. The results from the project will be used in both a Nordic as well as global perspective to improve the health and welfare by finding the optimal solutions to societal and public health challenges from air pollution through high-quality research. The results from the research in this project have the potential to act as new international standards in our understanding of health impacts from air pollution for different population groups due to the possibility to integrate the unique data and knowledge of air pollution, register, health, socio-economics, and welfare research in the Nordic countries in a highly interdisciplinary project. The study will provide a Nordic contribution to international research on the topics of environmental equality and justice within the area of air quality related risks, amenities and wellbeing. Acknowledgements This project is funded by NordForsk under the Nordic Programme on Health and Welfare. Project #75007: Understanding the link between air pollution and distribution of related health impacts and welfare in the Nordic countries (http://NordicWelfAir.au.dk).
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek
2016-04-01
Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel of land, the 4 digit postal code area or neighbourhood of a persons' home, circular areas around the home, and spatial probability distributions of space-time paths during commuting. Personal exposure was estimated by averaging concentrations over these space-time paths, for each individual in a cohort. Preliminary results show considerable differences of a persons' exposure using these various approaches of space-time path aggregation, presumably because air pollution shows large variation over short distances.
NASA Astrophysics Data System (ADS)
Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui
2018-03-01
A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced the stability of the near-surface atmosphere, causing the air pollutants to accumulate at low levels and exacerbating the air pollution problem. Finally, a persistent stagnant weather system with a weak geopotential height field of 1000 hPa and warm air advection at 850 hPa was the main feature of atmospheric circulation associated with the heavy pollution.
Huading, Shi; Critto, Andrea; Torresan, Silvia; Qingxian, Gao
2018-06-13
With the rapid economic development and the continuous population growth, several important cities in China suffer serious air pollution, especially in the Beijing-Tianjin-Hebei economic developing area. Based on the daily air pollution index (API) and surface meteorological elements in Beijing, Tianjin and Shijiazhuang from 2001 to 2010, the relationships between API and meteorological elements were analyzed. The statistical analysis focused on the relationships at seasonal and monthly average scales, on different air pollution grades and air pollution processes. The results revealed that the air pollution conditions in the three areas gradually improved from 2001 to 2010, especially during summer; and the worst conditions in air quality were recorded in Beijing in spring due to the influences of dust, while in Tianjin and Shijiazhuang in winter due to household heating. Meteorological elements exhibited different influences on air pollution, showing similar relationships between API in monthly averages and four meteorological elements (i.e., the average, maximum and minimum temperatures, maximum air pressure, vapor pressure, and maximum wind speed); while the relationships on a seasonal average scale demonstrated significant differences. Compared with seasonal and monthly average scales of API, the relation coefficients based on different air pollution grades were significatively lower; while the relationship between API and meteorological elements based on air pollution process reduced the smoothing effect due to the average processing of seasonal and monthly API and improved the accuracy of the results based on different air pollution grades. Finally, statistical analysis of the distribution of pollution days in different wind directions indicated the directions of extreme and maximum wind speeds that mainly influence air pollution; representing a valuable information that could support the definition of air pollution control strategies through the identification of the regions (and the located emission sources) where to focus the implementation of emission reduction actions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
General characteristics of relative dispersion in the ocean
NASA Astrophysics Data System (ADS)
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-04-01
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
General characteristics of relative dispersion in the ocean.
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-04-11
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
General characteristics of relative dispersion in the ocean
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-01-01
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft. PMID:28397797
Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael
2011-01-01
Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347
Watershed Controls on the Proper Scale of Economic Markets for Pollution Reduction
NASA Astrophysics Data System (ADS)
Rigby, J.; Doyle, M. W.; Yates, A.
2010-12-01
Markets for tradable discharge permits (TDPs) are an increasingly popular policy instrument for obtaining cost-effective nutrient reduction targets across watersheds. Such markets are also an emerging, dynamic coupling between economic institutions and stream hydrology/biogeochemistry as trading markets become explicit determinants for the spatial distribution of stream nutrient loads. A central problem in any environmental market program is setting the size of the market, as there are distinct trade-offs for large versus small markets. While the overall cost-effectiveness of permit trading increases with the size of the market, the potential for localized and highly damaging nutrient concentrations, or “hotspots”, also increases. Smaller market size reduces the potential for hot spots by dispersing the location of trades, but this may increase the net costs of water quality compliance significantly through both the restriction of possible trading partners and price manipulation by market participants. This project couples a microeconomic model for TDPs (based on possible configurations of mutually exclusive trading zones within the basin) with a semi-distributed water quality model to examine watershed controls on the configuration and scale of such markets. Our results show a wide variation in total annual cost of pollution abatement based on choice of market design -- often with large differences in cost between very similar configurations. This framework is also applied to a 10-member trading program among wastewater treatment plants in the Neuse River, NC, in order to assess (1) the optimum market design for the Upper Neuse basin and (2) how these costs compare with expected costs under alternative market structures (e.g., trading ratio system) and (3) the cost improvements over traditional command-and-control regulatory frameworks. We find that the optimal zone configuration is almost always a lower cost option when compared to a trading ratio scheme and that the optimal design depends largely on the range of plant sizes and their geographic distribution within the stream network. Leveraging this model, we can develop a heuristic understanding of how the shape or topography of watersheds, and/or the spatial distribution of polluters may constrain the utility of market mechanisms in water quality regulation.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
An efficient approach to imaging underground hydraulic networks
NASA Astrophysics Data System (ADS)
Kumar, Mohi
2012-07-01
To better locate natural resources, treat pollution, and monitor underground networks associated with geothermal plants, nuclear waste repositories, and carbon dioxide sequestration sites, scientists need to be able to accurately characterize and image fluid seepage pathways below ground. With these images, scientists can gain knowledge of soil moisture content, the porosity of geologic formations, concentrations and locations of dissolved pollutants, and the locations of oil fields or buried liquid contaminants. Creating images of the unknown hydraulic environments underfoot is a difficult task that has typically relied on broad extrapolations from characteristics and tests of rock units penetrated by sparsely positioned boreholes. Such methods, however, cannot identify small-scale features and are very expensive to reproduce over a broad area. Further, the techniques through which information is extrapolated rely on clunky and mathematically complex statistical approaches requiring large amounts of computational power.
Effect of turning frequency on co-composting pig manure and fungus residue.
Jiang-Ming, Zhou
2017-03-01
Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue, so as to capture an operational technique suitable for the effective co-composting pig manure and edible fungi residue for a large-scale composting plant.
Overview of Megacity Air Pollutant Emissions and Impacts
NASA Astrophysics Data System (ADS)
Kolb, C. E.
2013-05-01
The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.
NASA Astrophysics Data System (ADS)
Wang, X.; Mauzerall, D.
2004-12-01
Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new air pollution controls implemented between 2000 and 2020, we predict health damages from air pollution exposure will quadruple and account for 8-16% of Zaozhuang's 2020 GDP. End-of-pipe controls could reduce the potential health damages from air pollution by 20% and a coal gasification polygeneration energy system could reduce it by 50% with only 24% penetration. Benefits to public health, of substantial monetary value, could be achieved in eastern China through the use of currently available end-of-pipe controls; with further development, benefits from the use of advanced coal technology could be even larger.
Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey
2018-01-01
The Community Multiscale Air Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled processes were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution-climate interactions are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine interactions between atmospheric processes occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922
Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery
NASA Astrophysics Data System (ADS)
Zhao, J.; Ghedira, H.
2013-12-01
A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab Emirates (UAE). This can help to enable an early alarm for oil pollution and minimize the potential adverse effects. Remote sensing provides an effective tool for monitoring oil pollution. Medium resolution MODIS and Landsat data have shown to be effective in detecting oil pollution over small areas. Combined with remote sensing imagery, ocean circulation models demonstrate their unique value for developing a warning and forecasting system for oil pollution management.
Vethaak, A D; Jol, J G; Meijboom, A; Eggens, M L; Rheinallt, T; Wester, P W; van de Zande, T; Bergman, A; Dankers, N; Ariese, F; Baan, R A; Everts, J M; Opperhuizen, A; Marquenie, J M
1996-01-01
Disease development in flounder (Platichthys flesus) was studied over a period of 3 years in three large mesocosms (40 m x 40 m x 3 m). Two of the mesocosms contained clean sand and the third, sharing a common water circulation with one of the clean-sand mesocosms, was stocked with contaminated dredged spoil. In this way, one of the clean-sand mesocosms was indirectly polluted via the water phase, and analysis of contaminant concentrations in sediments and flounder tissues showed that it had a status intermediate between the other two. Random samples of the flounder populations from the indirectly polluted and reference mesocosms were examined every 2 months for epidermal diseases (lymphocystis, skin ulcers, fin rot) and then released. In addition, every 6 months, random samples of fish from all three mesocosms were sacrificed for histological and chemical investigation. With regard to the development of epidermal disease, the results showed little difference between the reference mesocosm and the indirectly polluted mesocosm, with the exception that lymphocystis was significantly elevated in the indirectly polluted mesocosm. Although pollution may be a risk factor in the etiology of this disease, such a relationship would probably be obscured under field conditions due to variation arising from other factors. Histopathological analysis of the livers revealed in total four cases of hepatocellular adenoma (1.5% of sampled population) in fish from the polluted mesocosms, the first occurring after 2.5 years of exposure in fish from the indirectly polluted mesocosm. Furthermore, several other liver lesions, including foci of cellular alteration and hydropic vacuolated lesions, developed during the course of the experiment before tumor formation was apparent. Prevalences of these conditions were very much lower in the reference mesocosm than in the two polluted mesocosms. Densities of melanomacrophage centers in the liver showed a similar trend. The findings clearly indicate that long-term exposure to chemically contaminated dredged spoil can induce liver neoplasia and other liver lesions in flounder at contaminant levels comparable to those found in the natural environment. Images Figure 1. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. Figure 3. Figure 3. Figure 3. Figure 4. Figure 5. Figure 5. Figure 6. Figure 7. PMID:8959412
Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J
2014-01-15
Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended sediment losses during storm events. © 2013.
The Treatment Train approach to reducing non-point source pollution from agriculture
NASA Astrophysics Data System (ADS)
Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.
2016-12-01
An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be implemented without impacting on the farm's primary function. The TT has the potential to yield benefits beyond those associated with water quality. Increasing catchment resilience through the use of landscape interventions can provide multiple benefits by mitigating for floods and droughts and creating ecological habitat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagne, F.; Burgeot, T.; Hellou, J.
2008-06-15
Economic and social developments have taken place at the expense of the health of the environment, both locally and on a global scale. In an attempt to better understand the large-scale effects of pollution and other stressors like climate change on the health status of Mytilus edulis, mussels were collected during the first two weeks of June 2005 at three sites (one pristine and two affected by pollution) located in each of the regions of the Canadian West Coast, the St. Lawrence estuary, the Atlantic East Coast and the northwestern coast of France, covering a total distance of some 11more » 000 km. The mussels were analyzed for morphologic integrity (condition factor), gametogenic activity (gonado-somatic and gonad maturation index, vitellogenin(Vtg)-like proteins), energy status (temperature-dependent mitochondrial electron transport activity and gonad lipid stores), defense mechanisms (glutathione S-transferase, metallothioneins, cytochrome P4503A activity and xanthine oxidoreductase-XOR), and tissue damage (lipid peroxidation-LPO and DNA strand breaks). The results showed that data from the reference sites in each region were usually not normally distributed, with discriminant factors reaching the number of regions (i.e. four), except for the biomarkers gonadal lipids, XOR and LPO in digestive gland. The integrated responses of the biomarkers revealed that biomarkers of stress were significantly more pronounced in mussels from the Seine estuary, suggesting that the impacts of pollution are more generalized in this area. Mussels from the Seine estuary and the Atlantic East Coast (Halifax Harbor) responded more strongly for Vtg-like proteins, but was not related to gonad maturation and gonado-somatic indexes, suggesting the presence of environmental estrogens. Moreover, these mussels displayed reduced DNA repair activity and increased LPO. Factorial analyses revealed that energy status, cytochrome P4503A activity and Vtg-like proteins were the most important biomarkers. Adaptation to warmer temperatures was reflected at the energy status levels, mussels from both the polluted and warmer sites displaying increased ratios of mitochondrial activity to lipid stores. Regional observations of biomarkers of energy status, gametogenesis and pollutant-related effects were influenced by nutrition, oxygen availability (eutrophication), and thermal history.« less
Predicting nonpoint stormwater runoff quality from land use
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters. PMID:29742172
China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model
Cao, Qilong; Liang, Ying; Niu, Xueting
2017-01-01
Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016
Nanotechnology, resources, and pollution control
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
1996-09-01
The separation of different kinds of atoms or molecules from each other is a fundamental technological problem. Current techniques of resource extraction, which use the ancient paradigm of the differential partitioning of elements into coexisting phases, are simple but extremely wasteful and require feedstocks (`ores') that are already anomalously enriched. This is impractical for pollution control and desalination, which require extraction of low concentrations; instead, atomistic separation, typically by differential motion through semipermeable membranes, is used. The present application of such membranes is seriously limited, however, mostly because of limitations in their fabrication by conventional bulk techniques. The capabilities of biological systems, such as vertebrate kidneys, are vastly better, largely because they are intrinsically structured at a molecular scale. Nanofabrication of semipermeable membranes promises capabilities on the order of those of biological systems, and this in turn could provide much financial incentive for the development of molecular assemblers, as well established markets exist already. Continued incentives would exist, moreover, as markets expanded with decreasing costs, leading to such further applications as remediation of polluted sites, cheap desalination, and resource extraction from very low-grade sources.
Predicting nonpoint stormwater runoff quality from land use.
Zivkovich, Brik R; Mays, David C
2018-01-01
Evaluating the impact of urban development on natural ecosystem processes has become an increasingly complex task for planners, environmental scientists, and engineers. As the built environment continues to grow, unregulated nonpoint pollutants from increased human activity and large-scale development severely stress urban streams and lakes resulting in their currently impaired or degraded state. In response, integrated water quality management programs have been adopted to address these unregulated nonpoint pollutants by utilizing best management practices (BMPs) that treat runoff as close to the source as possible. Knowing where to install effective BMPs is no trivial task, considering budget constraints and the spatially extensive nature of nonpoint stormwater runoff. Accordingly, this paper presents an initial, straightforward and cost-effective methodology to identify critical nonpoint pollutant source watersheds through correlation of water quality with land use. Through an illustrative application to metropolitan Denver, Colorado, it is shown how this method can be used to aid stormwater professionals to evaluate and specify retrofit locations in need of water quality treatment features reduce, capture and treat stormwater runoff prior to entering receiving waters.
Zhao, Xinzhen; He, Chunju
2015-08-19
On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.
The impact of a forced reduction in traffic volumes on urban air pollution
NASA Astrophysics Data System (ADS)
Yuval; Flicstein, Bernanda; Broday, David M.
The Middle East military conflict of summer 2006 resulted in a few weeks in which the city of Haifa, Israel, and its environs experienced very profound variations in the commercial and personal activities. Large industrial plants continued almost normal operations but activities of small scale industry, shopping, and personal commuting were drastically reduced, leading to a dramatic decrease in the commercial and personal traffic volumes. This period of reduced activity serves as a real life experiment for assessment and demonstration of the impact that human activity, and mainly road traffic, may have on the air pollution levels in a bustling middle-sized city. The analysis is made especially sharp and reliable due to the abruptness of the beginning and the end of the reduced activity period, its length, and the stable summer meteorological conditions in the eastern Mediterranean region. The reduced traffic volumes resulted in lowered levels of NO 2, hydrocarbons and particulate matter. The decrease in these pollutants' mean concentration was significantly larger than the reduction in the mean traffic volume. Slightly higher mean O 3 concentrations were observed during the reduced traffic period.
Isotopic Recorders of Pollution in Heterogeneous Urban Areas
NASA Astrophysics Data System (ADS)
Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.
2017-12-01
A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.
Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City
NASA Astrophysics Data System (ADS)
Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J. C.; Alvarez-Ramirez, J.
2015-06-01
The rescaled range (R / S) analysis was used for analyzing the statistical persistence of air pollutants in Mexico City. The air-pollution time series consisted of hourly observations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter obtained at the Mexico City downtown monitoring station during 1999-2014. The results showed that long-range persistence is not a uniform property over a wide range of time scales, from days to months. In fact, although the air pollutant concentrations exhibit an average persistent behavior, environmental (e.g., daily and yearly) and socio-economic (e.g., daily and weekly) cycles are reflected in the dependence of the persistence strength as quantified in terms of the Hurst exponent. It was also found that the Hurst exponent exhibits time variations, with the ozone and nitrate oxide concentrations presenting some regularity, such as annual cycles. The persistence dynamics of the pollutant concentrations increased during the rainy season and decreased during the dry season. The time and scale dependences of the persistence properties provide some insights in the mechanisms involved in the internal dynamics of the Mexico City atmosphere for accumulating and dissipating dangerous air pollutants. While in the short-term individual pollutants dynamics seems to be governed by specific mechanisms, in the long-term (for monthly and higher scales) meteorological and seasonal mechanisms involved in atmospheric recirculation seem to dominate the dynamics of all air pollutant concentrations.
A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons
NASA Astrophysics Data System (ADS)
Liu, J.; Fu, X.; Tao, S.
2016-12-01
Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.
Theoretical foundations for environmental Kuznets curve analysis
NASA Astrophysics Data System (ADS)
Lantz, Van
This thesis provides a dynamic theory for analyzing the paths of aggregate output and pollution in a country over time. An infinite horizon, competitive growth-pollution model is explored in order to determine the role that economic scale, production techniques, and pollution regulations play in explaining the inverted U-shaped relationship between output and some forms of pollution (otherwise known as the Environmental Kuznets Curve, or EKC). Results indicate that the output-pollution relationship may follow a strictly increasing, strictly decreasing (but bounded), inverted U-shaped, or some combination of curves. While the 'scale' effect may cause output and pollution to exhibit a monotonic relationship, 'technique' and 'regulation' effects may ultimately cause a de-linking of these two variables. Pollution-minimizing energy regulation policies are also investigated within this framework. It is found that the EKC may be 'flattened' or even eliminated moving from a poorly-regulated economy to one that minimizes pollution. The model is calibrated to the US economy for output (gross national product, GNP) and two pollutants (sulfur dioxide, SO2, and carbon dioxide, CO2) over the period 1900 to 1990. Results indicate that the model replicates the observations quite well. The predominance of 'scale' effects cause aggregate SO2 and CO2 levels to increase with GNP in the early stages of development. Then, in the case of SO 2, 'technique' and 'regulation' effects may be the cause of falling SO2 levels with continued economic growth (establishing the EKC). CO2 continues to monotonically increase as output levels increase over time. The positive relationship may be due to the lack of regulations on this pollutant. If stricter regulation policies were instituted in the two case studies, an improved allocation of resources may result. While GNP may be 2.596 to 20% lower than what has been realized in the US economy (depending on the pollution variable analyzed), individual welfare may increase from lower pollution levels.
WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.
Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H
2018-06-01
Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5 m 3 /s and 3.80 × 10 5 m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.N.; Ko, Y.C.; Chao, Y.Y.
The study aim was to estimate the contribution of indoor and outdoor air pollution to the 1-year prevalence of adolescent asthma after personal susceptibility and other potential risk factors were taken into account. A large-scaled cross-sectional study was conducted among 165,173 high school students aged 11 to 16 years in the different communities of Kaohsiung and Pintong in Taiwan, from October 1995 to June 1996. Each student and his/her parents participating in the study completed a video and a written International Study of Asthma and Allergies in Childhood questionnaire about symptoms of wheezing and allergies, passive smoking, and demographic variables.more » After adjustment for potential confounders, adolescents exposed to cigarette smoking and environmental tobacco smoke were found to suffer from asthma at an increased frequency. The authors observed a statistically significant association between outdoor air pollution and asthma, after controlling for potential confound variables. Total suspended particulate, nitrogen dioxide, carbon monoxide, ozone, and airborne dust particles all displayed an independent association with asthma, respectively. There were no selection biases in this community-based study, which provides evidence that passive smoking and long-term, high average outdoor air pollution are independent risk factors of asthma.« less
Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun
2017-03-01
The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.
Snowden, Jonathan M; Reid, Colleen E; Tager, Ira B
2015-03-01
Air pollution epidemiology continues moving toward the study of mixtures and multipollutant modeling. Simultaneously, there is a movement in epidemiology to estimate policy-relevant health effects that can be understood in reference to specific interventions. Scaling regression coefficients from a regression model by an interquartile range (IQR) is one common approach to presenting multipollutant health effect estimates. We are unaware of guidance on how to interpret these effect estimates as an intervention. To illustrate the issues of interpretability of IQR-scaled air pollution health effects, we analyzed how daily concentration changes in 2 air pollutants (nitrogen dioxide and particulate matter with aerodynamic diameter ≤ 2.5 μm) related to one another within 2 seasons (summer and winter), within 3 cities with distinct air pollution profiles (Burbank, California; Houston, Texas; and Pittsburgh, Pennsylvania). In each city season, we examined how realistically IQR scaling in multipollutant lag-1 time-series studies reflects a hypothetical intervention that is possible given the observed data. We proposed 2 causal conditions to explicitly link IQR-scaled effects to a clearly defined hypothetical intervention. Condition 1 specified that the index pollutant had to experience a daily concentration change of greater than 1 IQR, reflecting the notion that the IQR is an appropriate measure of variability between consecutive days. Condition 2 specified that the copollutant had to remain relatively constant. We found that in some city seasons, there were very few instances in which these conditions were satisfied (eg, 1 day in Pittsburgh during summer). We discuss the practical implications of IQR scaling and suggest alternative approaches to presenting multipollutant effects that are supported by empirical data.
NASA Astrophysics Data System (ADS)
Brandt, Jørgen; Silver, Jeremy David; Heile Christensen, Jesper; Skou Andersen, Mikael; Geels, Camilla; Gross, Allan; Buus Hansen, Ayoe; Mantzius Hansen, Kaj; Brandt Hedegaard, Gitte; Ambelas Skjøth, Carsten
2010-05-01
Air pollution has significant negative impacts on human health and well-being, which entail substantial economic consequences. We have developed an integrated model system, EVA (External Valuation of Air pollution), to assess health-related economic externalities of air pollution resulting from specific emission sources/sectors. The EVA system was initially developed to assess externalities from power production, but in this study it is extended to evaluate costs at the national level. The EVA system integrates a regional-scale atmospheric chemistry transport model (DEHM), address-level population data, exposure-response functions and monetary values applicable for Danish/European conditions. Traditionally, systems that assess economic costs of health impacts from air pollution assume linear approximations in the source-receptor relationships. However, atmospheric chemistry is non-linear and therefore the uncertainty involved in the linear assumption can be large. The EVA system has been developed to take into account the non-linear processes by using a comprehensive, state-of-the-art chemical transport model when calculating how specific changes to emissions affect air pollution levels and the subsequent impacts on human health and cost. Furthermore, we present a new "tagging" method, developed to examine how specific emission sources influence air pollution levels without assuming linearity of the non-linear behaviour of atmospheric chemistry. This method is more precise than the traditional approach based on taking the difference between two concentration fields. Using the EVA system, we have estimated the total external costs from the main emission sectors in Denmark, representing the ten major SNAP codes. Finally, we assess the impacts and external costs of emissions from international ship traffic around Denmark, since there is a high volume of ship traffic in the region.
Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto
2012-05-15
There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.
Large-Scale Spatial Distribution Patterns of Gastropod Assemblages in Rocky Shores
Miloslavich, Patricia; Cruz-Motta, Juan José; Klein, Eduardo; Iken, Katrin; Weinberger, Vanessa; Konar, Brenda; Trott, Tom; Pohle, Gerhard; Bigatti, Gregorio; Benedetti-Cecchi, Lisandro; Shirayama, Yoshihisa; Mead, Angela; Palomo, Gabriela; Ortiz, Manuel; Gobin, Judith; Sardi, Adriana; Díaz, Juan Manuel; Knowlton, Ann; Wong, Melisa; Peralta, Ana C.
2013-01-01
Gastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol (www.nagisa.coml.org). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages. PMID:23967204
NASA Astrophysics Data System (ADS)
Berchet, Antoine; Zink, Katrin; Muller, Clive; Oettl, Dietmar; Brunner, Juerg; Emmenegger, Lukas; Brunner, Dominik
2017-06-01
A cost-effective method is presented allowing to simulate the air flow and pollutant dispersion in a whole city over multiple years at the building-resolving scale with hourly time resolution. This combination of high resolution and long time span is critically needed for epidemiological studies and for air pollution control, but still poses a great challenge for current state-of-the-art modelling techniques. The presented method relies on the pre-computation of a discrete set of possible weather situations and corresponding steady-state flow and dispersion patterns. The most suitable situation for any given hour is then selected by matching the simulated wind patterns to meteorological observations in and around the city. The catalogue of pre-computed situations corresponds to different large-scale forcings in terms of wind speed, wind direction and stability. A meteorological model converts these forcings into realistic mesoscale flow patterns accounting for the effects of topography and land-use contrasts in a domain covering the city and its surroundings. These mesoscale patterns serve as boundary conditions for a microscale urban flow model which finally drives a Lagrangian air pollutant dispersion model. The method is demonstrated with the modelling system GRAMM/GRAL v14.8 for two Swiss cities in complex terrain, Zurich and Lausanne. The mesoscale flow patterns in the two regions of interest, dominated by land-lake breezes and driven by the partly steep topography, are well reproduced in the simulations matched to in situ observations. In particular, the combination of wind measurements at different locations around the city appeared to be a robust approach to deduce the stability class for the boundary layer within the city. This information is critical for predicting the temporal variability of pollution concentration within the city, regarding their relationship with the intensity of horizontal and vertical dispersion and of turbulence. In the vicinity of sources, the 5 m resolution chosen in our set-up is not always sufficient to reproduce the very steep concentration gradients, pointing at additional cost optimisations in the method required to make higher resolutions affordable. Nevertheless, the catalogue-based methodology allows reproducing concentration variability very consistently further away from emission sources, hence for most parts of the city.
Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G
2010-12-01
An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kim, Hyeanji; Kim, Joonghee; Kim, Sunhwa; Kang, Si-Hyuck; Kim, Hee-Jun; Kim, Ho; Heo, Jongbae; Yi, Seung-Muk; Kim, Kyuseok; Youn, Tae-Jin; Chae, In-Ho
2017-11-08
Studies have shown that long-term exposure to air pollution such as fine particulate matter (≤2.5 μm in aerodynamic diameter [PM 2.5 ]) increases the risk of all-cause and cardiovascular mortality. To date, however, there are limited data on the impact of air pollution on specific cardiovascular diseases. This study aimed to evaluate cardiovascular effects of long-term exposure to air pollution among residents of Seoul, Korea. Healthy participants with no previous history of cardiovascular disease were evaluated between 2007 and 2013. Exposure to air pollutants was estimated by linking the location of outdoor monitors to the ZIP code of each participant's residence. Crude and adjusted analyses were performed using Cox regression models to evaluate the risk for composite cardiovascular events including cardiovascular mortality, acute myocardial infarction, congestive heart failure, and stroke. A total of 136 094 participants were followed for a median of 7.0 years (900 845 person-years). The risk of major cardiovascular events increased with higher mean concentrations of PM 2.5 in a linear relationship, with a hazard ratio of 1.36 (95% confidence interval, 1.29-1.43) per 1 μg/m 3 PM 2.5 . Other pollutants including PM 2.5-10 of CO, SO 2 , and NO 2 , but not O 3 , were significantly associated with increased risk of cardiovascular events. The burden from air pollution was comparable to that from hypertension and diabetes mellitus. This large-scale population-based study demonstrated that long-term exposure to air pollution including PM 2.5 increases the risk of major cardiovascular disease and mortality. Air pollution should be considered an important modifiable environmental cardiovascular risk factor. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Plant Enhanced Bioremediation of Dissolved Toluene in Large Scale Column Setup
NASA Astrophysics Data System (ADS)
Basu, S.; Yadav, B. K.; Mathur, S.
2016-12-01
Hydrocarbons like BTEX compounds entering the soil-water system through anthropogenic activities can be long lasting sources of pollution, and thus, it is essential to look for remediation options that are environmentally benign. Bioremediation is a promising cost effective technique causing no harm to the contaminated ecosystem as compared to the traditional physicochemical methods. Natural microbes degrade contaminants from polluted soil water resources in bioremediation; however this process of natural bioremediation is quite slow under prevailing environmental conditions of a typical polluted site. Research has also proven that plants play an important role when it comes to accelerate the degradation rate cost-effectively in enhanced bioremediation technique. Thus in this study, fate and transport of dissolved toluene from a source zone to down-gradient receptors in a continuous soil-water plant system was investigated. For this, two sets of large scale column experiments were performed by connecting them with a treatment wetland having canna plants in first set and unplanted gravel bed in the second set. A continuous source of toluene contaminated water was supplied at the top of the column setups. A constant groundwater flow velocity of 0.625 cm/hr was maintained in the vertical direction. Free drainage was allowed at the bottom and a constant hydraulic head of 2.0 cm was maintained at the top boundary throughout the period of the experiments in both the cases. The observed microbial colonies using the plate counting method along with measured dissolved oxygen (DO) proved that the BTEX compound degraded aerobically at a faster rate in the first set. Plants played a positive role in enhancing biodegradation rate of the BTEX compound during its transport through the porous media. Finally the observed data of the column experiments were compared with the breakthrough curves obtained numerically solving the advection dispersion equation. The results of this research can be used to obtain vital information on framing the engineered bioremediation planning for contaminated sites.
Health effects of particulate air pollution and airborne desert dust
NASA Astrophysics Data System (ADS)
Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.
2013-12-01
Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone and fine particulate matter, Atmos. Chem. Phys., 13, 7023-7037, 2013.
NASA Astrophysics Data System (ADS)
Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi
2015-12-01
Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also shows to be a useful approach for assessing city wide vehicle emission characteristics.
NASA Astrophysics Data System (ADS)
Molina, L.; MILAGRO Science Team
2009-04-01
Megacities (metropolitan areas with population over 10 million) and large urban centers present a major challenge for the global environment. Population growth, increasing motorization and industrialization have resulted in a higher demand for energy, greater use of fossil fuels, and more emission of pollutants into the atmosphere. As a result, air pollution has become not only one of the central environmental problems of the century, but also presents serious consequences to human health and ecosystems and economic costs to society. MILAGRO (Megacity Initiative: Local and Global Research Observations) is the first international effort to study the impact of air pollutants generated and exported by megacity. The Mexico City Metropolitan Area (MCMA) - one of the largest megacities in the world - was selected as the initial case study for MILAGRO. The measurement phase consisted of a month-long series of carefully coordinated observations of the chemistry and physics of the atmosphere in and near Mexico City during March 2006, using a wide range of instruments at ground sites, on aircraft and satellites, complemented by meteorological forecasting and numerical simulations. Together, these research observations have provided the most comprehensive characterization of Mexico City's urban and regional air pollution that will take years to analyze and evaluate fully. Initial analysis of the data is focused on understanding meteorology, emissions, urban and regional photochemistry, aerosol evolution and radiative effects - spanning the urban to regional scale transition. Many interesting aspects of atmospheric chemistry in and near the MCMA are emerging and have already added significantly to our understanding of the chemical and physical properties of the city's reactive atmosphere and the regional impacts. The information can be useful for decision-makers in Mexico in developing air quality management strategies as well as provide insights to air pollution problems in other megacities and large urban centers around the world.
Interventions in Early Mathematics: Avoiding Pollution and Dilution.
Sarama, Julie; Clements, Douglas H
2017-01-01
Although specific interventions in early mathematics have been successful, few have been brought to scale successfully, especially across the challenging diversity of populations and contexts in the early childhood system in the United States. In this chapter, we analyze a theoretically based scale-up model for early mathematics that was designed to avoid the pollution and dilution that often plagues efforts to achieve broad success. We elaborate the theoretical framework by noting the junctures that are susceptible to dilution or pollution. Then we expatiate the model's guidelines to describe specifically how they were designed and implemented to mitigate pollution and dilution. Finally, we provide evidence regarding the success of these efforts. © 2017 Elsevier Inc. All rights reserved.
High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.
Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P
2017-06-20
Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.
Impact of a highly detailed emission inventory on modeling accuracy
NASA Astrophysics Data System (ADS)
Taghavi, M.; Cautenet, S.; Arteta, J.
2005-03-01
During Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions (ESCOMPTE) campaign (June 10 to July 14, 2001), two pollution events observed during an intensive measurement period (IOP2a and IOP2b) have been simulated. The comprehensive Regional Atmospheric Modeling Systems (RAMS) model, version 4.3, coupled online with a chemical module including 29 species is used to follow the chemistry of a polluted zone over Southern France. This online method takes advantage of a parallel code and use of the powerful computer SGI 3800. Runs are performed with two emission inventories: the Emission Pre Inventory (EPI) and the Main Emission Inventory (MEI). The latter is more recent and has a high resolution. The redistribution of simulated chemical species (ozone and nitrogen oxides) is compared with aircraft and surface station measurements for both runs at regional scale. We show that the MEI inventory is more efficient than the EPI in retrieving the redistribution of chemical species in space (three-dimensional) and time. In surface stations, MEI is superior especially for primary species, like nitrogen oxides. The ozone pollution peaks obtained from an inventory, such as EPI, have a large uncertainty. To understand the realistic geographical distribution of pollutants and to obtain a good order of magnitude in ozone concentration (in space and time), a high-resolution inventory like MEI is necessary. Coupling RAMS-Chemistry with MEI provides a very efficient tool able to simulate pollution plumes even in a region with complex circulations, such as the ESCOMPTE zone.
2010-01-01
Considerable debate exists over the primary cause of increased antibiotic resistance (AR) worldwide. Evidence suggests increasing AR results from overuse of antibiotics in medicine and therapeutic and nontherapeutic applications in agriculture. However, pollution also can influence environmental AR, particularly associated with heavy metal, pharmaceutical, and other waste releases, although the relative scale of the “pollution” contribution is poorly defined, which restricts targeted mitigation efforts. The question is “where to study and quantify AR from pollution versus other causes to best understand the pollution effect”. One useful site is Cuba because industrial pollution broadly exists; antibiotics are used sparingly in medicine and agriculture; and multiresistant bacterial infections are increasing in clinical settings without explanation. Within this context, we quantified 13 antibiotic resistance genes (ARG; indicators of AR potential), 6 heavy metals, 3 antibiotics, and 17 other organic pollutants at 8 locations along the Almendares River in western Havana at sites bracketing known waste discharge points, including a large solid waste landfill and various pharmaceutical factories. Significant correlations (p < 0.05) were found between sediment ARG levels, especially for tetracyclines and β-lactams (e.g., tet(M), tet(O), tet(Q), tet(W), blaOXA), and sediment Cu and water column ampicillin levels in the river. Further, sediment ARG levels increased by up to 3 orders of magnitude downstream of the pharmaceutical factories and were highest where human population densities also were high. Although explicit links are not shown, results suggest that pollution has increased background AR levels in a setting where other causes of AR are less prevalent. PMID:21133405
NASA Astrophysics Data System (ADS)
Schlager, Hans; Arnold, Frank; Aufmhoff, Heinrich; Baumann, Robert; Priola, Lisa; Roiger, Anke; Sailer, Tomas; Wirth, Martin; Schumann, Ulrich
2013-04-01
We report on the airborne detection of a large-scale stratified pollution layer in the lowermost stratosphere which contained increased concentrations of sulfur dioxide, reactive nitrogen, water vapour and sulfate aerosols. The measurements were performed over Central Europe with a chemical ionization mass spectrometer and a high spectral resolution Lidar on board the new German research aircraft HALO. Transport model simulations indicate the East-Asian planetary boundary layer (PBL) as the source region of this layer. The PBL air was uplifted by an East Asian warm conveyor belt (WCB) and thereafter experienced mostly horizontal transport and dispersion covering significant part of the northern hemisphere. The pollution layer extent up to 2 km above the thermal tropopause and appears to be trapped in the upper part of the tropopause inversion layer (TIL). Accompanying chemistry and aerosol model simulations indicate efficient SO2 conversion to sulfuric acid during the horizontal transport in the TIL, accelerated by increased OH resulting from the increased water vapour. Low temperature and increased water vapour led to efficient binary H2SO4/H2O nucleation. The uplifted anthropogenic nitrogen oxides experienced OH and particle mediated conversion to HNO3. The layer of sulfate particles formed in the upper part of the TIL was observed in the Lidar backscatter signal. Since mid-latitude East Asia is a region with very large SO2 emissions and a very high frequency of WCBs, SO2 uplift into the lowermost stratosphere from this region may occur frequently, eventually leading very often to corresponding pollution layers in the northern-hemisphere TIL.
Tondera, Katharina; Koenen, Stefan; Pinnekamp, Johannes
2013-01-01
A main source of surface water pollution in Western Europe stems from combined sewer overflow. One of the few technologies available to reduce this pollution is the retention soil filter. In this research project, we evaluated the cleaning efficiency of retention soil filters measuring the concentration ratio of standard wastewater parameters and bacteria according to factors limiting efficiency, such as long dry phases or phases of long-lasting retention. Furthermore, we conducted an initial investigation on how well retention soil filters reduce certain micropollutants on large-scale plants. There was little precipitation during the 1-year sampling phase, which led to fewer samples than expected. Nevertheless, we could verify how efficiently retention soil filters clean total suspended solids. Our results show that retention soil filters are not only able to eliminate bacteria, but also to retain some of the micropollutants investigated here. As the filters were able to reduce diclofenac, bisphenol A and metoprolol by a median rate of almost 75%, we think that further investigations should be made into the reduction processes in the filter. At this point, a higher accuracy in the results could be achieved by conducting bench-scale experiments.
Bilal, Muhammad; Asgher, Muhammad; Parra-Saldivar, Roberto; Hu, Hongbo; Wang, Wei; Zhang, Xuehong; Iqbal, Hafiz M N
2017-01-15
In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents. Copyright © 2016 Elsevier B.V. All rights reserved.
Accountability Studies on Air Pollution and Health: the HEI Experience.
Boogaard, Hanna; van Erp, Annemoon M; Walker, Katherine D; Shaikh, Rashid
2017-12-01
Assessing health effects of air quality interventions is of ever-increasing interest. Given the prominent role Health Effects Institute (HEI) has played in accountability research, this review focuses on HEI's recent experiences, the challenges it has encountered, and provides possible directions for future research. Most accountability studies to date have focused on effects of relatively short-term, local-scale, and sometimes temporary interventions. Only a few recent accountability studies have sought to investigate large-scale, multiyear regulatory programs. Common challenges encountered include lack of statistical power, how to account appropriately for background trends in air quality and health, and difficulties in direct attribution of changes in air pollution and health to a single intervention among many regulatory actions. New methods have been developed for accountability research that has shown promise addressing some of those challenges, including use of causal inference methods. These and other approaches that would enhance the attribution of changes in air quality and health directly to an intervention should continue to be further explored. In addition, integration of social and behavioral sciences in accountability research is warranted, and climate related co-benefits and dis-benefits may be considered.
Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)
NASA Astrophysics Data System (ADS)
Xiao, Q.
2009-12-01
Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.
Effects of neonicotinoids and fipronil on non-target invertebrates.
Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M
2015-01-01
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, A.D.
Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less
Uptake of Heavy Metals from Industrial Wastewater Using In Vitro Plant Cultures.
Jauhari, Nupur; Menon, Sanjay; Sharma, Neelam; Bharadvaja, Navneeta
2017-11-01
The plant species Bacopa monnieri has been observed to reduce the heavy metal concentrations in its vicinity. The present study is a comparison of in vitro culture and soil-grown plants of B. monnieri to remove Cr and Cd, from synthetic solution and effluent obtained from industrial area. Results were obtained at every half hour interval upto 180 min. Samples were observed for light absorption using UV-Visible spectrophotometer. Statistically, both systems reclaimed Cr and Cd from polluted water. In vitro cultures showed 67% and 93% removal of Cr and Cd from industrial wastewater whereas soil-grown plants showed 64% and 83% Cr and Cd removal. However, reduction rate was significantly higher for in vitro culture as compared to soil-grown plants. Besides other advantages, in vitro plant cultures proved to be more potent to detoxify pollutants in less time. This approach can be used for the removal of heavy metals at large scale.
Attention in recent years has focused on the trans-boundary transport of ozone and fine particulate matte between the United States and Mexico and Canada and across state boundaries in the United States. In a similar manner, but on a larger spatial scale, the export of pollutant...
Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P
2015-09-15
In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sun, Xiaowei; Li, Wei; Xie, Yulei; Huang, Guohe; Dong, Changjuan; Yin, Jianguang
2016-11-01
A model based on economic structure adjustment and pollutants mitigation was proposed and applied in Urumqi. Best-worst case analysis and scenarios analysis were performed in the model to guarantee the parameters accuracy, and to analyze the effect of changes of emission reduction styles. Results indicated that pollutant-mitigations of electric power industry, iron and steel industry, and traffic relied mainly on technological transformation measures, engineering transformation measures and structure emission reduction measures, respectively; Pollutant-mitigations of cement industry relied mainly on structure emission reduction measures and technological transformation measures; Pollutant-mitigations of thermal industry relied mainly on the four mitigation measures. They also indicated that structure emission reduction was a better measure for pollutants mitigation of Urumqi. Iron and steel industry contributed greatly in SO2, NOx and PM (particulate matters) emission reduction and should be given special attention in pollutants emission reduction. In addition, the scales of iron and steel industry should be reduced with the decrease of SO2 mitigation amounts. The scales of traffic and electric power industry should be reduced with the decrease of NOx mitigation amounts, and the scales of cement industry and iron and steel industry should be reduced with the decrease of PM mitigation amounts. The study can provide references of pollutants mitigation schemes to decision-makers for regional economic and environmental development in the 12th Five-Year Plan on National Economic and Social Development of Urumqi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benhaddya, Mohammed Lamine; Boukhelkhal, Abdelaziz; Halis, Youcef; Hadjel, Mohammed
2016-04-01
Hassi Messaoud town is a recent city that is situated inside the oil field, which hosts an important petroleum extraction field and refinery. Large-scale and long-term oil refinery and corresponding industrial activities may contaminate the surrounding soil/dust and could lead to pollution levels that can affect human health. The soil and road dust samples were analysed for different trace elements: copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn). Geo-accumulation index (I(geo)), pollution index (PI), and integrated pollution index (IPI) were calculated to evaluate the heavy metal contamination level of urban soil and road dust. The I(geo) values indicate unpolluted to moderate polluted of investigated metals in the soil samples. The assessment results of PI support the results of I(geo), and IPI indicates heavy metals in road dust polluted seriously. The noncarcinogenic health risk assessment shows that ingestion of soil/dust particles is the route for exposure to heavy metals, followed by dermal adsorption. The human exposure risk assessment based on different exposure pathways showed that the hazard index (HI) was <1.0 for all of the elements. The relative exposure risk (noncarcinogenic) was greater for toddlers. Although the overall risk was within the acceptable limit of 1.00, the HI of Pb from the soil (0.103) and road dust (0.132) was close to the threshold limits, which over the long-term may pose a health risk.
NASA Astrophysics Data System (ADS)
Feng, Qing; Lu, Li
2018-01-01
In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.
Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito
2015-01-01
Photobiological production of H2 by cyanobacteria is considered to be an ideal source of renewable energy because the inputs, water and sunlight, are abundant. The products of photobiological systems are H2 and O2; the H2 can be used as the energy source of fuel cells, etc., which generate electricity at high efficiencies and minimal pollution, as the waste product is H2O. Overall, production of commercially viable algal fuels in any form, including biomass and biodiesel, is challenging, and the very few systems that are operational have yet to be evaluated. In this paper we will: briefly review some of the necessary conditions for economical production, summarize the reports of photobiological H2 production by cyanobacteria, present our schemes for future production, and discuss the necessity for further progress in the research needed to achieve commercially viable large-scale H2 production. PMID:25793279
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Akimoto, Hajime; Maksyutov, Shamil; Staehelin, Johannes
An innovative and effective method using isentropic trajectory analysis based on the residence time of air masses over the polluted region of Europe was successfully applied to categorize surface ozone amounts at Arosa, Switzerland during 1996-1997. The "European representative" background ozone seasonal cycle at Arosa is associated with long-range transport of North Atlantic air masses, and displays the spring maximum-summer minimum with an annual average of 35 ppb. The photochemical ozone production due to the intense large-scale anthropogenic emission over Europe is estimated as high as 20 ppb in summer, whereas it is insignificant in winter. European sources contribute an annual net ozone production of 9-12 ppb at Arosa. Comparison with the selected regional representative site in Western Europe shows similar results indicating that the categorized ozone data at Arosa by this technique could be regarded as a representative for northern hemispheric mid-latitudes.
NASA Astrophysics Data System (ADS)
Vucinic, Dean; Deen, Danny; Oanta, Emil; Batarilo, Zvonimir; Lacor, Chris
This paper focuses on visualization and manipulation of graphical content in distributed network environments. The developed graphical middleware and 3D desktop prototypes were specialized for situational awareness. This research was done in the LArge Scale COllaborative decision support Technology (LASCOT) project, which explored and combined software technologies to support human-centred decision support system for crisis management (earthquake, tsunami, flooding, airplane or oil-tanker incidents, chemical, radio-active or other pollutants spreading, etc.). The performed state-of-the-art review did not identify any publicly available large scale distributed application of this kind. Existing proprietary solutions rely on the conventional technologies and 2D representations. Our challenge was to apply the "latest" available technologies, such Java3D, X3D and SOAP, compatible with average computer graphics hardware. The selected technologies are integrated and we demonstrate: the flow of data, which originates from heterogeneous data sources; interoperability across different operating systems and 3D visual representations to enhance the end-users interactions.
Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management
NASA Astrophysics Data System (ADS)
Tsao, J.; Li, J.; Chou, C.; Tung, C.
2009-12-01
Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.
JPRS Report, Science & Technology, Japan, MITI’s Large-Scale R&D Projects Reviewed
1990-02-08
pollutions, red tide, Active enzymes etc. for cleaners and detergents -- .... .... Intermediates aw materials for r rcosmetics and and medicines moisturizers...PN 00 1H carq 1 0 HZc4 IO -l~ to u .ci~’ *H 0 w 1 Q 0 r - 0 0J w H 04P 04- c0 a) 00 bD O44 0 w w 0 -p 00 021.J4 COQ )a > u0-0 T1 CL Cfp p P H -H14 OL
The role of citizen science in monitoring small-scale pollution events.
Hyder, Kieran; Wright, Serena; Kirby, Mark; Brant, Jan
2017-07-15
Small-scale pollution events involve the release of potentially harmful substances into the marine environment. These events can affect all levels of the ecosystem, with damage to both fauna and flora. Numerous reporting structures are currently available to document spills, however there is a lack of information on small-scale events due to their magnitude and patchy distribution. To this end, volunteers may provide a useful tool in filling this data gap, especially for coastal environments with a high usage by members of the public. The potential for citizen scientists to record small-scale pollution events is explored using the UK as an example, with a focus on highlighting methods and issues associated with using this data source. An integrated monitoring system is proposed which combines citizen science and traditional reporting approaches. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
The positive relationship between ocean acidification and pollution.
Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie
2015-02-15
Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk. Copyright © 2014 Elsevier Ltd. All rights reserved.
Suzuki, Nobuo; Sato, Masayuki; Nassar, Hossam F; Abdel-Gawad, Fagr Kh; Bassem, Samah M; Yachiguchi, Koji; Tabuchi, Yoshiaki; Endo, Masato; Sekiguchi, Toshio; Urata, Makoto; Hattori, Atsuhiko; Mishima, Hiroyuki; Shimasaki, Youhei; Oshima, Yuji; Hong, Chun-Sang; Makino, Fumiya; Tang, Ning; Toriba, Akira; Hayakawa, Kazuichi
2016-08-01
We have developed an original in vitro bioassay using teleost scale, that has osteoclasts, osteoblasts, and bone matrix as each marker: alkaline phosphatase (ALP) for osteoblasts and tartrate-resistant acid phosphatase (TRAP) for osteoclasts. Using this scale in vitro bioassay, we examined the effects of seawater polluted with highly concentrated polycyclic aromatic hydrocarbons (PAHs) and nitro-polycyclic aromatic hydrocarbons (NPAHs) on osteoblastic and osteoclastic activities in the present study. Polluted seawater was collected from two sites (the Alexandria site on the Mediterranean Sea and the Suez Canal site on the Red Sea). Total levels of PAHs in the seawater from the Alexandria and Suez Canal sites were 1364.59 and 992.56 ng/l, respectively. We were able to detect NPAHs in both seawater samples. Total levels of NPAHs were detected in the seawater of the Alexandria site (12.749 ng/l) and the Suez Canal site (3.914 ng/l). Each sample of polluted seawater was added to culture medium at dilution rates of 50, 100, and 500, and incubated with the goldfish scales for 6 hrs. Thereafter, ALP and TRAP activities were measured. ALP activity was significantly suppressed by both polluted seawater samples diluted at least 500 times, but TRAP activity did not change. In addition, mRNA expressions of osteoblastic markers (ALP, osteocalcin, and the receptor activator of the NF-κB ligand) decreased significantly, as did the ALP enzyme activity. In fact, ALP activity decreased on treatment with PAHs and NPAHs. We conclude that seawater polluted with highly concentrated PAHs and NPAHs influences bone metabolism in teleosts.
Zhang, Yimei; Li, Shuai; Wang, Fei; Chen, Zhuang; Chen, Jie; Wang, Liqun
2018-09-01
Toxicity of heavy metals from industrialization poses critical concern, and analysis of sources associated with potential human health risks is of unique significance. Assessing human health risk of pollution sources (factored health risk) concurrently in the whole and the sub region can provide more instructive information to protect specific potential victims. In this research, we establish a new expression model of human health risk based on quantitative analysis of sources contribution in different spatial scales. The larger scale grids and their spatial codes are used to initially identify the level of pollution risk, the type of pollution source and the sensitive population at high risk. The smaller scale grids and their spatial codes are used to identify the contribution of various sources of pollution to each sub region (larger grid) and to assess the health risks posed by each source for each sub region. The results of case study show that, for children (sensitive populations, taking school and residential area as major region of activity), the major pollution source is from the abandoned lead-acid battery plant (ALP), traffic emission and agricultural activity. The new models and results of this research present effective spatial information and useful model for quantifying the hazards of source categories and human health a t complex industrial system in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Groundwater organic pollution source identification technology system research and application].
Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan
2013-02-01
Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.
Liu, Zhengyan; Mao, Xianqiang; Song, Peng
2017-01-01
Temporal index decomposition analysis and spatial index decomposition analysis were applied to understand the driving forces of the emissions embodied in China's exports and net exports during 2002-2011, respectively. The accumulated emissions embodied in exports accounted for approximately 30% of the total emissions in China; although the contribution of the sectoral total emissions intensity (technique effect) declined, the scale effect was largely responsible for the mounting emissions associated with export, and the composition effect played a largely insignificant role. Calculations of the emissions embodied in net exports suggest that China is generally in an environmentally inferior position compared with its major trade partners. The differences in the economy-wide emission intensities between China and its major trade partners were the biggest contribution to this reality, and the trade balance effect played a less important role. However, a lower degree of specialization in pollution intensive products in exports than in imports helped to reduce slightly the emissions embodied in net exports. The temporal index decomposition analysis results suggest that China should take effective measures to optimize export and supply-side structure and reduce the total emissions intensity. According to spatial index decomposition analysis, it is suggested that a more aggressive import policy was useful for curbing domestic and global emissions, and the transfer of advanced production technologies and emission control technologies from developed to developing countries should be a compulsory global environmental policy option to mitigate the possible leakage of pollution emissions caused by international trade.
Plastics and microplastics in the oceans: From emerging pollutants to emerged threat.
Avio, Carlo Giacomo; Gorbi, Stefania; Regoli, Francesco
2017-07-01
Plastic production has increased dramatically worldwide over the last 60 years and it is nowadays recognized as a serious threat to the marine environment. Plastic pollution is ubiquitous, but quantitative estimates on the global abundance and weight of floating plastics are still limited, particularly for the Southern Hemisphere and the more remote regions. Some large-scale convergence zones of plastic debris have been identified, but there is the urgency to standardize common methodologies to measure and quantify plastics in seawater and sediments. Investigations on temporal trends, geographical distribution and global cycle of plastics have management implications when defining the origin, possible drifting tracks and ecological consequences of such pollution. An elevated number of marine species is known to be affected by plastic contamination, and a more integrated ecological risk assessment of these materials has become a research priority. Beside entanglement and ingestion of macro debris by large vertebrates, microplastics are accumulated by planktonic and invertebrate organisms, being transferred along food chains. Negative consequences include loss of nutritional value of diet, physical damages, exposure to pathogens and transport of alien species. In addition, plastics contain chemical additives and efficiently adsorb several environmental contaminants, thus representing a potential source of exposure to such compounds after ingestion. Complex ecotoxicological effects are increasingly reported, but the fate and impact of microplastics in the marine environment are still far to be fully clarified. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stets, Edward G.; Kelly, Valerie J.; Broussard, Whitney P.; Smith, Thor E.; Crawford, Charles G.
2012-01-01
Nutrient pollution in the form of excess nitrogen and phosphorus inputs is a well-known cause of water-quality degradation that has affected water bodies across the Nation throughout the 20th century. The recognition of excess nutrients as pollution developed later than the recognition of other water-quality problems, such as waterborne illness, industrial pollution, and organic wastes. Nevertheless, long-term analysis of nutrient pollution is fundamental to our understanding of the current magnitude of the problem, as well the origins and the effects. This report describes the century-scale changes in water quality across a range streams in order to place current water-quality concerns in historical context and presents this history on a national scale as well as for selected river reaches. The primary focus is on nutrient pollution, but the development and societal responses to other water-quality problems also are considered. Land use and agriculture in the selected river reaches also are analyzed to consider how these factors may relate to nutrient pollution. Finally, the availability of relevant nutrient and inorganic carbon data are presented for the selected river reaches. Sources of these data included Federal agencies, State-level reports, municipal public works facilities, public health surveys, and sanitary surveys. The availability of these data extends back more than a century for most of the selected river reaches and suggests that there is a tremendous opportunity to document the development of nutrient pollution in these river reaches.
Sillanpää, Nora; Koivusalo, Harri
2013-01-01
Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.
Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System
Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of partic...
Zheng, Chaohui; Liu, Yi; Bluemling, Bettina; Mol, Arthur P J; Chen, Jining
2015-01-01
To minimize negative environmental impact of livestock production, policy-makers face a challenge to design and implement more effective policy instruments for livestock farmers at different scales. This research builds an assessment framework on the basis of an agent-based model, named ANEM, to explore nutrient mitigation potentials of five policy instruments, using pig production in Zhongjiang county, southwest China, as the empirical filling. The effects of different policy scenarios are simulated and compared using four indicators and differentiating between small, medium and large scale pig farms. Technology standards, biogas subsidies and information provisioning prove to be the most effective policies, while pollution fees and manure markets fail to environmentally improve manure management in pig livestock farming. Medium-scale farms are the more relevant scale category for a more environmentally sound development of Chinese livestock production. A number of policy recommendations are formulated as conclusion, as well as some limitations and prospects of the simulations are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Linking Meteorology, Air Quality Models and Observations to ...
Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion
Study on road surface source pollution controlled by permeable pavement
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2018-06-01
The increase of impermeable pavement in urban construction not only increases the runoff of the pavement, but also produces a large number of Non-Point Source Pollution. In the process of controlling road surface runoff by permeable pavement, a large number of particulate matter will be withheld when rainwater is being infiltrated, so as to control the source pollution at the source. In this experiment, we determined the effect of permeable road surface to remove heavy pollutants in the laboratory and discussed the related factors that affect the non-point pollution of permeable pavement, so as to provide a theoretical basis for the application of permeable pavement.
Dietrich, Matthew; Huling, Justin; Krekeler, Mark P S
2018-03-15
A geochemical investigation of both ballfield sediment and street sediment in a park adjacent to a major steel manufacturing site in Middletown, Ohio revealed Pb, Cu, Cr and Zn exceeded background levels, but in heterogeneous ways and in varying levels of health concern. Pb, Sn, and Zn had geoaccumulation values>2 (moderate to heavy pollutants) in street sediment samples. Cr had a geoaccumulation value>1, while Ni, W, Fe and Mn had geoaccumulation values between 1 and 0 in street sediment. Street sediment contamination factors for respective elements are Zn (10.41), Sn (5.45), Pb (4.70), Sb (3.45), Cr (3.19), W (2.59), and Mn (2.43). The notable elements with the highest factors for ball fields are Zn (1.72), Pb (1.36), Cr (0.99), V (0.95), and Mn (1.00). High correlation coefficients of known constituents of steel, such as Fe and Mo, Ni and Cr, W and Co, W and V, as well as particulate steel and coal spherule fragments found by SEM suggest probable sourcing of some of the metals from the AK Steel facility directly adjacent to the park. However, overall extensive heterogeneity of metal pollutants in the area points to the difficulties in sourcing pollutant metals, with many outside sources likely contributing as well. This study demonstrates that different sediment media can be impacted by significantly different metal pollutants even when in very close proximity to a single source and points to unrecognized complexity in urban pollution processes in the region. This study pertains to large-scale regional importance, as Middletown, Ohio is indicative of a typical post-industrial Midwestern U.S. city where limited investigation has been conducted regarding urban pollution and sourcing of materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping
2018-03-01
The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide useful information for the identification of highly polluted areas, and aid the development of integrated watershed management system in the drinking water resource area.
ERIC Educational Resources Information Center
Lacosta-Gabari, Idoya; Fernandez-Manzanal, Rosario; Sanchez-Gonzalez, Dolores
2009-01-01
Research in environmental attitudes' assessment has significantly increased in recent years. The development of specific attitude scales for specific environmental problems has often been proposed. This paper describes the Groundwater Pollution Test (GPT), a 19-item survey instrument using a Likert-type scale. The survey has been used with…
NASA Astrophysics Data System (ADS)
Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.
2015-12-01
Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (TropOMI) and GEO (Sentinel-4, GEMS, and TEMPO) atmospheric chemistry satellite observing capabilities, the results from these model applications will be discussed in the context of how the new satellite observations could help constrain and reduce uncertainties in the models.
EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)
Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...
High resolution pollutant measurements in complex urban environments using mobile monitoring
Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced in...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous poll...
Anthropogenic and Climatic Influence on Vegetation Fires in Peatland of Insular Southeast Asia
NASA Astrophysics Data System (ADS)
Liew, S.; Miettinen, J.; Salinas Cortijo, S. V.
2011-12-01
Fire is traditionally used as a tool in land clearing by farmers and shifting cultivators in Southeast Asia. However, the small scale clearing of land is increasingly being replaced by modern large-scale conversion of forests into plantations/agricultural land, usually also by fires. Fires get out of control in periods of extreme drought, especially during the El Nino periods, resulting in severe episodes of transboundary air pollution in the form of smoke haze. We use the MODIS active fires product (hotspots) to establish correlations between the temporal and spatial patterns of vegetation fires with climatic variables, land cover change and soil type (peat or non-peat) in the western part of Insular Southeast Asia for a decade from 2001 to 2010. Fire occurrence exhibits a negative correlation with rainfall, and is more severe overall during the El-Nino periods. However, not all regions are equally affected by El-Nino. In Southern Sumatra and Southern Borneo the correlation with El-Nino is high. However, fires in some regions such as the peatland in Riau, Jambi and Sarawak do not appear to be influenced by El-Nino. These regions are also experiencing rapid conversion of forest to large scale plantations.
Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities.
Vanos, Jennifer K; Cakmak, Sabit; Bristow, Corben; Brion, Vladislav; Tremblay, Neil; Martin, Sara L; Sheridan, Scott S
2013-10-01
Synoptic circulation patterns (large-scale weather systems) affect ambient levels of air pollution, as well as the relationship between air pollution and human health. To investigate the air pollution-mortality relationship within weather types and seasons, and to determine which combination of atmospheric conditions may pose increased health threats in the elderly age categories. The relative risk of mortality (RR) due to air pollution was examined using Poisson generalized linear models (GLMs) within specific weather types. Analysis was completed by weather type and age group (all ages, ≤64, 65-74, 75-84, ≥85 years) in ten Canadian cities from 1981 to 1999. There was significant modification of RR by weather type and age. When examining the entire population, weather type was shown to have the greatest modifying effect on the risk of dying due to ozone (O3). This effect was highest on average for the dry tropical (DT) weather type, with the all-age RR of mortality at a population weighted mean (PWM) found to be 1.055 (95% CI 1.026-1.085). All-weather type risk estimates increased with age due to exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). On average, RR increased by 2.6, 3.8 and 1.5% for the respective pollutants between the ≤64 and ≥85 age categories. Conversely, mean ozone estimates remained relatively consistent with age. Elevated levels of air pollution were found to be detrimental to the health of elderly individuals for all weather types. However, the entire population was negatively effected by air pollution on the hot dry (DT) and hot humid (MT) days. We identified a significant modification of RR for mortality due to air pollution by age, which is enhanced under specific weather types. Efforts should be targeted at minimizing pollutant exposure to the elderly and/or all age groups with respect to weather type in question. Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.
Son, Yeongkwon; Osornio-Vargas, Álvaro R; O'Neill, Marie S; Hystad, Perry; Texcalac-Sangrador, José L; Ohman-Strickland, Pamela; Meng, Qingyu; Schwander, Stephan
2018-05-17
The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban environments in the world and experiences high air pollution levels. To develop models that estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land use regression (LUR) models for PM 2.5 , PM 10 , O 3 , NO 2 , CO and SO 2 using mixed effect models with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was included as a temporal variable besides meteorological and holiday variables. Models of hourly, daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations with good spatial and temporal agreements with measured pollutant levels except for the hourly PM 2.5 , PM 10 and SO 2 . Most of the LUR models met performance goals based on the standardized indices. LUR models with temporal scales greater than one hour were successfully developed using mixed effect models with LASSO and showed superior model performance compared to earlier LUR models, especially for time scales of a day or longer. The newly developed LUR models will be further refined with ongoing Mexico City air pollution sampling campaigns to improve personal exposure assessments. Copyright © 2018. Published by Elsevier B.V.
An Overview of Air Pollution Problem in Megacities and City Clusters in China
NASA Astrophysics Data System (ADS)
Tang, X.
2007-05-01
China has experienced the rapid economic growth in last twenty years. City clusters, which consist of one or several mega cities in close vicinity and many satellite cities and towns, are playing a leading role in Chinese economic growth, owing to their collective economic capacity and interdependency. However, accompanying with the economic boom, population growth and increased energy consumption, the air quality has been degrading in the past two decades. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants leading to form complex secondary pollution problem. After decades long efforts to control air pollution, both the government and scientific communities have realized that to control regional scale air pollution, regional efforts are needed. Field experiments covering the regions like Pearl River Delta region and Beijing City with surrounding areas are critical to understand the chemical and physical processes leading to the formation of regional scale air pollution. In order to formulate policy suggestions for air quality attainment during 2008 Beijing Olympic game and to propose objectives of air quality attainment in 2010 in Beijing, CAREBEIJING (Campaigns of Air Quality Research in Beijing and Surrounding Region) was organized by Peking University in 2006 to learn current air pollution situation of the region, and to identify the transport and transformation processes that lead to the impact of the surrounding area on air quality in Beijing. Same as the purpose for understanding the chemical and physical processes happened in regional scale, the fall and summer campaigns in 2004 and 2006 were carried out in Pearl River Delta. More than 16 domestic and foreign institutions were involved in these campaigns. The background, current status, problems, and some results of these campaigns will be introduced in this presentation.
Stormwater pollution in suburban ecosystems: the role of residential rooftop connectivity
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2013-12-01
Stormwater pollution has been recognized as a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater pollution can be advanced through the development of spatially explicit ecohydrology models that simulate fine-scale residential stormwater management; this requires high-resolution LIDAR and landcover data, as well as field observation at the household scale. The objective of my research is to improve understanding of how parcel-scale heterogeneity of impervious and previous surfaces effect stormwater volume. In support of this objective, I present results from work to: (1) perform field observation of existing patterns of residential rooftop connectivity to nearby impervious surfaces; (2) modify the Regional Hydro-Ecological Simulation System (RHESSys) to explicitly represent non-topographic surface flow routing of rooftops; and (3) develop RHESSys models for urban-suburban headwater watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). I use these models to simulate stormwater volume resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research will help to improve representation of fine-scale surface flow features in urban ecohydrology modeling while informing policy decisions over how best to implement parcel-scale retrofits in existing neighborhoods to reduce stormwater pollution at the watershed scale.
Li, Hongjun; Gao, Xuelu; Gu, Yanbin; Wang, Ruirui; Xie, Pengfei; Liang, Miao; Ming, Hongxia; Su, Jie
2018-04-01
The Bohai Sea is characterized as a semi-closed sea with limited water exchange ability, which has been regarded as one of the most contaminated regions in China and has attracted public attention over the past decades. In recent years, the rapid industrialization and urbanization around the coastal region has resulted in a severe pollution pressure in the Bohai Sea. Although efforts from official government and scientific experts have been made to protect and restore the marine ecosystem, satisfactory achievements were not gained. Moreover, partial coastal areas in the Bohai Sea seemingly remain heavily polluted. In this study, we focused on five coastal regions around the Bohai Sea to study the spatial distribution pattern of trace elements in the sediments and their ecological risk. A total of 108 sediment samples were analyzed to determine the contamination degree of trace elements (Cu, Cd, As, Pb, Zn, Cr, and Hg). Contamination factor (CF), pollution load index (PLI), geoaccumulation index (I geo ), and potential ecological risk index (PERI) were utilized to assess the pollution extent of these metals. Spatial distribution patterns revealed that the sedimentary environments of coastal Bohai were in good condition, except Jinzhou Bay, according to the Marine Sediment Quality of China. The concentrations of Hg and Cd were considerably higher than the average upper crust value and presented high potential ecological risk and considerable potential ecological risk, respectively. The overall environment quality of the coastal Bohai Sea does not seem to pose an extremely serious threat in terms of metal pollution. Thus, the government should continue implementing pollution control programs in the Bohai Sea. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A.K.; Kitada, T.
1996-12-31
Dhaka is the capital and the biggest city of Bangladesh, and is expanding very rapidly. Emissions from heavy traffic and many small industries and commercial complexes, newly developed in and around the city, are polluting the air of Dhaka city. The air pollution is severe especially in winter due to adverse meteorological conditions such as low wind speed and dry, stably-stratified air, which restricts the mixing height to low levels and prevent dispersion of pollutants. But so far no study of air pollution of Dhaka city has been done. We have first measured SO{sub 2} and NO{sub 2} concentrations inmore » Dhaka city in a large scale and derived their spatial distributions over Dhaka. Molecular diffusion tubes, which do not require power sources and are produced at low cost, have been used to measure the concentration distributions of SO{sub 2} and NO{sub 2} at 64 sites in Dhaka city and its suburbs during the period of December-January of 1995-96. The diffusion tube samplers were calibrated using 6 automated air pollution monitoring stations in Aichi-prefecture, Japan. The calibration curve and the distribution of the concentration data acquired by automatic measurement instrument at each location showed that the error range of measurements with the molecular diffusion tube samplers was 2-27%. The samples were analyzed using ion-chromatography and spectrophotometer to determine the concentrations of SO{sub 2} and NO{sub 2} respectively. The contamination of unexposed tubes under field conditions was determined and the value of the blank test was subtracted from the measurements of the diffusion tube samplers. The effects of wind turbulence and temperature were reduced using polyflon filters.« less
"APEC blue"--The effects and implications of joint pollution prevention and control program.
Wang, Hongbo; Zhao, Laijun; Xie, Yujing; Hu, Qingmi
2016-05-15
To ensure good air quality in Beijing during Asia-Pacific Economic Cooperation (APEC) China 2014, Beijing and its neighboring five provinces and the associated cities were combined under the Joint Prevention and Control of Atmospheric Pollution (JPCAP) program, which implemented rigorous cooperative emission reduction measures. The program was a unique and large-scale artificial experiment that showed that such measures can achieve excellent results, and it led to the popular "APEC blue" catchphrase (i.e., Beijing's skies became blue as pollution levels decreased). This artificial experiment provided the means to effectively conduct JPCAP strategies in the future. Accordingly, our research focused on the characteristics of the six primary pollutants in Beijing. We found that the JPCAP measures directly reduced concentrations of all pollutants except O3. Through correlation analysis, we found that the band distribution of the cities with strong correlations in PM2.5 and PM10 concentrations was affected by wind conditions. Therefore, JPCAP measures should account for specific seasonal and climatic conditions. Based on cluster analysis using the results from the correlation analysis, we divided 13 cities within a 300-km radius of Beijing into different groups according to the similarity of their PM2.5 and PM10 correlation coefficients. For JPCAP measures relevant to PM2.5 and PM10, we found differences in the degrees of collaboration among cities. Therefore, depending upon the pollutant type, the JPCAP strategy should account for the cities involved, the scope of the core area, and the optimal cities to involve in the collaborative efforts based on cost-effectiveness and collaborative difficulty among the involved cities. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivey, C. E.; Balachandran, S.; Russell, A. G.; Hu, Y.; Holmes, H.
2017-12-01
More than one million people live in Salt Lake Valley, Utah, where wintertime pollution reaches unhealthy levels due to the unique meteorology and orography of the region. Persistent cold air pool (PCAP) events occur when high pressure ridges create stagnant conditions over a valley, which hampers large-scale advection and reduces surface wind speeds. During PCAP periods the fraction of incoming solar radiation that reaches the valley floor is also reduced, leading to temperature inversions that allow pollution to build. Pollution levels continue to climb until a washout event removes the pollutants from the valley. Washout events include high winds or precipitation events with advection or wet deposition related removal processes, respectively. In this work, novel data assimilation and source apportionment techniques are applied for January and February 2007 to analyze CMAQ-modeled source composition and source impacts for the Salt Lake Valley during PCAP events. First, a hybrid source-oriented apportionment model is applied over continental U.S. to determine observation and model-based impacts from 20 sources, including agricultural activities, fossil fuel combustion, dust, and metals processing. Then, a secondary bias correction method is applied to better quantify the source impacts on secondary PM2.5, which constitutes the majority of the PM2.5 mass. Revised concentrations reflect what was previously reported in studies of PCAP pollution in the Salt Lake Valley, where the dominant aerosol was found to be ammonium nitrate. Further, gasoline and natural gas combustion were found to be the greatest contributing sources to aerosol concentrations during the PCAP events. The benefit of the data assimilation methods is the availability of spatially and temporally resolved model estimates of source impacts that better reflect observed concentrations.
Investigation of power-plant plume photochemistry using a reactive plume model
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, H. S.; Song, C. H.
2016-12-01
Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.
Chrysikou, Loukia; Gemenetzis, Panagiotis; Kouras, Athanasios; Manoli, Evangelia; Terzi, Eleni; Samara, Constantini
2008-02-01
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), including hexaclorocyclohexanes (HCHs) and DDTs, as well as trace elements were determined in soil and vegetation samples collected from the surrounding area of the landfill "Tagarades", the biggest in northern Greece, following a large scale fire involving approximately 50,000 tons of municipal waste. High concentrations of total PAHs, PCBs and heavy metals were found inside the landfill (1475 microg kg(-1) dw, 399 microg kg(-1) dw and 29.8 mg kg(-1) dw, respectively), whereas concentrations in the surrounding soils were by far lower ranging between 11.2-28.1 microg kg(-1) dw for PAHs, 4.02-11.2 microg kg(-1) dw for PCBs and 575-1207 mg kg(-1) dw for heavy metals. The distribution of HCHs and DDTs were quite different since certain soils exhibited equal or higher concentrations than the landfill. In vegetation, the concentrations of PAHs, PCBs, HCHs and DDTs ranged from 14.1-34.7, 3.64-25.9, 1.41-32.1 and 0.61-4.03 microg kg(-1) dw, respectively, while those of heavy metals from 81 to 159 mg kg(-1) dw. The results of the study indicated soil and vegetation pollution levels in the surroundings of the landfill comparable to those reported for other Greek locations. The impact from the landfill fire was not evident partially due to the presence of recent and past inputs from other activities (agriculture, vehicular transport, earlier landfill fires).
NASA Astrophysics Data System (ADS)
Thorhaug, A.
1980-03-01
The principles of the dynamics and interrelationships within the dominant subtropical and tropical Caribbean seagrass community have been studied previously before, during, and after impact. From these and scores of observations of damage and recovery patterns in Thalassia ecosystems, a sense of management recovery strategy has emerged. Artificial restoring of Thalassia testudinum seeds into areas cut off from stock (fruit, seeds) appeared feasible on a large scale after the Turkey Point (Biscayne Bay, Miami, Florida) restoration and test sampling throughout North Biscayne Bay. Two large-scale seeding attempts were made; after 11 months they compared favorably with Turkey Point specimens with regard to growth parameters, despite the turbidity and other persistent pollution. Thus, the possible areas in which Thalassia seed restoration can be used has increased to include estuaries of multiple impact still in various stages of recovery after physical and sewage pollution. This technique should be especially useful to “developing” nations where important nearshore fisheries nurseries based on Thalassia ecosystems have been heavily damaged and now lie barren. Man's impact on the estuary where seed restoration was attempted includes the following activities: 50% of the bay bottom directly dredged or filled (leaving much unconsolidated sediment); 50 million gallons of domestic waste dumped directly into a low flushing part of the bay for 20 years; seven major causeways transecting the bay, restricting circulation and flushing; two artificial inlets made into navigational channels; freshwater sheet flow drastically changed due to channelization by flood-control canals; urban runoff from a million people entering the bay. Most of the impacts have now abated; however, their long-term effects remain.
Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang
2013-09-15
Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Agriculture is a major source of NO x pollution in California.
Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z
2018-01-01
Nitrogen oxides (NO x = NO + NO 2 ) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California.
NASA Astrophysics Data System (ADS)
Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia
2014-05-01
Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.
NASA Astrophysics Data System (ADS)
Pan, Yuepeng; Wang, Yuesi; Zhang, Junke; Liu, Zirui; Wang, Lili; Tian, Shili; Tang, Guiqian; Gao, Wenkang; Ji, Dongsheng; Song, Tao; Wang, Yonghong
2016-09-01
Nitrate salts represent a major component of fine mode aerosols, which play an important role in air pollution worldwide. Based on on-line and off-line aerosol measurements in urban Beijing for both clean and haze conditions, we demonstrate that the absolute and relative concentrations of nitrate increased with visibility degradation (relative humidity), whereas the variations of organics tracked the patterns of mixing-layer height and temperature. We propose that the increase in the relative contribution of nitrate to PM1 observed during the early stages of haze pollution was due to new particle formation, whereas the nitrate formed in PM1-2.5 during the latter stages was due to heterogeneous formation and hygroscopic growth. The increasing trend of nitrate (and also sulfate and ammonium) but decreasing trends of organics during haze development, together with the increase of the NO2/SO2 molar ratio with increasing proximity to downtown Beijing and with visibility degradation, provide further evidence that controlling NOx emissions should be a priority for improving air quality in mega cities. Additional large-scale investigation is required to adequately characterize the regional features of NOx-induced haze pollution in China. Such studies may provide insight into the formation of critical nuclei or the subsequent growth of freshly nucleated particles and advance our understanding of the role of nitrate in new particle formation.
NASA Astrophysics Data System (ADS)
Tseng, Chuan Ming; Chen, Hsin Liang; Lai, Sz Nian; Chen, Ming Shiung; Peng, Chien Jung; Li, Chia Jui; Hung, Wei Hsuan
2017-05-01
"Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.
A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel
NASA Astrophysics Data System (ADS)
Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.
2018-02-01
All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants
Impaired visibility: the air pollution people see
NASA Astrophysics Data System (ADS)
Hyslop, Nicole Pauly
Almost every home and office contains a portrayal of a scenic landscape whether on a calendar, postcard, photograph, or painting. The most sought after locations boast a scenic landscape right outside their window. No matter what the scene - mountains, skyscrapers, clouds, or pastureland - clarity and vividness are essential to the image. Air pollution can degrade scenic vistas, and in extreme cases, completely obscure them. Particulate matter suspended in the air is the main cause of visibility degradation. Particulate matter affects visibility in multiple ways: obscures distant objects, drains the contrast from a scene, and discolors the sky. Visibility is an environmental quality that is valued for aesthetic reasons that are difficult to express or quantify. Human psychology and physiology are sensitive to visual input. Visibility has been monitored throughout the world but there are few places where it is a protected resource. Existing health-based regulations are weak in terms of visibility protection. Various techniques, including human observation, light transmission measurements, digital photography, and satellite imaging, are used to monitor visibility. As with air pollution, trends in visibility vary spatially and temporally. Emissions from the developing world and large scale events such as dust storms and wildfires affect visibility around much of the globe.
Odor compounds in waste gas emissions from agricultural operations and food industries.
Rappert, S; Müller, R
2005-01-01
In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.
Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K
2014-08-19
The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.
NASA Astrophysics Data System (ADS)
Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika
2018-05-01
Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.
Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Karssenberg, Derek; Houthuijs, Danny; van den Brink, Carolien; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard
2017-07-01
Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM 10 , PM 2.5 , PM 2.5-10 , PM 2.5 absorbance, OP DTT, OP ESR and NO 2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Environmental impacts of large-scale CSP plants in northwestern China.
Wu, Zhiyong; Hou, Anping; Chang, Chun; Huang, Xiang; Shi, Duoqi; Wang, Zhifeng
2014-01-01
Several concentrated solar power demonstration plants are being constructed, and a few commercial plants have been announced in northwestern China. However, the mutual impacts between the concentrated solar power plants and their surrounding environments have not yet been addressed comprehensively in literature by the parties involved in these projects. In China, these projects are especially important as an increasing amount of low carbon electricity needs to be generated in order to maintain the current economic growth while simultaneously lessening pollution. In this study, the authors assess the potential environmental impacts of large-scale concentrated solar power plants. Specifically, the water use intensity, soil erosion and soil temperature are quantitatively examined. It was found that some of the impacts are favorable, while some impacts are negative in relation to traditional power generation techniques and some need further research before they can be reasonably appraised. In quantitative terms, concentrated solar power plants consume about 4000 L MW(-1) h(-1) of water if wet cooling technology is used, and the collectors lead to the soil temperature changes of between 0.5 and 4 °C; however, it was found that the soil erosion is dramatically alleviated. The results of this study are helpful to decision-makers in concentrated solar power site selection and regional planning. Some conclusions of this study are also valid for large-scale photovoltaic plants.
[Effect of pilot UASB-SFSBR-MAP process for the large scale swine wastewater treatment].
Wang, Liang; Chen, Chong-Jun; Chen, Ying-Xu; Wu, Wei-Xiang
2013-03-01
In this paper, a treatment process consisted of UASB, step-fed sequencing batch reactor (SFSBR) and magnesium ammonium phosphate precipitation reactor (MAP) was built to treat the large scale swine wastewater, which aimed at overcoming drawbacks of conventional anaerobic-aerobic treatment process and SBR treatment process, such as the low denitrification efficiency, high operating costs and high nutrient losses and so on. Based on the treatment process, a pilot engineering was constructed. It was concluded from the experiment results that the removal efficiency of COD, NH4(+) -N and TP reached 95.1%, 92.7% and 88.8%, the recovery rate of NH4(+) -N and TP by MAP process reached 23.9% and 83.8%, the effluent quality was superior to the discharge standard of pollutants for livestock and poultry breeding (GB 18596-2001), mass concentration of COD, TN, NH4(+) -N, TP and SS were not higher than 135, 116, 43, 7.3 and 50 mg x L(-1) respectively. The process developed was reliable, kept self-balance of carbon source and alkalinity, reached high nutrient recovery efficiency. And the operating cost was equal to that of the traditional anaerobic-aerobic treatment process. So the treatment process could provide a high value of application and dissemination and be fit for the treatment pf the large scale swine wastewater in China.
NASA Astrophysics Data System (ADS)
Chan, Ming-Chung; Liu, Chun-Ho
2013-04-01
Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the intensity of stratification is controlled by the gravitational acceleration. The urban characteristic is modeled by periodic boundary conditions at the domain inlet-outlet and spanwise extent, so as to simulate the infinitely long and wide urban area. Pollutant dispersion is modeled by scalar transport with the pollutant area source on the ground of the first street canyon and by open boundary condition at the domain outlet. The numerical models are solved with incremental time steps until it reaches the pseudo steady-state. Afterwards, a set of data is collected for each model such that the temporal averages of mean and fluctuating field variables do not vary significantly if more time steps are included. It is found that the ventilation performance is improved and the plume dispersion in shear layer is enhanced when the stratification is more unstable. The mean flows, turbulent transports of pollutant and momentum, pollutant concentration fields in different unstable stratifications will be discussed with profile and contour plots. The ventilation performance of a street canyon evaluated by air exchange rate (ACH) and pollutant exchange rate (PCH) at roof level and the plume dispersion characterized by the mean plume height and dispersion coefficient in shear layer will also be discussed.
Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.
Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue
2017-03-28
Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.
ERIC Educational Resources Information Center
Terry, Luther L.
1970-01-01
Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)
López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A
2017-01-01
This work reports results of the application of electrokinetic fence technology in a 32 m 3 -prototype which contains soil polluted with 2,4-D and oxyfluorfen, focusing on the evaluation of the mechanisms that describe the removal of these two herbicides and comparing results to those obtained in smaller plants: a pilot-scale mockup (175 L) and a lab-scale soil column (1 L). Results show that electric heating of soil (coupled with the increase in the volatility) is the key to explain the removal of pollutants in the largest scale facility while electrokinetic transport processes are the primary mechanisms that explain the removal of herbicides in the lab-scale plant. 2-D and 3-D maps of the temperature and pollutant concentrations are used in the discussion of results trying to give light about the mechanisms and about how the size of the setup can lead to different conclusions, despite the same processes are occurring in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, You-Qi; Bai, Yi-Ru; Wang, Jian-Yu
2014-07-01
Determining spatial distributions and analyses contamination condition of soil heavy metals play an important role in evaluation of the quality of agricultural ecological environment and the protection of food safety and human health. Topsoil samples (0-20 cm) from 223 sites in farmland were collected at two scales of sampling grid (1 m x 1 m, 10 m x 10 m) in the Yellow River irrigation area of Ningxia. The objectives of this study were to investigate the spatial variability of total copper (Cu), total zinc (Zn), total chrome (Cr), total cadmium (Cd) and total lead (Pb) on the two sampling scales by the classical and geostatistical analyses. The single pollution index (P(i)) and the Nemerow pollution index (P) were used to evaluate the soil heavy metal pollution. The classical statistical analyses showed that all soil heavy metals demonstrated moderate variability, the coefficient of variation (CV) changed in the following sequence: Cd > Pb > Cr > Zn > Cu. Geostatistical analyses showed that the nugget coefficient of Cd on the 10 m x 10 m scale and Pb on the 1 m x 1 m scale were 100% with pure nugget variograms, which showed weak variability affected by random factors. The nugget coefficient of the other indexes was less than 25%, which showed a strong variability affected by structural factors. The results combined with P(i) and P indicated that most soil heavy metals have slight pollution except total copper, and in general there were the trend of heavy metal accumulation in the study area.
NASA Astrophysics Data System (ADS)
Timmermans, R.; Denier van der Gon, H.; Segers, A.; Honore, C.; Perrussel, O.; Builtjes, P.; Schaap, M.
2012-04-01
Since a major part of the Earth's population lives in cities, it is of great importance to correctly characterise the air pollution levels over these urban areas. Many studies in the past have already been dedicated to this subject and have determined so-called urban increments: the impact of large cities on the air pollution levels. The impact of large cities on air pollution levels usually is determined with models driven by so-called downscaled emission inventories. In these inventories official country total emissions are gridded using information on for example population density and location of industries and roads. The question is how accurate are the downscaled inventories over cities or large urban areas. Within the EU FP 7 project MEGAPOLI project a new emission inventory has been produced including refined local emission data for two European megacities (Paris, London) and two urban conglomerations (the Po valley, Italy and the Rhine-Ruhr region, Germany) based on a bottom-up approach. The inventory has comparable national totals but remarkable difference at the city scale. Such a bottom up inventory is thought to be more accurate as it contains local knowledge. Within this study we compared modelled nitrogen dioxide (NO2) and particulate matter (PM) concentrations from the LOTOS-EUROS chemistry transport model driven by a conventional downscaled emission inventory (TNO-MACC inventory) with the concentrations from the same model driven by the new MEGAPOLI 'bottom-up' emission inventory focusing on the Paris region. Model predictions for Paris significantly improve using the new Megapoli inventory. Both the emissions as well as the simulated average concentrations of PM over urban sites in Paris are much lower due to the different spatial distribution of the anthropogenic emissions. The difference for the nearby rural stations is small implicating that also the urban increment for PM simulated using the bottom-up emission inventory is much smaller than for the downscaled emission inventory. Urban increments for PM calculated with downscaled emissions, as is common practice, might therefore be overestimated. This finding is likely to apply to other European Megacities as well.
NASA Astrophysics Data System (ADS)
Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé
2016-04-01
Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase of PM1 concentrations was observed, which causes a deposition of the particles. Due to turbulence and horizontal dilution, PM1 concentrations were weak during storms.
ERIC Educational Resources Information Center
Bush, Douglas
1972-01-01
While an aroused public applauds the exposure of civic corruption and environmental pollution, neither the public at large nor officialdom has any concern with the corruption and pollution of language except to contribute to it. (Author)