Large-scale circulation departures related to wet episodes in north-east Brazil
NASA Technical Reports Server (NTRS)
Sikdar, Dhirendra N.; Elsner, James B.
1987-01-01
Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season is divided into dry and wet periods; the FGGE and geostationary satellite data was averaged; and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLPs have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.
Large-scale circulation departures related to wet episodes in northeast Brazil
NASA Technical Reports Server (NTRS)
Sikdar, D. N.; Elsner, J. B.
1985-01-01
Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation.
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley
2017-04-01
Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.
A relativistic signature in large-scale structure
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David
2016-09-01
In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.
NASA Technical Reports Server (NTRS)
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Mackey, Aaron J; Pearson, William R
2004-10-01
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine
2016-01-01
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon. PMID:27561887
Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine
2016-08-26
General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.
On Scaling Relations of Organic Antiferromagnets with Magnetic Anions
NASA Astrophysics Data System (ADS)
Shimahara, Hiroshi; Kono, Yuki
2017-04-01
We study a recently reported scaling relation of the specific heat of the organic compounds λ-(BETS)2FexGa1-xCl4. This relation suggests that the sublattice magnetization m of the π electrons and the antiferromagnetic transition temperature TN are proportional to x. Note that the scaling relation for TN can be explained by considering the effective interaction between the π electrons via the localized 3d spins on the FeCl4 anions. The effective interaction is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, but the roles of the conductive electrons and the localized spins are interchanged. Using available energy scales, it is shown that the TN scaling relation indicates that the system is in the vicinity of the quantum critical point. It is argued that the scaling relation for m at low temperatures, i.e., below TN but excluding temperatures in the vicinity of TN, indicates that the mismatch between the Fermi surface and that shifted by the nesting vector is large, at least for a large part of the Fermi surface. We also discuss the scaling relation near TN.
State of the Art in Large-Scale Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.;
2013-01-01
Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less
NASA Astrophysics Data System (ADS)
Brasseur, James G.; Juneja, Anurag
1996-11-01
Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117
Lagrangian space consistency relation for large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Bart; Hui, Lam; Xiao, Xiao
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
Lagrangian space consistency relation for large scale structure
Horn, Bart; Hui, Lam; Xiao, Xiao
2015-09-29
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
NASA Astrophysics Data System (ADS)
Michioka, Takenobu; Sato, Ayumu; Sada, Koichi
2011-10-01
Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.
Phase-relationships between scales in the perturbed turbulent boundary layer
NASA Astrophysics Data System (ADS)
Jacobi, I.; McKeon, B. J.
2017-12-01
The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.
Some aspects of control of a large-scale dynamic system
NASA Technical Reports Server (NTRS)
Aoki, M.
1975-01-01
Techniques of predicting and/or controlling the dynamic behavior of large scale systems are discussed in terms of decentralized decision making. Topics discussed include: (1) control of large scale systems by dynamic team with delayed information sharing; (2) dynamic resource allocation problems by a team (hierarchical structure with a coordinator); and (3) some problems related to the construction of a model of reduced dimension.
Large-Scale Aerosol Modeling and Analysis
2009-09-30
Modeling of Burning Emissions ( FLAMBE ) project, and other related parameters. Our plans to embed NAAPS inside NOGAPS may need to be put on hold...AOD, FLAMBE and FAROP at FNMOC are supported by 6.4 funding from PMW-120 for “Large-scale Atmospheric Models”, “Small-scale Atmospheric Models
An increase in aerosol burden due to the land-sea warming contrast
NASA Astrophysics Data System (ADS)
Hassan, T.; Allen, R.; Randles, C. A.
2017-12-01
Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.
Counting on β-Diversity to Safeguard the Resilience of Estuaries
de Juan, Silvia; Thrush, Simon F.; Hewitt, Judi E.
2013-01-01
Coastal ecosystems are often stressed by non-point source and cumulative effects that can lead to local-scale community homogenisation and a concomitant loss of large-scale ecological connectivity. Here we investigate the use of β-diversity as a measure of both community heterogeneity and ecological connectivity. To understand the consequences of different environmental scenarios on heterogeneity and connectivity, it is necessary to understand the scale at which different environmental factors affect β-diversity. We sampled macrofauna from intertidal sites in nine estuaries from New Zealand’s North Island that represented different degrees of stress derived from land-use. We used multiple regression models to identify relationships between β-diversity and local sediment variables, factors related to the estuarine and catchment hydrodynamics and morphology and land-based stressors. At local scales, we found higher β-diversity at sites with a relatively high total richness. At larger scales, β-diversity was positively related to γ-diversity, suggesting that a large regional species pool was linked with large-scale heterogeneity in these systems. Local environmental heterogeneity influenced β-diversity at both local and regional scales, although variables at the estuarine and catchment scales were both needed to explain large scale connectivity. The estuaries expected a priori to be the most stressed exhibited higher variance in community dissimilarity between sites and connectivity to the estuary species pool. This suggests that connectivity and heterogeneity metrics could be used to generate early warning signals of cumulative stress. PMID:23755252
Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Gingrich, Mark
Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.
Lagrangian space consistency relation for large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu
Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less
ESRI applications of GIS technology: Mineral resource development
NASA Technical Reports Server (NTRS)
Derrenbacher, W.
1981-01-01
The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.
Large-scale linear programs in planning and prediction.
DOT National Transportation Integrated Search
2017-06-01
Large-scale linear programs are at the core of many traffic-related optimization problems in both planning and prediction. Moreover, many of these involve significant uncertainty, and hence are modeled using either chance constraints, or robust optim...
Transfer of movement sequences: bigger is better.
Dean, Noah J; Kovacs, Attila J; Shea, Charles H
2008-02-01
Experiment 1 was conducted to determine if proportional transfer from "small to large" scale movements is as effective as transferring from "large to small." We hypothesize that the learning of larger scale movement will require the participant to learn to manage the generation, storage, and dissipation of forces better than when practicing smaller scale movements. Thus, we predict an advantage for transfer of larger scale movements to smaller scale movements relative to transfer from smaller to larger scale movements. Experiment 2 was conducted to determine if adding a load to a smaller scale movement would enhance later transfer to a larger scale movement sequence. It was hypothesized that the added load would require the participants to consider the dynamics of the movement to a greater extent than without the load. The results replicated earlier findings of effective transfer from large to small movements, but consistent with our hypothesis, transfer was less effective from small to large (Experiment 1). However, when a load was added during acquisition transfer from small to large was enhanced even though the load was removed during the transfer test. These results are consistent with the notion that the transfer asymmetry noted in Experiment 1 was due to factors related to movement dynamics that were enhanced during practice of the larger scale movement sequence, but not during the practice of the smaller scale movement sequence. The findings that the movement structure is unaffected by transfer direction but the movement dynamics are influenced by transfer direction is consistent with hierarchal models of sequence production.
ERIC Educational Resources Information Center
Juzwik, Mary M.; Nystrand, Martin; Kelly, Sean; Sherry, Michael B.
2008-01-01
Five questions guided a case study exploring the relationship between oral narrative and discussion in middle school literature study: (a) Relative to similar classrooms in a large-scale study, how can overall literature instruction be characterized? (b) Relative to similar classrooms in a large-scale study, how well do students achieve in the…
Modified dispersion relations, inflation, and scale invariance
NASA Astrophysics Data System (ADS)
Bianco, Stefano; Friedhoff, Victor Nicolai; Wilson-Ewing, Edward
2018-02-01
For a certain type of modified dispersion relations, the vacuum quantum state for very short wavelength cosmological perturbations is scale-invariant and it has been suggested that this may be the source of the scale-invariance observed in the temperature anisotropies in the cosmic microwave background. We point out that for this scenario to be possible, it is necessary to redshift these short wavelength modes to cosmological scales in such a way that the scale-invariance is not lost. This requires nontrivial background dynamics before the onset of standard radiation-dominated cosmology; we demonstrate that one possible solution is inflation with a sufficiently large Hubble rate, for this slow roll is not necessary. In addition, we also show that if the slow-roll condition is added to inflation with a large Hubble rate, then for any power law modified dispersion relation quantum vacuum fluctuations become nearly scale-invariant when they exit the Hubble radius.
2017-01-01
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167576
Groups of galaxies in the Center for Astrophysics redshift survey
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1989-01-01
By applying the Huchra and Geller (1982) objective group identification algorithm to the Center for Astrophysics' redshift survey, a catalog of 128 groups with three or more members is extracted, and 92 of these are used as a statistical sample. A comparison of the distribution of group centers with the distribution of all galaxies in the survey indicates qualitatively that groups trace the large-scale structure of the region. The physical properties of groups may be related to the details of large-scale structure, and it is concluded that differences among group catalogs may be due to the properties of large-scale structures and their location relative to the survey limits.
Field-aligned currents and large-scale magnetospheric electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1979-01-01
The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.
NASA Astrophysics Data System (ADS)
Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov
2012-02-01
Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.
Large-scale velocities and primordial non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Fabian
2010-09-15
We study the peculiar velocities of density peaks in the presence of primordial non-Gaussianity. Rare, high-density peaks in the initial density field can be identified with tracers such as galaxies and clusters in the evolved matter distribution. The distribution of relative velocities of peaks is derived in the large-scale limit using two different approaches based on a local biasing scheme. Both approaches agree, and show that halos still stream with the dark matter locally as well as statistically, i.e. they do not acquire a velocity bias. Nonetheless, even a moderate degree of (not necessarily local) non-Gaussianity induces a significant skewnessmore » ({approx}0.1-0.2) in the relative velocity distribution, making it a potentially interesting probe of non-Gaussianity on intermediate to large scales. We also study two-point correlations in redshift space. The well-known Kaiser formula is still a good approximation on large scales, if the Gaussian halo bias is replaced with its (scale-dependent) non-Gaussian generalization. However, there are additional terms not encompassed by this simple formula which become relevant on smaller scales (k > or approx. 0.01h/Mpc). Depending on the allowed level of non-Gaussianity, these could be of relevance for future large spectroscopic surveys.« less
Large scale obscuration and related climate effects open literature bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, N.A.; Geitgey, J.; Behl, Y.K.
1994-05-01
Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.
Response of deep and shallow tropical maritime cumuli to large-scale processes
NASA Technical Reports Server (NTRS)
Yanai, M.; Chu, J.-H.; Stark, T. E.; Nitta, T.
1976-01-01
The bulk diagnostic method of Yanai et al. (1973) and a simplified version of the spectral diagnostic method of Nitta (1975) are used for a more quantitative evaluation of the response of various types of cumuliform clouds to large-scale processes, using the same data set in the Marshall Islands area for a 100-day period in 1956. The dependence of the cloud mass flux distribution on radiative cooling, large-scale vertical motion, and evaporation from the sea is examined. It is shown that typical radiative cooling rates in the tropics tend to produce a bimodal distribution of mass spectrum exhibiting deep and shallow clouds. The bimodal distribution is further enhanced when the large-scale vertical motion is upward, and a nearly unimodal distribution of shallow clouds prevails when the relative cooling is compensated by the heating due to the large-scale subsidence. Both deep and shallow clouds are modulated by large-scale disturbances. The primary role of surface evaporation is to maintain the moisture flux at the cloud base.
Origin of the Two Scales of Wind Ripples on Mars
NASA Technical Reports Server (NTRS)
Lapotre, Mathieu G. A.; Ewing, Ryan C.; Lamb, Michael P.; Fischer, Woodward W.; Grotzinger, John P.; Rubin, David M.; Lewis, Kevin W.; Day, Mackenzie; Gupta, Sanjeev; Banham, Steeve G.;
2016-01-01
Earth's sandy deserts host two main types of bedforms - decimeter-scale ripples and larger dunes. Years of orbital observations on Mars also confirmed the existence of two modes of active eolian bedforms - meter-scale ripples, and dunes. By analogy to terrestrial ripples, which are thought to form from a grain mechanism, it was hypothesized that large martian ripples also formed from grain impacts, but spaced further apart due to elongated saltation trajectories from the lower martian gravity and different atmospheric properties. However, the Curiosity rover recently documented the coexistence of three scales of bedforms in Gale crater. Because a grain impact mechanism cannot readily explain two distinct and coeval ripple modes in similar sand sizes, a new mechanism seems to be required to explain one of the scales of ripples. Small ripples are most similar to Earth's impact ripples, with straight crests and subdued profiles. In contrast, large martian ripples are sinuous and asymmetric, with lee slopes dominated by grain flows and grainfall deposits. Thus, large martian ripples resemble current ripples formed underwater on Earth, suggesting that they may form from a fluid-drag mechanism. To test this hypothesis, we develop a scaling relation to predict the spacing of fluid-drag ripples from an extensive flume data compilation. The size of large martian ripples is predicted by our scaling relation when adjusted for martian atmospheric properties. Specifically, we propose that the wavelength of martian wind-drag ripples arises from the high kinematic viscosity of the low-density atmosphere. Because fluid density controls drag-ripple size, our scaling relation can help constrain paleoatmospheric density from wind-drag ripple stratification.
Origin of the two scales of wind ripples on Mars
NASA Astrophysics Data System (ADS)
Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M.; Day, M. D.; Gupta, S.; Banham, S.; Bridges, N.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A., III; Ming, D. W.; Mischna, M.; Rice, M. S.; Sumner, D. Y.; Vasavada, A. R.; Yingst, R. A.
2016-12-01
Earth's sandy deserts host two main types of bedforms - decimeter-scale ripples and larger dunes. Years of orbital observations on Mars also confirmed the existence of two modes of active eolian bedforms - meter-scale ripples, and dunes. By analogy to terrestrial ripples, which are thought to form from a grain mechanism, it was hypothesized that large martian ripples also formed from grain impacts, but spaced further apart due to elongated saltation trajectories from the lower martian gravity and different atmospheric properties. However, the Curiosity rover recently documented the coexistence of three scales of bedforms in Gale crater. Because a grain impact mechanism cannot readily explain two distinct and coeval ripple modes in similar sand sizes, a new mechanism seems to be required to explain one of the scales of ripples. Small ripples are most similar to Earth's impact ripples, with straight crests and subdued profiles. In contrast, large martian ripples are sinuous and asymmetric, with lee slopes dominated by grain flows and grainfall deposits. Thus, large martian ripples resemble current ripples formed underwater on Earth, suggesting that they may form from a fluid-drag mechanism. To test this hypothesis, we develop a scaling relation to predict the spacing of fluid-drag ripples from an extensive flume data compilation. The size of large martian ripples is predicted by our scaling relation when adjusted for martian atmospheric properties. Specifically, we propose that the wavelength of martian wind-drag ripples arises from the high kinematic viscosity of the low-density atmosphere. Because fluid density controls drag-ripple size, our scaling relation can help constrain paleoatmospheric density from wind-drag ripple stratification.
The global reference atmospheric model, mod 2 (with two scale perturbation model)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Hargraves, W. R.
1976-01-01
The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.
Integration and segregation of large-scale brain networks during short-term task automatization
Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes
2016-01-01
The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095
Ward identities and consistency relations for the large scale structure with multiple species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peloso, Marco; Pietroni, Massimo, E-mail: peloso@physics.umn.edu, E-mail: pietroni@pd.infn.it
2014-04-01
We present fully nonlinear consistency relations for the squeezed bispectrum of Large Scale Structure. These relations hold when the matter component of the Universe is composed of one or more species, and generalize those obtained in [1,2] in the single species case. The multi-species relations apply to the standard dark matter + baryons scenario, as well as to the case in which some of the fields are auxiliary quantities describing a particular population, such as dark matter halos or a specific galaxy class. If a large scale velocity bias exists between the different populations new terms appear in the consistencymore » relations with respect to the single species case. As an illustration, we discuss two physical cases in which such a velocity bias can exist: (1) a new long range scalar force in the dark matter sector (resulting in a violation of the equivalence principle in the dark matter-baryon system), and (2) the distribution of dark matter halos relative to that of the underlying dark matter field.« less
Meador, M.R.; Whittier, T.R.; Goldstein, R.M.; Hughes, R.M.; Peck, D.V.
2008-01-01
Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data collection, analyses, and interpretation. The index of biotic integrity (IBI) has been widely used in eastern and central North America, where fish assemblages are complex and largely composed of native species, but IBI development has been hindered in the western United States because of relatively low fish species richness and greater relative abundance of alien fishes. Approaches to developing IBIs rarely provide a consistent means of assessing biological condition across multiple ecoregions. We conducted an evaluation of IBIs recently proposed for three ecoregions of the western United States using an independent data set covering a large geographic scale. We standardized the regional IBIs and developed biological condition criteria, assessed the responsiveness of IBIs to basin-level land uses, and assessed their precision and concordance with basin-scale IBIs. Standardized IBI scores from 318 sites in the western United States comprising mountain, plains, and xeric ecoregions were significantly related to combined urban and agricultural land uses. Standard deviations and coefficients of variation revealed relatively low variation in IBI scores based on multiple sampling reaches at sites. A relatively high degree of corroboration with independent, locally developed IBIs indicates that the regional IBIs are robust across large geographic scales, providing precise and accurate assessments of biological condition for western U.S. streams. ?? Copyright by the American Fisheries Society 2008.
NASA Astrophysics Data System (ADS)
Chan, Duo; Zhang, Yang; Wu, Qigang
2013-04-01
East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr
We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
Duvvuri, Subrahmanyam; McKeon, Beverley
2017-03-13
Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Thorslund, J.; Jarsjo, J.; Destouni, G.
2017-12-01
The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-10-24
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Blazek, Jonathan A.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E.; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2018-02-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv < 0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of baryon acoustic oscillation (BAO) method measurements of the cosmic distance scale using the two-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3 per cent rms in the distance scale inferred from the BAO feature in the BOSS two-point clustering, well below the 1 per cent statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument (DESI) to self-protect against the relative velocity as a possible systematic.
Considerations for Managing Large-Scale Clinical Trials.
ERIC Educational Resources Information Center
Tuttle, Waneta C.; And Others
1989-01-01
Research management strategies used effectively in a large-scale clinical trial to determine the health effects of exposure to Agent Orange in Vietnam are discussed, including pre-project planning, organization according to strategy, attention to scheduling, a team approach, emphasis on guest relations, cross-training of personnel, and preparing…
Leaders Leading and Learning (Part 1)
ERIC Educational Resources Information Center
Hannay, Lynne M.; Manning, Michael; Earl, Sandra; Blair, Don
2006-01-01
Internationally, large scale reform is big business and yet relatively little is known about the senior administrators who manage and lead local educational reform implementation. In this first of a two-part article, the authors focus on the role of senior administrators in facilitating large-scale reform in one Ontario, Canada school district…
NASA Astrophysics Data System (ADS)
Cheon, M.; Chang, I.
1999-04-01
The scaling behavior for a binary fragmentation of critical percolation clusters is investigated by a large-cell Monte Carlo real-space renormalization group method in two and three dimensions. We obtain accurate values of critical exponents λ and phi describing the scaling of fragmentation rate and the distribution of fragments' masses produced by a binary fragmentation. Our results for λ and phi show that the fragmentation rate is proportional to the size of mother cluster, and the scaling relation σ = 1 + λ - phi conjectured by Edwards et al. to be valid for all dimensions is satisfied in two and three dimensions, where σ is the crossover exponent of the average cluster number in percolation theory, which excludes the other scaling relations.
Measured acoustic characteristics of ducted supersonic jets at different model scales
NASA Technical Reports Server (NTRS)
Jones, R. R., III; Ahuja, K. K.; Tam, Christopher K. W.; Abdelwahab, M.
1993-01-01
A large-scale (about a 25x enlargement) model of the Georgia Tech Research Institute (GTRI) hardware was installed and tested in the Propulsion Systems Laboratory of the NASA Lewis Research Center. Acoustic measurements made in these two facilities are compared and the similarity in acoustic behavior over the scale range under consideration is highlighted. The study provide the acoustic data over a relatively large-scale range which may be used to demonstrate the validity of scaling methods employed in the investigation of this phenomena.
A large-scale perspective on stress-induced alterations in resting-state networks
NASA Astrophysics Data System (ADS)
Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron
2016-02-01
Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
How well can regional fluxes be derived from smaller-scale estimates?
NASA Technical Reports Server (NTRS)
Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.
1992-01-01
Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
NASA Astrophysics Data System (ADS)
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
Using SQL Databases for Sequence Similarity Searching and Analysis.
Pearson, William R; Mackey, Aaron J
2017-09-13
Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Afanasiev, N. T.; Markov, V. P.
2011-08-01
Approximate functional relationships for the calculation of a disturbed transionogram with a trace deformation caused by the influence of a large-scale irregularity in the electron density are obtained. Numerical and asymptotic modeling of disturbed transionograms at various positions of a spacecraft relative to a ground-based observation point is performed. A possibility of the determination of the intensity and dimensions of a single large-scale irregularity near the boundary of the radio transparency frequency range of the ionosphere is demonstrated.
Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.
Baars, W J; Hutchins, N; Marusic, I
2017-03-13
Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Early childhood education: Status trends, and issues related to electronic delivery
NASA Technical Reports Server (NTRS)
Rothenberg, D.
1973-01-01
The status of, and trends and issues within, early childhood education which are related to the possibilities of electronic delivery of educational service are considered in a broader investigation of the role of large scale, satellite based educational telecommunications systems. Data are analyzed and trends and issues discussed to provide information useful to the system designer who wishes to identify and assess the opportunities for large scale electronic delivery in early childhood education.
NASA Astrophysics Data System (ADS)
Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun
2017-06-01
Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.
Large-scale dynamos in rapidly rotating plane layer convection
NASA Astrophysics Data System (ADS)
Bushby, P. J.; Käpylä, P. J.; Masada, Y.; Brandenburg, A.; Favier, B.; Guervilly, C.; Käpylä, M. J.
2018-05-01
Context. Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component. Aims: Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability. Methods: The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes. Results: In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.
Drainage networks after wildfire
Kinner, D.A.; Moody, J.A.
2005-01-01
Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.
NASA Astrophysics Data System (ADS)
Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey
2017-04-01
Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value
Large-Scale Coronal Heating from the Solar Magnetic Network
NASA Technical Reports Server (NTRS)
Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.
1999-01-01
In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
Using Large-Scale Databases in Evaluation: Advances, Opportunities, and Challenges
ERIC Educational Resources Information Center
Penuel, William R.; Means, Barbara
2011-01-01
Major advances in the number, capabilities, and quality of state, national, and transnational databases have opened up new opportunities for evaluators. Both large-scale data sets collected for administrative purposes and those collected by other researchers can provide data for a variety of evaluation-related activities. These include (a)…
The Role of Reading Comprehension in Large-Scale Subject-Matter Assessments
ERIC Educational Resources Information Center
Zhang, Ting
2013-01-01
This study was designed with the overall goal of understanding how difficulties in reading comprehension are associated with early adolescents' performance in large-scale assessments in subject domains including science and civic-related social studies. The current study extended previous research by taking a cognition-centered approach based on…
Voices from Test-Takers: Further Evidence for Language Assessment Validation and Use
ERIC Educational Resources Information Center
Cheng, Liying; DeLuca, Christopher
2011-01-01
Test-takers' interpretations of validity as related to test constructs and test use have been widely debated in large-scale language assessment. This study contributes further evidence to this debate by examining 59 test-takers' perspectives in writing large-scale English language tests. Participants wrote about their test-taking experiences in…
Microfilament-Eruption Mechanism for Solar Spicules
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.
2017-01-01
Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon (approximately 1 per day) and occur with relatively large-scale erupting filaments (approximately 10 (sup 5) kilometers long). Coronal jets are more common (approximately 100s per day), but occur from erupting minifilaments of smaller size (approximately 10 (sup 4) kilometers long). It is known that solar spicules are much more frequent (many millions per day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of "microfilaments" of length comparable to the width of observed spicules (approximately 300 kilometers). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fitted with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and the production of spicules by microfilament eruptions might explain why spicules spin, as do coronal jets. The expected small-scale neutral lines from which the microfilaments would be expected to erupt would be difficult to detect reliably with current instrumentation, but might be apparent with instrumentation of the near future. A full report on this work appears in Sterling and Moore 2016, ApJL, 829, L9.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1978-01-01
A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Raghunath, R.; Fu, L. L.
1996-01-01
The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.
Winter, Sam; Xie, Dong
2008-01-01
Boys and girls establish relatively stable gender stereotyped behavior patterns by middle childhood. Parent-report questionnaires measuring children’s gender-related behavior enable researchers to conduct large-scale screenings of community samples of children. For school-aged children, two parent-report instruments, the Child Game Participation Questionnaire (CGPQ) and the Child Behavior and Attitude Questionnaire (CBAQ), have long been used for measuring children’s sex-dimorphic behaviors in Western societies, but few studies have been conducted using these measures for Chinese populations. The current study aimed to empirically examine and modify the two instruments for their applications to Chinese society. Parents of 486 Chinese boys and 417 Chinese girls (6–12 years old) completed a questionnaire comprising items from the CGPQ and CBAQ, and an additional 14 items specifically related to Chinese gender-specific games. Items revealing gender differences in a Chinese sample were identified and used to construct a Child Play Behavior and Activity Questionnaire (CPBAQ). Four new scales were generated through factor analysis: a Gender Scale, a Girl Typicality Scale, a Boy Typicality Scale, and a Cross-Gender Scale (CGS). These scales had satisfactory internal reliabilities and large effect sizes for gender. The CPBAQ is believed to be a promising instrument for measuring children’s gender-related behavior in China. PMID:18719986
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data
Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.
2017-01-01
With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less
Strain localisation in the continental lithosphere, a scale-dependent process
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Burov, Evguenii
2013-04-01
Strain localisation in continents is a general question tackled by specialists of various disciplines in Earth Sciences. Field geologists working at regional scale are able to describe the succession of events leading to the formation of large strain zones that accommodate large displacement within plate boundaries. On the other end of the spectrum, laboratory experiments provide numbers that quantitatively describe the rheology of rock material at the scale of a few mm and at deformation rates up to 8-10 orders of magnitude faster than in nature. Extrapolating from the scale of the experiment to the scale of the continental lithosphere is a considerable leap across 8-10 orders of magnitude both in space and time. It is however quite obvious that different processes are at work for each scale considered. At the scale of a grain aggregate diffusion within individual grains, dislocation or grain boundary sliding, depending on temperature and fluid conditions, are of primary importance. But at the scale of a mountain belt, a major detachment or a strike-slip shear zone that have accommodated tens or hundreds of kilometres of relative displacement, other parameters will take over such as structural softening and the heterogeneity of the crust inherited from past tectonic events that have juxtaposed rock units of very different compositions and induced a strong orientation of rocks. Once the deformation is localised along major shear zones, grain size reduction, interaction between rocks and fluids and metamorphic reactions and other small-scale processes tend to further localise the strain. Because the crust is colder and more lithologically complex this heterogeneity is likely much more prominent in the crust than in the mantle and then the relative importance of "small-scale" and "large-scale" parameters will be very different in the crust and in the mantle. Thus, depending upon the relative thickness of the crust and mantle in the deforming lithosphere, the role of each mechanism will have more or less important consequences on strain localisation. This complexity sometimes leads to disregard of experimental parameters in large-scale thermo-mechanical models and to use instead ad hoc "large-scale" numbers that better fit the observed geological history. The goal of the ERC RHEOLITH project is to associate to each tectonic process the relevant rheological parameters depending upon the scale considered, in an attempt to elaborate a generalized "Preliminary Rheology Model Set for Lithosphere" (PReMSL), which will cover the entire time and spatial scale range of deformation.
Wang, Lu-Yong; Fasulo, D
2006-01-01
Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.
Mesoscale Dynamical Regimes in the Midlatitudes
NASA Astrophysics Data System (ADS)
Craig, G. C.; Selz, T.
2018-01-01
The atmospheric mesoscales are characterized by a complex variety of meteorological phenomena that defy simple classification. Here a full space-time spectral analysis is carried out, based on a 7 day convection-permitting simulation of springtime midlatitude weather on a large domain. The kinetic energy is largest at synoptic scales, and on the mesoscale it is largely confined to an "advective band" where space and time scales are related by a constant of proportionality which corresponds to a velocity scale of about 10 m s-1. Computing the relative magnitude of different terms in the governing equations allows the identification of five dynamical regimes. These are tentatively identified as quasi-geostrophic flow, propagating gravity waves, stationary gravity waves related to orography, acoustic modes, and a weak temperature gradient regime, where vertical motions are forced by diabatic heating.
Liquidity crises on different time scales
NASA Astrophysics Data System (ADS)
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Liquidity crises on different time scales.
Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano
2015-12-01
We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.
Predicting the effect of fire on large-scale vegetation patterns in North America.
Donald McKenzie; David L. Peterson; Ernesto. Alvarado
1996-01-01
Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...
Large-scale silviculture experiments of western Oregon and Washington.
Nathan J. Poage; Paul D. Anderson
2007-01-01
We review 12 large-scale silviculture experiments (LSSEs) in western Washington and Oregon with which the Pacific Northwest Research Station of the USDA Forest Service is substantially involved. We compiled and arrayed information about the LSSEs as a series of matrices in a relational database, which is included on the compact disc published with this report and...
Education of the handicapped child: Status, trend, and issues related to electronic delivery
NASA Technical Reports Server (NTRS)
Rothenberg, D.
1973-01-01
This study is part of a broader investigation of the role of large-scale educational telecommunications systems. Thus, data are analyzed and trends and issues discussed to provide information useful to the systems designer who wishes to identify and assess the opportunities for large-scale electronic delivery of education for the handicapped.
Confirmation of general relativity on large scales from weak lensing and galaxy velocities.
Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E; Lombriser, Lucas; Smith, Robert E
2010-03-11
Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, E(G), that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to 'galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of E(G) different from the general relativistic prediction because, in these theories, the 'gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that E(G) = 0.39 +/- 0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of E(G) approximately 0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f(R) theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.
Confirmation of general relativity on large scales from weak lensing and galaxy velocities
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Mandelbaum, Rachel; Seljak, Uros; Baldauf, Tobias; Gunn, James E.; Lombriser, Lucas; Smith, Robert E.
2010-03-01
Although general relativity underlies modern cosmology, its applicability on cosmological length scales has yet to be stringently tested. Such a test has recently been proposed, using a quantity, EG, that combines measures of large-scale gravitational lensing, galaxy clustering and structure growth rate. The combination is insensitive to `galaxy bias' (the difference between the clustering of visible galaxies and invisible dark matter) and is thus robust to the uncertainty in this parameter. Modified theories of gravity generally predict values of EG different from the general relativistic prediction because, in these theories, the `gravitational slip' (the difference between the two potentials that describe perturbations in the gravitational metric) is non-zero, which leads to changes in the growth of structure and the strength of the gravitational lensing effect. Here we report that EG = 0.39+/-0.06 on length scales of tens of megaparsecs, in agreement with the general relativistic prediction of EG~0.4. The measured value excludes a model within the tensor-vector-scalar gravity theory, which modifies both Newtonian and Einstein gravity. However, the relatively large uncertainty still permits models within f() theory, which is an extension of general relativity. A fivefold decrease in uncertainty is needed to rule out these models.
NASA Astrophysics Data System (ADS)
Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim
2017-06-01
Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.
A unified large/small-scale dynamo in helical turbulence
NASA Astrophysics Data System (ADS)
Bhat, Pallavi; Subramanian, Kandaswamy; Brandenburg, Axel
2016-09-01
We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/small-scale dynamo grows fields with a shape-invariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength overline{B}, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, ReM. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the small-scale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the ReM-dependent quenching of overline{B}/B_rms. These results are obtained for 10243 DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, overline{B}/B_rms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For PrM = 10, overline{B}/B_rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/small-scale dynamo in helical turbulence.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
HOW UNIVERSAL IS THE {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} RELATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldmann, R.; Gnedin, N. Y.; Kravtsov, A. V., E-mail: feldmann@fnal.gov
It is a well-established empirical fact that the surface density of the star formation rate, {Sigma}{sub SFR}, strongly correlates with the surface density of molecular hydrogen, {Sigma}{sub H{sub 2}}, at least when averaged over large ({approx}kpc) scales. Much less is known, however, about whether (and how) the {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} relation depends on environmental parameters, such as the metallicity or the UV radiation field in the interstellar medium (ISM). Furthermore, observations indicate that the scatter in the {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} relation increases rapidly with decreasing averaging scale. How the scale-dependent scatter is generated and how one recovers amore » tight {approx} kpc scale {Sigma}{sub SFR}-{Sigma}{sub 2} relation in the first place is still largely debated. Here, these questions are explored with hydrodynamical simulations that follow the formation and destruction of H{sub 2}, include radiative transfer of UV radiation, and resolve the ISM on {approx}60 pc scales. We find that within the considered range of H{sub 2} surface densities (10-100 M{sub sun} pc{sup -2}), the {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} relation is steeper in environments of low-metallicity and/or high-radiation fields (compared to the Galaxy), that the star formation rate (SFR) at a given H{sub 2} surface density is larger, and the scatter is increased. Deviations from a 'universal' {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} relation should be particularly relevant for high-redshift galaxies or for low-metallicity dwarfs at z {approx} 0. We also find that the use of time-averaged SFRs produces a large, scale-dependent scatter in the {Sigma}{sub SFR}-{Sigma}{sub H{sub 2}} relation. Given the plethora of observational data expected from upcoming surveys such as ALMA, the scale-scatter relation may indeed become a valuable tool for determining the physical mechanisms connecting star formation and H{sub 2} formation.« less
W production at large transverse momentum at the CERN Large Hadron Collider.
Gonsalves, Richard J; Kidonakis, Nikolaos; Sabio Vera, Agustín
2005-11-25
We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A. S.
2009-04-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
ERIC Educational Resources Information Center
Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.
2016-01-01
A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…
M. Lorenz; G. Becher; V. Mues; E. Ulrich
2006-01-01
Forest condition in Europe has been monitored over 19 years jointly by the United Nations Economic Commission for Europe (UNECE) and the European Union (EU). Large-scale variations of forest condition over space and time in relation to natural and anthropogenic factors are assessed on about 6,000 plots systematically spread across Europe. This large-scale monitoring...
ERIC Educational Resources Information Center
Walkmeyer, John
Considerations relating to the design of organizational structures for development and control of large scale educational telecommunications systems using satellites are explored. The first part of the document deals with four issues of system-wide concern. The first is user accessibility to the system, including proximity to entry points, ability…
Zamora, Gerardo; Flores-Urrutia, Mónica Crissel; Mayén, Ana-Lucia
2016-09-01
Fortification of staple foods with vitamins and minerals is an effective approach to increase micronutrient intake and improve nutritional status. The specific use of condiments and seasonings as vehicles in large-scale fortification programs is a relatively new public health strategy. This paper underscores equity considerations for the implementation of large-scale fortification of condiments and seasonings as a public health strategy by examining nonexhaustive examples of programmatic experiences and pilot projects in various settings. An overview of conceptual elements in implementation research and equity is presented, followed by an examination of equity considerations for five implementation strategies: (1) enhancing the capabilities of the public sector, (2) improving the performance of implementing agencies, (3) strengthening the capabilities and performance of frontline workers, (3) empowering communities and individuals, and (4) supporting multiple stakeholders engaged in improving health. Finally, specific considerations related to intersectoral action are considered. Large-scale fortification of condiments and seasonings cannot be a standalone strategy and needs to be implemented with concurrent and coordinated public health strategies, which should be informed by a health equity lens. © 2016 New York Academy of Sciences.
Redshift-space equal-time angular-averaged consistency relations of the gravitational dynamics
NASA Astrophysics Data System (ADS)
Nishimichi, Takahiro; Valageas, Patrick
2015-12-01
We present the redshift-space generalization of the equal-time angular-averaged consistency relations between (ℓ+n )- and n -point polyspectra (i.e., the Fourier counterparts of correlation functions) of the cosmological matter density field. Focusing on the case of the ℓ=1 large-scale mode and n small-scale modes, we use an approximate symmetry of the gravitational dynamics to derive explicit expressions that hold beyond the perturbative regime, including both the large-scale Kaiser effect and the small-scale fingers-of-god effects. We explicitly check these relations, both perturbatively, for the lowest-order version that applies to the bispectrum, and nonperturbatively, for all orders but for the one-dimensional dynamics. Using a large ensemble of N -body simulations, we find that our relation on the bispectrum in the squeezed limit (i.e., the limit where one wave number is much smaller than the other two) is valid to better than 20% up to 1 h Mpc-1 , for both the monopole and quadrupole at z =0.35 , in a Λ CDM cosmology. Additional simulations done for the Einstein-de Sitter background suggest that these discrepancies mainly come from the breakdown of the approximate symmetry of the gravitational dynamics. For practical applications, we introduce a simple ansatz to estimate the new derivative terms in the relation using only observables. Although the relation holds worse after using this ansatz, we can still recover it within 20% up to 1 h Mpc-1 , at z =0.35 for the monopole. On larger scales, k =0.2 h Mpc-1 , it still holds within the statistical accuracy of idealized simulations of volume ˜8 h-3Gpc3 without shot-noise error.
Modelling the large-scale redshift-space 3-point correlation function of galaxies
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.
2017-08-01
We present a configuration-space model of the large-scale galaxy 3-point correlation function (3PCF) based on leading-order perturbation theory and including redshift-space distortions (RSD). This model should be useful in extracting distance-scale information from the 3PCF via the baryon acoustic oscillation method. We include the first redshift-space treatment of biasing by the baryon-dark matter relative velocity. Overall, on large scales the effect of RSD is primarily a renormalization of the 3PCF that is roughly independent of both physical scale and triangle opening angle; for our adopted Ωm and bias values, the rescaling is a factor of ˜1.8. We also present an efficient scheme for computing 3PCF predictions from our model, important for allowing fast exploration of the space of cosmological parameters in future analyses.
Large-scale environments of narrow-line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.
2017-09-01
Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.
Relative Costs of Various Types of Assessments.
ERIC Educational Resources Information Center
Wheeler, Patricia H.
Issues of the relative costs of multiple choice tests and alternative types of assessment are explored. Before alternative assessments in large-scale or small-scale programs are used, attention must be given to cost considerations and the resources required to develop and implement the assessment. Major categories of cost to be considered are…
Tropospheric transport differences between models using the same large-scale meteorological fields
NASA Astrophysics Data System (ADS)
Orbe, Clara; Waugh, Darryn W.; Yang, Huang; Lamarque, Jean-Francois; Tilmes, Simone; Kinnison, Douglas E.
2017-01-01
The transport of chemicals is a major uncertainty in the modeling of tropospheric composition. A common approach is to transport gases using the winds from meteorological analyses, either using them directly in a chemical transport model or by constraining the flow in a general circulation model. Here we compare the transport of idealized tracers in several different models that use the same meteorological fields taken from Modern-Era Retrospective analysis for Research and Applications (MERRA). We show that, even though the models use the same meteorological fields, there are substantial differences in their global-scale tropospheric transport related to large differences in parameterized convection between the simulations. Furthermore, we find that the transport differences between simulations constrained with the same-large scale flow are larger than differences between free-running simulations, which have differing large-scale flow but much more similar convective mass fluxes. Our results indicate that more attention needs to be paid to convective parameterizations in order to understand large-scale tropospheric transport in models, particularly in simulations constrained with analyzed winds.
Mapping the universe in three dimensions
Haynes, Martha P.
1996-01-01
The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin. PMID:11607714
Mapping the universe in three dimensions.
Haynes, M P
1996-12-10
The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble's law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorski, K.M.
1991-03-01
The relation between cosmic microwave background (CMB) anisotropies and large-scale galaxy streaming motions is examined within the framework of inflationary cosmology. The minimal Sachs and Wolfe (1967) CMB anisotropies at large angular scales in the models with initial Harrison-Zel'dovich spectrum of inhomogeneity normalized to the local large-scale bulk flow, which are independent of the Hubble constant and specific nature of dark matter, are found to be within the anticipated ultimate sensitivity limits of COBE's Differential Microwave Radiometer experiment. For example, the most likely value of the quadrupole coefficient is predicted to be a2 not less than 7 x 10 tomore » the -6th, where equality applies to the limiting minimal model. If (1) COBE's DMR instruments perform well throughout the two-year period; (2) the anisotropy data are not marred by the systematic errors; (3) the large-scale motions retain their present observational status; (4) there is no statistical conspiracy in a sense of the measured bulk flow being of untypically high and the large-scale anisotropy of untypically low amplitudes; and (5) the low-order multipoles in the all-sky primordial fireball temperature map are not detected, the inflationary paradigm will have to be questioned. 19 refs.« less
Gray, B.R.; Shi, W.; Houser, J.N.; Rogala, J.T.; Guan, Z.; Cochran-Biederman, J. L.
2011-01-01
Ecological restoration efforts in large rivers generally aim to ameliorate ecological effects associated with large-scale modification of those rivers. This study examined whether the effects of restoration efforts-specifically those of island construction-within a largely open water restoration area of the Upper Mississippi River (UMR) might be seen at the spatial scale of that 3476ha area. The cumulative effects of island construction, when observed over multiple years, were postulated to have made the restoration area increasingly similar to a positive reference area (a proximate area comprising contiguous backwater areas) and increasingly different from two negative reference areas. The negative reference areas represented the Mississippi River main channel in an area proximate to the restoration area and an open water area in a related Mississippi River reach that has seen relatively little restoration effort. Inferences on the effects of restoration were made by comparing constrained and unconstrained models of summer chlorophyll a (CHL), summer inorganic suspended solids (ISS) and counts of benthic mayfly larvae. Constrained models forced trends in means or in both means and sampling variances to become, over time, increasingly similar to those in the positive reference area and increasingly dissimilar to those in the negative reference areas. Trends were estimated over 12- (mayflies) or 14-year sampling periods, and were evaluated using model information criteria. Based on these methods, restoration effects were observed for CHL and mayflies while evidence in favour of restoration effects on ISS was equivocal. These findings suggest that the cumulative effects of island building at relatively large spatial scales within large rivers may be estimated using data from large-scale surveillance monitoring programs. Published in 2010 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Alexander, L.; Hupp, C. R.; Forman, R. T.
2002-12-01
Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.
The brief multidimensional students' life satisfaction scale-college version.
Zullig, Keith J; Huebner, E Scott; Patton, Jon M; Murray, Karen A
2009-01-01
To investigate the psychometric properties of the BMSLSS-College among 723 college students. Internal consistency estimates explored scale reliability, factor analysis explored construct validity, and known-groups validity was assessed using the National College Youth Risk Behavior Survey and Harvard School of Public Health College Alcohol Study. Criterion-related validity was explored through analyses with the CDC's health-related quality of life scale and a social isolation scale. Acceptable internal consistency reliability, construct, known-groups, and criterion-related validity were established. Findings offer preliminary support for the BMSLSS-C; it could be useful in large-scale research studies, applied screening contexts, and for program evaluation purposes toward achieving Healthy People 2010 objectives.
Centrifuge impact cratering experiments: Scaling laws for non-porous targets
NASA Technical Reports Server (NTRS)
Schmidt, Robert M.
1987-01-01
A geotechnical centrifuge was used to investigate large body impacts onto planetary surfaces. At elevated gravity, it is possible to match various dimensionless similarity parameters which were shown to govern large scale impacts. Observations of crater growth and target flow fields have provided detailed and critical tests of a complete and unified scaling theory for impact cratering. Scaling estimates were determined for nonporous targets. Scaling estimates for large scale cratering in rock proposed previously by others have assumed that the crater radius is proportional to powers of the impactor energy and gravity, with no additional dependence on impact velocity. The size scaling laws determined from ongoing centrifuge experiments differ from earlier ones in three respects. First, a distinct dependence of impact velocity is recognized, even for constant impactor energy. Second, the present energy exponent for low porosity targets, like competent rock, is lower than earlier estimates. Third, the gravity exponent is recognized here as being related to both the energy and the velocity exponents.
USDA-ARS?s Scientific Manuscript database
Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...
Granular activated carbon (GAC) is an effective treatment technique for the removal of some toxic organics from drinking water or wastewater, however, it can be a relatively expensive process, especially if it is designed improperly. A rapid method for the design of large-scale f...
Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations
Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali
2015-01-01
Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts. PMID:25993414
Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry.
Kusenko, Alexander; Pearce, Lauren; Yang, Louis
2015-02-13
The recent measurement of the Higgs boson mass implies a relatively slow rise of the standard model Higgs potential at large scales, and a possible second minimum at even larger scales. Consequently, the Higgs field may develop a large vacuum expectation value during inflation. The relaxation of the Higgs field from its large postinflationary value to the minimum of the effective potential represents an important stage in the evolution of the Universe. During this epoch, the time-dependent Higgs condensate can create an effective chemical potential for the lepton number, leading to a generation of the lepton asymmetry in the presence of some large right-handed Majorana neutrino masses. The electroweak sphalerons redistribute this asymmetry between leptons and baryons. This Higgs relaxation leptogenesis can explain the observed matter-antimatter asymmetry of the Universe even if the standard model is valid up to the scale of inflation, and any new physics is suppressed by that high scale.
Presenting an Approach for Conducting Knowledge Architecture within Large-Scale Organizations.
Varaee, Touraj; Habibi, Jafar; Mohaghar, Ali
2015-01-01
Knowledge architecture (KA) establishes the basic groundwork for the successful implementation of a short-term or long-term knowledge management (KM) program. An example of KA is the design of a prototype before a new vehicle is manufactured. Due to a transformation to large-scale organizations, the traditional architecture of organizations is undergoing fundamental changes. This paper explores the main strengths and weaknesses in the field of KA within large-scale organizations and provides a suitable methodology and supervising framework to overcome specific limitations. This objective was achieved by applying and updating the concepts from the Zachman information architectural framework and the information architectural methodology of enterprise architecture planning (EAP). The proposed solution may be beneficial for architects in knowledge-related areas to successfully accomplish KM within large-scale organizations. The research method is descriptive; its validity is confirmed by performing a case study and polling the opinions of KA experts.
What Will the Neighbors Think? Building Large-Scale Science Projects Around the World
Jones, Craig; Mrotzek, Christian; Toge, Nobu; Sarno, Doug
2017-12-22
Public participation is an essential ingredient for turning the International Linear Collider into a reality. Wherever the proposed particle accelerator is sited in the world, its neighbors -- in any country -- will have something to say about hosting a 35-kilometer-long collider in their backyards. When it comes to building large-scale physics projects, almost every laboratory has a story to tell. Three case studies from Japan, Germany and the US will be presented to examine how community relations are handled in different parts of the world. How do particle physics laboratories interact with their local communities? How do neighbors react to building large-scale projects in each region? How can the lessons learned from past experiences help in building the next big project? These and other questions will be discussed to engage the audience in an active dialogue about how a large-scale project like the ILC can be a good neighbor.
Artificial intelligence issues related to automated computing operations
NASA Technical Reports Server (NTRS)
Hornfeck, William A.
1989-01-01
Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined.
Quantum probability, choice in large worlds, and the statistical structure of reality.
Ross, Don; Ladyman, James
2013-06-01
Classical probability models of incentive response are inadequate in "large worlds," where the dimensions of relative risk and the dimensions of similarity in outcome comparisons typically differ. Quantum probability models for choice in large worlds may be motivated pragmatically - there is no third theory - or metaphysically: statistical processing in the brain adapts to the true scale-relative structure of the universe.
SUSY’s Ladder: Reframing sequestering at Large Volume
Reece, Matthew; Xue, Wei
2016-04-07
Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less
Backscattering from a Gaussian distributed, perfectly conducting, rough surface
NASA Technical Reports Server (NTRS)
Brown, G. S.
1977-01-01
The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.
Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.
Large-scale neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Furber, Steve
2016-10-01
Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.; ...
2017-09-12
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Recent Developments in Language Assessment and the Case of Four Large-Scale Tests of ESOL Ability
ERIC Educational Resources Information Center
Stoynoff, Stephen
2009-01-01
This review article surveys recent developments and validation activities related to four large-scale tests of L2 English ability: the iBT TOEFL, the IELTS, the FCE, and the TOEIC. In addition to describing recent changes to these tests, the paper reports on validation activities that were conducted on the measures. The results of this research…
Musical expertise is related to altered functional connectivity during audiovisual integration
Paraskevopoulos, Evangelos; Kraneburg, Anja; Herholz, Sibylle Cornelia; Bamidis, Panagiotis D.; Pantev, Christo
2015-01-01
The present study investigated the cortical large-scale functional network underpinning audiovisual integration via magnetoencephalographic recordings. The reorganization of this network related to long-term musical training was investigated by comparing musicians to nonmusicians. Connectivity was calculated on the basis of the estimated mutual information of the sources’ activity, and the corresponding networks were statistically compared. Nonmusicians’ results indicated that the cortical network associated with audiovisual integration supports visuospatial processing and attentional shifting, whereas a sparser network, related to spatial awareness supports the identification of audiovisual incongruences. In contrast, musicians’ results showed enhanced connectivity in regions related to the identification of auditory pattern violations. Hence, nonmusicians rely on the processing of visual clues for the integration of audiovisual information, whereas musicians rely mostly on the corresponding auditory information. The large-scale cortical network underpinning multisensory integration is reorganized due to expertise in a cognitive domain that largely involves audiovisual integration, indicating long-term training-related neuroplasticity. PMID:26371305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.
2014-08-10
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of themore » morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.« less
Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales
ERIC Educational Resources Information Center
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.
2016-01-01
Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology, size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and small…
Facilitating Internet-Scale Code Retrieval
ERIC Educational Resources Information Center
Bajracharya, Sushil Krishna
2010-01-01
Internet-Scale code retrieval deals with the representation, storage, and access of relevant source code from a large amount of source code available on the Internet. Internet-Scale code retrieval systems support common emerging practices among software developers related to finding and reusing source code. In this dissertation we focus on some…
Using Relational Reasoning to Learn about Scientific Phenomena at Unfamiliar Scales
ERIC Educational Resources Information Center
Resnick, Ilyse; Davatzes, Alexandra; Newcombe, Nora S.; Shipley, Thomas F.
2017-01-01
Many scientific theories and discoveries involve reasoning about extreme scales, removed from human experience, such as time in geology and size in nanoscience. Thus, understanding scale is central to science, technology, engineering, and mathematics. Unfortunately, novices have trouble understanding and comparing sizes of unfamiliar large and…
NASA Astrophysics Data System (ADS)
de Boer, D. H.; Hassan, M. A.; MacVicar, B.; Stone, M.
2005-01-01
Contributions by Canadian fluvial geomorphologists between 1999 and 2003 are discussed under four major themes: sediment yield and sediment dynamics of large rivers; cohesive sediment transport; turbulent flow structure and sediment transport; and bed material transport and channel morphology. The paper concludes with a section on recent technical advances. During the review period, substantial progress has been made in investigating the details of fluvial processes at relatively small scales. Examples of this emphasis are the studies of flow structure, turbulence characteristics and bedload transport, which continue to form central themes in fluvial research in Canada. Translating the knowledge of small-scale, process-related research to an understanding of the behaviour of large-scale fluvial systems, however, continues to be a formidable challenge. Models play a prominent role in elucidating the link between small-scale processes and large-scale fluvial geomorphology, and, as a result, a number of papers describing models and modelling results have been published during the review period. In addition, a number of investigators are now approaching the problem by directly investigating changes in the system of interest at larger scales, e.g. a channel reach over tens of years, and attempting to infer what processes may have led to the result. It is to be expected that these complementary approaches will contribute to an increased understanding of fluvial systems at a variety of spatial and temporal scales. Copyright
Gravitational waves and large field inflation
NASA Astrophysics Data System (ADS)
Linde, Andrei
2017-02-01
According to the famous Lyth bound, one can confirm large field inflation by finding tensor modes with sufficiently large tensor-to-scalar ratio r. Here we will try to answer two related questions: is it possible to rule out all large field inflationary models by not finding tensor modes with r above some critical value, and what can we say about the scale of inflation by measuring r? However, in order to answer these questions one should distinguish between two different definitions of the large field inflation and three different definitions of the scale of inflation. We will examine these issues using the theory of cosmological α-attractors as a convenient testing ground.
III. FROM SMALL TO BIG: METHODS FOR INCORPORATING LARGE SCALE DATA INTO DEVELOPMENTAL SCIENCE.
Davis-Kean, Pamela E; Jager, Justin
2017-06-01
For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists. © 2017 The Society for Research in Child Development, Inc.
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
Machine Learning, deep learning and optimization in computer vision
NASA Astrophysics Data System (ADS)
Canu, Stéphane
2017-03-01
As quoted in the Large Scale Computer Vision Systems NIPS workshop, computer vision is a mature field with a long tradition of research, but recent advances in machine learning, deep learning, representation learning and optimization have provided models with new capabilities to better understand visual content. The presentation will go through these new developments in machine learning covering basic motivations, ideas, models and optimization in deep learning for computer vision, identifying challenges and opportunities. It will focus on issues related with large scale learning that is: high dimensional features, large variety of visual classes, and large number of examples.
NASA Astrophysics Data System (ADS)
Yuan, J.; Zhan, T.
2017-12-01
Sizes and organizations of mesoscale scale convective systems (MCSs) usually are related to both their precipitation characteristics and anvil productivity, which are crucial but not well-represented in current climate models. This study aims to further our knowledge about MCSs by documenting the relationship between MCSs and their associated large-scale environmental moisture and wind shear in different phases of large-scale convection. A dataset derived from MODIS and AMSR-E and TRMM, CMOPH and ERA-Interim reanalysis are used. Larger and merged systems tend to occur more frequently when the large-scale convection is stronger. At the occurrence time of MCSs, the middle troposphere relative humidity (MRH, 800-400hPa) shows large increases ( 15%) from the suppressed to the active phases. Differences of the MRH across phases appear in a large area and reaches its maximum at 650 850 km away from the center of MCSs. Higher MRH is found within 650 km around the center of merged and large MCSs in all phases. This distance is much larger than the size of any single MCSs. The MRH shows larger spatial gradients around merged MCSs, indicating that moisture tends to cluster around merged systems. Similar spatial differences of MRH appear at all phases 1-3 days before the MCSs occur. In lower troposphere (1000-850hPa), differences in the relative humidity are much smaller than that of MRH. In all phases around all MCSs the oceanic boundary layer is always effectively moisturized (RH>92%). Temporally the lower troposphere relative humidity is dominated by diurnal variations. No clear difference across systems of the wind shear is found when the domain-wide upward motion is dominated. In all cases there are always large low-level (1000-750hPa) wind shear (7-9m/s) and middle level (1000-750hPa) wind shear (11-15m/s) occurring at large distances (>500km) away from MCSs. However, both the low-level and the middle level wind shear closely around the MCSs converge to moderate values of 3-4.2m/s and 5-7m/s, respectively. Indicating that weak or moderate wind shear conditions favor developments of MCSs. Small but systematical differences in wind shear across phases are found. This study provides an observational reference for both cloud resovling or climate models to diagnose and improve their representaions of organized convection.
ERIC Educational Resources Information Center
Kampa, Nele; Köller, Olaf
2016-01-01
National and international large-scale assessments (LSA) have a major impact on educational systems, which raises fundamental questions about the validity of the measures regarding their internal structure and their relations to relevant covariates. Given its importance, research on the validity of instruments specifically developed for LSA is…
Convergence of microclimate in residential landscapes across diverse cities in the United States
Sharon J. Hall; J. Learned; B. Ruddell; K.L. Larson; J. Cavender-Bares; N. Bettez; P.M. Groffman; Morgan Grove; J.B. Heffernan; S.E. Hobbie; J.L. Morse; C. Neill; K.C. Nelson; Jarlath O' Neil-Dunne; L. Ogden; D.E. Pataki; W.D. Pearse; C. Polsky; R. Roy Chowdhury; M.K. Steele; T.L.E. Trammell
2016-01-01
The urban heat island (UHI) is a well-documented pattern of warming in cities relative to rural areas. Most UHI research utilizes remote sensing methods at large scales, or climate sensors in single cities surrounded by standardized land cover. Relatively few studies have explored continental-scale climatic patterns within common urban microenvironments such as...
Giroux, Marie-Andrée; Valiquette, Éliane; Tremblay, Jean-Pierre; Côté, Steeve D
2015-01-01
Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C) or nitrogen (δ15N) isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creminelli, Paolo; Gleyzes, Jérôme; Vernizzi, Filippo
2014-06-01
The recently derived consistency relations for Large Scale Structure do not hold if the Equivalence Principle (EP) is violated. We show it explicitly in a toy model with two fluids, one of which is coupled to a fifth force. We explore the constraints that galaxy surveys can set on EP violation looking at the squeezed limit of the 3-point function involving two populations of objects. We find that one can explore EP violations of order 10{sup −3}÷10{sup −4} on cosmological scales. Chameleon models are already very constrained by the requirement of screening within the Solar System and only a verymore » tiny region of the parameter space can be explored with this method. We show that no violation of the consistency relations is expected in Galileon models.« less
NASA Astrophysics Data System (ADS)
Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.
2018-03-01
Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.
Correlation between Academic and Skills-Based Tests in Computer Networks
ERIC Educational Resources Information Center
Buchanan, William
2006-01-01
Computing-related programmes and modules have many problems, especially related to large class sizes, large-scale plagiarism, module franchising, and an increased requirement from students for increased amounts of hands-on, practical work. This paper presents a practical computer networks module which uses a mixture of online examinations and a…
Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.
Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling
2015-11-01
In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.
Stream Flow Prediction by Remote Sensing and Genetic Programming
NASA Technical Reports Server (NTRS)
Chang, Ni-Bin
2009-01-01
A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.
Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J
2017-07-11
Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.
Large-Scale Brain Systems in ADHD: Beyond the Prefrontal-Striatal Model
Castellanos, F. Xavier; Proal, Erika
2012-01-01
Attention-deficit/hyperactivity disorder (ADHD) has long been thought to reflect dysfunction of prefrontal-striatal circuitry, with involvement of other circuits largely ignored. Recent advances in systems neuroscience-based approaches to brain dysfunction enable the development of models of ADHD pathophysiology that encompass a number of different large-scale “resting state” networks. Here we review progress in delineating large-scale neural systems and illustrate their relevance to ADHD. We relate frontoparietal, dorsal attentional, motor, visual, and default networks to the ADHD functional and structural literature. Insights emerging from mapping intrinsic brain connectivity networks provide a potentially mechanistic framework for understanding aspects of ADHD, such as neuropsychological and behavioral inconsistency, and the possible role of primary visual cortex in attentional dysfunction in the disorder. PMID:22169776
Scale and modeling issues in water resources planning
Lins, H.F.; Wolock, D.M.; McCabe, G.J.
1997-01-01
Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.
Architectural Visualization of C/C++ Source Code for Program Comprehension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panas, T; Epperly, T W; Quinlan, D
2006-09-01
Structural and behavioral visualization of large-scale legacy systems to aid program comprehension is still a major challenge. The challenge is even greater when applications are implemented in flexible and expressive languages such as C and C++. In this paper, we consider visualization of static and dynamic aspects of large-scale scientific C/C++ applications. For our investigation, we reuse and integrate specialized analysis and visualization tools. Furthermore, we present a novel layout algorithm that permits a compressive architectural view of a large-scale software system. Our layout is unique in that it allows traditional program visualizations, i.e., graph structures, to be seen inmore » relation to the application's file structure.« less
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1982-01-01
The Jet Propulsion Laboratory has developed a number of photovoltaic test and measurement specifications to guide the development of modules toward the requirements of future large-scale applications. Experience with these specifications and the extensive module measurement and testing that has accompanied their use is examined. Conclusions are drawn relative to three aspects of product certification: performance measurement, endurance testing and safety evaluation.
2011-11-01
fusion energy -production processes of the particular type of reactor using a lithium (Li) blanket or related alloys such as the Pb-17Li eutectic. As such, tritium breeding is intimately connected with energy production, thermal management, radioactivity management, materials properties, and mechanical structures of any plausible future large-scale fusion power reactor. JASON is asked to examine the current state of scientific knowledge and engineering practice on the physical and chemical bases for large-scale tritium
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, Vasubandhu; Moeller, Lauren; Stefanova, Lydia; Chan, Steven; O'Brien, James J.; Smith, Thomas J.; Plant, Nathaniel
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979–2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction–Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze.
Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.
2007-01-01
In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921
Large-scale data analysis of power grid resilience across multiple US service regions
NASA Astrophysics Data System (ADS)
Ji, Chuanyi; Wei, Yun; Mei, Henry; Calzada, Jorge; Carey, Matthew; Church, Steve; Hayes, Timothy; Nugent, Brian; Stella, Gregory; Wallace, Matthew; White, Joe; Wilcox, Robert
2016-05-01
Severe weather events frequently result in large-scale power failures, affecting millions of people for extended durations. However, the lack of comprehensive, detailed failure and recovery data has impeded large-scale resilience studies. Here, we analyse data from four major service regions representing Upstate New York during Super Storm Sandy and daily operations. Using non-stationary spatiotemporal random processes that relate infrastructural failures to recoveries and cost, our data analysis shows that local power failures have a disproportionally large non-local impact on people (that is, the top 20% of failures interrupted 84% of services to customers). A large number (89%) of small failures, represented by the bottom 34% of customers and commonplace devices, resulted in 56% of the total cost of 28 million customer interruption hours. Our study shows that extreme weather does not cause, but rather exacerbates, existing vulnerabilities, which are obscured in daily operations.
NASA Astrophysics Data System (ADS)
Best, J.
2004-05-01
The origin and scaling of large-scale coherent flow structures has been of central interest in furthering understanding of the nature of turbulent boundary layers, and recent work has shown the presence of large-scale turbulent flow structures that may extend through the whole flow depth. Such structures may dominate the entrainment of bedload sediment and advection of fine sediment in suspension. However, we still know remarkably little of the interactions between the dynamics of coherent flow structures and sediment transport, and its implications for ecosystem dynamics. This paper will discuss the first results of two-phase particle imaging velocimetry (PIV) that has been used to visualize large-scale turbulent flow structures moving over a flat bed in a water channel, and the motion of sand particles within these flows. The talk will outline the methodology, involving the fluorescent tagging of sediment and its discrimination from the fluid phase, and show results that illustrate the key role of these large-scale structures in the transport of sediment. Additionally, the presence of these structures will be discussed in relation to the origin of vorticity within flat-bed boundary layers and recent models that envisage these large-scale motions as being linked to whole-flow field structures. Discussion will focus on if these recent models simply reflect the organization of turbulent boundary layer structure and vortex packets, some of which are amply visualised at the laminar-turbulent transition.
Scaling Relations between Gas and Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Bigiel, Frank; Leroy, Adam; Walter, Fabian
2011-04-01
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.
Culmination of the inverse cascade - mean flow and fluctuations
NASA Astrophysics Data System (ADS)
Frishman, Anna; Herbert, Corentin
2017-11-01
An inverse cascade-energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it terminates in the self organization of the turbulence into a large scale coherent structure, on top of small scale fluctuations. A recent theoretical framework in which this coherent mean flow can be obtained will be discussed. Assuming that the quasi-linear approximation applies, the forcing acts at small scales, and a strong shear, the theory gives an inverse relation between the average momentum flux and the mean shear rate. It will be argued that this relation is quite general, being independent of the dissipation mechanism and largely insensitive to the type of forcing. Furthermore, in the special case of a homogeneous forcing, the relation between the momentum flux and mean shear rate is completely determined by dimensional analysis and symmetry arguments. The subject of the average energy of the fluctuations will also be touched upon, focusing on a vortex mean flow. In contrast to the momentum flux, we find that the energy of the fluctuations is determined by zero modes of the mean-flow advection operator. Using an analytic derivation for the zero mo.
Design and implementation of a distributed large-scale spatial database system based on J2EE
NASA Astrophysics Data System (ADS)
Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia
2003-03-01
With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.
Linking Dense Gas from the Milky Way to External Galaxies
NASA Astrophysics Data System (ADS)
Stephens, Ian W.; Jackson, James M.; Whitaker, J. Scott; Contreras, Yanett; Guzmán, Andrés E.; Sanhueza, Patricio; Foster, Jonathan B.; Rathborne, Jill M.
2016-06-01
In a survey of 65 galaxies, Gao & Solomon found a tight linear relation between the infrared luminosity (L IR, a proxy for the star formation rate) and the HCN(1-0) luminosity ({L}{{HCN}}). Wu et al. found that this relation extends from these galaxies to the much less luminous Galactic molecular high-mass star-forming clumps (˜1 pc scales), and posited that there exists a characteristic ratio L IR/{L}{{HCN}} for high-mass star-forming clumps. The Gao-Solomon relation for galaxies could then be explained as a summation of large numbers of high-mass star-forming clumps, resulting in the same L IR/{L}{{HCN}} ratio for galaxies. We test this explanation and other possible origins of the Gao-Solomon relation using high-density tracers (including HCN(1-0), N2H+(1-0), HCO+(1-0), HNC(1-0), HC3N(10-9), and C2H(1-0)) for ˜300 Galactic clumps from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey. The MALT90 data show that the Gao-Solomon relation in galaxies cannot be satisfactorily explained by the blending of large numbers of high-mass clumps in the telescope beam. Not only do the clumps have a large scatter in the L IR/{L}{{HCN}} ratio, but also far too many high-mass clumps are required to account for the Galactic IR and HCN luminosities. We suggest that the scatter in the L IR/{L}{{HCN}} ratio converges to the scatter of the Gao-Solomon relation at some size-scale ≳1 kpc. We suggest that the Gao-Solomon relation could instead result from of a universal large-scale star formation efficiency, initial mass function, core mass function, and clump mass function.
Heymsfield, Steven B; Chirachariyavej, Thamrong; Rhyu, Im Joo; Roongpisuthipong, Chulaporn; Heo, Moonseong; Pietrobelli, Angelo
2009-01-01
Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age < or =45 yr (n = 299) and with brain magnetic resonance imaging (MRI) studies in Korean men (n = 30) age > or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirements.
Scaling relations for large Martian valleys
NASA Astrophysics Data System (ADS)
Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.
2009-02-01
The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.
Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro
2013-03-05
Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.
On the linearity of tracer bias around voids
NASA Astrophysics Data System (ADS)
Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro
2017-07-01
The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.
How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?
Hagos, Samson; Ruby Leung, L.; Zhao, Chun; ...
2018-02-10
Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less
How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Ruby Leung, L.; Zhao, Chun
Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
Lee, I-Min; Shiroma, Eric J
2013-01-01
Background Current guidelines for aerobic activity require that adults carry out ≥150 minutes/week of moderate-intensity physical activity, with a large body of epidemiologic evidence showing this level of activity to decrease the incidence of many chronic diseases. Less is known about whether light-intensity activities also have such benefits, and whether sedentary behavior is an independent predictor of increased risks of these chronic diseases, as imprecise assessments of these behaviours and cross-sectional study designs have limited knowledge to date. Methods Recent technological advances in assessment methods have made the use of movement sensors, such as the accelerometer, feasible for use in longitudinal, large-scale epidemiologic studies. Several such studies are collecting sensor-assessed, objective measures of physical activity with the aim of relating these to the development of clinical endpoints. This is a relatively new area of research; thus, in this paper, we use the Women’s Health Study (WHS) as a case study to illustrate challenges related to data collection, data processing, and analyses of the vast amount of data collected. Results The WHS plans to collect 7 days of accelerometer-assessed physical activity and sedentary behavior in ~18,000 women aged ≥62 years. Several logistical challenges exist in collecting data; nonetheless as of 31 August 2013, 11,590 women have already provided some data. Additionally, the WHS experience on data reduction and data analyses can help inform other similar large-scale epidemiologic studies. Conclusions Important data on the health effects of light-intensity activity and sedentary behaviour will emerge from large-scale epidemiologic studies collecting objective assessments of these behaviours. PMID:24297837
NASA Astrophysics Data System (ADS)
Samadi, R.; Belkacem, K.; Ludwig, H.-G.; Caffau, E.; Campante, T. L.; Davies, G. R.; Kallinger, T.; Lund, M. N.; Mosser, B.; Baglin, A.; Mathur, S.; Garcia, R. A.
2013-11-01
Context. A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (τeff) and the root-mean-square (rms) brightness fluctuations (σ) associated with the granulation scale as a function of the peak frequency (νmax) of the solar-like oscillations. Aims: We aim at providing a theoretical background to the observed scaling relations based on a model developed in Paper I. Methods: We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in disk-integrated intensity on the basis of the theoretical model published in Paper I. For each PDS we derived the associated characteristic time (τeff) and the rms brightness fluctuations (σ) and compared these theoretical values with the theoretical scaling relations derived from the theoretical model and the measurements made on a large set of Kepler targets. Results: We derive theoretical scaling relations for τeff and σ, which show the same dependence on νmax as the observed scaling relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (ℳa) estimated at the photosphere. The theoretical scaling relations for τeff and σ match the observations well on a global scale. Quantitatively, the remaining discrepancies with the observations are found to be much smaller than previous theoretical calculations made for red giants. Conclusions: Our modelling provides additional theoretical support for the observed variations of σ and τeff with νmax. It also highlights the important role of ℳa in controlling the properties of the stellar granulation. However, the observations made with Kepler on a wide variety of stars cannot confirm the dependence of our scaling relations on ℳa. Measurements of the granulation background and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the dependence of the theoretical scaling relations with ℳa. Appendices are available in electronic form at http://www.aanda.org
Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes
Cannon, Steven B.; Sterck, Lieven; Rombauts, Stephane; Sato, Shusei; Cheung, Foo; Gouzy, Jérôme; Wang, Xiaohong; Mudge, Joann; Vasdewani, Jayprakash; Schiex, Thomas; Spannagl, Manuel; Monaghan, Erin; Nicholson, Christine; Humphray, Sean J.; Schoof, Heiko; Mayer, Klaus F. X.; Rogers, Jane; Quétier, Francis; Oldroyd, Giles E.; Debellé, Frédéric; Cook, Douglas R.; Retzel, Ernest F.; Roe, Bruce A.; Town, Christopher D.; Tabata, Satoshi; Van de Peer, Yves; Young, Nevin D.
2006-01-01
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar). PMID:17003129
Breast and Prostate Cancer and Hormone-Related Gene Variant Study
The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.
On The Evidence For Large-Scale Galactic Conformity In The Local Universe
NASA Astrophysics Data System (ADS)
Sin, Larry P. T.; Lilly, Simon J.; Henriques, Bruno M. B.
2017-10-01
We re-examine the observational evidence for large-scale (4 Mpc) galactic conformity in the local Universe, as presented in Kauffmann et al. We show that a number of methodological features of their analysis act to produce a misleadingly high amplitude of the conformity signal. These include a weighting in favour of central galaxies in very high density regions, the likely misclassification of satellite galaxies as centrals in the same high-density regions and the use of medians to characterize bimodal distributions. We show that the large-scale conformity signal in Kauffmann et al. clearly originates from a very small number of central galaxies in the vicinity of just a few very massive clusters, whose effect is strongly amplified by the methodological issues that we have identified. Some of these 'centrals' are likely misclassified satellites, but some may be genuine centrals showing a real conformity effect. Regardless, this analysis suggests that conformity on 4 Mpc scales is best viewed as a relatively short-range effect (at the virial radius) associated with these very large neighbouring haloes, rather than a very long-range effect (at tens of virial radii) associated with the relatively low-mass haloes that host the nominal central galaxies in the analysis. A mock catalogue constructed from a recent semi-analytic model shows very similar conformity effects to the data when analysed in the same way, suggesting that there is no need to introduce new physical processes to explain galactic conformity on 4 Mpc scales.
ERIC Educational Resources Information Center
Stricker, Lawrence J.; Rock, Donald A.; Bridgeman, Brent
2015-01-01
This study explores stereotype threat on low-stakes tests used in a large-scale assessment, math and reading tests in the Education Longitudinal Study of 2002 (ELS). Issues identified in laboratory research (though not observed in studies of high-stakes tests) were assessed: whether inquiring about their race and gender is related to the…
2015-07-01
Reactive kVAR Kilo Watts kW Lithium Ion Li Ion Lithium-Titanate Oxide nLTO Natural gas NG Performance Objectives PO Photovoltaic PV Power ...cloud covered) periods. The demonstration features a large (relative to the overall system power requirements) photovoltaic solar array, whose inverter...microgrid with less expensive power storage instead of large scale energy storage and that the renewable energy with small-scale power storage can
Grossman, Murray; Powers, John; Ash, Sherry; McMillan, Corey; Burkholder, Lisa; Irwin, David; Trojanowski, John Q.
2012-01-01
Non-fluent/agrammatic primary progressive aphasia (naPPA) is a progressive neurodegenerative condition most prominently associated with slowed, effortful speech. A clinical imaging marker of naPPA is disease centered in the left inferior frontal lobe. We used multimodal imaging to assess large-scale neural networks underlying effortful expression in 15 patients with sporadic naPPA due to frontotemporal lobar degeneration (FTLD) spectrum pathology. Effortful speech in these patients is related in part to impaired grammatical processing, and to phonologic speech errors. Gray matter (GM) imaging shows frontal and anterior-superior temporal atrophy, most prominently in the left hemisphere. Diffusion tensor imaging reveals reduced fractional anisotropy in several white matter (WM) tracts mediating projections between left frontal and other GM regions. Regression analyses suggest disruption of three large-scale GM-WM neural networks in naPPA that support fluent, grammatical expression. These findings emphasize the role of large-scale neural networks in language, and demonstrate associated language deficits in naPPA. PMID:23218686
Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium.
Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Tasaka, Yuji; Yoshida, Masataka; Yano, Kanako; Takeda, Yasushi
2010-07-01
This investigation observed large-scale flows in liquid gallium and the oscillation with Rayleigh-Bénard convection. An ultrasonic velocity profiling method was used to visualize the spatiotemporal flow pattern of the liquid gallium in a horizontally long rectangular vessel. Measuring the horizontal component of the flow velocity at several lines, an organized roll-like structure with four cells was observed in the 1×10(4)-2×10(5) range of Rayleigh numbers, and the rolls show clear oscillatory behavior. The long-term fluctuations in temperature observed in point measurements correspond to the oscillations of the organized roll structure. This flow structure can be interpreted as the continuous development of the oscillatory instability of two-dimensional roll convection that is theoretically investigated around the critical Rayleigh number. Both the velocity of the large-scale flows and the frequency of the oscillation increase proportional to the square root of the Rayleigh number. This indicates that the oscillation is closely related to the circulation of large-scale flow.
Economically viable large-scale hydrogen liquefaction
NASA Astrophysics Data System (ADS)
Cardella, U.; Decker, L.; Klein, H.
2017-02-01
The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.
Completing the mechanical energy pathways in turbulent Rayleigh-Bénard convection.
Gayen, Bishakhdatta; Hughes, Graham O; Griffiths, Ross W
2013-09-20
A new, more complete view of the mechanical energy budget for Rayleigh-Bénard convection is developed and examined using three-dimensional numerical simulations at large Rayleigh numbers and Prandtl number of 1. The driving role of available potential energy is highlighted. The relative magnitudes of different energy conversions or pathways change significantly over the range of Rayleigh numbers Ra ~ 10(7)-10(13). At Ra < 10(7) small-scale turbulent motions are energized directly from available potential energy via turbulent buoyancy flux and kinetic energy is dissipated at comparable rates by both the large- and small-scale motions. In contrast, at Ra ≥ 10(10) most of the available potential energy goes into kinetic energy of the large-scale flow, which undergoes shear instabilities that sustain small-scale turbulence. The irreversible mixing is largely confined to the unstable boundary layer, its rate exactly equal to the generation of available potential energy by the boundary fluxes, and mixing efficiency is 50%.
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Isolating causal pathways between flow and fish in the regulated river hierarchy
Ryan McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews
2015-01-01
Unregulated river systems are organized in a hierarchy in which large scale factors (i.e. landscape and segment scales) influence local habitats (i.e. reach, meso- and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative...
New Probe of Departures from General Relativity Using Minkowski Functionals.
Fang, Wenjuan; Li, Baojiu; Zhao, Gong-Bo
2017-05-05
The morphological properties of the large scale structure of the Universe can be fully described by four Minkowski functionals (MFs), which provide important complementary information to other statistical observables such as the widely used 2-point statistics in configuration and Fourier spaces. In this work, for the first time, we present the differences in the morphology of the large scale structure caused by modifications to general relativity (to address the cosmic acceleration problem), by measuring the MFs from N-body simulations of modified gravity and general relativity. We find strong statistical power when using the MFs to constrain modified theories of gravity: with a galaxy survey that has survey volume ∼0.125(h^{-1} Gpc)^{3} and galaxy number density ∼1/(h^{-1} Mpc)^{3}, the two normal-branch Dvali-Gabadadze-Porrati models and the F5 f(R) model that we simulated can be discriminated from the ΛCDM model at a significance level ≳5σ with an individual MF measurement. Therefore, the MF of the large scale structure is potentially a powerful probe of gravity, and its application to real data deserves active exploration.
Characterising large-scale structure with the REFLEX II cluster survey
NASA Astrophysics Data System (ADS)
Chon, Gayoung
2016-10-01
We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.
Camera, Stefano; Santos, Mário G; Ferreira, Pedro G; Ferramacho, Luís
2013-10-25
The large-scale structure of the Universe supplies crucial information about the physical processes at play at early times. Unresolved maps of the intensity of 21 cm emission from neutral hydrogen HI at redshifts z=/~1-5 are the best hope of accessing the ultralarge-scale information, directly related to the early Universe. A purpose-built HI intensity experiment may be used to detect the large scale effects of primordial non-Gaussianity, placing stringent bounds on different models of inflation. We argue that it may be possible to place tight constraints on the non-Gaussianity parameter f(NL), with an error close to σ(f(NL))~1.
Caldwell, Robert R
2011-12-28
The challenge to understand the physical origin of the cosmic acceleration is framed as a problem of gravitation. Specifically, does the relationship between stress-energy and space-time curvature differ on large scales from the predictions of general relativity. In this article, we describe efforts to model and test a generalized relationship between the matter and the metric using cosmological observations. Late-time tracers of large-scale structure, including the cosmic microwave background, weak gravitational lensing, and clustering are shown to provide good tests of the proposed solution. Current data are very close to proving a critical test, leaving only a small window in parameter space in the case that the generalized relationship is scale free above galactic scales.
The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Tuarob, Suppawong; Tucker, Conrad S; Salathe, Marcel; Ram, Nilam
2014-06-01
The role of social media as a source of timely and massive information has become more apparent since the era of Web 2.0.Multiple studies illustrated the use of information in social media to discover biomedical and health-related knowledge.Most methods proposed in the literature employ traditional document classification techniques that represent a document as a bag of words.These techniques work well when documents are rich in text and conform to standard English; however, they are not optimal for social media data where sparsity and noise are norms.This paper aims to address the limitations posed by the traditional bag-of-word based methods and propose to use heterogeneous features in combination with ensemble machine learning techniques to discover health-related information, which could prove to be useful to multiple biomedical applications, especially those needing to discover health-related knowledge in large scale social media data.Furthermore, the proposed methodology could be generalized to discover different types of information in various kinds of textual data. Social media data is characterized by an abundance of short social-oriented messages that do not conform to standard languages, both grammatically and syntactically.The problem of discovering health-related knowledge in social media data streams is then transformed into a text classification problem, where a text is identified as positive if it is health-related and negative otherwise.We first identify the limitations of the traditional methods which train machines with N-gram word features, then propose to overcome such limitations by utilizing the collaboration of machine learning based classifiers, each of which is trained to learn a semantically different aspect of the data.The parameter analysis for tuning each classifier is also reported. Three data sets are used in this research.The first data set comprises of approximately 5000 hand-labeled tweets, and is used for cross validation of the classification models in the small scale experiment, and for training the classifiers in the real-world large scale experiment.The second data set is a random sample of real-world Twitter data in the US.The third data set is a random sample of real-world Facebook Timeline posts. Two sets of evaluations are conducted to investigate the proposed model's ability to discover health-related information in the social media domain: small scale and large scale evaluations.The small scale evaluation employs 10-fold cross validation on the labeled data, and aims to tune parameters of the proposed models, and to compare with the stage-of-the-art method.The large scale evaluation tests the trained classification models on the native, real-world data sets, and is needed to verify the ability of the proposed model to handle the massive heterogeneity in real-world social media. The small scale experiment reveals that the proposed method is able to mitigate the limitations in the well established techniques existing in the literature, resulting in performance improvement of 18.61% (F-measure).The large scale experiment further reveals that the baseline fails to perform well on larger data with higher degrees of heterogeneity, while the proposed method is able to yield reasonably good performance and outperform the baseline by 46.62% (F-Measure) on average. Copyright © 2014 Elsevier Inc. All rights reserved.
Large-scale water projects in the developing world: Revisiting the past and looking to the future
NASA Astrophysics Data System (ADS)
Sivakumar, Bellie; Chen, Ji
2014-05-01
During the past half a century or so, the developing world has been witnessing a significant increase in freshwater demands due to a combination of factors, including population growth, increased food demand, improved living standards, and water quality degradation. Since there exists significant variability in rainfall and river flow in both space and time, large-scale storage and distribution of water has become a key means to meet these increasing demands. In this regard, large dams and water transfer schemes (including river-linking schemes and virtual water trades) have been playing a key role. While the benefits of such large-scale projects in supplying water for domestic, irrigation, industrial, hydropower, recreational, and other uses both in the countries of their development and in other countries are undeniable, concerns on their negative impacts, such as high initial costs and damages to our ecosystems (e.g. river environment and species) and socio-economic fabric (e.g. relocation and socio-economic changes of affected people) have also been increasing in recent years. These have led to serious debates on the role of large-scale water projects in the developing world and on their future, but the often one-sided nature of such debates have inevitably failed to yield fruitful outcomes thus far. The present study aims to offer a far more balanced perspective on this issue. First, it recognizes and emphasizes the need for still additional large-scale water structures in the developing world in the future, due to the continuing increase in water demands, inefficiency in water use (especially in the agricultural sector), and absence of equivalent and reliable alternatives. Next, it reviews a few important success and failure stories of large-scale water projects in the developing world (and in the developed world), in an effort to arrive at a balanced view on the future role of such projects. Then, it discusses some major challenges in future water planning and management, with proper consideration to potential technological developments and new options. Finally, it highlights the urgent need for a broader framework that integrates the physical science-related aspects ("hard sciences") and the human science-related aspects ("soft sciences").
Development and Validation of a PTSD-Related Impairment Scale
2012-06-01
Social Adjustment Scale (SAS-SR) (58] Dyadic Adjustment Scale (DAS) [59] Life Stressors and Social Resources Inventory ( LISRES ) [60] 3...measure that gauges on- 200 Social Resources lnven- 2. Spouse/partner going life stressors and social resources tory ( LISRES ; Moos & 3. Finances as well...measures (e.g., ICF checklist, LISRES ; Moos, Penn, & Billings, 1988) may nor be practical or desirable in many healthcare settings or in large-scale
Tools for Large-Scale Mobile Malware Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierma, Michael
Analyzing mobile applications for malicious behavior is an important area of re- search, and is made di cult, in part, by the increasingly large number of appli- cations available for the major operating systems. There are currently over 1.2 million apps available in both the Google Play and Apple App stores (the respec- tive o cial marketplaces for the Android and iOS operating systems)[1, 2]. Our research provides two large-scale analysis tools to aid in the detection and analysis of mobile malware. The rst tool we present, Andlantis, is a scalable dynamic analysis system capa- ble of processing over 3000more » Android applications per hour. Traditionally, Android dynamic analysis techniques have been relatively limited in scale due to the compu- tational resources required to emulate the full Android system to achieve accurate execution. Andlantis is the most scalable Android dynamic analysis framework to date, and is able to collect valuable forensic data, which helps reverse-engineers and malware researchers identify and understand anomalous application behavior. We discuss the results of running 1261 malware samples through the system, and provide examples of malware analysis performed with the resulting data. While techniques exist to perform static analysis on a large number of appli- cations, large-scale analysis of iOS applications has been relatively small scale due to the closed nature of the iOS ecosystem, and the di culty of acquiring appli- cations for analysis. The second tool we present, iClone, addresses the challenges associated with iOS research in order to detect application clones within a dataset of over 20,000 iOS applications.« less
Words That Fascinate the Listener: Predicting Affective Ratings of On-Line Lectures
ERIC Educational Resources Information Center
Weninger, Felix; Staudt, Pascal; Schuller, Björn
2013-01-01
In a large scale study on 843 transcripts of Technology, Entertainment and Design (TED) talks, the authors address the relation between word usage and categorical affective ratings of lectures by a large group of internet users. Users rated the lectures by assigning one or more predefined tags which relate to the affective state evoked in the…
Haugum, Mona; Danielsen, Kirsten; Iversen, Hilde Hestad; Bjertnaes, Oyvind
2014-12-01
An important goal for national and large-scale surveys of user experiences is quality improvement. However, large-scale surveys are normally conducted by a professional external surveyor, creating an institutionalized division between the measurement of user experiences and the quality work that is performed locally. The aim of this study was to identify and describe scientific studies related to the use of national and large-scale surveys of user experiences in local quality work. Ovid EMBASE, Ovid MEDLINE, Ovid PsycINFO and the Cochrane Database of Systematic Reviews. Scientific publications about user experiences and satisfaction about the extent to which data from national and other large-scale user experience surveys are used for local quality work in the health services. Themes of interest were identified and a narrative analysis was undertaken. Thirteen publications were included, all differed substantially in several characteristics. The results show that large-scale surveys of user experiences are used in local quality work. The types of follow-up activity varied considerably from conducting a follow-up analysis of user experience survey data to information sharing and more-systematic efforts to use the data as a basis for improving the quality of care. This review shows that large-scale surveys of user experiences are used in local quality work. However, there is a need for more, better and standardized research in this field. The considerable variation in follow-up activities points to the need for systematic guidance on how to use data in local quality work. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
NASA Astrophysics Data System (ADS)
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Decoupling local mechanics from large-scale structure in modular metamaterials.
Yang, Nan; Silverberg, Jesse L
2017-04-04
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
Mechanisation of large-scale agricultural fields in developing countries - a review.
Onwude, Daniel I; Abdulstter, Rafia; Gomes, Chandima; Hashim, Norhashila
2016-09-01
Mechanisation of large-scale agricultural fields often requires the application of modern technologies such as mechanical power, automation, control and robotics. These technologies are generally associated with relatively well developed economies. The application of these technologies in some developing countries in Africa and Asia is limited by factors such as technology compatibility with the environment, availability of resources to facilitate the technology adoption, cost of technology purchase, government policies, adequacy of technology and appropriateness in addressing the needs of the population. As a result, many of the available resources have been used inadequately by farmers, who continue to rely mostly on conventional means of agricultural production, using traditional tools and equipment in most cases. This has led to low productivity and high cost of production among others. Therefore this paper attempts to evaluate the application of present day technology and its limitations to the advancement of large-scale mechanisation in developing countries of Africa and Asia. Particular emphasis is given to a general understanding of the various levels of mechanisation, present day technology, its management and application to large-scale agricultural fields. This review also focuses on/gives emphasis to future outlook that will enable a gradual, evolutionary and sustainable technological change. The study concludes that large-scale-agricultural farm mechanisation for sustainable food production in Africa and Asia must be anchored on a coherent strategy based on the actual needs and priorities of the large-scale farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Li, Jianping; Xia, Xiangsheng
2015-09-01
In order to improve the understanding of the hot deformation and dynamic recrystallization (DRX) behaviors of large-scaled AZ80 magnesium alloy fabricated by semi-continuous casting, compression tests were carried out in the temperature range from 250 to 400 °C and strain rate range from 0.001 to 0.1 s-1 on a Gleeble 1500 thermo-mechanical machine. The effects of the temperature and strain rate on the hot deformation behavior have been expressed by means of the conventional hyperbolic sine equation, and the influence of the strain has been incorporated in the equation by considering its effect on different material constants for large-scaled AZ80 magnesium alloy. In addition, the DRX behavior has been discussed. The result shows that the deformation temperature and strain rate exerted remarkable influences on the flow stress. The constitutive equation of large-scaled AZ80 magnesium alloy for hot deformation at steady-state stage (ɛ = 0.5) was The true stress-true strain curves predicted by the extracted model were in good agreement with the experimental results, thereby confirming the validity of the developed constitutive relation. The DRX kinetic model of large-scaled AZ80 magnesium alloy was established as X d = 1 - exp[-0.95((ɛ - ɛc)/ɛ*)2.4904]. The rate of DRX increases with increasing deformation temperature, and high temperature is beneficial for achieving complete DRX in the large-scaled AZ80 magnesium alloy.
Decoupling local mechanics from large-scale structure in modular metamaterials
NASA Astrophysics Data System (ADS)
Yang, Nan; Silverberg, Jesse L.
2017-04-01
A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.
An economy of scale system's mensuration of large spacecraft
NASA Technical Reports Server (NTRS)
Deryder, L. J.
1981-01-01
The systems technology and cost particulars of using multipurpose platforms versus several sizes of bus type free flyer spacecraft to accomplish the same space experiment missions. Computer models of these spacecraft bus designs were created to obtain data relative to size, weight, power, performance, and cost. To answer the question of whether or not large scale does produce economy, the dominant cost factors were determined and the programmatic effect on individual experiment costs were evaluated.
Large-Angle Anomalies in the CMB
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; ...
2010-01-01
We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the solar ssystem, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.
Superfluid-like turbulence in cosmology
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami
1991-01-01
A network of vortices in a superfluid system exhibits turbulent behavior. It is argued that the universe may have experienced such a phase of superfluid-like turbulence due to the existence of a coherent state with non-topological charge and a network of global strings. The unique feature of a distribution of turbulent domains is that it can yield non-gravitationally induced large-scale coherent velocities. It may be difficult, however, to relate these velocities to the observed large-scale bulk motion.
The influence of the Atlantic Warm Pool on the Florida panhandle sea breeze
Misra, V.; Moeller, L.; Stefanova, L.; Chan, S.; O'Brien, J. J.; Smith, T.J.; Plant, N.
2011-01-01
In this paper we examine the variations of the boreal summer season sea breeze circulation along the Florida panhandle coast from relatively high resolution (10 km) regional climate model integrations. The 23 year climatology (1979-2001) of the multidecadal dynamically downscaled simulations forced by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis II at the lateral boundaries verify quite well with the observed climatology. The variations at diurnal and interannual time scales are also well simulated with respect to the observations. We show from composite analyses made from these downscaled simulations that sea breezes in northwestern Florida are associated with changes in the size of the Atlantic Warm Pool (AWP) on interannual time scales. In large AWP years when the North Atlantic Subtropical High becomes weaker and moves further eastward relative to the small AWP years, a large part of the southeast U.S. including Florida comes under the influence of relatively strong anomalous low-level northerly flow and large-scale subsidence consistent with the theory of the Sverdrup balance. This tends to suppress the diurnal convection over the Florida panhandle coast in large AWP years. This study is also an illustration of the benefit of dynamic downscaling in understanding the low-frequency variations of the sea breeze. Copyright 2011 by the American Geophysical Union.
Large-Scale Coronal Heating from "Cool" Activity in the Solar Magnetic Network
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H.
1999-01-01
In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Taken together, the coronal network emission and bright point emission are only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX-X, and Fe XII). Using the median-brightness contour, we divide the large-scale Fe XII corona into dim and bright halves, and find that the bright-half/dim half brightness ratio is about 1.5. We also find that the bright half relative to the dim half has 10 times greater total bright point Fe XII emission, 3 times greater Fe XII network emission, 2 times greater Fe IX-X network emission, 1.3 times greater He II network emission, and has 1.5 times more magnetic flux. Also, the cooler network (He II) radiates an order of magnitude more energy than the hotter coronal network (Fe IX-X, and Fe XII). From these results we infer that: 1) The heating of the network and the heating of the large-scale corona each increase roughly linearly with the underlying magnetic flux. 2) The production of network coronal bright points and heating of the coronal network each increase nonlinearly with the magnetic flux. 3) The heating of the large-scale corona is driven by widespread cooler network activity rather than by the exceptional network activity that produces the network coronal bright points and the coronal network. 4) The large-scale corona is heated by a nonthermal process since the driver of its heating is cooler than it is. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D.; Kiem, A. S.
2008-10-01
In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Southern Annular Mode (SAM) and/or Indian Ocean Dipole (IOD) are associated with a shift in the relative frequency of wet and dry synoptic types. Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.
Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Zhou, Q.
Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2}more » per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2} sequestration projects.« less
General characteristics of relative dispersion in the ocean
NASA Astrophysics Data System (ADS)
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-04-01
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
General characteristics of relative dispersion in the ocean.
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-04-11
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
General characteristics of relative dispersion in the ocean
Corrado, Raffaele; Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia; Zambianchi, Enrico
2017-01-01
The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft. PMID:28397797
Olsen, J.B.; Spearman, William J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.
2004-01-01
We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.
The Single-Item Math Anxiety Scale: An Alternative Way of Measuring Mathematical Anxiety
ERIC Educational Resources Information Center
Núñez-Peña, M. Isabel; Guilera, Georgina; Suárez-Pellicioni, Macarena
2014-01-01
This study examined whether the Single-Item Math Anxiety Scale (SIMA), based on the item suggested by Ashcraft, provided valid and reliable scores of mathematical anxiety. A large sample of university students (n = 279) was administered the SIMA and the 25-item Shortened Math Anxiety Rating Scale (sMARS) to evaluate the relation between the scores…
Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn
2011-01-01
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....
Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan
2015-04-21
Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.
Klein, Brennan J; Li, Zhi; Durgin, Frank H
2016-04-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Klein, Brennan J.; Li, Zhi; Durgin, Frank H.
2015-01-01
What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884
Squire, J.; Bhattacharjee, A.
2016-03-14
A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. Here, the effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo – in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean fieldmore » $${\\it\\alpha}$$coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear-current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes.« less
NASA Astrophysics Data System (ADS)
Truebenbach, Alexandra; Darling, Jeremy
2018-01-01
We present the VLBA Extragalactic Proper Motion Catalog, a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ~ 24 microarcsec/yr, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. We detect the secular aberration drift – the apparent motion of extragalactic objects caused by the solar system's acceleration around the Galactic Center – at 6.3 sigma significance with an amplitude of 1.69 +/- 0.27 microarcsec/yr and an apex consistent with the Galactic Center (275.2 +/- 10.0 deg, -29.4 +/- 8.8 deg). Our dipole model detects the aberration drift at a higher significance than some previous studies (e.g., Titov & Lambert 2013), but at a lower amplitude than expected or previously measured. We then use the correlated relative proper motions of extragalactic objects to place upper limits on the rate of large-scale structure collapse (e.g., Quercellini et al. 2009; Darling 2013). Pairs of small separation objects that are in gravitationally interacting structures such as filaments of large-scale structure will show a net decrease in angular separation (> - 15.5 microarcsec/yr) as they move towards each other, while pairs of large separation objects that are gravitationally unbound and move with the Hubble expansion will show no net change in angular separation. With our catalog, we place a 3 sigma limit on the rate of convergence of large-scale structure of -11.4 microarcsec/yr for extragalactic objects within 100 comoving Mpc of each other. We also confirm that large separation objects (> 800 comoving Mpc) move with the Hubble flow to within ~ 2.2 microarcsec/yr. In the future, we plan to incorporate the upcoming Gaia proper motions into our catalog to achieve a higher precision measurement of the average relative proper motion of gravitationally interacting extragalactic objects and to refine our measurement of the collapse of large-scale structure. This research was performed with support from the NSF grant AST-1411605.Darling, J. 2013, AJ, 777, L21; Quercellini et al. 2009. Phys. Rev. Lett., 102, 151302; Titov, O. & Lambert, S. 2013, A&A, 559, A95
Functional Independent Scaling Relation for ORR/OER Catalysts
Christensen, Rune; Hansen, Heine A.; Dickens, Colin F.; ...
2016-10-11
A widely used adsorption energy scaling relation between OH* and OOH* intermediates in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), has previously been determined using density functional theory and shown to dictate a minimum thermodynamic overpotential for both reactions. Here, we show that the oxygen–oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largelymore » cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange–correlation functional, is obtained and found to differ by 0.1 eV from the original. Lastly, this largely confirms that, although obtained with a method suffering from systematic errors, the previously obtained scaling relation is applicable for predictions of catalytic activity.« less
Performance/price estimates for cortex-scale hardware: a design space exploration.
Zaveri, Mazad S; Hammerstrom, Dan
2011-04-01
In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Krieger, A. S.; Nolte, J. T.; Sullivan, J. D.; Lazarus, A. J.; Mcintosh, P. S.; Gold, R. E.; Roelof, E. C.
1975-01-01
The large-scale structure of the corona and the interplanetary medium during Carrington rotations 1601-1607 is discussed relative to recurrent high-speed solar wind streams and their coronal sources. Only streams A, C, D, and F recur on more than one rotation. Streams A and D are associated with coronal holes, while C and F originate in the high corona (20-50 solar radii) over faint X-ray emissions. The association of the streams with holes is confirmed by earlier findings that there are no large equatorial holes without an associated high-speed stream and that the area of the equatorial region of coronal holes is highly correlated with the maximum velocity observed in the associated stream near 1 AU.
NASA Astrophysics Data System (ADS)
Orr, Matthew; Hopkins, Philip F.
2018-06-01
I will present a simple model of non-equilibrium star formation and its relation to the scatter in the Kennicutt-Schmidt relation and large-scale star formation efficiencies in galaxies. I will highlight the importance of a hierarchy of timescales, between the galaxy dynamical time, local free-fall time, the delay time of stellar feedback, and temporal overlap in observables, in setting the scatter of the observed star formation rates for a given gas mass. Further, I will talk about how these timescales (and their associated duty-cycles of star formation) influence interpretations of the large-scale star formation efficiency in reasonably star-forming galaxies. Lastly, the connection with galactic centers and out-of-equilibrium feedback conditions will be mentioned.
Jeltsch, Florian; Wurst, Susanne
2015-01-01
Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root herbivores with large, fast growing plants may counteract dominance of those species, thus promoting plant diversity. PMID:26517119
A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling
NASA Technical Reports Server (NTRS)
Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.
Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Thomson, William Murray; Malden, Penelope Elizabeth
2011-09-01
To examine the properties, validity and responsiveness of the Family Impact Scale in a consecutive clinical sample of patients undergoing dental treatment under general anaesthesia. A consecutive clinical sample of parents/caregivers of children receiving dental treatment under general anaesthesia provided data using the Family Impact Scale (FIS) component of the COHQOL(©) Questionnaire. The first questionnaire was completed before treatment, the follow-up questionnaire 1-4 weeks afterward. Treatment-associated changes in the FIS and its components were determined by comparing baseline and follow-up data. Baseline and follow-up data were obtained for 202 and 130 participants, respectively (64.4% follow-up). All FIS items showed large relative decreases in prevalence, the greatest seen in those relating to having sleep disrupted, blaming others, being upset, the child requiring more attention, financial difficulties and having to take time off work. Factor analysis largely confirmed the underlying factor structure, with three sub-scales (parental/family, parental emotions and family conflict) identified. The parental/family and parental emotions sub-scales showed the greatest treatment-associated improvement, with large effect sizes. There was a moderate improvement in scores on the family conflict sub-scale. The overall FIS showed a large improvement. Treating children with severe caries under general anaesthesia results in OHRQoL improvements for the family. Severe dental caries is not merely a restorative and preventive challenge for those who treat children; it has far-reaching effects on those who share the household and care for the affected child.
Analysis of Large-Scale Resurfacing Processes on Mercury: Mapping the Derain (H-10) Quadrangle
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Ostrach, L. R.; Fassett, C. I.
2018-05-01
The Derain (H-10) Quadrangle of Mercury contains a large region of "average" crustal materials, with minimal smooth plains and basin ejecta, allowing the relative contribution of volcanic and impact processes to be assessed through geologic mapping.
Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng
2017-01-01
Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.
Sex differences in virtual navigation influenced by scale and navigation experience.
Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A
2017-04-01
The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.
The stable clustering ansatz, consistency relations and gravity dual of large-scale structure
NASA Astrophysics Data System (ADS)
Munshi, Dipak
2018-02-01
Gravitational clustering in the nonlinear regime remains poorly understood. Gravity dual of gravitational clustering has recently been proposed as a means to study the nonlinear regime. The stable clustering ansatz remains a key ingredient to our understanding of gravitational clustering in the highly nonlinear regime. We study certain aspects of violation of the stable clustering ansatz in the gravity dual of Large Scale Structure (LSS). We extend the recent studies of gravitational clustering using AdS gravity dual to take into account possible departure from the stable clustering ansatz and to arbitrary dimensions. Next, we extend the recently introduced consistency relations to arbitrary dimensions. We use the consistency relations to test the commonly used models of gravitational clustering including the halo models and hierarchical ansätze. In particular we establish a tower of consistency relations for the hierarchical amplitudes: Q, Ra, Rb, Sa,Sb,Sc etc. as a functions of the scaled peculiar velocity h. We also study the variants of popular halo models in this context. In contrast to recent claims, none of these models, in their simplest incarnation, seem to satisfy the consistency relations in the soft limit.
``Large''- vs Small-scale friction control in turbulent channel flow
NASA Astrophysics Data System (ADS)
Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp
2017-11-01
We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.
Multiresolution comparison of precipitation datasets for large-scale models
NASA Astrophysics Data System (ADS)
Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.
2014-12-01
Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Large-scale Advanced Prop-fan (LAP) technology assessment report
NASA Technical Reports Server (NTRS)
Degeorge, C. L.
1988-01-01
The technologically significant findings and accomplishments of the Large Scale Advanced Prop-Fan (LAP) program in the areas of aerodynamics, aeroelasticity, acoustics and materials and fabrication are described. The extent to which the program goals related to these disciplines were achieved is discussed, and recommendations for additional research are presented. The LAP program consisted of the design, manufacture and testing of a near full-scale Prop-Fan or advanced turboprop capable of operating efficiently at speeds to Mach .8. An aeroelastically scaled model of the LAP was also designed and fabricated. The goal of the program was to acquire data on Prop-Fan performance that would indicate the technology readiness of Prop-Fans for practical applications in commercial and military aviation.
Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development
NASA Astrophysics Data System (ADS)
Vallejos, Javier A.; Estay, Rodrigo A.
2018-03-01
A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.
Scaling properties of European research units
Jamtveit, Bjørn; Jettestuen, Espen; Mathiesen, Joachim
2009-01-01
A quantitative characterization of the scale-dependent features of research units may provide important insight into how such units are organized and how they grow. The relative importance of top-down versus bottom-up controls on their growth may be revealed by their scaling properties. Here we show that the number of support staff in Scandinavian research units, ranging in size from 20 to 7,800 staff members, is related to the number of academic staff by a power law. The scaling exponent of ≈1.30 is broadly consistent with a simple hierarchical model of the university organization. Similar scaling behavior between small and large research units with a wide range of ambitions and strategies argues against top-down control of the growth. Top-down effects, and externally imposed effects from changing political environments, can be observed as fluctuations around the main trend. The observed scaling law implies that cost-benefit arguments for merging research institutions into larger and larger units may have limited validity unless the productivity per academic staff and/or the quality of the products are considerably higher in larger institutions. Despite the hierarchical structure of most large-scale research units in Europe, the network structures represented by the academic component of such units are strongly antihierarchical and suboptimal for efficient communication within individual units. PMID:19625626
Experimental Investigation of the Turbulent Large Scale Temporal Flow in the Wing-Body Junction.
1984-03-01
densities, the coherence, and the relative phase were experimentally obtained and used to determine the space-time extent of the temporal flow . Oil dot...Cenedese, A., Cerri, G., and Ianeta, S., " Experimental Analysis of the Wake behind an Isolated Cambered Airfoil," Unsteady Turbulent Shear Flows , IUTAM...ARD-A139 836 EXPERIMENTAL INVESTIGATION OF THE TURBULENT LARGE SCALE 1/3 TEMPORAL FLOW IN T.. (U) CATHOLIC UNIV OF AMERICA WASHINGTON DC SCHOOL OF
Analysis of central enterprise architecture elements in models of six eHealth projects.
Virkanen, Hannu; Mykkänen, Juha
2014-01-01
Large-scale initiatives for eHealth services have been established in many countries on regional or national level. The use of Enterprise Architecture has been suggested as a methodology to govern and support the initiation, specification and implementation of large-scale initiatives including the governance of business changes as well as information technology. This study reports an analysis of six health IT projects in relation to Enterprise Architecture elements, focusing on central EA elements and viewpoints in different projects.
Large-scale evaluation of multimodal biometric authentication using state-of-the-art systems.
Snelick, Robert; Uludag, Umut; Mink, Alan; Indovina, Michael; Jain, Anil
2005-03-01
We examine the performance of multimodal biometric authentication systems using state-of-the-art Commercial Off-the-Shelf (COTS) fingerprint and face biometric systems on a population approaching 1,000 individuals. The majority of prior studies of multimodal biometrics have been limited to relatively low accuracy non-COTS systems and populations of a few hundred users. Our work is the first to demonstrate that multimodal fingerprint and face biometric systems can achieve significant accuracy gains over either biometric alone, even when using highly accurate COTS systems on a relatively large-scale population. In addition to examining well-known multimodal methods, we introduce new methods of normalization and fusion that further improve the accuracy.
Where the Wild Things Are: Observational Constraints on Black Holes' Growth
NASA Astrophysics Data System (ADS)
Merloni, Andrea
2009-12-01
The physical and evolutionary relation between growing supermassive black holes (AGN) and host galaxies is currently the subject of intense research activity. Nevertheless, a deep theoretical understanding of such a relation is hampered by the unique multi-scale nature of the combined AGN-galaxy system, which defies any purely numerical, or semi-analytic approach. Various physical process active on different physical scales have signatures in different parts of the electromagnetic spectrum; thus, observations at different wavelengths and theoretical ideas all can contribute towards a ``large dynamic range'' view of the AGN phenomenon, capable of conceptually ``resolving'' the many scales involved. As an example, I will focus in this review on two major recent observational results on the cosmic evolution of supermassive black holes, focusing on the novel contribution given to the field by the COSMOS survey. First of all, I will discuss the evidence for the so-called ``downsizing'' in the AGN population as derived from large X-ray surveys. I will then present new constraints on the evolution of the black hole-galaxy scaling relation at 1
Bybee, Paul J; Lee, Andrew H; Lamm, Ellen-Thérèse
2006-03-01
Allosaurus is one of the most common Mesozoic theropod dinosaurs. We present a histological analysis to assess its growth strategy and ontogenetic limb bone scaling. Based on an ontogenetic series of humeral, ulnar, femoral, and tibial sections of fibrolamellar bone, we estimate the ages of the largest individuals in the sample to be between 13-19 years. Growth curve reconstruction suggests that maximum growth occurred at 15 years, when body mass increased 148 kg/year. Based on larger bones of Allosaurus, we estimate an upper age limit of between 22-28 years of age, which is similar to preliminary data for other large theropods. Both Model I and Model II regression analyses suggest that relative to the length of the femur, the lengths of the humerus, ulna, and tibia increase in length more slowly than isometry predicts. That pattern of limb scaling in Allosaurus is similar to those in other large theropods such as the tyrannosaurids. Phylogenetic optimization suggests that large theropods independently evolved reduced humeral, ulnar, and tibial lengths by a phyletic reduction in longitudinal growth relative to the femur.
Large-scale habitat associations of four desert anurans in Big Bend National Park, Texas
Dayton, Gage H.; Jung, R.E.; Droege, S.
2004-01-01
We used night driving to examine large scale habitat associations of four common desert anurans in Big Bend National Park, Texas. We examined association of soil types and vegetation communities with abundance of Couch's Spadefoots (Scaphiopus couchii), Red-spotted Toads (Bufo punctatus), Texas Toads (Bufo speciosus), and Western Green Toads (Bufo debilis). All four species were disproportionately associated with frequently inundated soils that are relatively high in clay content. Bufo punctatus was associated with rocky soil types more frequently than the other three species. Association between all four species and vegetation types was disproportionate in relation to availability. Bufo debilis and Bufo punctatus were associated with creosote and mixed scrub vegetation. Bufo speciosus and Scaphiopus couchii were associated with mesquite scrub vegetation. Bufo debilis, Scaphiopus couchii, and B. speciosus were more tightly associated with specific habitat types, whereas B. punctatus exhibited a broader distribution across the habitat categories. Examining associations between large-scale habitat categories and species abundance is an important first step in understanding factors that influence species distributions and presence-absence across the landscape.
Relationship of epithermal gold deposits to large-scale fractures in northern Nevada
Ponce, D.A.; Glen, J.M.G.
2002-01-01
Geophysical maps of northern Nevada reveal at least three and possibly six large-scale arcuate features, one of which corresponds to the northern Nevada rift that possibly extends more than 1,000 km from the Oregon- Idaho border to southern Nevada. These features may reflect deep discontinuities within the earth's crust, possibly related to the impact of the Yellowstone hot spot. Because mid-Miocene epithermal gold deposits have been shown to correlate with the northern Nevada rift, we investigate the association of other epithermal gold deposits to other similar arcuate features in northern Nevada. Mid-Miocene and younger epithermal gold- silver deposits also occur along two prominent aeromagnetic anomalies west of the northern Nevada rift. Here, we speculate that mid-Miocene deposits formed along deep fractures in association with mid-Miocene rift- related magmatism and that younger deposits preferentially followed these preexisting features. Statistical analysis of the proximity of epithermal gold deposits to these features suggests that epithermal gold deposits in northern Nevada are spatially associated with large-scale crustal features interpreted from geophysical data.
Natural disasters and population mobility in Bangladesh.
Gray, Clark L; Mueller, Valerie
2012-04-17
The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity.
Relative dispersion of clustered drifters in a small micro-tidal estuary
NASA Astrophysics Data System (ADS)
Suara, Kabir; Chanson, Hubert; Borgas, Michael; Brown, Richard J.
2017-07-01
Small tide-dominated estuaries are affected by large scale flow structures which combine with the underlying bed generated smaller scale turbulence to significantly increase the magnitude of horizontal diffusivity. Field estimates of horizontal diffusivity and its associated scales are however rare due to limitations in instrumentation. Data from multiple deployments of low and high resolution clusters of GPS-drifters are used to examine the dynamics of a surface flow in a small micro-tidal estuary through relative dispersion analyses. During the field study, cluster diffusivity, which combines both large- and small-scale processes ranged between, 0.01 and 3.01 m2/s for spreading clusters and, -0.06 and -4.2 m2/s for contracting clusters. Pair-particle dispersion, Dp2, was scale dependent and grew as Dp2 ∼ t1.83 in streamwise and Dp2 ∼ t0.8 in cross-stream directions. At small separation scale, pair-particle (d < 0.5 m) relative diffusivity followed the Richardson's 4/3 power law and became weaker as separation scale increases. Pair-particle diffusivity was described as Kp ∼ d1.01 and Kp ∼ d0.85 in the streamwise and cross-stream directions, respectively for separation scales ranging from 0.1 to 10 m. Two methods were used to identify the mechanism responsible for dispersion within the channel. The results clearly revealed the importance of strain fields (stretching and shearing) in the spreading of particles within a small micro-tidal channel. The work provided input for modelling dispersion of passive particle in shallow micro-tidal estuaries where these were not previously experimentally studied.
Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Goldstein, M. L.
1983-01-01
Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.
Crater size estimates for large-body terrestrial impact
NASA Technical Reports Server (NTRS)
Schmidt, Robert M.; Housen, Kevin R.
1988-01-01
Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.
Avalanches and scaling collapse in the large-N Kuramoto model
NASA Astrophysics Data System (ADS)
Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.
2018-04-01
We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.
Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.
2017-01-01
Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528
Identifying large scale structures at 1 AU using fluctuations and wavelets
NASA Astrophysics Data System (ADS)
Niembro, T.; Lara, A.
2016-12-01
The solar wind (SW) is inhomogeneous and it is dominated for two types of flows: one quasi-stationary and one related to large scale transients (such as coronal mass ejections and co-rotating interaction regions). The SW inhomogeneities can be study as fluctuations characterized by a wide range of length and time scales. We are interested in the study of the characteristic fluctuations caused by large scale transient events. To do so, we define the vector space F with the normalized moving monthly/annual deviations as the orthogonal basis. Then, we compute the norm in this space of the solar wind parameters (velocity, magnetic field, density and temperature) fluctuations using WIND data from August 1992 to August 2015. This norm gives important information about the presence of a large structure disturbance in the solar wind and by applying a wavelet transform to this norm, we are able to determine, without subjectivity, the duration of the compression regions of these large transient structures and, even more, to identify if the structure corresponds to a single or complex (or merged) event. With this method we have automatically detected most of the events identified and published by other authors.
Multi-scale modeling of multi-component reactive transport in geothermal aquifers
NASA Astrophysics Data System (ADS)
Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David
2014-05-01
In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.
Towards uncovering the structure of power fluctuations of wind farms
NASA Astrophysics Data System (ADS)
Liu, Huiwen; Jin, Yaqing; Tobin, Nicolas; Chamorro, Leonardo P.
2017-12-01
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations ΦP exhibit a power-law decay proportional to f-5 /3 -2 in the region corresponding to the turbulence inertial subrange and at relatively large scales, ΦP˜f-2 . Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
Towards uncovering the structure of power fluctuations of wind farms.
Liu, Huiwen; Jin, Yaqing; Tobin, Nicolas; Chamorro, Leonardo P
2017-12-01
The structure of the turbulence-driven power fluctuations in a wind farm is fundamentally described from basic concepts. A derived tuning-free model, supported with experiments, reveals the underlying spectral content of the power fluctuations of a wind farm. It contains two power-law trends and oscillations in the relatively low- and high-frequency ranges. The former is mostly due to the turbulent interaction between the flow and the turbine properties, whereas the latter is due to the advection between turbine pairs. The spectral wind-farm scale power fluctuations Φ_{P} exhibit a power-law decay proportional to f^{-5/3-2} in the region corresponding to the turbulence inertial subrange and at relatively large scales, Φ_{P}∼f^{-2}. Due to the advection and turbulent diffusion of large-scale structures, a spectral oscillation exists with the product of a sinusoidal behavior and an exponential decay in the frequency domain.
Structure of a reattaching supersonic shear flow
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1988-01-01
A Mach 1.83 fully developed turbulent boundary layer with boundary layer thickness, free stream velocity, and Reynolds number of 7.5 mm, 476 m/s, and 6.2 x 10 to the 7th/m, respectively, was separated at a 25.4-mm backward step and formed a shear layer. Fast-response pressure transducers, schlieren photography, and LDV were used to study the structure of this reattaching shear flow. The preliminary results show that large-scale relatively organized structures with limited spanwise extent form in the free shear layer. Some of these structures appear to survive the recompression and reattachment processes, while others break down into smaller scales and the flow becomes increasingly three-dimensional. The survived large-scale structures lose their organization through recompression/reattachment, but regain it after reattachment. The structures after reattachment form a 40-45-degree angle relative to the free stream and deteriorate gradually as they move downstream.
NASA Technical Reports Server (NTRS)
Ramella, Massimo; Geller, Margaret J.; Huchra, John P.
1990-01-01
The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.
Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.
Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B
2012-06-01
This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.
NASA Astrophysics Data System (ADS)
Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly
2010-05-01
Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.
Daley, Monica A; Birn-Jeffery, Aleksandra
2018-05-22
Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.
A comprehensive study on urban true orthorectification
Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, Dongxiao
2005-01-01
To provide some advanced technical bases (algorithms and procedures) and experience needed for national large-scale digital orthophoto generation and revision of the Standards for National Large-Scale City Digital Orthophoto in the National Digital Orthophoto Program (NDOP), this paper presents a comprehensive study on theories, algorithms, and methods of large-scale urban orthoimage generation. The procedures of orthorectification for digital terrain model (DTM)-based and digital building model (DBM)-based orthoimage generation and their mergence for true orthoimage generation are discussed in detail. A method of compensating for building occlusions using photogrammetric geometry is developed. The data structure needed to model urban buildings for accurately generating urban orthoimages is presented. Shadow detection and removal, the optimization of seamline for automatic mosaic, and the radiometric balance of neighbor images are discussed. Street visibility analysis, including the relationship between flight height, building height, street width, and relative location of the street to the imaging center, is analyzed for complete true orthoimage generation. The experimental results demonstrated that our method can effectively and correctly orthorectify the displacements caused by terrain and buildings in urban large-scale aerial images. ?? 2005 IEEE.
Relationships among measures of managerial personality traits.
Miner, J B
1976-08-01
Comparisons were made to determine the degree of convergence among three measures associated with leadership success in large, hierarchic organizations in the business sector: the Miner Sentence Completion Scale; the Ghiselli Self-Description Inventory; and the F-Scale, Correlational analyses and comparisons between means were made using college students and business manager samples. The results indicated considerable convergence for the first two measures, but not for the F-Scale. The F-Scale was related to the Miner Sentence Completion Scale in the student group, but relationships were nonexistent among the managers. Analyses of the individual F-Scale items which produced the relationship among the students suggested that early family-related experiences and attitudes may contribute to the development of motivation to manage, but lose their relevance for it later, under the onslaught of actual managerial experience.
Outcomes and Process in Reading Tutoring
ERIC Educational Resources Information Center
Topping, K. J.; Thurston, A.; McGavock, K.; Conlin, N.
2012-01-01
Background: Large-scale randomised controlled trials are relatively rare in education. The present study approximates to, but is not exactly, a randomised controlled trial. It was an attempt to scale up previous small peer tutoring projects, while investing only modestly in continuing professional development for teachers. Purpose: A two-year…
Validity and Reliability of a Scale Assessing Attitudes toward Mainstreaming.
ERIC Educational Resources Information Center
Green, Kathy; And Others
1983-01-01
In a study involving 50 undergraduate and graduate education students the Attitudes Toward Mainstreaming Scale was found to have a large first factor with adequate reliability. There was a low correlation between knowledge and ATMS scores, although knowledge was more strongly related to classroom acceptance of exceptional students. (CL)
DEXTER: Disease-Expression Relation Extraction from Text.
Gupta, Samir; Dingerdissen, Hayley; Ross, Karen E; Hu, Yu; Wu, Cathy H; Mazumder, Raja; Vijay-Shanker, K
2018-01-01
Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.
Dowdy, Andrew J
2016-02-11
Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.
Dowdy, Andrew J.
2016-01-01
Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...
2016-03-18
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
Earthquakes in the Laboratory: Continuum-Granular Interactions
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew; Ward, Carl; Backhaus, Scott
2013-03-01
Earthquakes in nature feature large tectonic plate motion at large scales of 10-100 km and local properties of the earth on the scale of the rupture width, of the order of meters. Fault gouge often fills the gap between the large slipping plates and may play an important role in the nature and dynamics of earthquake events. We have constructed a laboratory scale experiment that represents a similitude scale model of this general earthquake description. Two photo-elastic plates (50 cm x 25 cm x 1 cm) confine approximately 3000 bi-disperse nylon rods (diameters 0.12 and 0.16 cm, height 1 cm) in a gap of approximately 1 cm. The plates are held rigidly along their outer edges with one held fixed while the other edge is driven at constant speed over a range of about 5 cm. The local stresses exerted on the plates are measured using their photo-elastic response, the local relative motions of the plates, i.e., the local strains, are determined by the relative motion of small ball bearings attached to the top surface, and the configurations of the nylon rods are investigated using particle tracking tools. We find that this system has properties similar to real earthquakes and are exploring these ``lab-quake'' events with the quantitative tools we have developed.
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
NASA Astrophysics Data System (ADS)
Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.
2018-04-01
Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.
NASA Technical Reports Server (NTRS)
Gorski, Krzysztof M.; Silk, Joseph; Vittorio, Nicola
1992-01-01
A new technique is used to compute the correlation function for large-angle cosmic microwave background anisotropies resulting from both the space and time variations in the gravitational potential in flat, vacuum-dominated, cold dark matter cosmological models. Such models with Omega sub 0 of about 0.2, fit the excess power, relative to the standard cold dark matter model, observed in the large-scale galaxy distribution and allow a high value for the Hubble constant. The low order multipoles and quadrupole anisotropy that are potentially observable by COBE and other ongoing experiments should definitively test these models.
NASA Technical Reports Server (NTRS)
Pelletier, R. E.; Hudnall, W. H.
1987-01-01
The use of Space Shuttle Large Format Camera (LFC) color, IR/color, and B&W images in large-scale soil mapping is discussed and illustrated with sample photographs from STS 41-6 (October 1984). Consideration is given to the characteristics of the film types used; the photographic scales available; geometric and stereoscopic factors; and image interpretation and classification for soil-type mapping (detecting both sharp and gradual boundaries), soil parent material topographic and hydrologic assessment, natural-resources inventory, crop-type identification, and stress analysis. It is suggested that LFC photography can play an important role, filling the gap between aerial and satellite remote sensing.
Scaling laws of strategic behavior and size heterogeneity in agent dynamics
NASA Astrophysics Data System (ADS)
Vaglica, Gabriella; Lillo, Fabrizio; Moro, Esteban; Mantegna, Rosario N.
2008-03-01
We consider the financial market as a model system and study empirically how agents strategically adjust the properties of large orders in order to meet their preference and minimize their impact. We quantify this strategic behavior by detecting scaling relations between the variables characterizing the trading activity of different institutions. We also observe power-law distributions in the investment time horizon, in the number of transactions needed to execute a large order, and in the traded value exchanged by large institutions, and we show that heterogeneity of agents is a key ingredient for the emergence of some aggregate properties characterizing this complex system.
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2009-12-01
Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.
Application of the resource-based relative value scale system to pediatrics.
Gerstle, Robert S; Molteni, Richard A; Andreae, Margie C; Bradley, Joel F; Brewer, Eileen D; Calabrese, Jamie; Krug, Steven E; Liechty, Edward A; Linzer, Jeffrey F; Pillsbury, Julia M; Tuli, Sanjeev Y
2014-06-01
The majority of public and private payers in the United States currently use the Medicare Resource-Based Relative Value Scale as the basis for physician payment. Many large group and academic practices have adopted this objective system of physician work to benchmark physician productivity, including using it, wholly or in part, to determine compensation. The Resource-Based Relative Value Scale survey instrument, used to value physician services, was designed primarily for procedural services, leading to current concerns that American Medical Association/Specialty Society Relative Value Scale Update Committee (RUC) surveys may undervalue nonprocedural evaluation and management services. The American Academy of Pediatrics is represented on the RUC, the committee charged with maintaining accurate physician work values across specialties and age groups. The Academy, working closely with other primary care and subspecialty societies, actively pursues a balanced RUC membership and a survey instrument that will ensure appropriate work relative value unit assignments, thereby allowing pediatricians to receive appropriate payment for their services relative to other services.
Macroecology of unicellular organisms - patterns and processes.
Soininen, Janne
2012-02-01
Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Seidl, Rupert; Müller, Jörg; Hothorn, Torsten; Bässler, Claus; Heurich, Marco; Kautz, Markus
2016-01-01
Summary 1. Unprecedented bark beetle outbreaks have been observed for a variety of forest ecosystems recently, and damage is expected to further intensify as a consequence of climate change. In Central Europe, the response of ecosystem management to increasing infestation risk has hitherto focused largely on the stand level, while the contingency of outbreak dynamics on large-scale drivers remains poorly understood. 2. To investigate how factors beyond the local scale contribute to the infestation risk from Ips typographus (Col., Scol.), we analysed drivers across seven orders of magnitude in scale (from 103 to 1010 m2) over a 23-year period, focusing on the Bavarian Forest National Park. Time-discrete hazard modelling was used to account for local factors and temporal dependencies. Subsequently, beta regression was applied to determine the influence of regional and landscape factors, the latter characterized by means of graph theory. 3. We found that in addition to stand variables, large-scale drivers also strongly influenced bark beetle infestation risk. Outbreak waves were closely related to landscape-scale connectedness of both host and beetle populations as well as to regional bark beetle infestation levels. Furthermore, regional summer drought was identified as an important trigger for infestation pulses. Large-scale synchrony and connectivity are thus key drivers of the recently observed bark beetle outbreak in the area. 4. Synthesis and applications. Our multiscale analysis provides evidence that the risk for biotic disturbances is highly dependent on drivers beyond the control of traditional stand-scale management. This finding highlights the importance of fostering the ability to cope with and recover from disturbance. It furthermore suggests that a stronger consideration of landscape and regional processes is needed to address changing disturbance regimes in ecosystem management. PMID:27041769
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag
2015-01-01
Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729
Cortical circuitry implementing graphical models.
Litvak, Shai; Ullman, Shimon
2009-11-01
In this letter, we develop and simulate a large-scale network of spiking neurons that approximates the inference computations performed by graphical models. Unlike previous related schemes, which used sum and product operations in either the log or linear domains, the current model uses an inference scheme based on the sum and maximization operations in the log domain. Simulations show that using these operations, a large-scale circuit, which combines populations of spiking neurons as basic building blocks, is capable of finding close approximations to the full mathematical computations performed by graphical models within a few hundred milliseconds. The circuit is general in the sense that it can be wired for any graph structure, it supports multistate variables, and it uses standard leaky integrate-and-fire neuronal units. Following previous work, which proposed relations between graphical models and the large-scale cortical anatomy, we focus on the cortical microcircuitry and propose how anatomical and physiological aspects of the local circuitry may map onto elements of the graphical model implementation. We discuss in particular the roles of three major types of inhibitory neurons (small fast-spiking basket cells, large layer 2/3 basket cells, and double-bouquet neurons), subpopulations of strongly interconnected neurons with their unique connectivity patterns in different cortical layers, and the possible role of minicolumns in the realization of the population-based maximum operation.
Rayapuram, Channabasavangowda; Idänheimo, Niina; Hunter, Kerri; Kimura, Sachie; Merilo, Ebe; Vaattovaara, Aleksia; Oracz, Krystyna; Kaufholdt, David; Pallon, Andres; Anggoro, Damar Tri; Glów, Dawid; Lowe, Jennifer; Zhou, Ji; Mohammadi, Omid; Puukko, Tuomas; Albert, Andreas; Lang, Hans; Ernst, Dieter; Kollist, Hannes; Brosché, Mikael; Durner, Jörg; Borst, Jan Willem; Collinge, David B.; Karpiński, Stanisław; Lyngkjær, Michael F.; Robatzek, Silke; Wrzaczek, Michael; Kangasjärvi, Jaakko
2015-01-01
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance. PMID:26197346
Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin
2017-04-01
Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early Universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian of large-scale gravitational potential and therefore are of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for ongoing and upcoming galaxy surveys.
A numerical study of the string function using a primitive equation ocean model
NASA Astrophysics Data System (ADS)
Tyler, R. H.; Käse, R.
We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.
Clipping the cosmos: the bias and bispectrum of large scale structure.
Simpson, Fergus; James, J Berian; Heavens, Alan F; Heymans, Catherine
2011-12-30
A large fraction of the information collected by cosmological surveys is simply discarded to avoid length scales which are difficult to model theoretically. We introduce a new technique which enables the extraction of useful information from the bispectrum of galaxies well beyond the conventional limits of perturbation theory. Our results strongly suggest that this method increases the range of scales where the relation between the bispectrum and power spectrum in tree-level perturbation theory may be applied, from k(max) ∼ 0.1 to ∼0.7 hMpc(-1). This leads to correspondingly large improvements in the determination of galaxy bias. Since the clipped matter power spectrum closely follows the linear power spectrum, there is the potential to use this technique to probe the growth rate of linear perturbations and confront theories of modified gravity with observation.
Gut Microbiota Dynamics during Dietary Shift in Eastern African Cichlid Fishes
Baldo, Laura; Riera, Joan Lluís; Tooming-Klunderud, Ave; Albà, M. Mar; Salzburger, Walter
2015-01-01
The gut microbiota structure reflects both a host phylogenetic history and a signature of adaptation to the host ecological, mainly trophic niches. African cichlid fishes, with their array of closely related species that underwent a rapid dietary niche radiation, offer a particularly interesting system to explore the relative contribution of these two factors in nature. Here we surveyed the host intra- and interspecific natural variation of the gut microbiota of five cichlid species from the monophyletic tribe Perissodini of lake Tanganyika, whose members transitioned from being zooplanktivorous to feeding primarily on fish scales. The outgroup riverine species Astatotilapia burtoni, largely omnivorous, was also included in the study. Fusobacteria, Firmicutes and Proteobacteria represented the dominant components in the gut microbiota of all 30 specimens analysed according to two distinct 16S rRNA markers. All members of the Perissodini tribe showed a homogenous pattern of microbial alpha and beta diversities, with no significant qualitative differences, despite changes in diet. The recent diet shift between zooplantkon- and scale-eaters simply reflects on a significant enrichment of Clostridium taxa in scale-eaters where they might be involved in the scale metabolism. Comparison with the omnivorous species A. burtoni suggests that, with increased host phylogenetic distance and/or increasing herbivory, the gut microbiota begins differentiating also at qualitative level. The cichlids show presence of a large conserved core of taxa and a small set of core OTUs (average 13–15%), remarkably stable also in captivity, and putatively favoured by both restricted microbial transmission among related hosts (putatively enhanced by mouthbrooding behavior) and common host constraints. This study sets the basis for a future large-scale investigation of the gut microbiota of cichlids and its adaptation in the process of the host adaptive radiation. PMID:25978452
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.
Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less
Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.; ...
2017-04-14
Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less
Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi
2017-10-10
We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.
NASA Astrophysics Data System (ADS)
Tohidi, Ali; Gollner, Michael J.; Xiao, Huahua
2018-01-01
Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.
What initial condition of inflation would suppress the large-scale CMB spectrum?
Chen, Pisin; Lin, Yu -Hsiang
2016-01-08
There is an apparent power deficit relative to the Λ CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. Proposals that invoke some form of initial condition for the inflation have been made to address this apparent power suppression, albeit with conflicting conclusions. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaître-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrummore » is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < –1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with –1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. In conclusion, we further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis.« less
Identification and measurement of shrub type vegetation on large scale aerial photography
NASA Technical Reports Server (NTRS)
Driscoll, R. S.
1970-01-01
Important range-shrub species were identified at acceptable levels of accuracy on large-scale 70 mm color and color infrared aerial photographs. Identification of individual shrubs was significantly higher, however, on color infrared. Photoscales smaller than 1:2400 had limited value except for mature individuals of relatively tall species, and then only if crown margins did not overlap and sharp contrast was evident between the species and background. Larger scale photos were required for low-growing species in dense stands. The crown cover for individual species was estimated from the aerial photos either with a measuring magnifier or a projected-scale micrometer. These crown cover measurements provide techniques for earth-resource analyses when used in conjunction with space and high-altitude remotely procured photos.
Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz
2017-11-01
Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).
True polar wander on Europa from global-scale small-circle depressions.
Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis
2008-05-15
The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.
Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.
2003-01-01
Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.
Allometric scaling of UK urban emissions: interpretation and implications for air quality management
NASA Astrophysics Data System (ADS)
MacKenzie, Rob; Barnes, Matt; Whyatt, Duncan; Hewitt, Nick
2016-04-01
Allometry uncovers structures and patterns by relating the characteristics of complex systems to a measure of scale. We present an allometric analysis of air quality for UK urban settlements, beginning with emissions and moving on to consider air concentrations. We consider both airshed-average 'urban background' concentrations (cf. those derived from satellites for NO2) and local pollution 'hotspots'. We show that there is a strong and robust scaling (with respect to population) of the non-point-source emissions of the greenhouse gases carbon dioxide and methane, as well as the toxic pollutants nitrogen dioxide, PM2.5, and 1,3-butadiene. The scaling of traffic-related emissions is not simply a reflection of road length, but rather results from the socio-economic patterning of road-use. The recent controversy regarding diesel vehicle emissions is germane to our study but does not affect our overall conclusions. We next develop an hypothesis for the population-scaling of airshed-average air concentrations, with which we demonstrate that, although average air quality is expected to be worse in large urban centres compared to small urban centres, the overall effect is an economy of scale (i.e., large cities reduce the overall burden of emissions compared to the same population spread over many smaller urban settlements). Our hypothesis explains satellite-derived observations of airshed-average urban NO2 concentrations. The theory derived also explains which properties of nature-based solutions (urban greening) can make a significant contribution at city scale, and points to a hitherto unforeseen opportunity to make large cities cleaner than smaller cities in absolute terms with respect to their airshed-average pollutant concentration.
Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood
NASA Technical Reports Server (NTRS)
Turato, Barbara; Reale, Oreste; Siccardi, Franco
2003-01-01
Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the Piedmont event. Second, water-vapor intrusions from the African Inter-Tropical Convergence Zone and evaporation from the eastern Atlantic contribute on the 2-5 day time-scale. The large-scale moist dynamics appears therefore to be one important factor enabling a moderate Mediterranean cyclone to produce heavy precipitation. Finally, local evaporation from the Mediterranean, water-vapor recycling, and orographically-induced low-level convergence enhance and concentrate the moisture over the area where heavy precipitation occurs. This happens on a 12-72 hour time-scale.
Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; ...
2017-04-20
Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less
NASA Astrophysics Data System (ADS)
Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; Lu, Chunsong
2017-09-01
Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humidity differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang
Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less
A SIMPLE METHOD FOR EVALUATING DATA FROM AN INTERLABORATORY STUDY
Large-scale laboratory-and method-performance studies involving more than about 30 laboratories may be evaluated by calculating the HORRAT ratio for each test sample (HORRAT=[experimentally found among-laboratories relative standard deviation] divided by [relative standard deviat...
Polychaete functional diversity in shallow habitats: Shelter from the storm
NASA Astrophysics Data System (ADS)
Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo
2018-05-01
Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.
Outcomes in a Randomised Controlled Trial of Mathematics Tutoring
ERIC Educational Resources Information Center
Topping, K. J.; Miller, D.; Murray, P.; Henderson, S.; Fortuna, C.; Conlin, N.
2011-01-01
Background: Large-scale randomised controlled trials (RCT) are relatively rare in education. The present study was an attempt to scale up previous small peer tutoring projects, while investing only modestly in continuing professional development for teachers. Purpose: A two-year RCT of peer tutoring in mathematics was undertaken in one local…
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Shaughnessy, Eric; Margolis, Robert
2017-04-01
The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low pricesmore » are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.« less
Bio-inspired wooden actuators for large scale applications.
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules.
Bio-Inspired Wooden Actuators for Large Scale Applications
Rüggeberg, Markus; Burgert, Ingo
2015-01-01
Implementing programmable actuation into materials and structures is a major topic in the field of smart materials. In particular the bilayer principle has been employed to develop actuators that respond to various kinds of stimuli. A multitude of small scale applications down to micrometer size have been developed, but up-scaling remains challenging due to either limitations in mechanical stiffness of the material or in the manufacturing processes. Here, we demonstrate the actuation of wooden bilayers in response to changes in relative humidity, making use of the high material stiffness and a good machinability to reach large scale actuation and application. Amplitude and response time of the actuation were measured and can be predicted and controlled by adapting the geometry and the constitution of the bilayers. Field tests in full weathering conditions revealed long-term stability of the actuation. The potential of the concept is shown by a first demonstrator. With the sensor and actuator intrinsically incorporated in the wooden bilayers, the daily change in relative humidity is exploited for an autonomous and solar powered movement of a tracker for solar modules. PMID:25835386
2015-01-01
Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I) that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting. PMID:25826692
Dong, Xianlei; Bollen, Johan
2015-01-01
Economies are instances of complex socio-technical systems that are shaped by the interactions of large numbers of individuals. The individual behavior and decision-making of consumer agents is determined by complex psychological dynamics that include their own assessment of present and future economic conditions as well as those of others, potentially leading to feedback loops that affect the macroscopic state of the economic system. We propose that the large-scale interactions of a nation's citizens with its online resources can reveal the complex dynamics of their collective psychology, including their assessment of future system states. Here we introduce a behavioral index of Chinese Consumer Confidence (C3I) that computationally relates large-scale online search behavior recorded by Google Trends data to the macroscopic variable of consumer confidence. Our results indicate that such computational indices may reveal the components and complex dynamics of consumer psychology as a collective socio-economic phenomenon, potentially leading to improved and more refined economic forecasting.
Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco
2013-12-19
Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.
OpenMP parallelization of a gridded SWAT (SWATG)
NASA Astrophysics Data System (ADS)
Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin
2017-12-01
Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.
Dogan, Eda; Hearst, R. Jason
2017-01-01
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to ‘simulate’ high Reynolds number wall–turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167584
Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram
2017-03-13
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
Large-Scale periodic solar velocities: An observational study
NASA Technical Reports Server (NTRS)
Dittmer, P. H.
1977-01-01
Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.
Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera)
Sabater-Muñoz, Beatriz; Legeai, Fabrice; Rispe, Claude; Bonhomme, Joël; Dearden, Peter; Dossat, Carole; Duclert, Aymeric; Gauthier, Jean-Pierre; Ducray, Danièle Giblot; Hunter, Wayne; Dang, Phat; Kambhampati, Srini; Martinez-Torres, David; Cortes, Teresa; Moya, Andrès; Nakabachi, Atsushi; Philippe, Cathy; Prunier-Leterme, Nathalie; Rahbé, Yvan; Simon, Jean-Christophe; Stern, David L; Wincker, Patrick; Tagu, Denis
2006-01-01
Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect. PMID:16542494
Peculiarity of Seismicity in the Balakend-Zagatal Region, Azerbaijan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail-Zadeh, Tahir T.
2006-03-23
The study of seismicity in the Balakend-Zagatal region demonstrates a temporal correlation of small events in the region with the moderate events in Caucasus for the time interval of 1980 to 1990. It is shown that the processes resulting in deformation and tectonic movements of main structural elements of the Caucasus region are internal and are not related to large-scale tectonic processes. A week dependence of the regional movements on the large-scale motion of the lithospheric plates and microplates is apparent from another geological and geodetic data as well.
NASA Technical Reports Server (NTRS)
Poulton, C. E.
1972-01-01
A multiple sampling technique was developed whereby spacecraft photographs supported by aircraft photographs could be used to quantify plant communities. Large scale (1:600 to 1:2,400) color infrared aerial photographs were required to identify shrub and herbaceous species. These photos were used to successfully estimate a herbaceous standing crop biomass. Microdensitometry was used to discriminate among specific plant communities and individual plant species. Large scale infrared photography was also used to estimate mule deer deaths and population density of northern pocket gophers.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
Size-Related Changes in Foot Impact Mechanics in Hoofed Mammals
Warner, Sharon Elaine; Pickering, Phillip; Panagiotopoulou, Olga; Pfau, Thilo; Ren, Lei; Hutchinson, John Richard
2013-01-01
Foot-ground impact is mechanically challenging for all animals, but how do large animals mitigate increased mass during foot impact? We hypothesized that impact force amplitude scales according to isometry in animals of increasing size through allometric scaling of related impact parameters. To test this, we measured limb kinetics and kinematics in 11 species of hoofed mammals ranging from 18–3157 kg body mass. We found impact force amplitude to be maintained proportional to size in hoofed mammals, but that other features of foot impact exhibit differential scaling patterns depending on the limb; forelimb parameters typically exhibit higher intercepts with lower scaling exponents than hind limb parameters. Our explorations of the size-related consequences of foot impact advance understanding of how body size influences limb morphology and function, foot design and locomotor behaviour. PMID:23382967
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
NASA Astrophysics Data System (ADS)
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.
2018-03-01
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.
Park, Junghyun A; Kim, Minki; Yoon, Seokjoon
2016-05-17
Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.
Effects of low doses of alcohol on driving-related skills : a review of the evidence
DOT National Transportation Integrated Search
1988-07-01
A large scale review of the experimental literature on alcohol effects on skills related to driving, considered 177 citations and explored the evidence of alcohol effects on reaction time, tracking, concentrated attention, divided attention performan...
NASA Astrophysics Data System (ADS)
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
Behavioral self-organization underlies the resilience of a coastal ecosystem.
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan
2017-07-25
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.
Behavioral self-organization underlies the resilience of a coastal ecosystem
de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.
2017-01-01
Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313
NASA Technical Reports Server (NTRS)
1971-01-01
A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.
Toader, O; John, S
2001-05-11
We present a blueprint for a three-dimensional photonic band gap (PBG) material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods. The proposed chiral crystal consists of square spiral posts on a tetragonal lattice. In the case of silicon posts in air (direct structure), the full PBG can be as large as 15% of the gap center frequency, whereas for air posts in a silicon background (inverted structure) the maximum PBG is 24% of the center frequency. This PBG occurs between the fourth and fifth bands of the photon dispersion relation and is very robust to variations (disorder) in the geometrical parameters of the crystal.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo
2016-01-01
Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.
Obreht, Igor; Hambach, Ulrich; Veres, Daniel; Zeeden, Christian; Bösken, Janina; Stevens, Thomas; Marković, Slobodan B; Klasen, Nicole; Brill, Dominik; Burow, Christoph; Lehmkuhl, Frank
2017-07-19
Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.
General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radice, David, E-mail: dradice@astro.princeton.edu
The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrinomore » emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.« less
Natural disasters and population mobility in Bangladesh
Gray, Clark L.; Mueller, Valerie
2012-01-01
The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity. PMID:22474361
Displacement and deformation measurement for large structures by camera network
NASA Astrophysics Data System (ADS)
Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu
2014-03-01
A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.
Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...
2015-11-05
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less
Scales of Heterogeneities in the Continental Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.
1999-09-01
A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.
Simulation research on the process of large scale ship plane segmentation intelligent workshop
NASA Astrophysics Data System (ADS)
Xu, Peng; Liao, Liangchuang; Zhou, Chao; Xue, Rui; Fu, Wei
2017-04-01
Large scale ship plane segmentation intelligent workshop is a new thing, and there is no research work in related fields at home and abroad. The mode of production should be transformed by the existing industry 2.0 or part of industry 3.0, also transformed from "human brain analysis and judgment + machine manufacturing" to "machine analysis and judgment + machine manufacturing". In this transforming process, there are a great deal of tasks need to be determined on the aspects of management and technology, such as workshop structure evolution, development of intelligent equipment and changes in business model. Along with them is the reformation of the whole workshop. Process simulation in this project would verify general layout and process flow of large scale ship plane section intelligent workshop, also would analyze intelligent workshop working efficiency, which is significant to the next step of the transformation of plane segmentation intelligent workshop.
A unifying framework for systems modeling, control systems design, and system operation
NASA Technical Reports Server (NTRS)
Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.
2005-01-01
Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.
Dynamics of Secondary Large-Scale Structures in ETG Turbulence Simulations
NASA Astrophysics Data System (ADS)
Li, Jiquan; Y, Kishimoto; Dong, Jiaqi; N, Miyato; T, Matsumoto
2006-01-01
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos
NASA Technical Reports Server (NTRS)
Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.
1994-01-01
Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.
Quantitative nanoscopy: Tackling sampling limitations in (S)TEM imaging of polymers and composites.
Gnanasekaran, Karthikeyan; Snel, Roderick; de With, Gijsbertus; Friedrich, Heiner
2016-01-01
Sampling limitations in electron microscopy questions whether the analysis of a bulk material is representative, especially while analyzing hierarchical morphologies that extend over multiple length scales. We tackled this problem by automatically acquiring a large series of partially overlapping (S)TEM images with sufficient resolution, subsequently stitched together to generate a large-area map using an in-house developed acquisition toolbox (TU/e Acquisition ToolBox) and stitching module (TU/e Stitcher). In addition, we show that quantitative image analysis of the large scale maps provides representative information that can be related to the synthesis and process conditions of hierarchical materials, which moves electron microscopy analysis towards becoming a bulk characterization tool. We demonstrate the power of such an analysis by examining two different multi-phase materials that are structured over multiple length scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Water balance model for Kings Creek
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1990-01-01
Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.
Dispersion and Cluster Scales in the Ocean
NASA Astrophysics Data System (ADS)
Kirwan, A. D., Jr.; Chang, H.; Huntley, H.; Carlson, D. F.; Mensa, J. A.; Poje, A. C.; Fox-Kemper, B.
2017-12-01
Ocean flow space scales range from centimeters to thousands of kilometers. Because of their large Reynolds number these flows are considered turbulent. However, because of rotation and stratification constraints they do not conform to classical turbulence scaling theory. Mesoscale and large-scale motions are well described by geostrophic or "2D turbulence" theory, however extending this theory to submesoscales has proved to be problematic. One obvious reason is the difficulty in obtaining reliable data over many orders of magnitude of spatial scales in an ocean environment. The goal of this presentation is to provide a preliminary synopsis of two recent experiments that overcame these obstacles. The first experiment, the Grand LAgrangian Deployment (GLAD) was conducted during July 2012 in the eastern half of the Gulf of Mexico. Here approximately 300 GPS-tracked drifters were deployed with the primary goal to determine whether the relative dispersion of an initially densely clustered array was driven by processes acting at local pair separation scales or by straining imposed by mesoscale motions. The second experiment was a component of the LAgrangian Submesoscale Experiment (LASER) conducted during the winter of 2016. Here thousands of bamboo plates were tracked optically from an Aerostat. Together these two deployments provided an unprecedented data set on dispersion and clustering processes from 1 to 106 meter scales. Calculations of statistics such as two point separations, structure functions, and scale dependent relative diffusivities showed: inverse energy cascade as expected for scales above 10 km, a forward energy cascade at scales below 10 km with a possible energy input at Langmuir circulation scales. We also find evidence from structure function calculations for surface flow convergence at scales less than 10 km that account for material clustering at the ocean surface.
Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio
2017-10-24
High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.
Impact of entrainment on cloud droplet spectra: theory, observations, and modeling
NASA Astrophysics Data System (ADS)
Grabowski, W.
2016-12-01
Understanding the impact of entrainment and mixing on microphysical properties of warm boundary layer clouds is an important aspect of the representation of such clouds in large-scale models of weather and climate. Entrainment leads to a reduction of the liquid water content in agreement with the fundamental thermodynamics, but its impact on the droplet spectrum is difficult to quantify in observations and modeling. For in-situ (e.g., aircraft) observations, it is impossible to follow air parcels and observe processes that lead to changes of the droplet spectrum in different regions of a cloud. For similar reasons traditional modeling methodologies (e.g., the Eulerian large eddy simulation) are not useful either. Moreover, both observations and modeling can resolve only relatively narrow range of spatial scales. Theory, typically focusing on differences between idealized concepts of homogeneous and inhomogeneous mixing, is also of a limited use for the multiscale turbulent mixing between a cloud and its environment. This presentation will illustrate the above points and argue that the Lagrangian large-eddy simulation with appropriate subgrid-scale scheme may provide key insights and eventually lead to novel parameterizations for large-scale models.
Gu, Xun; Wang, Yufeng; Gu, Jianying
2002-06-01
The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.
NASA Technical Reports Server (NTRS)
Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf
2012-01-01
Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
Lunar terrain mapping and relative-roughness analysis
NASA Technical Reports Server (NTRS)
Rowan, L. C.; Mccauley, J. F.; Holm, E. A.
1971-01-01
Terrain maps of the equatorial zone were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings, as well as for Ranger and Lunar Orbiter photographs. Lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative roughness characteristics. For some morphologically homogeneous mare areas, relative roughness can be extrapolated to the large scales from measurements at small scales.
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.
Monaco, Giulio; Mossa, Stefano
2009-10-06
The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig
It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.
The Emergence of a Learning Progression in Middle School Chemistry
ERIC Educational Resources Information Center
Johnson, Philip; Tymms, Peter
2011-01-01
Previously, a small scale, interview-based, 3-year longitudinal study (ages 11-14) in one school had suggested a learning progression related to the concept of a substance. This article presents the results of a large-scale, cross-sectional study which used Rasch modeling to test the hypothesis of the learning progression. Data were collected from…
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Students' Attitudes towards Edmodo, a Social Learning Network: A Scale Development Study
ERIC Educational Resources Information Center
Yunkul, Eyup; Cankaya, Serkan
2017-01-01
Social Learning Networks (SLNs) are the developed forms of Social Network Sites (SNSs) adapted to educational environments, and they are used by quite a large population throughout the world. In addition, in related literature, there is no scale for the measurement of students' attitudes towards such sites. The purpose of this study was to develop…
Scales and scaling in turbulent ocean sciences; physics-biology coupling
NASA Astrophysics Data System (ADS)
Schmitt, Francois
2015-04-01
Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.
Knispel, Alexis L; McLachlan, Stéphane M
2010-01-01
Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an adjacent field planted to OSR. Within roadside habitats, escaped OSR was also strongly associated with large-scale variables, including road surface (indicative of traffic intensity) and distance to the nearest grain elevator. Conversely, within field edges, OSR density was affected by localised crop management practices such as mowing, soil disturbance and herbicide application. Despite the proximity of roadsides and field edges, there was little evidence of spatial aggregation among escaped OSR populations in these two habitats, especially at very fine spatial scales (i.e. <100 m), suggesting that natural propagule exchange is infrequent. Escaped OSR populations were persistent at large spatial and temporal scales, and low density in a given landscape or year was not indicative of overall extinction. As a result of ongoing cultivation and transport of OSR crops, escaped GMHT traits will likely remain predominant in agricultural landscapes. While escaped OSR in field edge habitats generally results from local seeding and management activities occurring at the field-scale, distribution patterns within roadside habitats are determined in large part by seed transport occurring at the landscape scale and at even larger regional scales. Our findings suggest that these large-scale anthropogenic dispersal processes are sufficient to enable persistence despite limited natural seed dispersal. This widespread dispersal is likely to undermine field-scale management practices aimed at eliminating escaped and in-field GMHT OSR populations. Agricultural transport and landscape-scale cropping patterns are important determinants of the distribution of escaped GM crops. At the regional level, these factors ensure ongoing establishment and spread of escaped GMHT OSR despite limited local seed dispersal. Escaped populations thus play an important role in the spread of transgenes and have substantial implications for the coexistence of GM and non-GM production systems. Given the large-scale factors driving the spread of escaped transgenes, localised co-existence measures may be impracticable where they are not commensurate with regional dispersal mechanisms. To be effective, strategies aimed at reducing contamination from GM crops should be multi-scale in approach and be developed and implemented at both farm and landscape levels of organisation. Multiple stakeholders should thus be consulted, including both GM and non-GM farmers, as well as seed developers, processors, transporters and suppliers. Decisions to adopt GM crops require thoughtful and inclusive consideration of the risks and responsibilities inherent in this new technology.
Factors Affecting Volunteering among Older Rural and City Dwelling Adults in Australia
ERIC Educational Resources Information Center
Warburton, Jeni; Stirling, Christine
2007-01-01
In the absence of large scale Australian studies of volunteering among older adults, this study compared the relevance of two theoretical approaches--social capital theory and sociostructural resources theory--to predict voluntary activity in relation to a large national database. The paper explores volunteering by older people (aged 55+) in order…
Aerial photo guide to New England forest cover types
Rachel Riemann Hershey; William A. Befort
1995-01-01
NOTE large file size. Presents color infrared photos in stereo pairs for the identification of New England forest cover types. Depicts range maps, ecological relations, and range of composition for each forest cover type described. The guide is designed to assist the needs of interpreters of medium to large-scale color infrared aerial photography.
Universal relations for range corrections to Efimov features
Ji, Chen; Braaten, Eric; Phillips, Daniel R.; ...
2015-09-09
In a three-body system of identical bosons interacting through a large S-wave scattering length a, there are several sets of features related to the Efimov effect that are characterized by discrete scale invariance. Effective field theory was recently used to derive universal relations between these Efimov features that include the first-order correction due to a nonzero effective range r s. We reveal a simple pattern in these range corrections that had not been previously identified. The pattern is explained by the renormalization group for the effective field theory, which implies that the Efimov three-body parameter runs logarithmically with the momentummore » scale at a rate proportional to r s/a. The running Efimov parameter also explains the empirical observation that range corrections can be largely taken into account by shifting the Efimov parameter by an adjustable parameter divided by a. Furthermore, the accuracy of universal relations that include first-order range corrections is verified by comparing them with various theoretical calculations using models with nonzero range.« less
Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A
NASA Astrophysics Data System (ADS)
Amendola, Luca; Kunz, Martin; Saltas, Ippocratis D.; Sawicki, Ignacy
2018-03-01
The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η ) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.
Organization and scaling in water supply networks
NASA Astrophysics Data System (ADS)
Cheng, Likwan; Karney, Bryan W.
2017-12-01
Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.
As part of an international intercomparison project, the weak temperature gradient (WTG) and damped gravity wave (DGW) methods are used to parameterize large-scale dynamics in a set of cloud-resolving models (CRMs) and single column models (SCMs). The WTG or DGW method is implemented using a configuration that couples a model to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. We investigated the sensitivity of each model to changes in SST, given a fixed reference state. We performed a systematic comparison of the WTG and DGW methods in different models, and a systematic comparison ofmore » the behavior of those models using the WTG method and the DGW method. The sensitivity to the SST depends on both the large-scale parameterization method and the choice of the cloud model. In general, SCMs display a wider range of behaviors than CRMs. All CRMs using either the WTG or DGW method show an increase of precipitation with SST, while SCMs show sensitivities which are not always monotonic. CRMs using either the WTG or DGW method show a similar relationship between mean precipitation rate and column-relative humidity, while SCMs exhibit a much wider range of behaviors. DGW simulations produce large-scale velocity profiles which are smoother and less top-heavy compared to those produced by the WTG simulations. Lastly, these large-scale parameterization methods provide a useful tool to identify the impact of parameterization differences on model behavior in the presence of two-way feedback between convection and the large-scale circulation.« less
Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock
NASA Astrophysics Data System (ADS)
Ying, Beili; Feng, Li; Lu, Lei; Zhang, Jie; Magdalenic, Jasmina; Su, Yingna; Su, Yang; Gan, Weiqun
2018-03-01
Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have rarely been investigated. We present analyses of a small-scale, short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics, including a very short duration of the main acceleration phase (<2 minutes), a rather high maximal acceleration rate (∼50 km s‑2), and peak velocity (∼1800 km s‑1). The fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of ∼320 MHz of the fundamental band. The type II source is formed at a low height of below 1.1 R ⊙ less than ∼2 minutes after the onset of the main acceleration phase. Through the band-split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1–2.3 R ⊙. We find that the CME (∼4 × 1030 erg) and flare (∼1.6 × 1030 erg) consume similar amounts of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share a similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.
Multi-scale heterogeneity of the 2011 Great Tohoku-oki Earthquake from dynamic simulations
NASA Astrophysics Data System (ADS)
Aochi, H.; Ide, S.
2011-12-01
In order to explain the scaling issues of earthquakes of different sizes, multi-scale heterogeneity conception is necessary to characterize earthquake faulting property (Ide and Aochi, JGR, 2005; Aochi and Ide, JGR, 2009).The 2011 Great Tohoku-oki earthquake (M9) is characterized by a slow initial phase of about M7, a M8 class deep rupture, and a M9 main rupture with quite large slip near the trench (e.g. Ide et al., Science, 2011) as well as the presence of foreshocks. We dynamically model these features based on the multi-scale conception. We suppose a significantly large fracture energy (corresponding to slip-weakening distance of 3.2 m) in most of the fault dimension to represent the M9 rupture. However we give local heterogeneity with relatively small circular patches of smaller fracture energy, by assuming the linear scaling relation between the radius and fracture energy. The calculation is carried out using 3D Boundary Integral Equation Method. We first begin only with the mainshock (Aochi and Ide, EPS, 2011), but later we find it important to take into account of a series of foreshocks since the 9th March (M7.4). The smaller patches including the foreshock area are necessary to launch the M9 rupture area of large fracture energy. We then simulate the ground motion in low frequencies using Finite Difference Method. Qualitatively, the observed tendency is consistent with our simulations, in the meaning of the transition from the central part to the southern part in low frequencies (10 - 20 sec). At higher frequencies (1-10 sec), further small asperities are inferred in the observed signals, and this feature matches well with our multi-scale conception.
NASA Astrophysics Data System (ADS)
Martin, J.; Laughlin, M. M.; Olson, E.
2017-12-01
Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.
Danis, Ildiko; Scheuring, Noemi; Papp, Eszter; Czinner, Antal
2012-06-01
A new instrument for assessing depressive mood, the first version of Depression Scale Questionnaire (DS1K) was published in 2008 by Halmai et al. This scale was used in our large sample study, in the framework of the For Healthy Offspring project, involving parents of young children. The original questionnaire was developed in small samples, so our aim was to assist further development of the instrument by the psychometric analysis of the data in our large sample (n=1164). The DS1K scale was chosen to measure the parents' mood and mental state in the For Healthy Offspring project. The questionnaire was completed by 1063 mothers and 328 fathers, yielding a heterogenous sample with respect to age and socio-demographic status. Analyses included main descriptive statistics, establishing the scales' inner consistency and some comparisons. Results were checked in our original and multiple imputed datasets as well. According to our results the reliability of our scale was much worse than in the original study (Cronbach alpha: 0.61 versus 0.88). During the detailed item-analysis it became clear that two items contributed to the observed decreased coherence. We assumed a problem related to misreading in case of one of these items. This assumption was checked by cross-analysis by the assumed reading level. According to our results the reliability of the scale was increased in both the lower and higher education level groups if we did not include one or both of these problematic items. However, as the number of items decreased, the relative sensitivity of the scale was also reduced, with fewer persons categorized in the risk group compared to the original scale. We suggest for the authors as an alternative solution to redefine the problematic items and retest the reliability of the measurement in a sample with diverse socio-demographic characteristics.
International Childhood Cancer Cohort Consortium
An alliance of several large-scale prospective cohort studies of children to pool data and biospecimens from individual cohorts to study various modifiable and genetic factors in relation to cancer risk
Large scale rigidity-based flexibility analysis of biomolecules
Streinu, Ileana
2016-01-01
KINematics And RIgidity (KINARI) is an on-going project for in silico flexibility analysis of proteins. The new version of the software, Kinari-2, extends the functionality of our free web server KinariWeb, incorporates advanced web technologies, emphasizes the reproducibility of its experiments, and makes substantially improved tools available to the user. It is designed specifically for large scale experiments, in particular, for (a) very large molecules, including bioassemblies with high degree of symmetry such as viruses and crystals, (b) large collections of related biomolecules, such as those obtained through simulated dilutions, mutations, or conformational changes from various types of dynamics simulations, and (c) is intended to work as seemlessly as possible on the large, idiosyncratic, publicly available repository of biomolecules, the Protein Data Bank. We describe the system design, along with the main data processing, computational, mathematical, and validation challenges underlying this phase of the KINARI project. PMID:26958583
Evolution of scaling emergence in large-scale spatial epidemic spreading.
Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan
2011-01-01
Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Ward, Philip; Block, Paul
2018-02-01
Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.
Hurks, P P M; Hendriksen, J G M; Dek, J E; Kooij, A P
2013-01-01
Intelligence tests are included in millions of assessments of children and adults each year (Watkins, Glutting, & Lei, 2007a , Applied Neuropsychology, 14, 13). Clinicians often interpret large amounts of subtest scatter, or large differences between the highest and lowest scaled subtest scores, on an intelligence test battery as an index for abnormality or cognitive impairment. The purpose of the present study is to characterize "normal" patterns of variability among subtests of the Dutch Wechsler Preschool and Primary Scale of Intelligence - Third Edition (WPPSI-III-NL; Wechsler, 2010 ). Therefore, the frequencies of WPPSI-III-NL scaled subtest scatter were reported for 1039 healthy children aged 4:0-7:11 years. Results indicated that large differences between highest and lowest scaled subtest scores (or subtest scatter) were common in this sample. Furthermore, degree of subtest scatter was related to: (a) the magnitude of the highest scaled subtest score, i.e., more scatter was seen in children with the highest WPPSI-III-NL scaled subtest scores, (b) Full Scale IQ (FSIQ) scores, i.e., higher FSIQ scores were associated with an increase in subtest scatter, and (c) sex differences, with boys showing a tendency to display more scatter than girls. In conclusion, viewing subtest scatter as an index for abnormality in WPPSI-III-NL scores is an oversimplification as this fails to recognize disparate subtest heterogeneity that occurs within a population of healthy children aged 4:0-7:11 years.
Bathymetric comparisons adjacent to the Louisiana barrier islands: Processes of large-scale change
List, J.H.; Jaffe, B.E.; Sallenger, A.H.; Hansen, M.E.
1997-01-01
This paper summarizes the results of a comparative bathymetric study encompassing 150 km of the Louisiana barrier-island coast. Bathymetric data surrounding the islands and extending to 12 m water depth were processed from three survey periods: the 1880s, the 1930s, and the 1980s. Digital comparisons between surveys show large-scale, coherent patterns of sea-floor erosion and accretion related to the rapid erosion and disintegration of the islands. Analysis of the sea-floor data reveals two primary processes driving this change: massive longshore transport, in the littoral zone and at shoreface depths; and increased sediment storage in ebb-tidal deltas. Relative sea-level rise, although extraordinarily high in the study area, is shown to be an indirect factor in causing the area's rapid shoreline retreat rates.
Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.
Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R
2016-01-01
There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.
Numerical Simulations of Homogeneous Turbulence Using Lagrangian-Averaged Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Mohseni, Kamran; Shkoller, Steve; Kosovic, Branko; Marsden, Jerrold E.; Carati, Daniele; Wray, Alan; Rogallo, Robert
2000-01-01
The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori fixed spatial scale alpha) using a dispersive rather than dissipative mechanism, thus maintaining the crucial features of the large scale flow. We examine the modeling capabilities of the LANS equations for decaying homogeneous turbulence, ascertain their ability to track the energy spectrum of fully resolved direct numerical simulations (DNS), compare the relative energy decay rates, and compare LANS with well-accepted large eddy simulation (LES) models.
Sawata, Hiroshi; Ueshima, Kenji; Tsutani, Kiichiro
2011-04-14
Clinical evidence is important for improving the treatment of patients by health care providers. In the study of cardiovascular diseases, large-scale clinical trials involving thousands of participants are required to evaluate the risks of cardiac events and/or death. The problems encountered in conducting the Japanese Acute Myocardial Infarction Prospective (JAMP) study highlighted the difficulties involved in obtaining the financial and infrastructural resources necessary for conducting large-scale clinical trials. The objectives of the current study were: 1) to clarify the current funding and infrastructural environment surrounding large-scale clinical trials in cardiovascular and metabolic diseases in Japan, and 2) to find ways to improve the environment surrounding clinical trials in Japan more generally. We examined clinical trials examining cardiovascular diseases that evaluated true endpoints and involved 300 or more participants using Pub-Med, Ichushi (by the Japan Medical Abstracts Society, a non-profit organization), websites of related medical societies, the University Hospital Medical Information Network (UMIN) Clinical Trials Registry, and clinicaltrials.gov at three points in time: 30 November, 2004, 25 February, 2007 and 25 July, 2009. We found a total of 152 trials that met our criteria for 'large-scale clinical trials' examining cardiovascular diseases in Japan. Of these, 72.4% were randomized controlled trials (RCTs). Of 152 trials, 9.2% of the trials examined more than 10,000 participants, and 42.8% examined between 1,000 and 10,000 participants. The number of large-scale clinical trials markedly increased from 2001 to 2004, but suddenly decreased in 2007, then began to increase again. Ischemic heart disease (39.5%) was the most common target disease. Most of the larger-scale trials were funded by private organizations such as pharmaceutical companies. The designs and results of 13 trials were not disclosed. To improve the quality of clinical trials, all sponsors should register trials and disclose the funding sources before the enrolment of participants, and publish their results after the completion of each study.
Support for solar energy: Examining sense of place and utility-scale development in California
Carlisle, Juliet E.; Kane, Stephanie L.; Solan, David; ...
2014-08-20
As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N=594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudes toward solarmore » energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.« less
Mapping spatial patterns of denitrifiers at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
Support for solar energy: Examining sense of place and utility-scale development in California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juliet E. Carlisle; Stephanie L. Kane; David Solan
2015-07-01
As solar costs have declined PV systems have experienced considerable growth since 2003, especially in China, Japan, Germany, and the U.S. Thus, a more nuanced understanding of a particular public's attitudes toward utility-scale solar development, as it arrives in a market and region, is warranted and will likely be instructive for other areas in the world where this type of development will occur in the near future. Using data collected from a 2013 telephone survey (N = 594) from the six Southern Californian counties selected based on existing and proposed solar developments and available suitable land, we examine public attitudesmore » toward solar energy and construction of large-scale solar facilities, testing whether attitudes toward such developments are the result of sense of place and attachment to place. Overall, we have mixed results. Place attachment and sense of place fail to produce significant effects except in terms of perceived positive benefits. That is, respondents interpret the change resulting from large-scale solar development in a positive way insofar as perceived positive economic impacts are positively related to support for nearby large-scale construction.« less
Measuring emotions during epistemic activities: the Epistemically-Related Emotion Scales.
Pekrun, Reinhard; Vogl, Elisabeth; Muis, Krista R; Sinatra, Gale M
2017-09-01
Measurement instruments assessing multiple emotions during epistemic activities are largely lacking. We describe the construction and validation of the Epistemically-Related Emotion Scales, which measure surprise, curiosity, enjoyment, confusion, anxiety, frustration, and boredom occurring during epistemic cognitive activities. The instrument was tested in a multinational study of emotions during learning from conflicting texts (N = 438 university students from the United States, Canada, and Germany). The findings document the reliability, internal validity, and external validity of the instrument. A seven-factor model best fit the data, suggesting that epistemically-related emotions should be conceptualised in terms of discrete emotion categories, and the scales showed metric invariance across the North American and German samples. Furthermore, emotion scores changed over time as a function of conflicting task information and related significantly to perceived task value and use of cognitive and metacognitive learning strategies.
Relative scale and the strength and deformability of rock masses
NASA Astrophysics Data System (ADS)
Schultz, Richard A.
1996-09-01
The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
NASA Technical Reports Server (NTRS)
Chen, Fei; Yates, David; LeMone, Margaret
2001-01-01
To understand the effects of land-surface heterogeneity and the interactions between the land-surface and the planetary boundary layer at different scales, we develop a multiscale data set. This data set, based on the Cooperative Atmosphere-Surface Exchange Study (CASES97) observations, includes atmospheric, surface, and sub-surface observations obtained from a dense observation network covering a large region on the order of 100 km. We use this data set to drive three land-surface models (LSMs) to generate multi-scale (with three resolutions of 1, 5, and 10 kilometers) gridded surface heat flux maps for the CASES area. Upon validating these flux maps with measurements from surface station and aircraft, we utilize them to investigate several approaches for estimating the area-integrated surface heat flux for the CASES97 domain of 71x74 square kilometers, which is crucial for land surface model development/validation and area water and energy budget studies. This research is aimed at understanding the relative contribution of random turbulence versus organized mesoscale circulations to the area-integrated surface flux at the scale of 100 kilometers, and identifying the most important effective parameters for characterizing the subgrid-scale variability for large-scale atmosphere-hydrology models.
A spatial picture of the synthetic large-scale motion from dynamic roughness
NASA Astrophysics Data System (ADS)
Huynh, David; McKeon, Beverley
2017-11-01
Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.
Lai, Hsien-Tang; Kung, Pei-Tseng; Su, Hsun-Pi; Tsai, Wen-Chen
2014-09-01
Limited studies with large samples have been conducted on the utilization of dental calculus scaling among people with physical or mental disabilities. This study aimed to investigate the utilization of dental calculus scaling among the national disabled population. This study analyzed the utilization of dental calculus scaling among the disabled people, using the nationwide data between 2006 and 2008. Descriptive analysis and logistic regression were performed to analyze related influential factors for dental calculus scaling utilization. The dental calculus scaling utilization rate among people with physical or mental disabilities was 16.39%, and the annual utilization frequency was 0.2 times. Utilization rate was higher among the female and non-aboriginal samples. Utilization rate decreased with increased age and disability severity while utilization rate increased with income, education level, urbanization of residential area and number of chronic illnesses. Related influential factors for dental calculus scaling utilization rate were gender, age, ethnicity (aboriginal or non-aboriginal), education level, urbanization of residence area, income, catastrophic illnesses, chronic illnesses, disability types, and disability severity significantly influenced the dental calculus scaling utilization rate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparative Tectonics of Europa and Ganymede
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Collins, G. C.; Prockter, L. M.; Head, J. W.
2000-10-01
Europa and Ganymede are sibling satellites with tectonic similarities and differences. Ganymede's ancient dark terrain is crossed by furrows, probably related to ancient large impacts, and has been normal faulted to various degrees. Bright grooved is pervasively deformed at multiple scales and is locally highly strained, consistent with normal faulting of an ice-rich lithosphere above a ductile asthenosphere, along with minor horizontal shear. Little evidence has been identified for compressional structures. The relative roles of tectonism and icy cryovolcanism in creating bright grooved terrain is an outstanding issue. Some ridge and trough structures within Europa's bands show tectonic similarities to Ganymede's grooved terrain, specifically sawtooth structures resembling normal fault blocks. Small-scale troughs are consistent with widened tension fractures. Shearing has produced transtensional and transpressional structures in Europan bands. Large-scale folds are recognized on Europa, with synclinal small-scale ridges and scarps probably representing folds and/or thrust blocks. Europa's ubiquitous double ridges may have originated as warm ice upwelled along tidally heated fracture zones. The morphological variety of ridges and troughs on Europa imply that care must be taken in inferring their origin. The relative youth of Europa's surface means that the satellite has preserved near-pristine morphologies of many structures, though sputter erosion could have altered the morphology of older topography. Moderate-resolution imaging has revealed lesser apparent diversity in Ganymede's ridge and trough types. Galileo's 28th orbit has brought new 20 m/pixel imaging of Ganymede, allowing direct comparison to Europa's small-scale structures.
The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Xiong, Yan; Li, Jing; Liu, Zhaohui; Zheng, Chuguang
2018-02-01
The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for { St}_k <3.0.
The statistical power to detect cross-scale interactions at macroscales
Wagner, Tyler; Fergus, C. Emi; Stow, Craig A.; Cheruvelil, Kendra S.; Soranno, Patricia A.
2016-01-01
Macroscale studies of ecological phenomena are increasingly common because stressors such as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs), where ecological processes operating at one spatial or temporal scale interact with processes operating at another scale, have been documented in a variety of ecosystems and contribute to complex system dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from different sources to create multithematic, multiscaled data sets, which results in structurally complex, and sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their importance and the challenge of quantifying CSIs using data sets with complex structures and missing observations. We studied this problem using a spatially hierarchical model that measures CSIs between regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect CSIs was more strongly related to the number of regions in the study rather than the number of lakes nested within each region. CSI power analyses will not only help ecologists design large-scale studies aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are ecologically relevant and detectable with large data sets.
Hydropower and sustainability: resilience and vulnerability in China's powersheds.
McNally, Amy; Magee, Darrin; Wolf, Aaron T
2009-07-01
Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water resource control at the local and international scales. Some measures that improved economic development through the market economy and a combination of dam construction and institutional reform may indeed improve hydro-political resilience at a single scale. However, if China does address large-scale hydropower construction's potential to create multi-scale geopolitical tensions, they may be vulnerable to conflict - though not necessarily violent - in domestic and international political arenas. We conclude with a look toward a resilient basin institution for the Nu/Salween River, the site of a proposed large-scale hydropower development effort in China and Myanmar.
Perturbation theory for cosmologies with nonlinear structure
NASA Astrophysics Data System (ADS)
Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy
2017-11-01
The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.
Galaxy formation and physical bias
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1992-01-01
We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.
Statewide Physical Fitness Testing: A BIG Waist or a BIG Waste?
ERIC Educational Resources Information Center
Morrow, James R., Jr.; Ede, Alison
2009-01-01
Statewide physical fitness testing is gaining popularity in the United States because of increased childhood obesity levels, the relations between physical fitness and academic performance, and the hypothesized relations between adult characteristics and childhood physical activity, physical fitness, and health behaviors. Large-scale physical…
Large-scale structure in brane-induced gravity. I. Perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoccimarro, Roman
2009-11-15
We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less
NASA Astrophysics Data System (ADS)
Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent
2014-05-01
In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreck, S.; Sant, T.; Micallef, D.
Wind turbine structures and components suffer excessive loads and premature failures when key aerodynamic phenomena are not well characterized, fail to be understood, or are inaccurately predicted. Turbine blade rotational augmentation remains incompletely characterized and understood, thus limiting robust prediction for design. Pertinent rotational augmentation research including experimental, theoretical, and computational work has been pursued for some time, but large scale wind tunnel testing is a relatively recent development for investigating wind turbine blade aerodynamics. Because of their large scale and complementary nature, the MEXICO and UAE Phase VI wind tunnel experiments offer unprecedented synergies to better characterize and understandmore » rotational augmentation of blade aerodynamics.« less
Environmental aspects of large-scale wind-power systems in the UK
NASA Astrophysics Data System (ADS)
Robson, A.
1984-11-01
Environmental issues relating to the introduction of large, MW-scale wind turbines at land-based sites in the UK are discussed. Noise, television interference, hazards to bird life, and visual effects are considered. Areas of uncertainty are identified, but enough is known from experience elsewhere in the world to enable the first UK machines to be introduced in a safe and environementally acceptable manner. Research to establish siting criteria more clearly, and significantly increase the potential wind-energy resource is mentioned. Studies of the comparative risk of energy systems are shown to be overpessimistic for UK wind turbines.
Wang, Yupeng; Ficklin, Stephen P; Wang, Xiyin; Feltus, F Alex; Paterson, Andrew H
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots.
Wang, Yupeng; Ficklin, Stephen P.; Wang, Xiyin; Feltus, F. Alex; Paterson, Andrew H.
2016-01-01
Different modes of gene duplication including whole-genome duplication (WGD), and tandem, proximal and dispersed duplications are widespread in angiosperm genomes. Small-scale, stochastic gene relocations and transposed gene duplications are widely accepted to be the primary mechanisms for the creation of dispersed duplicates. However, here we show that most surviving ancient dispersed duplicates in core eudicots originated from large-scale gene relocations within a narrow window of time following a genome triplication (γ) event that occurred in the stem lineage of core eudicots. We name these surviving ancient dispersed duplicates as relocated γ duplicates. In Arabidopsis thaliana, relocated γ, WGD and single-gene duplicates have distinct features with regard to gene functions, essentiality, and protein interactions. Relative to γ duplicates, relocated γ duplicates have higher non-synonymous substitution rates, but comparable levels of expression and regulation divergence. Thus, relocated γ duplicates should be distinguished from WGD and single-gene duplicates for evolutionary investigations. Our results suggest large-scale gene relocations following the γ event were associated with the diversification of core eudicots. PMID:27195960
McCrae, Robert R.; Scally, Matthew; Terracciano, Antonio; Abecasis, Gonçalo R.; Costa, Paul T.
2011-01-01
There is growing evidence that personality traits are affected by many genes, all of which have very small effects. As an alternative to the largely-unsuccessful search for individual polymorphisms associated with personality traits, we identified large sets of potentially related single nucleotide polymorphisms (SNPs) and summed them to form molecular personality scales (MPSs) with from 4 to 2,497 SNPs. Scales were derived from two-thirds of a large (N = 3,972) sample of individuals from Sardinia who completed the Revised NEO Personality Inventory and were assessed in a genome-wide association scan. When MPSs were correlated with the phenotype in the remaining third of the sample, very small but significant associations were found for four of the five personality factors when the longest scales were examined. These data suggest that MPSs for Neuroticism, Openness to Experience, Agreeableness, and Conscientiousness (but not Extraversion) contain genetic information that can be refined in future studies, and the procedures described here should be applicable to other quantitative traits. PMID:21114353
Scale growth of structures in the turbulent boundary layer with a rod-roughened wall
NASA Astrophysics Data System (ADS)
Lee, Jin; Kim, Jung Hoon; Lee, Jae Hwa
2016-01-01
Direct numerical simulation of a turbulent boundary layer over a rod-roughened wall is performed with a long streamwise domain to examine the streamwise-scale growth mechanism of streamwise velocity fluctuating structures in the presence of two-dimensional (2-D) surface roughness. An instantaneous analysis shows that there is a slightly larger population of long structures with a small helix angle (spanwise inclinations relative to streamwise) and a large spanwise width over the rough-wall compared to that over a smooth-wall. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure through a spanwise merging process over the rough-wall; moreover, spanwise merging for streamwise scale growth is expected to occur frequently over the rough-wall due to the large spanwise scales generated by the 2-D roughness. Finally, we examine the influence of a large width and a small helix angle of the structures over the rough-wall with regard to spatial two-point correlation. The results show that these factors can increase the streamwise coherence of the structures in a statistical sense.
Universal statistics of vortex tangles in three-dimensional random waves
NASA Astrophysics Data System (ADS)
Taylor, Alexander J.
2018-02-01
The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.
Reconciling tensor and scalar observables in G-inflation
NASA Astrophysics Data System (ADS)
Ramírez, Héctor; Passaglia, Samuel; Motohashi, Hayato; Hu, Wayne; Mena, Olga
2018-04-01
The simple m2phi2 potential as an inflationary model is coming under increasing tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral index ns. Cubic Galileon interactions in the context of the Horndeski action can potentially reconcile the observables. However, we show that this cannot be achieved with only a constant Galileon mass scale because the interactions turn off too slowly, leading also to gradient instabilities after inflation ends. Allowing for a more rapid transition can reconcile the observables but moderately breaks the slow-roll approximation leading to a relatively large and negative running of the tilt αs that can be of order ns‑1. We show that the observables on CMB and large scale structure scales can be predicted accurately using the optimized slow-roll approach instead of the traditional slow-roll expansion. Upper limits on |αs| place a lower bound of rgtrsim 0.005 and, conversely, a given r places a lower bound on |αs|, both of which are potentially observable with next generation CMB and large scale structure surveys.
Methods and apparatus of analyzing electrical power grid data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Langlotz, S. T.
2016-02-01
Submarine groundwater discharge (SGD) has been recognized as a relevant field of coastal research in the last years. Its implications on local scale have been documented by an increasing number of studies researching individual locations with SGD. The local studies also often emphasize its large variability. On the other end, global scale studies try to estimate SGD related fluxes of e.g. carbon (Cole et al., 2007) and nitrogen (Beusen et al., 2013). These studies naturally use a coarse resolution, too coarse to represent the aforementioned local variability of SGD (Moosdorf et al., 2015). A way to transfer information of the local variability of SGD to large scale flux estimates is needed. Here we discuss the upscaling of local studies based on the definition and typology of coastal catchments. Coastal catchments are those stretches of coast that do not drain into major rivers but directly into the sea. Their attributes, e.g. climate, topography, land cover, or lithology can be used to extrapolate from the local scale to larger scales. We present first results of a typology, compare coastal catchment attributes to SGD estimates from field studies and discuss upscaling as well as the associated uncertainties. This study aims at bridging the gap between the scales and enabling an improved representation of local scale variability on continental to global scale. With this, it can contribute to a recent initiative to model large scale SGD fluxes (NExT SGD). References: Beusen, A.H.W., Slomp, C.P., Bouwman, A.F., 2013. Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters, 8(3): 6. Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 171-184. Moosdorf, N., Stieglitz, T., Waska, H., Durr, H.H., Hartmann, J., 2015. Submarine groundwater discharge from tropical islands: a review. Grundwasser, 20(1): 53-67.
ERIC Educational Resources Information Center
Vincent, Jack E.
Part of a large scale research project to test various theories with regard to their ability to analyze international relations, this monograph presents data on the application of distance theory to patterns of cooperation among nations. Distance theory implies that international relations systems (nations, organizations, individuals, etc.) can be…
The Relative Emphasis of Play Rules between Experienced and Trainee Caregivers of Toddlers
ERIC Educational Resources Information Center
Gyöngy, Kinga
2017-01-01
Content analysis of a large-scale (N = 920) qualitative data set with MAXQDA12 from a nationwide questionnaire of nursery practitioners in Hungary was able to demonstrate various types of rules during free play: social, health and safety, and environment-related rules. Environment-related rules, which govern space utilisation in toddler groups,…
Seismic Expression of Fault Related Folding in Southeastern Turkey
NASA Astrophysics Data System (ADS)
Beauchamp, W.; McDonald, D.
2009-12-01
Weldon Beauchamp, and David McDonald,TransAtlantic Petroleum Corp. 5910 N. Central Expressway, Suite 1755, Dallas, TX 75206 weldon@tapcor.com, 214-395-7125 The Zagros fold belt extends northwest from Iran and Iraq into southeastern Turkey. Large scale fault related folds control the topography of this region and the path of the Tigris river. Large surface anticlines in the Zagros Mountains provide traps for giant oil and gas fields in Iran and Iraq. Similar scale folds extend into southeast Turkey. These southward verging fault related folds are believed to detach in the Paleozoic. Borehole data, surface geological maps, satellite data and digital topographic models were used to create models to constrain structure at depth. Structural modeling of these folds was used to design, acquire and process seismic reflection data in the region. The seismic reflection data confirmed the presence of asymmetrical, south verging complex fault related folding. Faults related to these folds detach in the Lower Ordovician to Cambrian age shales. These folds are believed to form doubly plunging structures that fold Tertiary through Paleozoic age rocks forming multiple levels of possible hydrocarbon entrapment.
Dynamic Time Expansion and Compression Using Nonlinear Waveguides
Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi
2004-06-22
Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
Dynamic time expansion and compression using nonlinear waveguides
Findikoglu, Alp T [Los Alamos, NM; Hahn, Sangkoo F [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM
2004-06-22
Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.
NASA Astrophysics Data System (ADS)
Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng
2018-06-01
A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.
The role of fanatics in consensus formation
NASA Astrophysics Data System (ADS)
Gündüç, Semra
2015-08-01
A model of opinion dynamics with two types of agents as social actors are presented, using the Ising thermodynamic model as the dynamics template. The agents are considered as opportunists which live at sites and interact with the neighbors, or fanatics/missionaries which move from site to site randomly in persuasion of converting agents of opposite opinion with the help of opportunists. Here, the moving agents act as an external influence on the opportunists to convert them to the opposite opinion. It is shown by numerical simulations that such dynamics of opinion formation may explain some details of consensus formation even when one of the opinions are held by a minority. Regardless the distribution of the opinion, different size societies exhibit different opinion formation behavior and time scales. In order to understand general behavior, the scaling relations obtained by comparing opinion formation processes observed in societies with varying population and number of randomly moving agents are studied. For the proposed model two types of scaling relations are observed. In fixed size societies, increasing the number of randomly moving agents give a scaling relation for the time scale of the opinion formation process. The second type of scaling relation is due to the size dependent information propagation in finite but large systems, namely finite-size scaling.
Gubbels, Jessica S; Sleddens, Ester Fc; Raaijmakers, Lieke Ch; Gies, Judith M; Kremers, Stef Pj
2016-08-01
To develop and validate a questionnaire to measure food-related and activity-related practices of child-care staff, based on existing, validated parenting practices questionnaires. A selection of items from the Comprehensive Feeding Practices Questionnaire (CFPQ) and the Preschooler Physical Activity Parenting Practices (PPAPP) questionnaire was made to include items most suitable for the child-care setting. The converted questionnaire was pre-tested among child-care staff during cognitive interviews and pilot-tested among a larger sample of child-care staff. Factor analyses with Varimax rotation and internal consistencies were used to examine the scales. Spearman correlations, t tests and ANOVA were used to examine associations between the scales and staff's background characteristics (e.g. years of experience, gender). Child-care centres in the Netherlands. The qualitative pre-test included ten child-care staff members. The quantitative pilot test included 178 child-care staff members. The new questionnaire, the Child-care Food and Activity Practices Questionnaire (CFAPQ), consists of sixty-three items (forty food-related and twenty-three activity-related items), divided over twelve scales (seven food-related and five activity-related scales). The CFAPQ scales are to a large extent similar to the original CFPQ and PPAPP scales. The CFAPQ scales show sufficient internal consistency with Cronbach's α ranging between 0·53 and 0·96, and average corrected item-total correlations within acceptable ranges (0·30-0·89). Several of the scales were significantly associated with child-care staff's background characteristics. Scale psychometrics of the CFAPQ indicate it is a valid questionnaire that assesses child-care staff's practices related to both food and activities.
D.J. Hayes; W.B. Cohen
2006-01-01
This article describes the development of a methodology for scaling observations of changes in tropical forest cover to large areas at high temporal frequency from coarse-resolution satellite imagery. The approach for estimating proportional forest cover change as a continuous variable is based on a regression model that relates multispectral, multitemporal Moderate...
ERIC Educational Resources Information Center
Gan, Zhengdong
2012-01-01
This study, which is part of a large-scale study of using objective measures to validate assessment rating scales and assessment tasks in a high-profile school-based assessment initiative in Hong Kong, examined how grammatical complexity measures relate to task type and analytic evaluations of students' speaking proficiency in a classroom-based…
Yihe Lu; Bojie Fu; Xiaoming Feng; Yuan Zeng; Yu Liu; Ruiying Chang; Ge Sun; Bingfang Wu
2012-01-01
As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of...
Detonation failure characterization of non-ideal explosives
NASA Astrophysics Data System (ADS)
Janesheski, Robert S.; Groven, Lori J.; Son, Steven
2012-03-01
Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.
Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.
2017-01-01
Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).
Hopwood, Tanya L; Schutte, Nicola S; Loi, Natasha M
2017-09-01
Two studies, with a total of 707 participants, developed and examined the reliability and validity of a measure for anticipatory traumatic reaction (ATR), a novel construct describing a form of distress that may occur in response to threat-related media reports and discussions. Exploratory and confirmatory factor analysis resulted in a scale comprising three subscales: feelings related to future threat; preparatory thoughts and actions; and disruption to daily activities. Internal consistency was .93 for the overall ATR scale. The ATR scale demonstrated convergent validity through associations with negative affect, depression, anxiety, stress, neuroticism, and repetitive negative thinking. The scale showed discriminant validity in relationships to Big Five characteristics. The ATR scale had some overlap with a measure of posttraumatic stress disorder, but also showed substantial separate variance. This research provides preliminary evidence for the novel construct of ATR as well as a measure of the construct. The ATR scale will allow researchers to further investigate anticipatory traumatic reaction in the fields of trauma, clinical practice, and social psychology.
Mykkänen, Juha; Virkanen, Hannu; Tuomainen, Mika
2013-01-01
The governance of large eHealth initiatives requires traceability of many requirements and design decisions. We provide a model which we use to conceptually analyze variability of several enterprise architecture (EA) elements throughout the extended lifecycle of development goals using interrelated projects related to the national ePrescription in Finland.
Multiresource inventories incorporating GIS, GPS, and database management systems
Loukas G. Arvanitis; Balaji Ramachandran; Daniel P. Brackett; Hesham Abd-El Rasol; Xuesong Du
2000-01-01
Large-scale natural resource inventories generate enormous data sets. Their effective handling requires a sophisticated database management system. Such a system must be robust enough to efficiently store large amounts of data and flexible enough to allow users to manipulate a wide variety of information. In a pilot project, related to a multiresource inventory of the...
ERIC Educational Resources Information Center
Sonnleitner, Philipp; Brunner, Martin; Keller, Ulrich; Martin, Romain
2014-01-01
Whereas the assessment of complex problem solving (CPS) has received increasing attention in the context of international large-scale assessments, its fairness in regard to students' cultural background has gone largely unexplored. On the basis of a student sample of 9th-graders (N = 299), including a representative number of immigrant students (N…
Maeda, Jin; Suzuki, Tatsuya; Takayama, Kozo
2012-12-01
A large-scale design space was constructed using a Bayesian estimation method with a small-scale design of experiments (DoE) and small sets of large-scale manufacturing data without enforcing a large-scale DoE. The small-scale DoE was conducted using various Froude numbers (X(1)) and blending times (X(2)) in the lubricant blending process for theophylline tablets. The response surfaces, design space, and their reliability of the compression rate of the powder mixture (Y(1)), tablet hardness (Y(2)), and dissolution rate (Y(3)) on a small scale were calculated using multivariate spline interpolation, a bootstrap resampling technique, and self-organizing map clustering. The constant Froude number was applied as a scale-up rule. Three experiments under an optimal condition and two experiments under other conditions were performed on a large scale. The response surfaces on the small scale were corrected to those on a large scale by Bayesian estimation using the large-scale results. Large-scale experiments under three additional sets of conditions showed that the corrected design space was more reliable than that on the small scale, even if there was some discrepancy in the pharmaceutical quality between the manufacturing scales. This approach is useful for setting up a design space in pharmaceutical development when a DoE cannot be performed at a commercial large manufacturing scale.
Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, Nicholas B.; O'Hern, Timothy J.; Shelden, Bion
Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made formore » a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.« less
Dafforn, Katherine A; Kelaher, Brendan P; Simpson, Stuart L; Coleman, Melinda A; Hutchings, Pat A; Clark, Graeme F; Knott, Nathan A; Doblin, Martina A; Johnston, Emma L
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a 'positive' response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively 'pristine' estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification.
Dafforn, Katherine A.; Kelaher, Brendan P.; Simpson, Stuart L.; Coleman, Melinda A.; Hutchings, Pat A.; Clark, Graeme F.; Knott, Nathan A.; Doblin, Martina A.; Johnston, Emma L.
2013-01-01
Ecological communities are increasingly exposed to multiple chemical and physical stressors, but distinguishing anthropogenic impacts from other environmental drivers remains challenging. Rarely are multiple stressors investigated in replicated studies over large spatial scales (>1000 kms) or supported with manipulations that are necessary to interpret ecological patterns. We measured the composition of sediment infaunal communities in relation to anthropogenic and natural stressors at multiple sites within seven estuaries. We observed increases in the richness and abundance of polychaete worms in heavily modified estuaries with severe metal contamination, but no changes in the diversity or abundance of other taxa. Estuaries in which toxic contaminants were elevated also showed evidence of organic enrichment. We hypothesised that the observed response of polychaetes was not a ‘positive’ response to toxic contamination or a reduction in biotic competition, but due to high levels of nutrients in heavily modified estuaries driving productivity in the water column and enriching the sediment over large spatial scales. We deployed defaunated field-collected sediments from the surveyed estuaries in a small scale experiment, but observed no effects of sediment characteristics (toxic or enriching). Furthermore, invertebrate recruitment instead reflected the low diversity and abundance observed during field surveys of this relatively ‘pristine’ estuary. This suggests that differences observed in the survey are not a direct consequence of sediment characteristics (even severe metal contamination) but are related to parameters that covary with estuary modification such as enhanced productivity from nutrient inputs and the diversity of the local species pool. This has implications for the interpretation of diversity measures in large-scale monitoring studies in which the observed patterns may be strongly influenced by many factors that covary with anthropogenic modification. PMID:24098816
Moderation and Consistency of Teacher Judgement: Teachers' Views
ERIC Educational Resources Information Center
Connolly, Stephen; Klenowski, Valentina; Wyatt-Smith, Claire Maree
2012-01-01
Major curriculum and assessment reforms in Australia have generated research interest in issues related to standards, teacher judgement and moderation. This article is based on one related inquiry of a large-scale Australian Research Council Linkage project conducted in Queensland. This qualitative study analysed interview data to identify…
Mutual Intelligibility between Closely Related Languages in Europe
ERIC Educational Resources Information Center
Gooskens, Charlotte; van Heuven, Vincent J.; Golubovic, Jelena; Schüppert, Anja; Swarte, Femke; Voigt, Stefanie
2018-01-01
By means of a large-scale web-based investigation, we established the degree of mutual intelligibility of 16 closely related spoken languages within the Germanic, Slavic and Romance language families in Europe. We first present the results of a selection of 1833 listeners representing the mutual intelligibility between young, educated Europeans…
Xiang, Yang; Lu, Kewei; James, Stephen L.; Borlawsky, Tara B.; Huang, Kun; Payne, Philip R.O.
2011-01-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. PMID:22154838
Xiang, Yang; Lu, Kewei; James, Stephen L; Borlawsky, Tara B; Huang, Kun; Payne, Philip R O
2012-04-01
The Unified Medical Language System (UMLS) is the largest thesaurus in the biomedical informatics domain. Previous works have shown that knowledge constructs comprised of transitively-associated UMLS concepts are effective for discovering potentially novel biomedical hypotheses. However, the extremely large size of the UMLS becomes a major challenge for these applications. To address this problem, we designed a k-neighborhood Decentralization Labeling Scheme (kDLS) for the UMLS, and the corresponding method to effectively evaluate the kDLS indexing results. kDLS provides a comprehensive solution for indexing the UMLS for very efficient large scale knowledge discovery. We demonstrated that it is highly effective to use kDLS paths to prioritize disease-gene relations across the whole genome, with extremely high fold-enrichment values. To our knowledge, this is the first indexing scheme capable of supporting efficient large scale knowledge discovery on the UMLS as a whole. Our expectation is that kDLS will become a vital engine for retrieving information and generating hypotheses from the UMLS for future medical informatics applications. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Allen, Rob
2016-09-01
Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn
2014-12-15
A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less
Surface Rupture Effects on Earthquake Moment-Area Scaling Relations
NASA Astrophysics Data System (ADS)
Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro
2017-09-01
Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.
Large-scale effects on the regulation of tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Hartmann, Dennis L.; Michelsen, Marc L.
1993-01-01
The dominant terms in the surface energy budget of the tropical oceans are absorption of solar radiation and evaporative cooling. If it is assumed that relative humidity in the boundary layer remains constant, evaporative cooling will increase rapidly with sea surface temperature (SST) because of the strong temperature dependence of saturation water vapor pressure. The resulting stabilization of SST provided by evaporative cooling is sufficient to overcome positive feedback contributed by the decrease of surface net longwave cooling with increasing SST. Evaporative cooling is sensitive to small changes in boundary-layer relative humidity. Large and negative shortwave cloud forcing in the regions of highest SST are supported by the moisture convergence associated with largescale circulations. In the descending portions of these circulations the shortwave cloud forcing is suppressed. When the effect of these circulations is taken into account by spatial averaging, the area-averaged cloud forcing shows no sensitivity to area-averaged SST changes associated with the 1987 warming event in the tropical Pacific. While the shortwave cloud forcing is large and important in the convective regions, the importance of its role in regulating the average temperature of the tropics and in modulating temperature gradients within the tropics is less clear. A heuristic model of SST is used to illustrate the possible role of large-scale atmospheric circulations on SST in the tropics and the coupling between SST gradients and mean tropical SST. The intensity of large-scale circulations responds sensitivity to SST gradients and affects the mean tropical SST by supplying dry air to the planetary boundary layer. Large SST gradients generate vigorous circulations that increase evaporation and reduce the mean SST.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
NASA Astrophysics Data System (ADS)
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
ERIC Educational Resources Information Center
Vincent, Jack E.
This monograph presents findings from an analysis of data on international cooperation over a three-year period. Computer printout of the analysis is included. Part of a large scale research project to test various theories with regard to their ability to analyze international relations, this monograph reports on the testing of relative status…
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analytic prediction of baryonic effects from the EFT of large scale structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Perko, Ashley; Senatore, Leonardo, E-mail: mattlew@stanford.edu, E-mail: perko@stanford.edu, E-mail: senatore@stanford.edu
2015-05-01
The large scale structures of the universe will likely be the next leading source of cosmological information. It is therefore crucial to understand their behavior. The Effective Field Theory of Large Scale Structures provides a consistent way to perturbatively predict the clustering of dark matter at large distances. The fact that baryons move distances comparable to dark matter allows us to infer that baryons at large distances can be described in a similar formalism: the backreaction of short-distance non-linearities and of star-formation physics at long distances can be encapsulated in an effective stress tensor, characterized by a few parameters. Themore » functional form of baryonic effects can therefore be predicted. In the power spectrum the leading contribution goes as ∝ k{sup 2} P(k), with P(k) being the linear power spectrum and with the numerical prefactor depending on the details of the star-formation physics. We also perform the resummation of the contribution of the long-wavelength displacements, allowing us to consistently predict the effect of the relative motion of baryons and dark matter. We compare our predictions with simulations that contain several implementations of baryonic physics, finding percent agreement up to relatively high wavenumbers such as k ≅ 0.3 hMpc{sup −1} or k ≅ 0.6 hMpc{sup −1}, depending on the order of the calculation. Our results open a novel way to understand baryonic effects analytically, as well as to interface with simulations.« less
NASA Astrophysics Data System (ADS)
Murray, A. Brad; Thieler, E. Robert
2004-02-01
Recent observations of inner continental shelves in many regions show numerous collections of relatively coarse sediment, which extend kilometers in the cross-shore direction and are on the order of 100 m wide. These "rippled scour depressions" have been interpreted to indicate concentrated cross-shelf currents. However, recent observations strongly suggest that they are associated with sediment transport along-shore rather than cross-shore. A new hypothesis for the origin of these features involves the large wave-generated ripples that form in the coarse material. Wave motions interacting with these large roughness elements generate near-bed turbulence that is greatly enhanced relative to that in other areas. This enhances entrainment and inhibits settling of fine material in an area dominated by coarse sediment. The fine sediment is then carried by mean currents past the coarse accumulations, and deposited where the bed is finer. We hypothesize that these interactions constitute a feedback tending to produce accumulations of fine material separated by self-perpetuating patches of coarse sediments. As with many types of self-organized bedforms, small features would interact as they migrate, leading to a better-organized, larger-scale pattern. As an initial test of this hypothesis, we use a numerical model treating the transport of coarse and fine sediment fractions, treated as functions of the local bed composition—a proxy for the presence of large roughness elements in coarse areas. Large-scale sorted patterns exhibiting the main characteristics of the natural features result robustly in the model, indicating that this new hypothesis offers a plausible explanation for the phenomena.
NASA Astrophysics Data System (ADS)
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and instantaneous streamwise velocities, but between the instantaneous temperatures and velocities averaged over certain time interval.
Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction
NASA Astrophysics Data System (ADS)
Goltz, Mark N.; Huang, Junqi; Close, Murray E.; Flintoft, Mark J.; Pang, Liping
2008-09-01
Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.
Double inflation - A possible resolution of the large-scale structure problem
NASA Technical Reports Server (NTRS)
Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman
1987-01-01
A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.
Udsen, Flemming Witt; Lilholt, Pernille Heyckendorff; Hejlesen, Ole; Ehlers, Lars Holger
2014-05-21
Several feasibility studies show promising results of telehealthcare on health outcomes and health-related quality of life for patients suffering from chronic obstructive pulmonary disease, and some of these studies show that telehealthcare may even lower healthcare costs. However, the only large-scale trial we have so far - the Whole System Demonstrator Project in England - has raised doubts about these results since it conclude that telehealthcare as a supplement to usual care is not likely to be cost-effective compared with usual care alone. The present study is known as 'TeleCare North' in Denmark. It seeks to address these doubts by implementing a large-scale, pragmatic, cluster-randomized trial with nested economic evaluation. The purpose of the study is to assess the effectiveness and the cost-effectiveness of a telehealth solution for patients suffering from chronic obstructive pulmonary disease compared to usual practice. General practitioners will be responsible for recruiting eligible participants (1,200 participants are expected) for the trial in the geographical area of the North Denmark Region. Twenty-six municipality districts in the region define the randomization clusters. The primary outcomes are changes in health-related quality of life, and the incremental cost-effectiveness ratio measured from baseline to follow-up at 12 months. Secondary outcomes are changes in mortality and physiological indicators (diastolic and systolic blood pressure, pulse, oxygen saturation, and weight). There has been a call for large-scale clinical trials with rigorous cost-effectiveness assessments in telehealthcare research. This study is meant to improve the international evidence base for the effectiveness and cost-effectiveness of telehealthcare to patients suffering from chronic obstructive pulmonary disease by implementing a large-scale pragmatic cluster-randomized clinical trial. Clinicaltrials.gov, http://NCT01984840, November 14, 2013.
Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds
Flather, C.H.; Sauer, J.R.
1996-01-01
The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape structure associations observed among different types of bird species and in physiographic strata with varying land use histories.
Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika
2017-01-01
Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475
Hyder, Adnan A; Allen, Katharine A; Peters, David H; Chandran, Aruna; Bishai, David
2013-01-01
The growing burden of road traffic injuries, which kill over 1.2 million people yearly, falls mostly on low- and middle-income countries (LMICs). Despite this, evidence generation on the effectiveness of road safety interventions in LMIC settings remains scarce. This paper explores a scientific approach for evaluating road safety programmes in LMICs and introduces such a road safety multi-country initiative, the Road Safety in 10 Countries Project (RS-10). By building on existing evaluation frameworks, we develop a scientific approach for evaluating large-scale road safety programmes in LMIC settings. This also draws on '13 lessons' of large-scale programme evaluation: defining the evaluation scope; selecting study sites; maintaining objectivity; developing an impact model; utilising multiple data sources; using multiple analytic techniques; maximising external validity; ensuring an appropriate time frame; the importance of flexibility and a stepwise approach; continuous monitoring; providing feedback to implementers, policy-makers; promoting the uptake of evaluation results; and understanding evaluation costs. The use of relatively new approaches for evaluation of real-world programmes allows for the production of relevant knowledge. The RS-10 project affords an important opportunity to scientifically test these approaches for a real-world, large-scale road safety evaluation and generate new knowledge for the field of road safety.
What are the low- Q and large- x boundaries of collinear QCD factorization theorems?
Moffat, E.; Melnitchouk, W.; Rogers, T. C.; ...
2017-05-26
Familiar factorized descriptions of classic QCD processes such as deeply-inelastic scattering (DIS) apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other nonperturbative physical properties like intrinsic transverse momentum. Since many interesting DIS studies occur at kinematic regions where the hard scale,more » $$Q \\sim$$ 1-2 GeV, is not very much greater than the hadron masses involved, and the Bjorken scaling variable $$x_{bj}$$ is large, $$x_{bj} \\gtrsim 0.5$$, it is important to examine the boundaries of the most basic factorization assumptions and assess whether improved starting points are needed. Using an idealized field-theoretic model that contains most of the essential elements that a factorization derivation must confront, we retrace in this paper the steps of factorization approximations and compare with calculations that keep all kinematics exact. We examine the relative importance of such quantities as the target mass, light quark masses, and intrinsic parton transverse momentum, and argue that a careful accounting of parton virtuality is essential for treating power corrections to collinear factorization. Finally, we use our observations to motivate searches for new or enhanced factorization theorems specifically designed to deal with moderately low-$Q$ and large-$$x_{bj}$$ physics.« less
Exploring Entrainment Patterns of Human Emotion in Social Media
Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692
Sawata, Hiroshi; Tsutani, Kiichiro
2011-06-29
Clinical investigations are important for obtaining evidence to improve medical treatment. Large-scale clinical trials with thousands of participants are particularly important for this purpose in cardiovascular diseases. Conducting large-scale clinical trials entails high research costs. This study sought to investigate global trends in large-scale clinical trials in cardiovascular diseases. We searched for trials using clinicaltrials.gov (URL: http://www.clinicaltrials.gov/) using the key words 'cardio' and 'event' in all fields on 10 April, 2010. We then selected trials with 300 or more participants examining cardiovascular diseases. The search revealed 344 trials that met our criteria. Of 344 trials, 71% were randomized controlled trials, 15% involved more than 10,000 participants, and 59% were funded by industry. In RCTs whose results were disclosed, 55% of industry-funded trials and 25% of non-industry funded trials reported statistically significant superiority over control (p = 0.012, 2-sided Fisher's exact test). Our findings highlighted concerns regarding potential bias related to funding sources, and that researchers should be aware of the importance of trial information disclosures and conflicts of interest. We should keep considering management and training regarding information disclosures and conflicts of interest for researchers. This could lead to better clinical evidence and further improvements in the development of medical treatment worldwide.
Sterile neutrinos with secret interactions—lasting friendship with cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Xiaoyong; Dasgupta, Basudeb; Kopp, Joachim, E-mail: xchu@ictp.it, E-mail: bdasgupta@theory.tifr.res.in, E-mail: jkopp@uni-mainz.de
Sterile neutrinos with mass ≅ 1 eV and order 10% mixing with active neutrinos have been proposed as a solution to anomalies in neutrino oscillation data, but are tightly constrained by cosmological limits. It was recently shown that these constraints are avoided if sterile neutrinos couple to a new MeV-scale gauge boson A'. However, even this scenario is restricted by structure formation constraints when A'-mediated collisional processes lead to efficient active-to-sterile neutrino conversion after neutrinos have decoupled. In view of this, we reevaluate in this paper the viability of sterile neutrinos with such ''secret'' interactions. We carefully dissect their evolution inmore » the early Universe, including the various production channels and the expected modifications to large scale structure formation. We argue that there are two regions in parameter space—one at very small A' coupling, one at relatively large A' coupling—where all constraints from big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and large scale structure (LSS) data are satisfied. Interestingly, the large A' coupling region is precisely the region that was previously shown to have potentially important consequences for the small scale structure of dark matter halos if the A' boson couples also to the dark matter in the Universe.« less
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Exploring Entrainment Patterns of Human Emotion in Social Media.
He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
NASA Astrophysics Data System (ADS)
Pecker, Jean-Claude; Narlikar, Jayant
2011-09-01
Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.
Fedy, B.C.; Doherty, K.E.
2011-01-01
Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
NASA Astrophysics Data System (ADS)
Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.
2018-01-01
Water transported by deep subduction to the mantle transition zone (MTZ) that is eventually released and migrates upwards is invoked as a likely cause for hydroweakening and cratonic lithosphere destruction. The destruction of the North China Craton (NCC) during the Mesozoic has been proposed to be related to hydroweakening. However, the source of water related to large-scale craton destruction in the NCC is poorly constrained. Some suggest that the water was mainly released from a flat-lying (or stagnating) slab in the MTZ, whereas others posit that most water was released from a previously existing strongly hydrous MTZ then perturbed by the stagnating subduction in the MTZ layer. In this study, we use numerical modeling to evaluate the water carrying ability of flat-lying slabs in the MTZ with different slab ages and water contents to simulate its maximum value and discuss its potential role on large-scale hydroweakening and craton destruction. Our results reveal that a single flat-lying slab in the MTZ cannot provide enough water for large-scale cratonic lithosphere hydroweakening and thinning. Water estimates invoked for craton destruction as experienced by the NCC can only be the result of long-term piling of multiple slabs in the MTZ or penetrating deeper into the lower mantle.
Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging
NASA Astrophysics Data System (ADS)
Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon
2017-04-01
Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartoli, B.; Catalanotti, S.; Piazzoli, B. D’Ettorre
2015-08-10
This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 10{sup 11} showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10{sup −3} with respect to a uniform flux, superimposed on smaller size structures. The harmonicmore » analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonnesen, Stephanie; Cen, Renyue, E-mail: stonnes@gmail.com, E-mail: cen@astro.princeton.edu
2015-10-20
The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assemblymore » bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.« less
Stimulus-dependent spiking relationships with the EEG
Snyder, Adam C.
2015-01-01
The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954
Trickle-Down Preferences: Preferential Conformity to High Status Peers in Fashion Choices.
Galak, Jeff; Gray, Kurt; Elbert, Igor; Strohminger, Nina
2016-01-01
How much do our choices represent stable inner preferences versus social conformity? We examine conformity and consistency in sartorial choices surrounding a common life event of new norm exposure: relocation. A large-scale dataset of individual purchases of women's shoes (16,236 transactions) across five years and 2,007 women reveals a balance of conformity and consistency, moderated by changes in location socioeconomic status. Women conform to new local norms (i.e., average heel size) when moving to relatively higher status locations, but mostly ignore new local norms when moving to relatively lower status locations. In short, at periods of transition, it is the fashion norms of the rich that trickle down to consumers. These analyses provide the first naturalistic large-scale demonstration of the tension between psychological conformity and consistency, with real decisions in a highly visible context.
Map visualization of groundwater withdrawals at the sub-basin scale
NASA Astrophysics Data System (ADS)
Goode, Daniel J.
2016-06-01
A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called "footprints". The area of each individual well's footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells' individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.
Map visualization of groundwater withdrawals at the sub-basin scale
Goode, Daniel J.
2016-01-01
A simple method is proposed to visualize the magnitude of groundwater withdrawals from wells relative to user-defined water-resource metrics. The map is solely an illustration of the withdrawal magnitudes, spatially centered on wells—it is not capture zones or source areas contributing recharge to wells. Common practice is to scale the size (area) of withdrawal well symbols proportional to pumping rate. Symbols are drawn large enough to be visible, but not so large that they overlap excessively. In contrast to such graphics-based symbol sizes, the proposed method uses a depth-rate index (length per time) to visualize the well withdrawal rates by volumetrically consistent areas, called “footprints”. The area of each individual well’s footprint is the withdrawal rate divided by the depth-rate index. For example, the groundwater recharge rate could be used as a depth-rate index to show how large withdrawals are relative to that recharge. To account for the interference of nearby wells, composite footprints are computed by iterative nearest-neighbor distribution of excess withdrawals on a computational and display grid having uniform square cells. The map shows circular footprints at individual isolated wells and merged footprint areas where wells’ individual footprints overlap. Examples are presented for depth-rate indexes corresponding to recharge, to spatially variable stream baseflow (normalized by basin area), and to the average rate of water-table decline (scaled by specific yield). These depth-rate indexes are water-resource metrics, and the footprints visualize the magnitude of withdrawals relative to these metrics.
NASA Astrophysics Data System (ADS)
Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.
2013-12-01
Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.
Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.
2014-12-01
Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.
The origin of polygonal troughs on the northern plains of Mars
NASA Astrophysics Data System (ADS)
Pechmann, J. C.
1980-05-01
The morphology, distribution, geologic environment and relative age of large-scale polygonal trough systems on Mars are examined. The troughs are steep-walled, flat-floored, sinuous depressions typically 200-800 m wide, 20-120 m deep and spaced 5-10 km apart. The mechanics of formation of tension cracks is reviewed to identify the factors controlling the scale of tension crack systems; special emphasis is placed on thermal cracking in permafrost. It is shown that because of the extremely large scale of the Martian fracture systems, they could not have formed by thermal cracking in permafrost, dessication cracking in sediments or contraction cracking in cooling lava. On the basis of photogeologic evidence and analog studies, it is proposed that polygonal troughs on the northern plains of Mars are grabens.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7
NASA Astrophysics Data System (ADS)
Walker, R.
1984-12-01
The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.
Perry, Jonathan M G; Cooke, Siobhán B; Runestad Connour, Jacqueline A; Burgess, M Loring; Ruff, Christopher B
2018-02-01
Body mass is an important component of any paleobiological reconstruction. Reliable skeletal dimensions for making estimates are desirable but extant primate reference samples with known body masses are rare. We estimated body mass in a sample of extinct platyrrhines and Fayum anthropoids based on four measurements of the articular surfaces of the humerus and femur. Estimates were based on a large extant reference sample of wild-collected individuals with associated body masses, including previously published and new data from extant platyrrhines, cercopithecoids, and hominoids. In general, scaling of joint dimensions is positively allometric relative to expectations of geometric isometry, but negatively allometric relative to expectations of maintaining equivalent joint surface areas. Body mass prediction equations based on articular breadths are reasonably precise, with %SEEs of 17-25%. The breadth of the distal femoral articulation yields the most reliable estimates of body mass because it scales similarly in all major anthropoid taxa. Other joints scale differently in different taxa; therefore, locomotor style and phylogenetic affinity must be considered when calculating body mass estimates from the proximal femur, proximal humerus, and distal humerus. The body mass prediction equations were applied to 36 Old World and New World fossil anthropoid specimens representing 11 taxa, plus two Haitian specimens of uncertain taxonomic affinity. Among the extinct platyrrhines studied, only Cebupithecia is similar to large, extant platyrrhines in having large humeral (especially distal) joints. Our body mass estimates differ from each other and from published estimates based on teeth in ways that reflect known differences in relative sizes of the joints and teeth. We prefer body mass estimators that are biomechanically linked to weight-bearing, and especially those that are relatively insensitive to differences in locomotor style and phylogenetic history. Whenever possible, extant reference samples should be chosen to match target fossils in joint proportionality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading
Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan
2011-01-01
Background Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. Methodology/Principal Findings In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease. PMID:21747932
Modeling spatially-varying landscape change points in species occurrence thresholds
Wagner, Tyler; Midway, Stephen R.
2014-01-01
Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.
Strain localization in models and nature: bridging the gaps.
NASA Astrophysics Data System (ADS)
Burov, E.; Francois, T.; Leguille, J.
2012-04-01
Mechanisms of strain localization and their role in tectonic evolution are still largely debated. Indeed, the laboratory data on strain localization processes are not abundant, they do not cover the entire range of possible mechanisms and have to be extrapolated, sometimes with greatest uncertainties, to geological scales while the observations of localization processes at outcrop scale are scarce, not always representative, and usually are difficult to quantify. Numerical thermo-mechanical models allow us to investigate the relative importance of some of the localization processes whether they are hypothesized or observed at laboratory or outcrop scale. The numerical models can test different observationally or analytically derived laws in terms of their applicability to natural scales and tectonic processes. The models are limited, however, in their capacity of reproduction of physical mechanisms, and necessary simplify the softening laws leading to "numerical" localization. Numerical strain localization is also limited by grid resolution and the ability of specific numerical codes to handle large strains and the complexity of the associated physical phenomena. Hence, multiple iterations between observations and models are needed to elucidate the causes of strain localization in nature. We here investigate the relative impact of different weakening laws on localization of deformation using large-strain thermo-mechanical models. We test using several "generic" rifting and collision settings, the implications of structural softening, tectonic heritage, shear heating, friction angle and cohesion softening, ductile softening (mimicking grain-size reduction) as well as of a number of other mechanisms such as fluid-assisted phase changes. The results suggest that different mechanisms of strain localization may interfere in nature, yet it most cases it is not evident to establish quantifiable links between the laboratory data and the best-fitting parameters of the effective softening laws that allow to reproduce large scale tectonic evolution. For example, one of most effective and widely used mechanisms of "numerical" strain localization is friction angle softening. Yet, namely this law appears to be most difficult to justify from physical and observational grounds.
Guidetti, P; Dulcić, J
2007-03-01
Previous studies conducted on a local scale emphasised the potential of trophic cascades in Mediterranean rocky reefs (involving predatory fish, sea urchins and macroalgae) in affecting the transition between benthic communities dominated by erected macroalgae and barrens (i.e., bare rock with partial cover of encrusting algae). Distribution patterns of fish predators of sea urchins (Diplodus sargus sargus, Diplodus vulgaris, Coris julis and Thalassoma pavo), sea urchins (Paracentrotus lividus and Arbacia lixula) and barrens, and fish predation rates upon sea urchins, were assessed in shallow (3-6m depth) sublittoral rocky reefs in the northern, central and southern sectors of the eastern Adriatic Sea, i.e., on a large spatial scale of hundreds of kilometres. No dramatic differences were observed in predatory fish density across latitude, except for a lower density of small D. sargus sargus in the northern Adriatic and an increasing density of T. pavo from north to south. P. lividus did not show any significant difference across latitude, whereas A. lixula was more abundant in the southern than in the central Adriatic. Barrens were more extended in the southern than in the central and northern sectors, and were related with sea urchin density. Fish predation upon adult sea urchins did not change on a large scale, whereas it was slightly higher in the southern sector for juveniles when predation rates of both urchins were pooled. Results show that: (1) assemblages of predatory fish and sea urchins, and barren extent change across latitude in the eastern Adriatic Sea, (2) the weak relations between predatory fish density and predation rates on urchins reveal that factors other than top-down control can be important over large scale (with the caveat that the study was conducted in fished areas) and (3) patterns of interaction among strongly interacting taxa could change on large spatial scales and the number of species involved.
Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy
2012-11-01
Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Hierarchical drivers of reef-fish metacommunity structure.
MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P
2009-01-01
Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.
ERIC Educational Resources Information Center
Pichler, Florian
2009-01-01
Research on work-life balance (WLB) has presented important insights into the problems of combining family aspirations with paid work in relation to policy relevant agendas. Using the ESS II (2004/2005), we examine work-related and household/family-related causes of WLB. We can corroborate other research findings that show that work-related…
NASA Astrophysics Data System (ADS)
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D
2015-01-01
Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.
Scaling behavior of an airplane-boarding model.
Brics, Martins; Kaupužs, Jevgenijs; Mahnke, Reinhard
2013-04-01
An airplane-boarding model, introduced earlier by Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)], is studied with the aim of determining precisely its asymptotic power-law scaling behavior for a large number of passengers N. Based on Monte Carlo simulation data for very large system sizes up to N=2(16)=65536, we have analyzed numerically the scaling behavior of the mean boarding time
Large-angle cosmic microwave background anisotropies in an open universe
NASA Technical Reports Server (NTRS)
Kamionkowski, Marc; Spergel, David N.
1994-01-01
If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.
Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.
As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less
Peng, Tao; Lv, Haifeng; He, Daping; Pan, Mu; Mu, Shichun
2013-01-01
A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1−xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800°C) and the ambient pressure in chlorine (Cl2) atmosphere. Therefore, our finding, the direct transformation of a-Si1−xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs. PMID:23359349
Implementation of a multi-threaded framework for large-scale scientific applications
Sexton-Kennedy, E.; Gartung, Patrick; Jones, C. D.; ...
2015-05-22
The CMS experiment has recently completed the development of a multi-threaded capable application framework. In this paper, we will discuss the design, implementation and application of this framework to production applications in CMS. For the 2015 LHC run, this functionality is particularly critical for both our online and offline production applications, which depend on faster turn-around times and a reduced memory footprint relative to before. These applications are complex codes, each including a large number of physics-driven algorithms. While the framework is capable of running a mix of thread-safe and 'legacy' modules, algorithms running in our production applications need tomore » be thread-safe for optimal use of this multi-threaded framework at a large scale. Towards this end, we discuss the types of changes, which were necessary for our algorithms to achieve good performance of our multithreaded applications in a full-scale application. Lastly performance numbers for what has been achieved for the 2015 run are presented.« less
de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier
2016-01-01
Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.
GAIA: A WINDOW TO LARGE-SCALE MOTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusser, Adi; Branchini, Enzo; Davis, Marc, E-mail: adi@physics.technion.ac.il, E-mail: branchin@fis.uniroma3.it, E-mail: mdavis@berkeley.edu
2012-08-10
Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, becausemore » of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.« less
Statistical Analysis of Large-Scale Structure of Universe
NASA Astrophysics Data System (ADS)
Tugay, A. V.
While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.
NASA Technical Reports Server (NTRS)
Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.
1987-01-01
Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.
A correlation between the cosmic microwave background and large-scale structure in the Universe.
Boughn, Stephen; Crittenden, Robert
2004-01-01
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.
States of mind: Emotions, body feelings, and thoughts share distributed neural networks
Oosterwijk, Suzanne; Lindquist, Kristen A.; Anderson, Eric; Dautoff, Rebecca; Moriguchi, Yoshiya; Barrett, Lisa Feldman
2012-01-01
Scientists have traditionally assumed that different kinds of mental states (e.g., fear, disgust, love, memory, planning, concentration, etc.) correspond to different psychological faculties that have domain-specific correlates in the brain. Yet, growing evidence points to the constructionist hypothesis that mental states emerge from the combination of domain-general psychological processes that map to large-scale distributed brain networks. In this paper, we report a novel study testing a constructionist model of the mind in which participants generated three kinds of mental states (emotions, body feelings, or thoughts) while we measured activity within large-scale distributed brain networks using fMRI. We examined the similarity and differences in the pattern of network activity across these three classes of mental states. Consistent with a constructionist hypothesis, a combination of large-scale distributed networks contributed to emotions, thoughts, and body feelings, although these mental states differed in the relative contribution of those networks. Implications for a constructionist functional architecture of diverse mental states are discussed. PMID:22677148
Micron-scale lens array having diffracting structures
Goldberg, Kenneth A
2013-10-29
A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Zhaofei F. Fan
2008-01-01
Forest landscape disturbance and succession models have become practical tools for large-scale, long-term analyses of the cumulative effects of forest management on real landscapes. They can provide essential information in a spatial context to address management and policy issues related to forest planning, wildlife habitat quality, timber harvesting, fire effects,...
Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors
Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Vrendenburg, Vance T.; Rosenblum, Erica Bree; Briggs, Cheryl J.
2016-01-01
Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.
Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors.
Knapp, Roland A; Fellers, Gary M; Kleeman, Patrick M; Miller, David A W; Vredenburg, Vance T; Rosenblum, Erica Bree; Briggs, Cheryl J
2016-10-18
Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth's amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species' adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.
Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors
Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Rosenblum, Erica Bree; Briggs, Cheryl J.
2016-01-01
Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale. PMID:27698128
Ground-water flow in low permeability environments
Neuzil, Christopher E.
1986-01-01
Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively “tighter” media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic flow phenomena, osmosis and ultrafiltration, are experimentally well established in prepared clays but have been incompletely investigated, particularly in undisturbed geologic media. Small-scale experimental results form much of the basis for analyses of flow in low-permeability environments which occurs on scales of time and size too large to permit direct observation. Such large-scale flow behavior is the focus of the second part of the review. Extrapolation of small-scale experimental experience becomes an important and sometimes controversial problem in this context. In large flow systems under steady state conditions the regional permeability can sometimes be determined, but systems with transient flow are more difficult to analyze. The complexity of the problem is enhanced by the sensitivity of large-scale flow to the effects of slow geologic processes. One-dimensional studies have begun to elucidate how simple burial or exhumation can generate transient flow conditions by changing the state of stress and temperature and by burial metamorphism. Investigation of the more complex problem of the interaction of geologic processes and flow in two and three dimensions is just beginning. Because these transient flow analyses have largely been based on flow in experimental scale systems or in relatively permeable systems, deformation in response to effective stress changes is generally treated as linearly elastic; however, this treatment creates difficulties for the long periods of interest because viscoelastic deformation is probably significant. Also, large-scale flow simulations in argillaceous environments generally have neglected osmosis and ultrafiltration, in part because extrapolation of laboratory experience with coupled flow to large scales under in situ conditions is controversial. Nevertheless, the effects are potentially quite important because the coupled flow might cause ultra long lived transient conditions. The difficulties associated with analysis are matched by those of characterizing hydrologic conditions in tight environments; measurements of hydraulic head and sampling of pore fluids have been done only rarely because of the practical difficulties involved. These problems are also discussed in the second part of this paper.
Links between large-scale circulation patterns and streamflow in Central Europe: A review
NASA Astrophysics Data System (ADS)
Steirou, Eva; Gerlitz, Lars; Apel, Heiko; Merz, Bruno
2017-06-01
We disentangle the relationships between streamflow and large-scale atmospheric circulation in Central Europe (CE), an area affected by climatic influences from different origins (Atlantic, Mediterranean and Continental) and characterized by diverse topography and flow regimes. Our literature review examines in detail the links between mean, high and low flows in CE and large-scale circulation patterns, with focus on two closely related phenomena, the North Atlantic Oscillation (NAO) and the Western-zonal circulation (WC). For both patterns, significant relations, consistent between different studies, are found for large parts of CE. The strongest links are found for the winter season, forming a dipole-like pattern with positive relationships with streamflow north of the Alps and the Carpathians for both indices and negative relationships for the NAO in the south. An influence of winter NAO is also detected in the amplitude and timing of snowmelt flows later in the year. Discharge in CE has further been linked to other large-scale climatic modes such as the Scandinavia pattern (SCA), the East Atlantic/West Russian pattern (EA/WR), the El Niño-Southern Oscillation (ENSO) and synoptic weather patterns such as the Vb weather regime. Different mechanisms suggested in the literature to modulate links between streamflow and the NAO are combined with topographical characteristics of the target area in order to explain the divergent NAO/WC influence on streamflow in different parts of CE. In particular, a precipitation mechanism seems to regulate winter flows in North-Western Germany, an area with short duration of snow cover and with rainfall-generated floods. The precipitation mechanism is also likely in Southern CE, where correlations between the NAO and temperature are low. Finally, in the rest of the study area (Northern CE, Alpine region), a joint precipitation-snow mechanism influences floods not only in winter, but also in the spring/snowmelt period, providing some possibilities for flood forecasting.
On large-scale dynamo action at high magnetic Reynolds number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk
2014-07-01
We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less
Inverse Interscale Transport of the Reynolds Shear Stress in Plane Couette Turbulence
NASA Astrophysics Data System (ADS)
Kawata, Takuya; Alfredsson, P. Henrik
2018-06-01
Interscale interaction between small-scale structures near the wall and large-scale structures away from the wall plays an increasingly important role with increasing Reynolds number in wall-bounded turbulence. While the top-down influence from the large- to small-scale structures is well known, it has been unclear whether the small scales near the wall also affect the large scales away from the wall. In this Letter we show that the small-scale near-wall structures indeed play a role to maintain the large-scale structures away from the wall, by showing that the Reynolds shear stress is transferred from small to large scales throughout the channel. This is in contrast to the turbulent kinetic energy transport which is from large to small scales. Such an "inverse" interscale transport of the Reynolds shear stress eventually supports the turbulent energy production at large scales.
Possible roles for fronto-striatal circuits in reading disorder
Hancock, Roeland; Richlan, Fabio; Hoeft, Fumiko
2016-01-01
Several studies have reported hyperactivation in frontal and striatal regions in individuals with reading disorder (RD) during reading-related tasks. Hyperactivation in these regions is typically interpreted as a form of neural compensation and related to articulatory processing. Fronto-striatal hyperactivation in RD can however, also arise from fundamental impairment in reading related processes, such as phonological processing and implicit sequence learning relevant to early language acquisition. We review current evidence for the compensation hypothesis in RD and apply large-scale reverse inference to investigate anatomical overlap between hyperactivation regions and neural systems for articulation, phonological processing, implicit sequence learning. We found anatomical convergence between hyperactivation regions and regions supporting articulation, consistent with the proposed compensatory role of these regions, and low convergence with phonological and implicit sequence learning regions. Although the application of large-scale reverse inference to decode function in a clinical population should be interpreted cautiously, our findings suggest future lines of research that may clarify the functional significance of hyperactivation in RD. PMID:27826071
NASA Astrophysics Data System (ADS)
Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.
2017-12-01
Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.
The leading term of the Plancherel-Rotach asymptotic formula for solutions of recurrence relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aptekarev, A I; Tulyakov, D N
Recurrence relations generating Padé and Hermite-Padé polynomials are considered. Their coefficients increase with the index of the relation, but after dividing by an appropriate power of the scaling function they tend to a finite limit. As a result, after scaling the polynomials 'stabilize' for large indices; this type of asymptotic behaviour is called Plancherel-Rotach asymptotics. An explicit expression for the leading term of the asymptotic formula, which is valid outside sets containing the zeros of the polynomials, is obtained for wide classes of three- and four-term relations. For three-term recurrence relations this result generalizes a theorem Van Assche obtained for recurrence relations withmore » 'regularly' growing coefficients. Bibliography: 19 titles.« less