State of the Art in Large-Scale Soil Moisture Monitoring
NASA Technical Reports Server (NTRS)
Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.;
2013-01-01
Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.
USDA-ARS?s Scientific Manuscript database
Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....
NASA Astrophysics Data System (ADS)
Vanclooster, Marnik
2010-05-01
The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.
USDA-ARS?s Scientific Manuscript database
Water quality modeling requires across-scale support of combined digital soil elements and simulation parameters. This paper presents the unprecedented development of a large spatial scale (1:250,000) ArcGIS geodatabase coverage designed as a functional repository of soil-parameters for modeling an...
Stream Flow Prediction by Remote Sensing and Genetic Programming
NASA Technical Reports Server (NTRS)
Chang, Ni-Bin
2009-01-01
A genetic programming (GP)-based, nonlinear modeling structure relates soil moisture with synthetic-aperture-radar (SAR) images to present representative soil moisture estimates at the watershed scale. Surface soil moisture measurement is difficult to obtain over a large area due to a variety of soil permeability values and soil textures. Point measurements can be used on a small-scale area, but it is impossible to acquire such information effectively in large-scale watersheds. This model exhibits the capacity to assimilate SAR images and relevant geoenvironmental parameters to measure soil moisture.
García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.
2015-01-01
Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716
NASA Astrophysics Data System (ADS)
Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun
2017-06-01
Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.
Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
2016-08-02
PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED
Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
2010-01-25
2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and
García-Palacios, Pablo; Maestre, Fernando T; Kattge, Jens; Wall, Diana H
2013-08-01
Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 37%). [corrected]. However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. © 2013 John Wiley & Sons Ltd/CNRS.
Validating Large Scale Networks Using Temporary Local Scale Networks
USDA-ARS?s Scientific Manuscript database
The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...
Upper Washita River experimental watersheds: Multiyear stability of soil water content profiles
USDA-ARS?s Scientific Manuscript database
Scaling in situ soil water content time series data to a large spatial domain is a key element of watershed environmental monitoring and modeling. The primary method of estimating and monitoring large-scale soil water content distributions is via in situ networks. It is critical to establish the s...
USDA-ARS?s Scientific Manuscript database
In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...
USDA-ARS?s Scientific Manuscript database
NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...
Continuous data assimilation for downscaling large-footprint soil moisture retrievals
NASA Astrophysics Data System (ADS)
Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.
2016-10-01
Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.
Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology
NASA Astrophysics Data System (ADS)
Mohanty, B.; Kathuria, D.; Katzfuss, M.
2016-12-01
Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
Using radiocarbon to investigate soil respiration impacts on atmospheric CO2
NASA Astrophysics Data System (ADS)
Phillips, C. L.; LaFranchi, B. W.; McFarlane, K. J.; Desai, A. R.
2013-12-01
While soil respiration is believed to represent the largest single source of CO2 emissions on a global scale, there are few tools available to measure soil emissions at large spatial scales. We investigated whether radiocarbon (14C) abundance in CO2 could be used to detect and characterize soil emissions in the atmosphere, taking advantage of the fact that 14C abundance in soil carbon is elevated compared to the background atmosphere, a result of thermonuclear weapons testing during the mid-20th Century (i.e. bomb-C). Working in a temperate hardwood forest in Northern Wisconsin during 2011-12, we made semi-high-frequency measurements of CO2 at nested spatial scales from the soil subsurface to 150 m above ground level. These measurements were used to investigate seasonal patterns in respired C sources, and to evaluate whether variability in soil-respired Δ14C could also be detected in atmospheric measurements. In our ground-level measurements we found large seasonal variation in soil-respired 14CO2 that correlated with soil moisture, which was likely related to root activity. Atmospheric measurements of 14CO2 in the forest canopy (2 to 30m) were used to construct Keeling plots, and these provided larger spatial-scale estimates of respired 14CO2 that largely agreed with the soil-level measurements. In collaboration with the NOAA we also examined temporal patterns of 14CO2 at the Park Falls tall-tower (150m), and found elevated 14CO2 levels during summer months that likely resulted from increased respiration from heterotrophic sources. These results demonstrate that a fingerprint from soil-respired CO2 can be detected in the seasonal patterns of atmospheric 14CO2, even at a regionally-integrating spatial scale far from the soil surface.
NASA Astrophysics Data System (ADS)
Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.
2003-12-01
The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
NASA Technical Reports Server (NTRS)
Pelletier, R. E.; Hudnall, W. H.
1987-01-01
The use of Space Shuttle Large Format Camera (LFC) color, IR/color, and B&W images in large-scale soil mapping is discussed and illustrated with sample photographs from STS 41-6 (October 1984). Consideration is given to the characteristics of the film types used; the photographic scales available; geometric and stereoscopic factors; and image interpretation and classification for soil-type mapping (detecting both sharp and gradual boundaries), soil parent material topographic and hydrologic assessment, natural-resources inventory, crop-type identification, and stress analysis. It is suggested that LFC photography can play an important role, filling the gap between aerial and satellite remote sensing.
NASA Technical Reports Server (NTRS)
Koster, Randal; Walker, Greg; Mahanama, Sarith; Reichle, Rolf
2012-01-01
Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
NASA Astrophysics Data System (ADS)
Schneider, Christian
2017-04-01
The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.
NASA Astrophysics Data System (ADS)
Tuttle, S. E.; Salvucci, G.
2012-12-01
Soil moisture influences many hydrological processes in the water and energy cycles, such as runoff generation, groundwater recharge, and evapotranspiration, and thus is important for climate modeling, water resources management, agriculture, and civil engineering. Large-scale estimates of soil moisture are produced almost exclusively from remote sensing, while validation of remotely sensed soil moisture has relied heavily on ground truthing, which is at an inherently smaller scale. Here we present a complementary method to determine the information content in different soil moisture products using only large-scale precipitation data (i.e. without modeling). This study builds on the work of Salvucci [2001], Saleem and Salvucci [2002], and Sun et al. [2011], in which precipitation was conditionally averaged according to soil moisture level, resulting in moisture-outflow curves that estimate the dependence of drainage, runoff, and evapotranspiration on soil moisture (i.e. sigmoidal relations that reflect stressed evapotranspiration for dry soils, roughly constant flux equal to potential evaporation minus capillary rise for moderately dry soils, and rapid drainage for very wet soils). We postulate that high quality satellite estimates of soil moisture, using large-scale precipitation data, will yield similar sigmoidal moisture-outflow curves to those that have been observed at field sites, while poor quality estimates will yield flatter, less informative curves that explain less of the precipitation variability. Following this logic, gridded ¼ degree NLDAS precipitation data were compared to three AMSR-E derived soil moisture products (VUA-NASA, or LPRM [Owe et al., 2001], NSIDC [Njoku et al., 2003], and NSIDC-LSP [Jones & Kimball, 2011]) for a period of nine years (2001-2010) across the contiguous United States. Gaps in the daily soil moisture data were filled using a multiple regression model reliant on past and future soil moisture and precipitation, and soil moisture was then converted to a ranked wetness index, in order to reconcile the wide range and magnitude of the soil moisture products. Generalized linear models were employed to fit a polynomial model to precipitation, given wetness index. Various measures of fit (e.g. log likelihood) were used to judge the amount of information in each soil moisture product, as indicated by the amount of precipitation variability explained by the fitted model. Using these methods, regional patterns appear in soil moisture product performance.
FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS ? (ABSTRACT)
Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...
FIELD-SCALE STUDIES: HOW DOES SOIL SAMPLE PRETREATMENT AFFECT REPRESENTATIVENESS?
Samples from field-scale studies are very heterogeneous and can contain large soil and rock particles. Oversize materials are often removed before chemical analysis of the soil samples because it is not practical to include these materials. Is the extracted sample representativ...
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
The use of remotely sensed soil moisture data in large-scale models of the hydrological cycle
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Gurney, R. J.; Schmugge, T. J.
1985-01-01
Manabe (1982) has reviewed numerical simulations of the atmosphere which provided a framework within which an examination of the dynamics of the hydrological cycle could be conducted. It was found that the climate is sensitive to soil moisture variability in space and time. The challenge arises now to improve the observations of soil moisture so as to provide up-dated boundary condition inputs to large scale models including the hydrological cycle. Attention is given to details regarding the significance of understanding soil moisture variations, soil moisture estimation using remote sensing, and energy and moisture balance modeling.
Sensitivity of CEAP cropland simulations to the parameterization of the APEX model
USDA-ARS?s Scientific Manuscript database
For large scale applications like the U.S. National Scale Conservation Effects Assessment Project (CEAP), soil hydraulic characteristics data are not readily available and therefore need to be estimated. Field soil water properties are commonly approximated using laboratory soil water retention meas...
Effective use of ERTS multisensor data in the Great Plains
NASA Technical Reports Server (NTRS)
Myers, V. I. (Principal Investigator)
1972-01-01
The author has identified the following significant results. One unique advantage of ERTS imagery for delineating soil associations is the large area that can be scanned with one photo. Although soil associations usually are published at scales of 1:500,000 or 1:1,000,000, the delineations are drawn on much larger scale maps covering small pieces of the scene and then pieced together. Alluvial areas are usually swollen out of proportion to other soil areas. ERTS imagery puts alluvial areas into their proper size. A second feature of ERTS imagery is that a soil association map constructed with its aid assures that the cartographic level of the associations is more nearly the same. Another advantage of ERTS imagery is that the actual shape and configuration of soil associations are apparent. Also with ERTS imagery significant new delineations may become apparent which were missed when constructing soil association maps from conventional large scale photos.
Contractual Duration and Investment Incentives: Evidence from Large Scale Production Units in China
NASA Astrophysics Data System (ADS)
Li, Fang; Feng, Shuyi; D'Haese, Marijke; Lu, Hualiang; Qu, Futian
2017-04-01
Large Scale Production Units have become important forces in the supply of agricultural commodities and agricultural modernization in China. Contractual duration in farmland transfer to Large Scale Production Units can be considered to reflect land tenure security. Theoretically, long-term tenancy contracts can encourage Large Scale Production Units to increase long-term investments by ensuring land rights stability or favoring access to credit. Using a unique Large Scale Production Units- and plot-level field survey dataset from Jiangsu and Jiangxi Province, this study aims to examine the effect of contractual duration on Large Scale Production Units' soil conservation behaviours. IV method is applied to take into account the endogeneity of contractual duration and unobserved household heterogeneity. Results indicate that farmland transfer contract duration significantly and positively affects land-improving investments. Policies aimed at improving transaction platforms and intermediary organizations in farmland transfer to facilitate Large Scale Production Units to access farmland with long-term tenancy contracts may therefore play an important role in improving soil quality and land productivity.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Owe, M.; Chang, A. T. C.
1992-01-01
The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
A novel representation of groundwater dynamics in large-scale land surface modelling
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael; Kollet, Stefan
2017-04-01
Land surface processes are connected to groundwater dynamics via shallow soil moisture. For example, groundwater affects evapotranspiration (by influencing the variability of soil moisture) and runoff generation mechanisms. However, contemporary Land Surface Models (LSM) generally consider isolated soil columns and free drainage lower boundary condition for simulating hydrology. This is mainly due to the fact that incorporating detailed groundwater dynamics in LSMs usually requires considerable computing resources, especially for large-scale applications (e.g., continental to global). Yet, these simplifications undermine the potential effect of groundwater dynamics on land surface mass and energy fluxes. In this study, we present a novel approach of representing high-resolution groundwater dynamics in LSMs that is computationally efficient for large-scale applications. This new parameterization is incorporated in the Joint UK Land Environment Simulator (JULES) and tested at the continental-scale.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg(-1) for mineral soils and a root mean square error of 50 g C kg(-1) for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation.
Stevens, Antoine; Nocita, Marco; Tóth, Gergely; Montanarella, Luca; van Wesemael, Bas
2013-01-01
Soil organic carbon is a key soil property related to soil fertility, aggregate stability and the exchange of CO2 with the atmosphere. Existing soil maps and inventories can rarely be used to monitor the state and evolution in soil organic carbon content due to their poor spatial resolution, lack of consistency and high updating costs. Visible and Near Infrared diffuse reflectance spectroscopy is an alternative method to provide cheap and high-density soil data. However, there are still some uncertainties on its capacity to produce reliable predictions for areas characterized by large soil diversity. Using a large-scale EU soil survey of about 20,000 samples and covering 23 countries, we assessed the performance of reflectance spectroscopy for the prediction of soil organic carbon content. The best calibrations achieved a root mean square error ranging from 4 to 15 g C kg−1 for mineral soils and a root mean square error of 50 g C kg−1 for organic soil materials. Model errors are shown to be related to the levels of soil organic carbon and variations in other soil properties such as sand and clay content. Although errors are ∼5 times larger than the reproducibility error of the laboratory method, reflectance spectroscopy provides unbiased predictions of the soil organic carbon content. Such estimates could be used for assessing the mean soil organic carbon content of large geographical entities or countries. This study is a first step towards providing uniform continental-scale spectroscopic estimations of soil organic carbon, meeting an increasing demand for information on the state of the soil that can be used in biogeochemical models and the monitoring of soil degradation. PMID:23840459
Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing
2017-07-01
The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sellers, Piers
2012-01-01
Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.
NASA Astrophysics Data System (ADS)
Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.
2014-08-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.
Birkhofer, Klaus; Schöning, Ingo; Alt, Fabian; Herold, Nadine; Klarner, Bernhard; Maraun, Mark; Marhan, Sven; Oelmann, Yvonne; Wubet, Tesfaye; Yurkov, Andrey; Begerow, Dominik; Berner, Doreen; Buscot, François; Daniel, Rolf; Diekötter, Tim; Ehnes, Roswitha B.; Erdmann, Georgia; Fischer, Christiane; Foesel, Bärbel; Groh, Janine; Gutknecht, Jessica; Kandeler, Ellen; Lang, Christa; Lohaus, Gertrud; Meyer, Annabel; Nacke, Heiko; Näther, Astrid; Overmann, Jörg; Polle, Andrea; Pollierer, Melanie M.; Scheu, Stefan; Schloter, Michael; Schulze, Ernst-Detlef; Schulze, Waltraud; Weinert, Jan; Weisser, Wolfgang W.; Wolters, Volkmar; Schrumpf, Marion
2012-01-01
Very few principles have been unraveled that explain the relationship between soil properties and soil biota across large spatial scales and different land-use types. Here, we seek these general relationships using data from 52 differently managed grassland and forest soils in three study regions spanning a latitudinal gradient in Germany. We hypothesize that, after extraction of variation that is explained by location and land-use type, soil properties still explain significant proportions of variation in the abundance and diversity of soil biota. If the relationships between predictors and soil organisms were analyzed individually for each predictor group, soil properties explained the highest amount of variation in soil biota abundance and diversity, followed by land-use type and sampling location. After extraction of variation that originated from location or land-use, abiotic soil properties explained significant amounts of variation in fungal, meso- and macrofauna, but not in yeast or bacterial biomass or diversity. Nitrate or nitrogen concentration and fungal biomass were positively related, but nitrate concentration was negatively related to the abundances of Collembola and mites and to the myriapod species richness across a range of forest and grassland soils. The species richness of earthworms was positively correlated with clay content of soils independent of sample location and land-use type. Our study indicates that after accounting for heterogeneity resulting from large scale differences among sampling locations and land-use types, soil properties still explain significant proportions of variation in fungal and soil fauna abundance or diversity. However, soil biota was also related to processes that act at larger spatial scales and bacteria or soil yeasts only showed weak relationships to soil properties. We therefore argue that more general relationships between soil properties and soil biota can only be derived from future studies that consider larger spatial scales and different land-use types. PMID:22937029
NASA Astrophysics Data System (ADS)
Hattori, Toshihiro; Takamatsu, Rieko
We calculated nitrogen balances on farm gate and soil surface on large-scale stock farms and discussed methods for reducing environmental nitrogen loads. Four different types of public stock farms (organic beef, calf supply and daily cows) were surveyed in Aomori Prefecture. (1) Farm gate and soil surface nitrogen inflows were both larger than the respective outflows on all types of farms. Farm gate nitrogen balance for beef farms were worse than that for dairy farms. (2) Soil surface nitrogen outflows and soil nitrogen retention were in proportion to soil surface nitrogen inflows. (3) Reductions in soil surface nitrogen retention were influenced by soil surface nitrogen inflows. (4) In order to reduce farm gate nitrogen retention, inflows of formula feed and chemical fertilizer need to be reduced. (5) In order to reduce soil surface nitrogen retention, inflows of fertilizer need to be reduced and nitrogen balance needs to be controlled.
Meta-analysis on Macropore Flow Velocity in Soils
NASA Astrophysics Data System (ADS)
Liu, D.; Gao, M.; Li, H. Y.; Chen, X.; Leung, L. R.
2017-12-01
Macropore flow is ubiquitous in the soils and an important hydrologic process that is not well explained using traditional hydrologic theories. Macropore Flow Velocity (MFV) is an important parameter used to describe macropore flow and quantify its effects on runoff generation and solute transport. However, the dominant factors controlling MFV are still poorly understood and the typical ranges of MFV measured at the field are not defined clearly. To address these issues, we conducted a meta-analysis based on a database created from 246 experiments on MFV collected from 76 journal articles. For a fair comparison, a conceptually unified definition of MFV is introduced to convert the MFV measured with different approaches and at various scales including soil core, field, trench or hillslope scales. The potential controlling factors of MFV considered include scale, travel distance, hydrologic conditions, site factors, macropore morphologies, soil texture, and land use. The results show that MFV is about 2 3 orders of magnitude larger than the corresponding values of saturated hydraulic conductivity. MFV is much larger at the trench and hillslope scale than at the field profile and soil core scales and shows a significant positive correlation with the travel distance. Generally, higher irrigation intensity tends to trigger faster MFV, especially at field profile scale, where MFV and irrigation intensity have significant positive correlation. At the trench and hillslope scale, the presence of large macropores (diameter>10 mm) is a key factor determining MFV. The geometric mean of MFV for sites with large macropores was found to be about 8 times larger than those without large macropores. For sites with large macropores, MFV increases with the macropore diameter. However, no noticeable difference in MFV has been observed among different soil texture and land use. Comparing the existing equations to describe MFV, the Poiseuille equation significantly overestimated the observed values, while the Manning-type equations generate reasonable values. The insights from this study will shed light on future field campaigns and modeling of macropore flow.
NASA Astrophysics Data System (ADS)
Basher, Les; Betts, Harley; Lynn, Ian; Marden, Mike; McNeill, Stephen; Page, Mike; Rosser, Brenda
2018-04-01
In geomorphically active landscapes such as New Zealand, quantitative data on the relationship between erosion and soil carbon (C) are needed to establish the effect of erosion on past soil C stocks and future stock changes. The soil C model currently used in New Zealand for soil C stock reporting does not account for erosion. This study developed an approach to characterise the effect of erosion suitable for soil C stock reporting and provides an initial assessment of the magnitude of the effect of erosion. A series of case studies were used to establish the local effect of landslide, earthflow, and gully erosion on soil C stocks and to compare field measurements of soil C stocks with model estimates. Multitemporal erosion mapping from orthophotographs was used to characterise erosion history, identify soil sampling plot locations, and allow soil C stocks to be calculated accounting for erosion. All eroded plots had lower soil C stocks than uneroded (by mass movement and gully erosion) plots sampled at the same sites. Landsliding reduces soil C stocks at plot and landscape scale, largely as a result of individual large storms. After about 70 years, soil C stocks were still well below the value measured for uneroded plots (by 40% for scars and 20-30% for debris tails) indicating that the effect of erosion is very persistent. Earthflows have a small effect on estimates of baseline (1990) soil C stocks and reduce soil C stocks at landscape scale. Gullies have local influence on soil C stocks but because they cover a small proportion of the landscape have little influence at landscape scale. At many of the sites, the soil C model overestimates landscape-scale soil C stocks.
Validating the BERMS in situ soil moisture network with a large scale temporary network
USDA-ARS?s Scientific Manuscript database
Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Soil-geographical regionalization as a basis for digital soil mapping: Karelia case study
NASA Astrophysics Data System (ADS)
Krasilnikov, P.; Sidorova, V.; Dubrovina, I.
2010-12-01
Recent development of digital soil mapping (DSM) allowed improving significantly the quality of soil maps. We tried to make a set of empirical models for the territory of Karelia, a republic at the North-East of the European territory of Russian Federation. This territory was selected for the pilot study for DSM for two reasons. First, the soils of the region are mainly monogenetic; thus, the effect of paleogeographic environment on recent soils is reduced. Second, the territory was poorly mapped because of low agricultural development: only 1.8% of the total area of the republic is used for agriculture and has large-scale soil maps. The rest of the territory has only small-scale soil maps, compiled basing on the general geographic concepts rather than on field surveys. Thus, the only solution for soil inventory was the predictive digital mapping. The absence of large-scaled soil maps did not allow data mining from previous soil surveys, and only empirical models could be applied. For regionalization purposes, we accepted the division into Northern and Southern Karelia, proposed in the general scheme of soil regionalization of Russia; boundaries between the regions were somewhat modified. Within each region, we specified from 15 (Northern Karelia) to 32 (Southern Karelia) individual soilscapes and proposed soil-topographic and soil-lithological relationships for every soilscape. Further field verification is needed to adjust the models.
NASA Technical Reports Server (NTRS)
Zhou, Yaping; Wu, Di; Lau, K.- M.; Tao, Wei-Kuo
2016-01-01
Large-scale forcing and land-atmosphere interactions on precipitation are investigated with NASA-Unified WRF (NU-WRF) simulations during fast transitions of ENSO phases from spring to early summer of 2010 and 2011. The model is found to capture major precipitation episodes in the 3-month simulations without resorting to nudging. However, the mean intensity of the simulated precipitation is underestimated by 46% and 57% compared with the observations in dry and wet regions in the southwestern and south-central United States, respectively. Sensitivity studies show that large-scale atmospheric forcing plays a major role in producing regional precipitation. A methodology to account for moisture contributions to individual precipitation events, as well as total precipitation, is presented under the same moisture budget framework. The analysis shows that the relative contributions of local evaporation and large-scale moisture convergence depend on the dry/wet regions and are a function of temporal and spatial scales. While the ratio of local and large-scale moisture contributions vary with domain size and weather system, evaporation provides a major moisture source in the dry region and during light rain events, which leads to greater sensitivity to soil moisture in the dry region and during light rain events. The feedback of land surface processes to large-scale forcing is well simulated, as indicated by changes in atmospheric circulation and moisture convergence. Overall, the results reveal an asymmetrical response of precipitation events to soil moisture, with higher sensitivity under dry than wet conditions. Drier soil moisture tends to suppress further existing below-normal precipitation conditions via a positive soil moisture-land surface flux feedback that could worsen drought conditions in the southwestern United States.
Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch
2008-01-01
Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....
Verhoest, Niko E.C; Lievens, Hans; Wagner, Wolfgang; Álvarez-Mozos, Jesús; Moran, M. Susan; Mattia, Francesco
2008-01-01
Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates. The characterization of soil roughness is not fully understood, and a large range of roughness parameter values can be obtained for the same surface when different measurement methodologies are used. In this paper, a literature review is made that summarizes the problems encountered when parameterizing soil roughness as well as the reported impact of the errors made on the retrieved soil moisture. A number of suggestions were made for resolving issues in roughness parameterization and studying the impact of these roughness problems on the soil moisture retrieval accuracy and scale. PMID:27879932
Quan Zhang; Richard P. Phillips; Stefano Manzoni; Russell L. Scott; A. Christopher Oishi; Adrien Finzi; Edoardo Daly; Rodrigo Vargas; Kimberly A. Novick
2018-01-01
In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This...
Manoharan, Lokeshwaran; Kushwaha, Sandeep K.; Hedlund, Katarina; Ahrén, Dag
2015-01-01
Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances. PMID:26490729
Quantifying soil respiration at landscape scales. Chapter 11
John B. Bradford; Michael G. Ryan
2008-01-01
Soil CO2, efflux, or soil respiration, represents a substantial component of carbon cycling in terrestrial ecosystems. Consequently, quantifying soil respiration over large areas and long time periods is an increasingly important goal. However, soil respiration rates vary dramatically in space and time in response to both environmental conditions...
[Interrelationships between soil fauna and soil environmental factors in China: research advance].
Wang, Yi; Wei, Wei; Yang, Xing-zhong; Chen, Li-ding; Yang, Lei
2010-09-01
Soil fauna has close relations with various environmental factors in soil ecosystem. To explore the interrelationships between soil fauna and soil environmental factors is of vital importance to deep understand the dynamics of soil ecosystem and to assess the functioning of the ecosystem. The environmental factors affecting soil fauna can be classified as soil properties and soil external environment. The former contains soil basic physical and chemical properties, soil moisture, and soil pollution. The latter includes vegetation, land use type, landform, and climate, etc. From these aspects, this paper summarized the published literatures in China on the interrelationships between soil fauna and soil environmental factors. It was considered that several problems were existed in related studies, e.g., fewer researches were made in integrating soil fauna's bio-indicator function, research methods were needed to be improved, and the studies on the multi-environmental factors and their large scale spatial-temporal variability were in deficiency. Corresponding suggestions were proposed, i.e., more work should be done according to the practical needs, advanced experiences from abroad should be referenced, and comprehensive studies on multi-environmental factors and long-term monitoring should be conducted on large scale areas.
Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh
NASA Astrophysics Data System (ADS)
Khalil, Zahid
2016-07-01
Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.
ERIC Educational Resources Information Center
Najm, Majdi R. Abou; Mohtar, Rabi H.; Cherkauer, Keith A.; French, Brian F.
2010-01-01
Proper understanding of scaling and large-scale hydrologic processes is often not explicitly incorporated in the teaching curriculum. This makes it difficult for students to connect the effect of small scale processes and properties (like soil texture and structure, aggregation, shrinkage, and cracking) on large scale hydrologic responses (like…
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
NASA Astrophysics Data System (ADS)
Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.
2015-09-01
The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.
SITE DEMONSTRATION BULLETIN: SOIL RECYCLING TREATMENT TRAIN - THE TORONTO HARBOUR COMMISSIONERS
The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port...
TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN - APPLICATIONS ANALYSIS REPORT
The Toronto Harbour Commissioners (THC) have developed a soil treatment train designed to treat inorganic and organic contaminants in soils. THC has conducted a large-scale demonstration of these technologies in an attempt to establish that contaminated soils at the Toronto Port ...
Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale
NASA Astrophysics Data System (ADS)
Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.
2015-03-01
The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.
NASA Astrophysics Data System (ADS)
Hassler, Evelyn; Corre, Marife D.; Kurniawan, Syahrul; Veldkamp, Edzo
2017-06-01
Oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations cover large areas of former rainforest in Sumatra, Indonesia, supplying the global demand for these crops. Although forest conversion is known to influence soil nitrous oxide (N2O) and nitric oxide (NO) fluxes, measurements from oil palm and rubber plantations are scarce (for N2O) or nonexistent (for NO). Our study aimed to (1) quantify changes in soil-atmosphere fluxes of N oxides with forest conversion to rubber and oil palm plantations and (2) determine their controlling factors. In Jambi, Sumatra, we selected two landscapes that mainly differed in texture but were both on heavily weathered soils: loam and clay Acrisol soils. Within each landscape, we investigated lowland forests, rubber trees interspersed in secondary forest (termed as jungle rubber
), both as reference land uses and smallholder rubber and oil palm plantations as converted land uses. In the loam Acrisol landscape, we conducted a follow-on study in a large-scale oil palm plantation (called PTPN VI) for comparison of soil N2O fluxes with smallholder oil palm plantations. Land-use conversion to smallholder plantations had no effect on soil N-oxide fluxes (P = 0. 58 to 0.76) due to the generally low soil N availability in the reference land uses that further decreased with land-use conversion. Soil N2O fluxes from the large-scale oil palm plantation did not differ with those from smallholder plantations (P = 0. 15). Over 1-year measurements, the temporal patterns of soil N-oxide fluxes were influenced by soil mineral N and water contents. Across landscapes, annual soil N2O emissions were controlled by gross nitrification and sand content, which also suggest the influence of soil N and water availability. Soil N2O fluxes (µg N m-2 h-1) were 7 ± 2 to 14 ± 7 (reference land uses), 6 ± 3 to 9 ± 2 (rubber), 12 ± 3 to 12 ± 6 (smallholder oil palm) and 42 ± 24 (large-scale oil palm). Soil NO fluxes (µg N m-2 h-1) were -0.6 ± 0.7 to 5.7 ± 5.8 (reference land uses), -1.2 ± 0.5 to -1.0 ± 0.2 (rubber) and -0.2 ± 1.2 to 0.7 ± 0.7 (smallholder oil palm). To improve the estimate of soil N-oxide fluxes from oil palm plantations in this region, studies should focus on large-scale plantations (which usually have 2 to 4 times higher N fertilization rates than smallholders) with frequent measurements following fertilizer application.
Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia
NASA Astrophysics Data System (ADS)
Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.
2017-12-01
Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.
Soil organic carbon - a large scale paired catchment assessment
NASA Astrophysics Data System (ADS)
Kunkel, V.; Hancock, G. R.; Wells, T.
2016-12-01
Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.
NASA Astrophysics Data System (ADS)
Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo
2016-10-01
Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.
Hu, Yuanan; Cheng, Hefa
2013-04-16
As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.
Soil moisture observations using L-, C-, and X-band microwave radiometers
NASA Astrophysics Data System (ADS)
Bolten, John Dennis
The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.
The Enigma of Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity
Nielsen, Uffe N.; Osler, Graham H. R.; Campbell, Colin D.; Neilson, Roy; Burslem, David F. R. P.; van der Wal, René
2010-01-01
Background “The enigma of soil animal species diversity” was the title of a popular article by J. M. Anderson published in 1975. In that paper, Anderson provided insights on the great richness of species found in soils, but emphasized that the mechanisms contributing to the high species richness belowground were largely unknown. Yet, exploration of the mechanisms driving species richness has focused, almost exclusively, on above-ground plant and animal communities, and nearly 35 years later we have several new hypotheses but are not much closer to revealing why soils are so rich in species. One persistent but untested hypothesis is that species richness is promoted by small-scale environmental heterogeneity. Methodology/Principal Findings To test this hypothesis we manipulated small-scale heterogeneity in soil properties in a one-year field experiment and investigated the impacts on the richness of soil fauna and evenness of the microbial communities. We found that heterogeneity substantially increased the species richness of oribatid mites, collembolans and nematodes, whereas heterogeneity had no direct influence on the evenness of either the fungal, bacterial or archaeal communities or on species richness of the large and mobile mesostigmatid mites. These results suggest that the heterogeneity-species richness relationship is scale dependent. Conclusions Our results provide direct evidence for the hypothesis that small-scale heterogeneity in soils increase species richness of intermediate-sized soil fauna. The concordance of mechanisms between above and belowground communities suggests that the relationship between environmental heterogeneity and species richness may be a general property of ecological communities. PMID:20644639
A high resolution method for soil moisture mapping at large spatial and temporal scales
NASA Astrophysics Data System (ADS)
moreno, D.; Sayde, C.; Ochsner, T. E.; Sorin, C.; Selker, J. S.
2013-12-01
Soil moisture is a critical component of the planet's water budget, yet precise measurement of its dynamics across the critical scales of 0.1-1,000 m continues to be an area of great uncertainty. Here we present the preliminary results for a large scale installation of soil moisture quantification based on the work of Sayde et al. (2010) using actively heated fiber optic with a DTS system capable of soil moisture measurements at high spatial (reporting every 0.125 m) and temporal resolution (read as frequently as each 15 min)). The fiber optic (FO) sensing cables were installed in 2 sections: 1) a highly resolved multi-scale spiral 75m x 65m in size, 530 m total path length, and 2) a 770 m transect in the foot print of the cosmos cosmic ray probe installed at the site. In each of those 2 sections, the FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. In addition, six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the DTS data. Finally, gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. The ability of this DTS FO system to provide soil moisture measurements over four orders of magnitude in spatial scale (0.1 - 1,000m) will allow better understanding of the spatio-temporal variability in soil moisture in the field, which is essential to develop protocols for calibration and validation of large scale soil moisture remote sensing data (such as NASA airMOSS soil moisture air flights). The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation.. Sayde, C., C. Gregory, M. Gil-Rodriguez, N. Tufillaro, S. Tyler, N. van de Giesen, M. English, R. Cuenca, and J.S. Selker (2010), Feasibility of soil moisture monitoring with heated fiber optics, Water Resour. Res., 46, W06201, doi:10.1029/2009WR007846.
SMOS soil moisture validation with U.S. in situ newworks
USDA-ARS?s Scientific Manuscript database
Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors using a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. Since it is a new sensor u...
Determining erosion relevant soil characteristics with a small-scale rainfall simulator
NASA Astrophysics Data System (ADS)
Schindewolf, M.; Schmidt, J.
2009-04-01
The use of soil erosion models is of great importance in soil and water conservation. Routine application of these models on the regional scale is not at least limited by the high parameter demands. Although the EROSION 3D simulation model is operating with a comparable low number of parameters, some of the model input variables could only be determined by rainfall simulation experiments. The existing data base of EROSION 3D was created in the mid 90s based on large-scale rainfall simulation experiments on 22x2m sized experimental plots. Up to now this data base does not cover all soil and field conditions adequately. Therefore a new campaign of experiments would be essential to produce additional information especially with respect to the effects of new soil management practices (e.g. long time conservation tillage, non tillage). The rainfall simulator used in the actual campaign consists of 30 identic modules, which are equipped with oscillating rainfall nozzles. Veejet 80/100 (Spraying Systems Co., Wheaton, IL) are used in order to ensure best possible comparability to natural rainfalls with respect to raindrop size distribution and momentum transfer. Central objectives of the small-scale rainfall simulator are - effectively application - provision of comparable results to large-scale rainfall simulation experiments. A crucial problem in using the small scale simulator is the restriction on rather small volume rates of surface runoff. Under this conditions soil detachment is governed by raindrop impact. Thus impact of surface runoff on particle detachment cannot be reproduced adequately by a small-scale rainfall simulator With this problem in mind this paper presents an enhanced small-scale simulator which allows a virtual multiplication of the plot length by feeding additional sediment loaded water to the plot from upstream. Thus is possible to overcome the plot length limited to 3m while reproducing nearly similar flow conditions as in rainfall experiments on standard plots. The simulator is extensively applied to plots of different soil types, crop types and management systems. The comparison with existing data sets obtained by large-scale rainfall simulations show that results can adequately be reproduced by the applied combination of small-scale rainfall simulator and sediment loaded water influx.
Watershed-Scale Heterogeneity of the Biophysical Controls on Soil Respiration
NASA Astrophysics Data System (ADS)
Riveros, D. A.; Pacific, V. J.; McGlynn, B. L.; Welsch, D. L.; Epstein, H. E.; Muth, D. J.; Marshall, L.; Wraith, J.
2006-12-01
Large gaps exist in our understanding of the variability of soil respiration response to changing hydrologic conditions across spatial and temporal scales. Determining the linkages between the hydrologic cycle and the biophysical controls of soil respiration from the local point, to the plot, to the watershed scale is critical to understanding the dynamics of net ecosystem CO2 exchange (NEE). To study the biophysical controls of soil respiration, we measured soil CO2 concentration, soil CO2 flux, dissolved CO2 in stream water, soil moisture, soil temperature, groundwater dynamics, and precipitation at 20-minute intervals throughout the growing season at 4 sites and at weekly intervals at 62 sites covering the range of topographic position, slope, aspect, land cover, and upslope accumulated area conditions in a 555-ha subalpine watershed in central Montana. Our goal was to quantify watershed-scale heterogeneity in soil CO2 concentrations and surface efflux and gain understanding of the biophysical controls on soil respiration. We seek to improve our ability to evaluate and predict soil respiration responses to a dynamic hydrologic cycle across multiple temporal and spatial scales. We found that time lags between biophysical controls and soil respiration can occur from hourly to daily scales. The sensitivity of soil respiration to changes in environmental conditions is controlled by the antecedent soil moisture and by topographic position. At the watershed scale, significant differences in soil respiration exist between upland (dry) and lowland (wet) sites. However, differences in the magnitude and timing of soil respiration also exist within upland settings due to heterogeneity in soil temperature, soil moisture, and soil organic matter. Finally, we used a process-based model to simulate respiration at different times of the year across spatial locations. Our simulations highlight the importance of autotrophic and heterotrophic respiration (production) over diffusivity and soil physical properties (transport). Our work begins to address the disconnect between point, footprint, watershed scale estimates of ecosystem respiration and the role of a dynamic hydrologic cycle.
Temporal transferability of soil moisture calibration equations
USDA-ARS?s Scientific Manuscript database
Several large-scale field campaigns have been conducted over the last 20 years that require accurate estimates of soil moisture conditions. These measurements are manually conducted using soil moisture probes which require calibration. The calibration process involves the collection of hundreds of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.
Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less
Vegetation Response to Rainfall and Soil Moisture Variability in Botswana
1991-01-01
Effects of Varying Soil Type on the NDVI /Rainfall and NDVI /Soil Moisture...examine the effects of different soil types on the vegetation growth/rainfall relationship. The goals are to determine whether differences in the water-use...34first step" in removing the soil effect (Huete et al., 1985). Indeed, no large-scale soil corrections have been attempted as yet on NDVI data.
Soil moisture and biogeochemical factors influence the distribution of annual Bromus species
Jayne Belnap; John M. Stark; Benjamin M. Rau; Edith B. Allen; Susan Phillips
2016-01-01
Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromus occurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan...
Wildfire as a hydrological and geomorphological agent
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Doerr, S. H.
2006-02-01
Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.
Nathan B. English; David G. Williams; Jake F. Weltzin
2003-01-01
We established a large-scale manipulative experiment in a semidesert grassland on the Santa Rita Experimental Range to determine how the recruitment and physiology of woody plants (Prosopis velutina Woot.) are affected by invasive grasses, seasonal precipitation regimes, and underlying soil characteristics. We established 72 2.8-m2 plots beneath six large rainout...
Imaging and Analytical Approaches for Characterization of Soil Mineral Weathering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohnalkova, Alice; Arey, Bruce; Varga, Tamas
Soil minerals weathering is the primary natural source of nutrients necessary to sustain productivity in terrestrial ecosystems. Soil microbial communities increase soil mineral weathering and mineral-derived nutrient availability through physical and chemical processes. Rhizosphere, the zone immediately surrounding plant roots, is a biogeochemical hotspot with microbial activity, soil organic matter production, mineral weathering, and secondary phase formation all happening in a small temporally ephemeral zone of steep geochemical gradients. The detailed exploration of the micro-scale rhizosphere is essential to our better understanding of large-scale processes in soils, such as nutrient cycling, transport and fate of soil components, microbial-mineral interactions, soilmore » erosion, soil organic matter turnover and its molecular-level characterization, and predictive modeling.« less
Mapping spatial patterns of denitrifiers at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Walker, Gregory K.; Mahanama, Sarith P.; Reichle, Rolf H.
2013-01-01
Offline simulations over the conterminous United States (CONUS) with a land surface model are used to address two issues relevant to the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which a realistic increase in the spatial resolution of forecasted precipitation would improve streamflow forecasts. The addition of error to a soil moisture initialization field is found to lead to a nearly proportional reduction in streamflow forecast skill. The linearity of the response allows the determination of a lower bound for the increase in streamflow forecast skill achievable through improved soil moisture estimation, e.g., through satellite-based soil moisture measurements. An increase in the resolution of precipitation is found to have an impact on large-scale streamflow forecasts only when evaporation variance is significant relative to the precipitation variance. This condition is met only in the western half of the CONUS domain. Taken together, the two studies demonstrate the utility of a continental-scale land surface modeling system as a tool for addressing the science of hydrological prediction.
USDA-ARS?s Scientific Manuscript database
A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...
NASA Astrophysics Data System (ADS)
Jia, J.; Liu, Z.; Cao, Z.; Chen, L.; He, J. S.; Haghipour, N.; Wacker, L.; Eglinton, T. I.; Feng, X.
2017-12-01
Unraveling the fate of organic carbon (OC) in soils is essential to understanding the impact of global changes on the global carbon cycle. Previous studies have shown that while various soil OC components have different decomposability, chemically labile OC can have old 14C ages. However, few studies have compared the 14C age of various soil OC components on a large scale, which may provide important information on the link between the age or turnover of soil OC components to their sources, molecular structures as well as environmental variables. In this project, a suite of soil profiles were sampled along a large-scale transect of temperate and alpine grasslands across the Tibetan and Mongolian Plateaus in China with contrasting climatic, vegetation and soil properties. Bulk OC and source-specific compounds (including fatty acids (FAs), diacids (DAs) and lignin phenols) were radiocarbon-dated to investigate the age and turnover dynamics of different OC pools and the mechanisms controlling their stability. Our results show that lignin phenols displayed a large 14C variability. Short-chain (C16, 18) FAs sourced from vascular plants as well as microorganisms were younger than plant-derived long-chain FAs and DAs, indicating that short-chain FAs were easier to be decomposed or newly synthesized. In the temperate grasslands, long-chain DAs were younger than FAs, while the opposite trend was observed in the alpine grasslands. Preliminary correlation analysis suggests that the age of short-chain FAs were mainly influenced by clay contents and climate, while reactive minerals, clay or silt particles were important factors in the stabilization of long-chain FAs, DAs and lignin phenols. Overall, our study provided a unique 14 C dataset of soil OC components in grasslands, which will provide important constraints on soil carbon turnover in future investigations.
Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?
Weaver, David; Summers, Robert
2014-05-01
Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (<2 mm) compared with stream bank soil (<2 mm) and the <75-μm fraction of stream bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport processes.
Soil organic carbon across scales.
O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B
2015-10-01
Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. © 2015 John Wiley & Sons Ltd.
Advances in wind erosion modelling in Europe
NASA Astrophysics Data System (ADS)
Borrelli, Pasquale; Lugato, Emanuele; Alewell, Christine; Montanarella, Luca; Panagos, Panos
2017-04-01
Soil erosion by wind is a serious environmental problem often resulting in severe forms of soil degradation. Wind erosion is also a phenomenon relevant for Europe, although this land degradation process has been overlooked until very recently. The state-of-the-art literature presents wind erosion as a process that locally affects the semi-arid areas of the Mediterranean region as well as the temperate climate areas of the northern European countries. Actual observations, field measurements and modelling assessments, however, are all extremely limited and highly unequally distributed across Europe. As a result, we currently lack comprehensive understanding about where and when wind erosion occurs in Europe, and the intensity of erosion that poses a threat to agricultural productivity. Today's challenge is to integrate the insights of local experiments and field-scale models into a new generation of large-scale wind erosion models. While naturally being less accurate than field-scale models, these large-scale modelling approaches still provide essential knowledge about where and when wind erosion occurs and can disclose the level of risk for agricultural productivity in specific areas. Here, we present a geographic information system (GIS) version of the RWEQ (named GIS-RWEQ) to quantitatively assess soil loss by wind over large study areas (Land Degradation & Development, DOI: 10.1002/ldr.2588). The model designed to predict the daily soil loss potential at a ca. 1 km2 spatial resolution shows high consistency with local measurements reported in literature. The average soil loss predicted by GIS-RWEQ for the European arable land totals 62 million Mg yr-1, with an average area-specific soil loss of 0.53 Mg yr-1. The JRC model RUSLE2015, for the same area estimates 295 million Mg yr-1 of soil loss due to water erosion. Notably, soil loss by wind erosion in the European arable land could be as high as 20% of water erosion, even though the areas affected are mainly concentrated in hotspots.
USDA-ARS?s Scientific Manuscript database
The Cosmic-ray Soil Moisture Observing System (COSMOS) is a new and innovative method for estimating surface and near surface soil moisture at large (~700 m) scales. This system accounts for liquid water within its measurement volume. Many of the sites used in the early validation of the system had...
Upscaled soil-water retention using van Genuchten's function
Green, T.R.; Constantz, J.E.; Freyberg, D.L.
1996-01-01
Soils are often layered at scales smaller than the block size used in numerical and conceptual models of variably saturated flow. Consequently, the small-scale variability in water content within each block must be homogenized (upscaled). Laboratory results have shown that a linear volume average (LVA) of water content at a uniform suction is a good approximation to measured water contents in heterogeneous cores. Here, we upscale water contents using van Genuchten's function for both the local and upscaled soil-water-retention characteristics. The van Genuchten (vG) function compares favorably with LVA results, laboratory experiments under hydrostatic conditions in 3-cm cores, and numerical simulations of large-scale gravity drainage. Our method yields upscaled vG parameter values by fitting the vG curve to the LVA of water contents at various suction values. In practice, it is more efficient to compute direct averages of the local vG parameter values. Nonlinear power averages quantify a feasible range of values for each upscaled vG shape parameter; upscaled values of N are consistently less than the harmonic means, reflecting broad pore-size distributions of the upscaled soils. The vG function is useful for modeling soil-water retention at large scales, and these results provide guidance for its application.
NASA Astrophysics Data System (ADS)
Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.
2016-04-01
Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.
Soil and tree ring chemistry changes in an oak forest.
Quentin D. Read
2009-01-01
Changes in soil chemistry due to historic large-scale disturbances, e.g. pollution inputs, storm damage, and logging, have previously been shown to cause similar changes in the nutrient concentrations...
Zhu, Xuejiao; Li, Weila; Zhan, Lu; Huang, Minsheng; Zhang, Qiuzhuo; Achal, Varenyam
2016-12-01
Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg -1 . The soluble-exchangeable fraction was reduced to 38 mg kg -1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni 2+ with an ion radius close to Ca 2+ was incorporated into the CaCO 3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Colson, Aaron J; Vredenburgh, Larry; Guevara, Ramon E; Rangel, Natalia P; Kloock, Carl T; Lauer, Antje
2017-06-01
Ongoing large-scale land development for renewable energy projects in the Antelope Valley, located in the Western Mojave Desert, has been blamed for increased fugitive dust emissions and coccidioidomycosis incidence among the general public in recent years. Soil samples were collected at six sites that were destined for solar farm construction and were analyzed for the presence of the soil-borne fungal pathogen Coccidioides immitis which is endemic to many areas of central and southern California. We used a modified culture-independent nested PCR approach to identify the pathogen in all soil samples and also compared the sampling sites in regard to soil physical and chemical parameters, degree of disturbance, and vegetation. Our results indicated the presence of C. immitis at four of the six sites, predominantly in non-disturbed soils of the Pond-Oban complex, which are characterized by an elevated pH and salt bush communities, but also in grassland characterized by different soil parameters and covered with native and non-native annuals. Overall, we were able to detect the pathogen in 40% of the soil samples (n = 42). Incidence of coccidioidomycosis in the Antelope Valley was positively correlated with land use and particulate matter in the air (PM10) (Pearson correlation coefficient >0.5). With the predicted population growth and ongoing large-scale disturbance of soil in the Antelope Valley in coming years, incidence of coccidioidomycosis will likely further increase if policy makers and land developers continue to ignore the risk of grading land without implementing long-term dust mitigation plans in Environmental Impact Reports.
Charcoal addition to soils in NE England: a carbon sink with environmental co-benefits?
Bell, M J; Worrall, F
2011-04-01
Interest in the application of biochar (charcoal produced during the pyrolysis of biomass) to agricultural land is increasing across the world, recognised as a potential way to capture and store atmospheric carbon. Its interest is heightened by its potential co-benefits for soil quality and fertility. The majority of research has however been undertaken in tropical rather than temperate regions. This study assessed the potential for lump-wood charcoal addition (as a substitute for biochar) to soil types which are typically under arable and forest land-use in North East England. The study was undertaken over a 28 week period and found: i) No significant difference in net ecosystem respiration (NER) between soils containing charcoal and those without, other than in week 1 of the trial. ii) A significantly higher dissolved organic carbon (DOC) flux from soils containing large amounts of charcoal than from those untreated, when planted with ryegrass. iii) That when increased respiration or DOC loss did occur, neither was sufficiently large to alter the carbon sink benefits of charcoal application. iv) That charcoal incorporation resulted in a significantly lower nitrate flux in soil leachate from mineral soils. v) That charcoal incorporation caused significant increases in soil pH, from 6.98 to 7.22 on bare arable soils when 87,500 kg charcoal/ha was applied. Consideration of both the carbon sink and environmental benefits observed here suggests that charcoal application to temperate soils typical of North East England should be considered as a method of carbon sequestration. Before large scale land application is encouraged, further large scale trials should be undertaken to confirm the positive results of this research. Copyright © 2011 Elsevier B.V. All rights reserved.
Bacteria as Emerging Indicators of Soil Condition
Hermans, Syrie M.; Buckley, Hannah L.; Case, Bradley S.; Curran-Cournane, Fiona; Taylor, Matthew
2016-01-01
ABSTRACT Bacterial communities are important for the health and productivity of soil ecosystems and have great potential as novel indicators of environmental perturbations. To assess how they are affected by anthropogenic activity and to determine their ability to provide alternative metrics of environmental health, we sought to define which soil variables bacteria respond to across multiple soil types and land uses. We determined, through 16S rRNA gene amplicon sequencing, the composition of bacterial communities in soil samples from 110 natural or human-impacted sites, located up to 300 km apart. Overall, soil bacterial communities varied more in response to changing soil environments than in response to changes in climate or increasing geographic distance. We identified strong correlations between the relative abundances of members of Pirellulaceae and soil pH, members of Gaiellaceae and carbon-to-nitrogen ratios, members of Bradyrhizobium and the levels of Olsen P (a measure of plant available phosphorus), and members of Chitinophagaceae and aluminum concentrations. These relationships between specific soil attributes and individual soil taxa not only highlight ecological characteristics of these organisms but also demonstrate the ability of key bacterial taxonomic groups to reflect the impact of specific anthropogenic activities, even in comparisons of samples across large geographic areas and diverse soil types. Overall, we provide strong evidence that there is scope to use relative taxon abundances as biological indicators of soil condition. IMPORTANCE The impact of land use change and management on soil microbial community composition remains poorly understood. Therefore, we explored the relationship between a wide range of soil factors and soil bacterial community composition. We included variables related to anthropogenic activity and collected samples across a large spatial scale to interrogate the complex relationships between various bacterial community attributes and soil condition. We provide evidence of strong relationships between individual taxa and specific soil attributes even across large spatial scales and soil and land use types. Collectively, we were able to demonstrate the largely untapped potential of microorganisms to indicate the condition of soil and thereby influence the way that we monitor the effects of anthropogenic activity on soil ecosystems into the future. PMID:27793827
Bacteria as Emerging Indicators of Soil Condition.
Hermans, Syrie M; Buckley, Hannah L; Case, Bradley S; Curran-Cournane, Fiona; Taylor, Matthew; Lear, Gavin
2017-01-01
Bacterial communities are important for the health and productivity of soil ecosystems and have great potential as novel indicators of environmental perturbations. To assess how they are affected by anthropogenic activity and to determine their ability to provide alternative metrics of environmental health, we sought to define which soil variables bacteria respond to across multiple soil types and land uses. We determined, through 16S rRNA gene amplicon sequencing, the composition of bacterial communities in soil samples from 110 natural or human-impacted sites, located up to 300 km apart. Overall, soil bacterial communities varied more in response to changing soil environments than in response to changes in climate or increasing geographic distance. We identified strong correlations between the relative abundances of members of Pirellulaceae and soil pH, members of Gaiellaceae and carbon-to-nitrogen ratios, members of Bradyrhizobium and the levels of Olsen P (a measure of plant available phosphorus), and members of Chitinophagaceae and aluminum concentrations. These relationships between specific soil attributes and individual soil taxa not only highlight ecological characteristics of these organisms but also demonstrate the ability of key bacterial taxonomic groups to reflect the impact of specific anthropogenic activities, even in comparisons of samples across large geographic areas and diverse soil types. Overall, we provide strong evidence that there is scope to use relative taxon abundances as biological indicators of soil condition. The impact of land use change and management on soil microbial community composition remains poorly understood. Therefore, we explored the relationship between a wide range of soil factors and soil bacterial community composition. We included variables related to anthropogenic activity and collected samples across a large spatial scale to interrogate the complex relationships between various bacterial community attributes and soil condition. We provide evidence of strong relationships between individual taxa and specific soil attributes even across large spatial scales and soil and land use types. Collectively, we were able to demonstrate the largely untapped potential of microorganisms to indicate the condition of soil and thereby influence the way that we monitor the effects of anthropogenic activity on soil ecosystems into the future. Copyright © 2016 American Society for Microbiology.
Monitoring soil water dynamics at 0.1-1000 m scales using active DTS: the MOISST experience
NASA Astrophysics Data System (ADS)
Sayde, C.; Moreno, D.; Legrand, C.; Dong, J.; Steele-Dunne, S. C.; Ochsner, T. E.; Selker, J. S.
2014-12-01
The Actively Heated Fiber Optics (AHFO) method can measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. As observed by Sayde et al. 2014, this unprecedented density of measurements captures soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m), bridging the gap between point scale measurements and large scale remote sensing. 4900 m of FO sensing cables were installed at the MOISST experimental site in Stillwater, Ok. The FO cables were deployed at 3 depths: 5, 10, and 15 cm. In this system the FO sensing system provides measurements of soil moisture at >39,000 locations simultaneously for each heat pulse. Six soil monitoring stations along the fiber optic path were installed to provide additional validation and calibration of the AHFO data. Gravimetric soil moisture and soil thermal samplings were performed periodically to provide additional distributed validation and calibration of the DTS data. In this work we present the preliminary results of this experiment. We will also address the experience learned from this large scale deployment of the AHFO method. In particular, we will present the in-situ soil moisture calibration method developed to tackle the calibration challenges associated with the high spatial heterogeneity of the soil physical and thermal properties. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA or the National Science Foundation. Sayde, C., J. Benitez Buelga, L. Rodriguez-Sinobas, L. El Khoury, M. English, N. van de Giesen, and J.S. Selker (2014). Mapping Variability of Soil Water Content and Flux across 1-1,000 m scales using the Actively Heated Fiber Optic Method, Accepted for publication in Water Resour. Res.
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre
2015-04-01
Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.
Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations
NASA Technical Reports Server (NTRS)
Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco
2010-01-01
Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An L-band imaging radar is being added to the complement to provide simultaneous active-passive L-band observations, for algorithm development activities in support of NASA's upcoming Soil Moisture Active Passive (.S"M) mission. This paper will describe the campaigns, their objectives, their datasets, and some of the unique advantages of working with small/light sensors and aircraft. We will also review the main scientific findings, including improvements to the SMOS retrieval algorithm enabled by NAFE observations and the evaluation of the Simpson Desert as a calibration target for L-band satellite missions. Plans for upcoming campaigns will also be discussed.
Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics
USDA-ARS?s Scientific Manuscript database
Feedback with soil biota is a major driver of diversity within terrestrial plant communities. However, little is known about the factors regulating plant-soil feedback, which can vary from positive to negative among plant species. In a large-scale observational and experimental study involving 55 sp...
Cosmic ray soil moisture observing systems comos in cap fields at El Reno Oklahoma
USDA-ARS?s Scientific Manuscript database
Soil water content (SWC) partitions rainfall into runoff and infiltration, modulates surface and atmospheric exchanges of water and energy, affects plant growth and crop yields, and impacts chemical and biological activities of soil, among other things. Thus, SWC, especially over large scales, is a...
Dynamic effects of biochar concentration and particle size on hydraulic properties of sand
USDA-ARS?s Scientific Manuscript database
Large-scale application of biochar has been promoted as a strategy for reclaiming degraded soils and conserving natural landscapes because of biochar potentials to alter the soil biogeochemical and physical properties and improve soil quality. Several studies have reported that biochar amendment at ...
Scaling an in situ network for high resolution modeling during SMAPVEX15
NASA Astrophysics Data System (ADS)
Coopersmith, E. J.; Cosh, M. H.; Jacobs, J. M.; Jackson, T. J.; Crow, W. T.; Holifield Collins, C.; Goodrich, D. C.; Colliander, A.
2015-12-01
Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in situ networks, temporary networks, and aerial mapping of soil moisture. During the Soil Moisture Active Passive Validation Experiments in 2015 (SMAPVEX15) in and around the USDA-ARS Walnut Gulch Experimental Watershed and LTAR site in southeastern Arizona, USA, a high density network of soil moisture stations was deployed across a sparse, permanent in situ network in coordination with intensive soil moisture sampling and an aircraft campaign. This watershed is also densely instrumented with precipitation gages (one gauge/0.57 km2) to monitor the North American Monsoon System, which dominates the hydrologic cycle during the summer months in this region. Using the precipitation and soil moisture time series values provided, a physically-based model is calibrated that will provide estimates at the 3km, 9km, and 36km scales. The results from this model will be compared with the point-scale gravimetric samples, aircraft-based sensor, and the satellite-based products retrieved from NASA's Soil Moisture Active Passive mission.
Environmental Impacts of Large Scale Biochar Application Through Spatial Modeling
NASA Astrophysics Data System (ADS)
Huber, I.; Archontoulis, S.
2017-12-01
In an effort to study the environmental (emissions, soil quality) and production (yield) impacts of biochar application at regional scales we coupled the APSIM-Biochar model with the pSIMS parallel platform. So far the majority of biochar research has been concentrated on lab to field studies to advance scientific knowledge. Regional scale assessments are highly needed to assist decision making. The overall objective of this simulation study was to identify areas in the USA that have the most gain environmentally from biochar's application, as well as areas which our model predicts a notable yield increase due to the addition of biochar. We present the modifications in both APSIM biochar and pSIMS components that were necessary to facilitate these large scale model runs across several regions in the United States at a resolution of 5 arcminutes. This study uses the AgMERRA global climate data set (1980-2010) and the Global Soil Dataset for Earth Systems modeling as a basis for creating its simulations, as well as local management operations for maize and soybean cropping systems and different biochar application rates. The regional scale simulation analysis is in progress. Preliminary results showed that the model predicts that high quality soils (particularly those common to Iowa cropping systems) do not receive much, if any, production benefit from biochar. However, soils with low soil organic matter ( 0.5%) do get a noteworthy yield increase of around 5-10% in the best cases. We also found N2O emissions to be spatial and temporal specific; increase in some areas and decrease in some other areas due to biochar application. In contrast, we found increases in soil organic carbon and plant available water in all soils (top 30 cm) due to biochar application. The magnitude of these increases (% change from the control) were larger in soil with low organic matter (below 1.5%) and smaller in soils with high organic matter (above 3%) and also dependent on biochar application rate.
NASA Astrophysics Data System (ADS)
de Rooij, G. H.
2010-09-01
Soil water is confined behind the menisci of its water-air interface. Catchment-scale fluxes (groundwater recharge, evaporation, transpiration, precipitation, etc.) affect the matric potential, and thereby the interface curvature and the configuration of the phases. In turn, these affect the fluxes (except precipitation), creating feedbacks between pore-scale and catchment-scale processes. Tracking pore-scale processes beyond the Darcy scale is not feasible. Instead, for a simplified system based on the classical Darcy's Law and Laplace-Young Law we i) clarify how menisci transfer pressure from the atmosphere to the soil water, ii) examine large-scale phenomena arising from pore-scale processes, and iii) analyze the relationship between average meniscus curvature and average matric potential. In stagnant water, changing the gravitational potential or the curvature of the air-water interface changes the pressure throughout the water. Adding small amounts of water can thus profoundly affect water pressures in a much larger volume. The pressure-regulating effect of the interface curvature showcases the meniscus as a pressure port that transfers the atmospheric pressure to the water with an offset directly proportional to its curvature. This property causes an extremely rapid rise of phreatic levels in soils once the capillary fringe extends to the soil surface and the menisci flatten. For large bodies of subsurface water, the curvature and vertical position of any meniscus quantify the uniform hydraulic potential under hydrostatic equilibrium. During unit-gradient flow, the matric potential corresponding to the mean curvature of the menisci should provide a good approximation of the intrinsic phase average of the matric potential.
Characterization of microbial 'hot spots' in soils": Where are we, and where are we going?
NASA Astrophysics Data System (ADS)
Baveye, Philippe C.
2015-04-01
Fifty years ago, microbiologists realized that significant progress in our understanding of microbial processes in soils required being able to measure various physical, chemical, and microbial parameters at the scale of microorganisms, i.e., at micrometric or even submicrometric scales, and to identify areas of particularly high microbial activity. Back then, this was only a dream, severely hampered by the crudeness of our measuring instruments. In the intervening years, however, amazing technological progress has transformed that old dream into reality. We are now able to quantify the physical and (bio)chemical environment of soil microorganisms at spatial scales that are commensurate with bacterial cells. In this invited presentation, I will provide an overview of the significant progress achieved in this field over the last few years, and mention a number of further technological advances that are likely to profoundly influence the nature of the research over the next decade. Technology must however remain a means to an end, and therefore it is important to firmly keep in mind that the goal of the research on understanding better how soil processes work at the microscale is to be ultimately in a position to predict the behavior of soils at scales that matter to society at large, for example in terms of food security or global climate change. In that context, part of the research has to focus on how we can upscale information about soil microbial hotspots to macroscopic scales and beyond. I will discuss where we stand on this crucial question, which remains largely open at the moment.
NASA Astrophysics Data System (ADS)
Suo, Lizhu; Huang, Mingbin; Zhang, Yongkun; Duan, Liangxia; Shan, Yan
2018-07-01
Soil moisture dynamics plays an active role in ecological and hydrological processes, and it depends on a large number of environmental factors, such as topographic attributes, soil properties, land use types, and precipitation. However, studies must still clarify the relative significance of these environmental factors at different soil depths and at different spatial scales. This study aimed: (1) to characterize temporal and spatial variations in soil moisture content (SMC) at four soil layers (0-40, 40-100, 100-200, and 200-500 cm) and three spatial scales (plot, hillslope, and region); and (2) to determine their dominant controls in diverse soil layers at different spatial scales over semiarid and semi-humid areas of the Loess Plateau, China. Given the high co-dependence of environmental factors, partial least squares regression (PLSR) was used to detect relative significance among 15 selected environmental factors that affect SMC. Temporal variation in SMC decreased with increasing soil depth, and vertical changes in the 0-500 cm soil profile were divided into a fast-changing layer (0-40 cm), an active layer (40-100 cm), a sub-active layer (100-200 cm), and a relatively stable layer (200-500 cm). PLSR models simulated SMC accurately in diverse soil layers at different scales; almost all values for variation in response (R2) and goodness of prediction (Q2) were >0.5 and >0.0975, respectively. Upper and lower layer SMCs were the two most important factors that influenced diverse soil layers at three scales, and these SMC variables exhibited the highest importance in projection (VIP) values. The 7-day antecedent precipitation and 7-day antecedent potential evapotranspiration contributed significantly to SMC only at the 0-40 cm soil layer. VIP of soil properties, especially sand and silt content, which influenced SMC strongly, increased significantly after increasing the measured scale. Mean annual precipitation and potential evapotranspiration also influenced SMC at the regional scale significantly. Overall, this study indicated that dominant controls of SMC varied among three spatial scales on the Loess Plateau, and VIP was a function of spatial scale and soil depth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane
2007-01-01
The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50,more » 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.« less
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
Root traits predict decomposition across a landscape-scale grazing experiment
Smith, Stuart W; Woodin, Sarah J; Pakeman, Robin J; Johnson, David; van der Wal, René
2014-01-01
Root litter is the dominant soil carbon and nutrient input in many ecosystems, yet few studies have considered how root decomposition is regulated at the landscape scale and how this is mediated by land-use management practices. Large herbivores can potentially influence below-ground decomposition through changes in soil microclimate (temperature and moisture) and changes in plant species composition (root traits). To investigate such herbivore-induced changes, we quantified annual root decomposition of upland grassland species in situ across a landscape-scale livestock grazing experiment, in a common-garden experiment and in laboratory microcosms evaluating the influence of key root traits on decomposition. Livestock grazing increased soil temperatures, but this did not affect root decomposition. Grazing had no effect on soil moisture, but wetter soils retarded root decomposition. Species-specific decomposition rates were similar across all grazing treatments, and species differences were maintained in the common-garden experiment, suggesting an overriding importance of litter type. Supporting this, in microcosms, roots with lower specific root area (m2 g−1) or those with higher phosphorus concentrations decomposed faster. Our results suggest that large herbivores alter below-ground carbon and nitrogen dynamics more through their effects on plant species composition and associated root traits than through effects on the soil microclimate. PMID:24841886
Mapping the distribution of the denitrifier community at large scales (Invited)
NASA Astrophysics Data System (ADS)
Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.
2010-12-01
Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.
T.N. Hollingsworth; E.A.G. Schuur; F.S. III Chapin; M.D. Walker
2008-01-01
The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world's reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and...
Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.
Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou
2017-01-01
Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.
Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou
2017-01-01
Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944
Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng
2018-04-24
Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
An experimental method to verify soil conservation by check dams on the Loess Plateau, China.
Xu, X Z; Zhang, H W; Wang, G Q; Chen, S C; Dang, W Q
2009-12-01
A successful experiment with a physical model requires necessary conditions of similarity. This study presents an experimental method with a semi-scale physical model. The model is used to monitor and verify soil conservation by check dams in a small watershed on the Loess Plateau of China. During experiments, the model-prototype ratio of geomorphic variables was kept constant under each rainfall event. Consequently, experimental data are available for verification of soil erosion processes in the field and for predicting soil loss in a model watershed with check dams. Thus, it can predict the amount of soil loss in a catchment. This study also mentions four criteria: similarities of watershed geometry, grain size and bare land, Froude number (Fr) for rainfall event, and soil erosion in downscaled models. The efficacy of the proposed method was confirmed using these criteria in two different downscaled model experiments. The B-Model, a large scale model, simulates watershed prototype. The two small scale models, D(a) and D(b), have different erosion rates, but are the same size. These two models simulate hydraulic processes in the B-Model. Experiment results show that while soil loss in the small scale models was converted by multiplying the soil loss scale number, it was very close to that of the B-Model. Obviously, with a semi-scale physical model, experiments are available to verify and predict soil loss in a small watershed area with check dam system on the Loess Plateau, China.
Baker, Nancy T.; Capel, Paul D.
2011-01-01
Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.
NASA Astrophysics Data System (ADS)
Flint, A. L.; Flint, L. E.
2010-12-01
The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.; Lakshmi, V.
2017-12-01
Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.
Large-scale habitat associations of four desert anurans in Big Bend National Park, Texas
Dayton, Gage H.; Jung, R.E.; Droege, S.
2004-01-01
We used night driving to examine large scale habitat associations of four common desert anurans in Big Bend National Park, Texas. We examined association of soil types and vegetation communities with abundance of Couch's Spadefoots (Scaphiopus couchii), Red-spotted Toads (Bufo punctatus), Texas Toads (Bufo speciosus), and Western Green Toads (Bufo debilis). All four species were disproportionately associated with frequently inundated soils that are relatively high in clay content. Bufo punctatus was associated with rocky soil types more frequently than the other three species. Association between all four species and vegetation types was disproportionate in relation to availability. Bufo debilis and Bufo punctatus were associated with creosote and mixed scrub vegetation. Bufo speciosus and Scaphiopus couchii were associated with mesquite scrub vegetation. Bufo debilis, Scaphiopus couchii, and B. speciosus were more tightly associated with specific habitat types, whereas B. punctatus exhibited a broader distribution across the habitat categories. Examining associations between large-scale habitat categories and species abundance is an important first step in understanding factors that influence species distributions and presence-absence across the landscape.
Diffuse pollution of soil and water: Long term trends at large scales?
NASA Astrophysics Data System (ADS)
Grathwohl, P.
2012-04-01
Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.
2017-12-01
Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.
Glaser, Bruno
2007-02-28
Terra Preta soils of central Amazonia exhibit approximately three times more soil organic matter, nitrogen and phosphorus and 70 times more charcoal compared to adjacent infertile soils. The Terra Preta soils were generated by pre-Columbian native populations by chance or intentionally adding large amounts of charred residues (charcoal), organic wastes, excrements and bones. In this paper, it is argued that generating new Terra Preta sites ('Terra Preta nova') could be the basis for sustainable agriculture in the twenty-first century to produce food for billions of people, and could lead to attaining three Millennium Development Goals: (i) to combat desertification, (ii) to sequester atmospheric CO2 in the long term, and (iii) to maintain biodiversity hotspots such as tropical rainforests. Therefore, large-scale generation and utilization of Terra Preta soils would decrease the pressure on primary forests that are being extensively cleared for agricultural use with only limited fertility and sustainability and, hence, only providing a limited time for cropping. This would maintain biodiversity while mitigating both land degradation and climate change. However, it should not be overlooked that the infertility of most tropical soils (and associated low population density) is what could have prevented tropical forests undergoing large-scale clearance for agriculture. Increased fertility may increase the populations supported by shifting cultivation, thereby maintaining and increasing pressure on forests.
Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai
2013-02-01
The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content
Revision of the Rawls et al. (1982) pedotransfer functions for their applicability to US croplands
USDA-ARS?s Scientific Manuscript database
Large scale environmental impact studies typically involve the use of simulation models and require a variety of inputs, some of which may need to be estimated in absence of adequate measured data. As an example, soil water retention needs to be estimated for a large number of soils that are to be u...
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity
Harbin Li; Steven G. McNulty
2007-01-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL...
Environmental status of livestock and poultry sectors in China under current transformation stage.
Qian, Yi; Song, Kaihui; Hu, Tao; Ying, Tianyu
2018-05-01
Intensive animal husbandry had aroused great environmental concerns in many developed countries. However, some developing countries are still undergoing the environmental pollution from livestock and poultry sectors. Driven by the large demand, China has experienced a remarkable increase in dairy and meat production, especially in the transformation stage from conventional household breeding to large-scale industrial breeding. At the same time, a large amount of manure from the livestock and poultry sector is released into waterbodies and soil, causing eutrophication and soil degradation. This condition will be reinforced in the large-scale cultivation where the amount of manure exceeds the soil nutrient capacity, if not treated or utilized properly. Our research aims to analyze whether the transformation of raising scale would be beneficial to the environment as well as present the latest status of livestock and poultry sectors in China. The estimation of the pollutants generated and discharged from livestock and poultry sector in China will facilitate the legislation of manure management. This paper analyzes the pollutants generated from the manure of the five principal commercial animals in different farming practices. The results show that the fattening pigs contribute almost half of the pollutants released from manure. Moreover, the beef cattle exert the largest environmental impact for unitary production, about 2-3 times of pork and 5-20 times of chicken. The animals raised with large-scale feedlots practice generate fewer pollutants than those raised in households. The shift towards industrial production of livestock and poultry is easier to manage from the environmental perspective, but adequate large-scale cultivation is encouraged. Regulation control, manure treatment and financial subsidies for the manure treatment and utilization are recommended to achieve the ecological agriculture in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Post-wildfire soil erosion in the Mediterranean: Review and future research directions
NASA Astrophysics Data System (ADS)
Shakesby, R. A.
2011-04-01
Wildfires increased dramatically in frequency and extent in the European Mediterranean region from the 1960s, aided by a general warming and drying trend, but driven primarily by socio-economic changes, including rural depopulation, land abandonment and afforestation with flammable species. Published research into post-wildfire hydrology and soil erosion, beginning during the 1980s in Spain, has been followed by studies in other European Mediterranean countries together with Israel and has now attained a sufficiently large critical mass to warrant a major review. Although variations in climate, vegetation, soil, topography and fire severity cause differences in Mediterranean post-wildfire erosion, the long history of human landscape impact up to the present day is responsible for some its distinctive characteristics. This paper highlights these characteristics in reviewing wildfire impacts on hydrology, soil properties and soil erosion by water. The 'mosaic' nature of many Mediterranean landscapes (e.g. an intricate land-use pattern, abandoned terraces and tracks interrupting slopes) may explain sometimes conflicting post-fire hydrological and erosional responses at different sites and spatial scales. First-year post-wildfire soil losses at point- (average, 45-56 t ha - 1 ) and plot-scales (many < 1 t ha - 1 and the majority < 10 t ha - 1 in the first year) are similar to or even lower than those reported for fire-affected land elsewhere or other disturbed (e.g. cultivated) and natural poorly-vegetated (e.g. badlands, rangeland) land in the Mediterranean. The few published losses at larger-scales (hillslope and catchment) are variable. Thin soil and high stone content can explain supply-limited erosion preceding significant protection by recovering vegetation. Peak erosion can sometimes be delayed for years, largely through slow vegetation recovery and temporal variability of erosive storms. Preferential removal of organic matter and nutrients in the commonly thin, degraded soils is arguably just as if not more important than the total soil loss. Aspect is important, with more erosion reported for south- than north-facing slopes, which is attributed to greater fire frequency, slower vegetation recovery on the former and with soil characteristics more prone to erosion (e.g. lower aggregate stability). Post-fire wind erosion is a potentially important but largely neglected process. Gauging the degradational significance of wildfires has relied on comparison with unburnt land, but the focus for comparison should be switched to other agents of soil disturbance and/or currently poorly understood soil renewal rates. Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire erosion) arising from future climatic change. Different future wildfire mitigation responses and likely erosional consequences are outlined. Research gaps are identified, and more research effort is suggested to: (1) improve assessment of post-wildfire erosion impact on soil fertility, through further quantification of soil nutrient depletion resulting from single and multiple fire cycles, and on soil longevity; (2) investigate prescribed fire impacts on carbon release, air pollution and nutrient losses as well as on soil loss; (3) isolate hillslope- and catchment-scale impacts of soil water repellency under Mediterranean post-wildfire conditions; (4) test and refine application of cosmogenic radionuclides to post-wildfire hillslope-scale soil redistribution at different temporal scales; (5) use better temporal resolution of sedimentary sequences to understand palaeofire-erosion-sedimentation links; (6) quantify post-wildfire wind erosion; (7) improve the integration of wildfire into an overall assessment of the processes and impacts of land degradation in the Mediterranean; and (8) raise public awareness of wildfire impact on soil degradation.
An evaluation of the spatial resolution of soil moisture information
NASA Technical Reports Server (NTRS)
Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.
1981-01-01
Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.
Madejón, Paula; Domínguez, María T; Madejón, Engracia; Cabrera, Francisco; Marañón, Teodoro; Murillo, José M
2018-06-01
Soil contamination by trace elements (TE) is a major environmental problem and much research is done into its effects on ecosystems and human health, as well as into remediation techniques. The Aznalcóllar mine accident (April 1998) was a large-scale ecological and socio-economic catastrophe in the South of Spain. We present here a literature review that synthesizes the main results found during the research conducted at the affected area over the past 20years since the mine accident, focused on the soil-plant system. We review, in depth, information about the characterization of the mine slurry and contaminated soils, and of the TE monitoring, performed until the present time. The reclamation techniques included the removal of sludge and soil surface layer and use of soil amendments; we review the effects of different types of amendments at different spatial scales and their effectiveness with time. Monitoring of TE in soil and their transfer to plants (crops, herbs, shrubs, and trees) were evaluated to assess potential toxicity effects in the food web. The utility of some plants (accumulators) with regard to the biomonitoring of TE in the environment was also evaluated. On the other hand, retention of TE by plant roots and their associated microorganisms was used as a low-cost technique for TE stabilization and soil remediation. We also evaluate the experience acquired in making the Guadiamar Green Corridor a large-scale soil reclamation and phytoremediation case study. Copyright © 2017 Elsevier B.V. All rights reserved.
Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.
Li, Harbin; McNulty, Steven G
2007-10-01
Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.
Effect of Variable Spatial Scales on USLE-GIS Computations
NASA Astrophysics Data System (ADS)
Patil, R. J.; Sharma, S. K.
2017-12-01
Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.
General soil map Lower Pantano wash area, Pima County, Arizona
NASA Technical Reports Server (NTRS)
Richardson, M. L.
1972-01-01
High altitude color photography was used to determine soil type variation over large areas at a contact print scale of 1:125,000. It was found that color variation and land form could be used as a basis for assigning seven soil mapping units to the area as depicted on stereoscopic pairs of the color photography. A unit is assigned by soil scientists on the basis of similarity of soil features in the area to predetermined physical and chemical characteristics of the same soil type.
The design of dapog rice seeder model for laboratory scale
NASA Astrophysics Data System (ADS)
Purba, UI; Rizaldi, T.; Sumono; Sigalingging, R.
2018-02-01
The dapog system is seeding rice seeds using a special nursery tray. Rice seedings with dapog systems can produce seedlings in the form of higher quality and uniform seed rolls. This study aims to reduce the cost of making large-scale apparatus by designing models for small-scale and can be used for learning in the laboratory. Parameters observed were soil uniformity, seeds and fertilizers, soil looses, seeds and fertilizers, effective capacity of apparatus, and power requirements. The results showed a high uniformity in soil, seed and fertilizer respectively 92.8%, 1-3 seeds / cm2 and 82%. The scattered materials for soil, seed and fertilizer were respectively 6.23%, 2.7% and 2.23%. The effective capacity of apparatus was 360 boxes / hour with 237.5 kWh of required power.
A wireless soil moisture sensor powered by solar energy.
Jiang, Mingliang; Lv, Mouchao; Deng, Zhong; Zhai, Guoliang
2017-01-01
In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Use of Biochar from the Pyrolysis of Woody and Herbaceous Organic Matter as Soil Amendments
USDA-ARS?s Scientific Manuscript database
“Biochar”, a typical by-product of biomass pyrolysis is being promoted for its potential large-scale and low-cost carbon sequestration in soil. Much of the knowledge regarding biochar derives from studies of Terra Preta soils in the Amazonian basin, where biochar-like materials appear to have subst...
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
2016-08-04
soil type. The modeling approach is based on (i) a seamless integration of multibody dynamics and discrete element method (DEM) solvers, and (ii...ensure that the vehicle follows a desired path. The soil is modeled as a Discrete Element Model (DEM) with a general cohesive material model that is
Re-defining and quantifying inorganic phosphate pools in the Soil and Water Assessment Tool
USDA-ARS?s Scientific Manuscript database
Abstract The Soil and Water Assessment Tool (SWAT), a large-scale hydrologic model, can be used to estimate the impact of land management practices on phosphate (P) loading in streams and water bodies. Three inorganic soil P pools (labile, active, and stable P) are currently defined in the SWAT mo...
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
Soils as sinks or sources for diffuse pollution of the water cycle
NASA Astrophysics Data System (ADS)
Grathwohl, Peter
2010-05-01
Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow and reactive transport. Field observations must allow long-term monitoring (e.g. in hydrological observatories, TERENO etc.), new cross-compartment monitoring strategies need to be applied, and massive parallel numerical codes for prediction of reactive transport of potential water pollutants at catchment scale have to be developed. This is also a prerequisite to assess the impact of climate change as well as land use change on future surface and groundwater quality.
Determination of macro-scale soil properties from pore-scale structures: model derivation.
Daly, K R; Roose, T
2018-01-01
In this paper, we use homogenization to derive a set of macro-scale poro-elastic equations for soils composed of rigid solid particles, air-filled pore space and a poro-elastic mixed phase. We consider the derivation in the limit of large deformation and show that by solving representative problems on the micro-scale we can parametrize the macro-scale equations. To validate the homogenization procedure, we compare the predictions of the homogenized equations with those of the full equations for a range of different geometries and material properties. We show that the results differ by [Formula: see text] for all cases considered. The success of the homogenization scheme means that it can be used to determine the macro-scale poro-elastic properties of soils from the underlying structure. Hence, it will prove a valuable tool in both characterization and optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders
Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerablemore » to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.« less
Harden, Jennifer W.; Hugelius, Gustaf; Ahlstrom, Anders; ...
2017-10-05
Here, soil organic matter supports the Earth’s ability to sustain terrestrial ecosystems, provide food and fiber, and retain the largest pool of actively cycling carbon (C). Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance land productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerablemore » to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well-established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of soil organic matter and C and their management for sustained production and climate regulation.« less
Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton
2014-07-01
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.
NASA Astrophysics Data System (ADS)
Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.
2017-04-01
The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land surface models forced by observed meteorology. This approach provides insight into a fundamental process that affects predictions on multiple time scales, and which has an important impact for society.
The potential for agricultural land use change to reduce flood risk in a large watershed
USDA-ARS?s Scientific Manuscript database
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...
Understanding the origins of uncertainty in landscape-scale variations of emissions of nitrous oxide
NASA Astrophysics Data System (ADS)
Milne, Alice; Haskard, Kathy; Webster, Colin; Truan, Imogen; Goulding, Keith
2014-05-01
Nitrous oxide is a potent greenhouse gas which is over 300 times more radiatively effective than carbon dioxide. In the UK, the agricultural sector is estimated to be responsible for over 80% of nitrous oxide emissions, with these emissions resulting from livestock and farmers adding nitrogen fertilizer to soils. For the purposes of reporting emissions to the IPCC, the estimates are calculated using simple models whereby readily-available national or international statistics are combined with IPCC default emission factors. The IPCC emission factor for direct emissions of nitrous oxide from soils has a very large uncertainty. This is primarily because the variability of nitrous oxide emissions in space is large and this results in uncertainty that may be regarded as sample noise. To both reduce uncertainty through improved modelling, and to communicate an understanding of this uncertainty, we must understand the origins of the variation. We analysed data on nitrous oxide emission rate and some other soil properties collected from a 7.5-km transect across contrasting land uses and parent materials in eastern England. We investigated the scale-dependence and spatial uniformity of the correlations between soil properties and emission rates from farm to landscape scale using wavelet analysis. The analysis revealed a complex pattern of scale-dependence. Emission rates were strongly correlated with a process-specific function of the water-filled pore space at the coarsest scale and nitrate at intermediate and coarsest scales. We also found significant correlations between pH and emission rates at the intermediate scales. The wavelet analysis showed that these correlations were not spatially uniform and that at certain scales changes in parent material coincided with significant changes in correlation. Our results indicate that, at the landscape scale, nitrate content and water-filled pore space are key soil properties for predicting nitrous oxide emissions and should therefore be incorporated into process models and emission factors for inventory calculations.
Large uncertainty in permafrost carbon stocks due to hillslope soil deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.
Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less
Large uncertainty in permafrost carbon stocks due to hillslope soil deposits
Shelef, Eitan; Rowland, Joel C.; Wilson, Cathy J.; ...
2017-05-31
Here, northern circumpolar permafrost soils contain more than a third of the global Soil Organic Carbon pool (SOC). The sensitivity of this carbon pool to a changing climate is a primary source of uncertainty in simulationbased climate projections. These projections, however, do not account for the accumulation of soil deposits at the base of hillslopes (hill-toes), and the influence of this accumulation on the distribution, sequestration, and decomposition of SOC in landscapes affected by permafrost. Here we combine topographic models with soil-profile data and topographic analysis to evaluate the quantity and uncertainty of SOC mass stored in perennially frozen hill-toemore » soil deposits. We show that in Alaska this SOC mass introduces an uncertainty that is > 200% than state-wide estimates of SOC stocks (77 PgC), and that a similarly large uncertainty may also pertain at a circumpolar scale. Soil sampling and geophysical-imaging efforts that target hill-toe deposits can help constrain this large uncertainty.« less
The underlying processes of a soil mite metacommunity on a small scale.
Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.
The underlying processes of a soil mite metacommunity on a small scale
Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906
Stable isotopic constraints on global soil organic carbon turnover
NASA Astrophysics Data System (ADS)
Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith
2018-02-01
Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p < 0.001) linear relationship between ln( - β) and estimates of litter and root decomposition rates suggests similar controls over rates of organic matter decay among the generalized soil C stocks. Overall, these findings demonstrate the utility of soil δ13C for independently benchmarking global models of soil C turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.
Giesler, Reiner; Clemmensen, Karina E; Wardle, David A; Klaminder, Jonatan; Bindler, Richard
2017-03-07
Alterations in fire activity due to climate change and fire suppression may have profound effects on the balance between storage and release of carbon (C) and associated volatile elements. Stored soil mercury (Hg) is known to volatilize due to wildfires and this could substantially affect the land-air exchange of Hg; conversely the absence of fires and human disturbance may increase the time period over which Hg is sequestered. Here we show for a wildfire chronosequence spanning over more than 5000 years in boreal forest in northern Sweden that belowground inventories of total Hg are strongly related to soil humus C accumulation (R 2 = 0.94, p < 0.001). Our data clearly show that northern boreal forest soils have a strong sink capacity for Hg, and indicate that the sequestered Hg is bound in soil organic matter pools accumulating over millennia. Our results also suggest that more than half of the Hg stock in the sites with the longest time since fire originates from deposition predating the onset of large-scale anthropogenic emissions. This study emphasizes the importance of boreal forest humus soils for Hg storage and reveals that this pool is likely to persist over millennial time scales in the prolonged absence of fire.
Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China
Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof
2016-01-01
Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397
Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China
NASA Astrophysics Data System (ADS)
Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof
2016-06-01
Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy-1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy-1, equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm-2ṡy-1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.
NASA Astrophysics Data System (ADS)
Thuss, E.; English, M. C.; Spoelstra, J.
2009-05-01
When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface water requires a better understanding of nitrogen fate in the soil zone, and will result in more effective agricultural nutrient management.
Scaling an in situ network for high resolution modeling during SMAPVEX15
USDA-ARS?s Scientific Manuscript database
Among the greatest challenges within the field of soil moisture estimation is that of scaling sparse point measurements within a network to produce higher resolution map products. Large-scale field experiments present an ideal opportunity to develop methodologies for this scaling, by coupling in si...
Geng, Yan; Wang, Yonghui; Yang, Kuo; Wang, Shaopeng; Zeng, Hui; Baumann, Frank; Kuehn, Peter; Scholten, Thomas; He, Jin-Sheng
2012-01-01
The Tibetan Plateau is an essential area to study the potential feedback effects of soils to climate change due to the rapid rise in its air temperature in the past several decades and the large amounts of soil organic carbon (SOC) stocks, particularly in the permafrost. Yet it is one of the most under-investigated regions in soil respiration (Rs) studies. Here, Rs rates were measured at 42 sites in alpine grasslands (including alpine steppes and meadows) along a transect across the Tibetan Plateau during the peak growing season of 2006 and 2007 in order to test whether: (1) belowground biomass (BGB) is most closely related to spatial variation in Rs due to high root biomass density, and (2) soil temperature significantly influences spatial pattern of Rs owing to metabolic limitation from the low temperature in cold, high-altitude ecosystems. The average daily mean Rs of the alpine grasslands at peak growing season was 3.92 µmol CO2 m−2 s−1, ranging from 0.39 to 12.88 µmol CO2 m−2 s−1, with average daily mean Rs of 2.01 and 5.49 µmol CO2 m−2 s−1 for steppes and meadows, respectively. By regression tree analysis, BGB, aboveground biomass (AGB), SOC, soil moisture (SM), and vegetation type were selected out of 15 variables examined, as the factors influencing large-scale variation in Rs. With a structural equation modelling approach, we found only BGB and SM had direct effects on Rs, while other factors indirectly affecting Rs through BGB or SM. Most (80%) of the variation in Rs could be attributed to the difference in BGB among sites. BGB and SM together accounted for the majority (82%) of spatial patterns of Rs. Our results only support the first hypothesis, suggesting that models incorporating BGB and SM can improve Rs estimation at regional scale. PMID:22509373
NASA Astrophysics Data System (ADS)
Gruber, Fabian E.; Baruck, Jasmin; Hastik, Richard; Geitner, Clemens
2015-04-01
All major soil description and classification systems, including the World Reference Base (WRB) and the German Soil description guidelines (KA5), require the characterization of landform and topography for soil profile sites. This is commonly done at more than one scale, for instance at macro-, meso- and micro scale. However, inherent when humans perform such a task, different surveyors will reach different conclusions due to their subjective perception of landscape structure, based on their individual mind-model of soil-landscape structure, emphasizing different aspects and scales of the landscape. In this study we apply a work-flow using the GRASS GIS extension module r.geomorphon to make use of high resolution digital elevation models (DEMs) to characterize the landform elements and topography of soil profile sites at different scales, and compare the results with a large number of soil profile site descriptions performed during the course of forestry surveys in South and North Tyrol (Italy and Austria, respectively). The r.geomorphon extension module for the open source geographic information system GRASS GIS applies a pattern recognition algorithm to delineate landform elements based on an input DEM. For each raster cell it computes and characterizes the visible neighborhood using line-of-sight calculations and then applies a lookup-table to classify the raster cell into one of ten landform elements (flat, peak, ridge, shoulder, slope, spur, hollow, footslope, valley and pit). The input parameter search radius (L) represents the maximum number of pixels for line-of-sight calculation, resulting in landforms larger than L to be split into landform components. The use of these visibility calculations makes this landform delineation approach suitable for comparison with the landform descriptions of soil surveyors, as their spatial perception of the landscape surrounding a soil profile site certainly influences their classification of the landform on which the profile is situated (aided by additional information such as topographic maps and aerial images). Variation of the L-value furthermore presents the opportunity to mimic the different scales at which surveyors describe soil profile locations. We first illustrate the use of r.geomorphon for site descriptions using exemplary artificial elevation profiles resembling typic catenas at different scales (L-values). We then compare the results of a landform element map computed with r.geomorphon to the relief descriptions in the test dataset. We link the surveyors' landform classification to the computed landform elements. Using a multi-scale approach we characterize raster cell locations in a way similar to the micro-, meso- and macroscale definitions used in soil survey, resulting in so-called geomorphon-signatures, such as "pit (meso-scale) located on a ridge (macro-scale)". We investigate which ranges of L-values best represent the different observation-scales as noted by soil surveyors and discuss the impacts of using a large dataset of profile location descriptions performed by different surveyors. Issues that arise are possible individual differences in landscape structure perception, but also questions regarding the accuracy of position and resulting topographic measurements in soil profile site description.
Greatest soil microbial diversity found in micro-habitats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bach, Elizabeth M.; Williams, Ryan J.; Hargreaves, Sarah K.
Microbial interactions occur in habitats much smaller than typically considered in classic ecological studies. This study uses soil aggregates to examine soil microbial community composition and structure of both bacteria and fungi at a microbially relevant scale. Aggregates were isolated from three land management systems in central Iowa, USA to test if aggregate-level microbial responses were sensitive to large-scale shifts in plant community and management practices. Bacteria and fungi exhibited similar patterns of community structure and diversity among soil aggregates, regardless of land management. Microaggregates supported more diverse microbial communities, both taxonomically and functionally. Calculation of a weighted proportional wholemore » soil diversity, which accounted for microbes found in aggregate fractions, resulted in 65% greater bacterial richness and 100% greater fungal richness over independently sampled whole soil. Our results show microaggregates support a previously unrecognized diverse microbial community that likely effects microbial access and metabolism of soil substrates.« less
Deciphering landslide behavior using large-scale flume experiments
Reid, Mark E.; Iverson, Richard M.; Iverson, Neal R.; LaHusen, Richard G.; Brien, Dianne L.; Logan, Matthew
2008-01-01
Landslides can be triggered by a variety of hydrologic events and they can exhibit a wide range of movement dynamics. Effective prediction requires understanding these diverse behaviors. Precise evaluation in the field is difficult; as an alternative we performed a series of landslide initiation experiments in the large-scale, USGS debris-flow flume. We systematically investigated the effects of three different hydrologic triggering mechanisms, including groundwater exfiltration from bedrock, prolonged rainfall infiltration, and intense bursts of rain. We also examined the effects of initial soil porosity (loose or dense) relative to the soil’s critical-state porosity. Results show that all three hydrologic mechanisms can instigate landsliding, but water pathways, sensor response patterns, and times to failure differ. Initial soil porosity has a profound influence on landslide movement behavior. Experiments using loose soil show rapid soil contraction during failure, with elevated pore pressures liquefying the sediment and creating fast-moving debris flows. In contrast, dense soil dilated upon shearing, resulting in slow, gradual, and episodic motion. These results have fundamental implications for forecasting landslide behavior and developing effective warning systems.
Czechowski, Paul; White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I
2016-12-01
The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales.
White, Duanne; Clarke, Laurence; McKay, Alan; Cooper, Alan; Stevens, Mark I.
2016-01-01
The potential impact of environmental change on terrestrial Antarctic ecosystems can be explored by inspecting biodiversity patterns across large-scale gradients. Unfortunately, morphology-based surveys of Antarctic invertebrates are time-consuming and limited by the cryptic nature of many taxa. We used biodiversity information derived from high-throughput sequencing (HTS) to elucidate the relationship between soil properties and invertebrate biodiversity in the Prince Charles Mountains, East Antarctica. Across 136 analysed soil samples collected from Mount Menzies, Mawson Escarpment and Lake Terrasovoje, we found invertebrate distribution in the Prince Charles Mountains significantly influenced by soil salinity and/or sulfur content. Phyla Tardigrada and Arachnida occurred predominantly in low-salinity substrates with abundant nutrients, whereas Bdelloidea (Rotifera) and Chromadorea (Nematoda) were more common in highly saline substrates. A significant correlation between invertebrate occurrence, soil salinity and time since deglaciation indicates that terrain age indirectly influences Antarctic terrestrial biodiversity, with more recently deglaciated areas supporting greater diversity. Our study demonstrates the value of HTS metabarcoding to investigate environmental constraints on inconspicuous soil biodiversity across large spatial scales. PMID:28083092
NASA Astrophysics Data System (ADS)
Mansuy, N. R.; Paré, D.; Thiffault, E.
2015-12-01
Large-scale mapping of soil properties is increasingly important for environmental resource management. Whileforested areas play critical environmental roles at local and global scales, forest soil maps are typically at lowresolution.The objective of this study was to generate continuous national maps of selected soil variables (C, N andsoil texture) for the Canadian managed forest landbase at 250 m resolution. We produced these maps using thekNN method with a training dataset of 538 ground-plots fromthe National Forest Inventory (NFI) across Canada,and 18 environmental predictor variables. The best predictor variables were selected (7 topographic and 5 climaticvariables) using the Least Absolute Shrinkage and Selection Operator method. On average, for all soil variables,topographic predictors explained 37% of the total variance versus 64% for the climatic predictors. Therelative root mean square error (RMSE%) calculated with the leave-one-out cross-validation method gave valuesranging between 22% and 99%, depending on the soil variables tested. RMSE values b 40% can be considered agood imputation in light of the low density of points used in this study. The study demonstrates strong capabilitiesfor mapping forest soil properties at 250m resolution, compared with the current Soil Landscape of CanadaSystem, which is largely oriented towards the agricultural landbase. The methodology used here can potentiallycontribute to the national and international need for spatially explicit soil information in resource managementscience.
NASA Astrophysics Data System (ADS)
Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.
2017-07-01
Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.
NASA Astrophysics Data System (ADS)
Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.
2017-12-01
Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of the RPE is largely explained by the interaction between belowground plant C allocation and SOC depth distribution. Our findings thus highlight the importance of fine scale interactions between plant and soil properties for large scale carbon fluxes and we provide a first model that bridges this gap and permits the quantification of RPE across a large area.
Environmental impacts of large-scale CSP plants in northwestern China.
Wu, Zhiyong; Hou, Anping; Chang, Chun; Huang, Xiang; Shi, Duoqi; Wang, Zhifeng
2014-01-01
Several concentrated solar power demonstration plants are being constructed, and a few commercial plants have been announced in northwestern China. However, the mutual impacts between the concentrated solar power plants and their surrounding environments have not yet been addressed comprehensively in literature by the parties involved in these projects. In China, these projects are especially important as an increasing amount of low carbon electricity needs to be generated in order to maintain the current economic growth while simultaneously lessening pollution. In this study, the authors assess the potential environmental impacts of large-scale concentrated solar power plants. Specifically, the water use intensity, soil erosion and soil temperature are quantitatively examined. It was found that some of the impacts are favorable, while some impacts are negative in relation to traditional power generation techniques and some need further research before they can be reasonably appraised. In quantitative terms, concentrated solar power plants consume about 4000 L MW(-1) h(-1) of water if wet cooling technology is used, and the collectors lead to the soil temperature changes of between 0.5 and 4 °C; however, it was found that the soil erosion is dramatically alleviated. The results of this study are helpful to decision-makers in concentrated solar power site selection and regional planning. Some conclusions of this study are also valid for large-scale photovoltaic plants.
Akbarzadeh, Ali; Ghorbani-Dashtaki, Shoja; Naderi-Khorasgani, Mehdi; Kerry, Ruth; Taghizadeh-Mehrjardi, Ruhollah
2016-12-01
Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.
SMOS L1C and L2 Validation in Australia
NASA Technical Reports Server (NTRS)
Rudiger, Christoph; Walker, Jeffrey P.; Kerr, Yann H.; Mialon, Arnaud; Merlin, Olivier; Kim, Edward J.
2012-01-01
Extensive airborne field campaigns (Australian Airborne Cal/val Experiments for SMOS - AACES) were undertaken during the 2010 summer and winter seasons of the southern hemisphere. The purpose of those campaigns was the validation of the Level 1c (brightness temperature) and Level 2 (soil moisture) products of the ESA-led Soil Moisture and Ocean Salinity (SMOS) mission. As SMOS is the first satellite to globally map L-band (1.4GHz) emissions from the Earth?s surface, and the first 2-dimensional interferometric microwave radiometer used for Earth observation, large scale and long-term validation campaigns have been conducted world-wide, of which AACES is the most extensive. AACES combined large scale medium-resolution airborne L-band and spectral observations, along with high-resolution in-situ measurements of soil moisture across a 50,000km2 area of the Murrumbidgee River catchment, located in south-eastern Australia. This paper presents a qualitative assessment of the SMOS brightness temperature and soil moisture products.
NASA Astrophysics Data System (ADS)
Woolf, Dominic; Lehmann, Johannes
2014-05-01
With CO2 emissions still tracking the upper bounds of projected emissions scenarios, it is becoming increasingly urgent to reduce net greenhouse gas (GHG) emissions, and increasingly likely that restricting future atmospheric GHG concentrations to within safe limits will require an eventual transition towards net negative GHG emissions. Few measures capable of providing negative emissions at a globally-significant scale are currently known. Two that are most often considered include carbon sequestration in biomass and soil, and biomass energy with carbon capture and storage (BECCS). In common with these two approaches, biochar also relies on the use of photosynthetically-bound carbon in biomass. But, because biomass and land are limited, it is critical that these resources are efficiently allocated between biomass/soil sequestration, bioenergy, BECCS, biochar, and other competing uses such as food, fiber and biodiversity. In many situations, biochar can offer advantages that may make it the preferred use of a limited biomass supply. These advantages include that: 1) Biochar can provide valuable benefits to agriculture by improving soil fertility and crop production, and reducing fertlizer and irrigation requirements. 2) Biochar is significantly more stable than biomass or other forms of soil carbon, thus lowering the risk of future losses compared to sequestration in biomass or soil organic carbon. 3) Gases and volatiles produced by pyrolysis can be combusted for energy (which may offset fossil fuel emissions). 4) Biochar can further lower GHG emissions by reducing nitrous oxide emissions from soil and by enhancing net primary production. Determining the optimal use of biomass requires that we are able to model not only the climate-change mitigation impact of each option, but also their economic and wider environmental impacts. Thus, what is required is a systems modelling approach that integrates components representing soil biogeochemistry, hydrology, crop production, land use, thermochemical conversion (to both biochar and energy products), climate, economics, and also the interactions between these components. Early efforts to model the life-cycle impacts of biochar systems have typically used simple empirical estimates of the strength of various feedback mechanisms, such as the impact of biochar on crop-growth, soil GHG fluxes, and native soil organic carbon. However, an environmental management perspective demands consideration of impacts over a longer time-scale and in broader agroecological situations than can be reliably extrapolated from simple empirical relationships derived from trials and experiments of inevitably limited scope and duration. Therefore, reliable quantification of long-term and large-scale impacts demands an understanding of the fundamental underlying mechanisms. Here, a systems-modelling approach that incorporates mechanistic assumptions will be described, and used to examine how uncertainties in the biogeochemical processes which drive the biochar-plant-soil interactions (particularly those responsible for priming, crop-growth and soil GHG emissions) translate into sensitivities of large scale and long-term impacts. This approach elucidates the aspects of process-level biochar biogeochemistry most critical to determining the large-scale GHG and economic impacts, and thus provides a useful guide to future model-led research.
Black Carbon Contribution to Organic Carbon Stocks in Urban Soil.
Edmondson, Jill L; Stott, Iain; Potter, Jonathan; Lopez-Capel, Elisa; Manning, David A C; Gaston, Kevin J; Leake, Jonathan R
2015-07-21
Soil holds 75% of the total organic carbon (TOC) stock in terrestrial ecosystems. This comprises ecosystem-derived organic carbon (OC) and black carbon (BC), a recalcitrant product of the incomplete combustion of fossil fuels and biomass. Urban topsoils are often enriched in BC from historical emissions of soot and have high TOC concentrations, but the contribution of BC to TOC throughout the urban soil profile, at a regional scale is unknown. We sampled 55 urban soil profiles across the North East of England, a region with a history of coal burning and heavy industry. Through combined elemental and thermogravimetic analyses, we found very large total soil OC stocks (31-65 kg m(-2) to 1 m), exceeding typical values reported for UK woodland soils. BC contributed 28-39% of the TOC stocks, up to 23 kg C m(-2) to 1 m, and was affected by soil texture. The proportional contribution of the BC-rich fraction to TOC increased with soil depth, and was enriched in topsoil under trees when compared to grassland. Our findings establish the importance of urban ecosystems in storing large amounts of OC in soils and that these soils also capture a large proportion of BC particulates emitted within urban areas.
NASA Astrophysics Data System (ADS)
Eekhout, Joris P. C.; de Vente, Joris
2017-04-01
Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate change at the field-scale and partly at the catchment-scale. Therefore, we conclude that large-scale adoption of SLM can effectively contribute to climate change adaptation by increasing the soil infiltration capacity, the soil water retention capacity and soil moisture content in the rootzone, leading to less crop stress. These findings of regional scale impacts of SLM are of high relevance for land-owners, -managers and policy makers to design effective climate change adaptation strategies.
NASA Astrophysics Data System (ADS)
Koven, C. D.; Schuur, E.; Schaedel, C.; Bohn, T. J.; Burke, E.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A.; Marchenko, S. S.; McGuire, A. D.; Natali, S.; Nicolsky, D.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M. R.
2015-12-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a 3-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100.
Higher climatological temperature sensitivity of soil carbon in cold than warm climates
NASA Astrophysics Data System (ADS)
Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.
2017-11-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.
2011-01-01
The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.
Harden, Jennifer W.; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C.; Bond-Lamberty, Ben; Lawrence, Corey; Loisel, Julie; Malhotra, Avni; Jackson, Robert B.; Ogle, Stephen M.; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E.; Cotrufo, M. Francesca; Keiluweit, Marco; Heckman, Katherine; Crow, Susan E.; Silver, Whendee L.; DeLonge, Marcia; Nave, Lucas E.
2018-01-01
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.
NASA Astrophysics Data System (ADS)
Hendrickx, J. M. H.; Allen, R. G.; Myint, S. W.; Ogden, F. L.
2015-12-01
Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.
Influence of the Biosphere on Precipitation: July 1995 Studies with the ARM-CART Data
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.; Walker, G. K.; Koster, Randal D.
2000-01-01
Ensemble sets of simulation experiments were conducted with a single column model (SCM) using the Goddard GEOS II GCM physics containing a recent version of the Cumulus Scheme (McRAS) and a biosphere based land-fluxes scheme (SSiB). The study used the 18 July to 5 August 1995 ARM-CART (Atmospheric Radiation Measurement-Cloud Atmospheric Radiation Test-bed) data, which was collected at the ARM-CART site in the mid-western United States and analyzed for single column modeling (SCM) studies. The new findings affirm the earlier findings that the vegetation, which increases the solar energy absorption at the surface together with soil and soil-moisture dependent processes, which modulate the surface, fluxes (particularly evapotranspiration) together help to increase the local rainfall. In addition, the results also show that for the particular study period roughly 50% of the increased evaporation over the ARM-CART site would be converted into rainfall with the Column, while the remainder would be advected out to the large-scale. Notwithstanding the limitations of only one-way interaction (i.e., the large-scale influencing the regional physics and not vice versa), the current SCM simulations show a very robust relationship. The evaporation-precipitation relationship turns out to be independent of the soil types, and soil moisture; however, it is weakly dependent on the vegetation cover because of its surface-albedo effect. Clearly, these inferences are prone to weaknesses of the SCM physics, the assumptions of the large-scale being unaffected by gridscale (SCM-scale) changes in moist processes, and other limitations of the evaluation procedures.
Cao, Peng; Wang, Jun-Tao; Hu, Hang-Wei; Zheng, Yuan-Ming; Ge, Yuan; Shen, Ju-Pei; He, Ji-Zheng
2016-07-01
Despite the utmost importance of microorganisms in maintaining ecosystem functioning and their ubiquitous distribution, our knowledge of the large-scale pattern of microbial diversity is limited, particularly in grassland soils. In this study, the microbial communities of 99 soil samples spanning over 3000 km across grassland ecosystems in northern China were investigated using high-throughput sequencing to analyze the beta diversity pattern and the underlying ecological processes. The microbial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Planctomycetes across all the soil samples. Spearman's correlation analysis indicated that climatic factors and soil pH were significantly correlated with the dominant microbial taxa, while soil microbial richness was positively linked to annual precipitation. The environmental divergence-dissimilarity relationship was significantly positive, suggesting the importance of environmental filtering processes in shaping soil microbial communities. Structural equation modeling found that the deterministic process played a more important role than the stochastic process on the pattern of soil microbial beta diversity, which supported the predictions of niche theory. Partial mantel test analysis have showed that the contribution of independent environmental variables has a significant effect on beta diversity, while independent spatial distance has no such relationship, confirming that the deterministic process was dominant in structuring soil microbial communities. Overall, environmental filtering process has more important roles than dispersal limitation in shaping microbial beta diversity patterns in the grassland soils.
NASA Astrophysics Data System (ADS)
Evett, Steven R.; Kustas, William P.; Gowda, Prasanna H.; Anderson, Martha C.; Prueger, John H.; Howell, Terry A.
2012-12-01
In 2008, scientists from seven federal and state institutions worked together to investigate temporal and spatial variations of evapotranspiration (ET) and surface energy balance in a semi-arid irrigated and dryland agricultural region of the Southern High Plains in the Texas Panhandle. This Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08) involved determination of micrometeorological fluxes (surface energy balance) in four weighing lysimeter fields (each 4.7 ha) containing irrigated and dryland cotton and in nearby bare soil, wheat stubble and rangeland fields using nine eddy covariance stations, three large aperture scintillometers, and three Bowen ratio systems. In coordination with satellite overpasses, flux and remote sensing aircraft flew transects over the surrounding fields and region encompassing an area contributing fluxes from 10 to 30 km upwind of the USDA-ARS lysimeter site. Tethered balloon soundings were conducted over the irrigated fields to investigate the effect of advection on local boundary layer development. Local ET was measured using four large weighing lysimeters, while field scale estimates were made by soil water balance with a network of neutron probe profile water sites and from the stationary flux systems. Aircraft and satellite imagery were obtained at different spatial and temporal resolutions. Plot-scale experiments dealt with row orientation and crop height effects on spatial and temporal patterns of soil surface temperature, soil water content, soil heat flux, evaporation from soil in the interrow, plant transpiration and canopy and soil radiation fluxes. The BEAREX08 field experiment was unique in its assessment of ET fluxes over a broad range in spatial scales; comparing direct and indirect methods at local scales with remote sensing based methods and models using aircraft and satellite imagery at local to regional scales, and comparing mass balance-based ET ground truth with eddy covariance and remote sensing-based methods. Here we present an overview of the experiment and a summary of preliminary findings described in this special issue of AWR. Our understanding of the role of advection in the measurement and modeling of ET is advanced by these papers integrating measurements and model estimates.
Soil carbon change in reconstructed tallgrass prairies
USDA-ARS?s Scientific Manuscript database
Reconstructing former cropland to tallgrass prairie can increase soil carbon (C) and enhance C sequestration to mitigate increases in atmospheric CO2. This large-scale study was conducted at Neal Smith National Wildlife Refuge (NSNWR) in Jasper County, south-central IA. Tracts of cropped land at NSN...
Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...
Water in the critical zone: soil, water and life from profile to planet
NASA Astrophysics Data System (ADS)
Kirkby, Mike
2015-04-01
Water is essential to the critical zone between bedrock and the atmosphere, and without water the soil is dead. Water provides the basis for the abundant life within the soil and, interacting with micro-organisms, drives the key processes in the critical zone. This review looks at the balances that control the flow of water through the soil, and how water movement is one of the major controls on the fluxes and transformations that control the formation, evolution and loss of material that controls the 'life' and 'health' of the soil. At regional scales, climate, acting largely through the soil hydrology, plays a major part in determining the type of soils developed - from hyper arid soils dominated by aeolian inputs, through arid and semi-arid soils with largely vertical water exchanges with the atmosphere, to temperate soils with substantial lateral drainage, and humid soils dominated by organic peats. Soil water balance controls the partition of precipitation between evaporative loss, lateral subsurface flow and groundwater recharge, and, in turn, has a major influence on the potential for plant growth and on the lateral connectivity between soils on a hillslope. Sediment and solute balances distinguish soils of accumulation from soils that tend towards a stable chemical depletion ratio. Reflecting the availability of water and the soil material, carbon balance plays a major role in soil horizonation and distinguishes soils dominated by mineral or organic components. At finer catena and catchment scales, lateral connectivity, or its absence, determines how soils evolve through the transfer of water and sediment downslope, creating more or less integrated landscapes in a balance between geomorphological and pedological processes. Within single soil profiles, the movement of water controls the processes of weathering and soil horizonation by ion diffusion, advective leaching and bioturbation, creating horizonation that, in turn, modifies the hydrological responses of both soil and landscape. For example, the soil hydrological regime helps to contrast soils that accumulate more and less soluble constituents of the parent material.
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.
2017-12-01
Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.
Sinsabaugh, Robert L; Moorhead, Daryl L; Xu, Xiaofeng; Litvak, Marcy E
2017-06-01
The carbon use efficiency of plants (CUE a ) and microorganisms (CUE h ) determines rates of biomass turnover and soil carbon sequestration. We evaluated the hypothesis that CUE a and CUE h counterbalance at a large scale, stabilizing microbial growth (μ) as a fraction of gross primary production (GPP). Collating data from published studies, we correlated annual CUE a , estimated from satellite imagery, with locally determined soil CUE h for 100 globally distributed sites. Ecosystem CUE e , the ratio of net ecosystem production (NEP) to GPP, was estimated for each site using published models. At the ecosystem scale, CUE a and CUE h were inversely related. At the global scale, the apparent temperature sensitivity of CUE h with respect to mean annual temperature (MAT) was similar for organic and mineral soils (0.029°C -1 ). CUE a and CUE e were inversely related to MAT, with apparent sensitivities of -0.009 and -0.032°C -1 , respectively. These trends constrain the ratio μ : GPP (= (CUE a × CUE h )/(1 - CUE e )) with respect to MAT by counterbalancing the apparent temperature sensitivities of the component processes. At the ecosystem scale, the counterbalance is effected by modulating soil organic matter stocks. The results suggest that a μ : GPP value of c. 0.13 is a homeostatic steady state for ecosystem carbon fluxes at a large scale. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Impacts of different types of measurements on estimating unsaturated flow parameters
NASA Astrophysics Data System (ADS)
Shi, Liangsheng; Song, Xuehang; Tong, Juxiu; Zhu, Yan; Zhang, Qiuru
2015-05-01
This paper assesses the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Impacts of Different Types of Measurements on Estimating Unsaturatedflow Parameters
NASA Astrophysics Data System (ADS)
Shi, L.
2015-12-01
This study evaluates the value of different types of measurements for estimating soil hydraulic parameters. A numerical method based on ensemble Kalman filter (EnKF) is presented to solely or jointly assimilate point-scale soil water head data, point-scale soil water content data, surface soil water content data and groundwater level data. This study investigates the performance of EnKF under different types of data, the potential worth contained in these data, and the factors that may affect estimation accuracy. Results show that for all types of data, smaller measurements errors lead to faster convergence to the true values. Higher accuracy measurements are required to improve the parameter estimation if a large number of unknown parameters need to be identified simultaneously. The data worth implied by the surface soil water content data and groundwater level data is prone to corruption by a deviated initial guess. Surface soil moisture data are capable of identifying soil hydraulic parameters for the top layers, but exert less or no influence on deeper layers especially when estimating multiple parameters simultaneously. Groundwater level is one type of valuable information to infer the soil hydraulic parameters. However, based on the approach used in this study, the estimates from groundwater level data may suffer severe degradation if a large number of parameters must be identified. Combined use of two or more types of data is helpful to improve the parameter estimation.
Freedman, Zachary; Zak, Donald R
2015-09-01
Soil microbial communities are abundant, hyper-diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper-diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long-term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed us to control for potentially confounding environmental variation. Soil bacterial communities were phylogenetically distinct across the chronosequence. We determined that temporal and environmental factors accounted for significant portions of bacterial phylogenetic structure using distance-based linear models. Environmental factors together accounted for the majority of phylogenetic structure, namely, soil temperature (19%), pH (17%) and litter carbon:nitrogen (C:N; 17%). However, of all individual factors, time since deglaciation accounted for the greatest proportion of bacterial phylogenetic structure (20%). Taken together, our results provide empirical evidence that temporal and environmental filters act together to structure soil bacterial communities across large spatial and long-term temporal scales. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Stoof, Cathelijne; Mason, Cedric; Steenhuis, Tammo; Richards, Brian
2013-04-01
Millions of hectares of marginal lands in the Northeast USA no longer used for agriculture are suitable for production of second-generation cellulosic bioenergy crops, offering the potential for regional bioenergy production without inducing food vs. fuel competition for prime farmland. Abundant water resources, close proximity between production and markets, and compatibility with existing agricultural systems all favor development in the region. Yet, little is known about how sustainable bioenergy crop production on marginal lands is regarding greenhouse gas emissions. In a 10-ha field trial on wet marginal soils in upstate New York, we are assessing the effect of land use change (from fallow land to perennial grass stands) on N2O and CH4 emissions. The deep clay loam is unsuited for row-crop agriculture because it is too dry in summer and too wet in winter. Monthly chamber campaigns were performed from April to November 2012 to monitor large scale (10-20 m resolution) differences caused by land cover type (n=4 for both switchgrass, reed-canary grass and a 50-yr unplowed control) across soil moisture gradients (n=5 soil moisture levels per replicate). Additional weekly campaigns assessed the smaller scale spatial and temporal variability in emissions at meter-scale. Here we present results of both the large and small-scale patterns in greenhouse gas emissions from this marginal soil, and discuss effects of soil properties and hydrologic conditions as potential drivers. Insight gained about the environmental impact of bioenergy crops can be used to assess the sustainability of using this region's underutilized land base for energy production.
Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie
2012-06-01
Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.
Maddela, Naga Raju; Scalvenzi, Laura; Venkateswarlu, Kadiyala
2017-10-01
A field-level feasibility study was conducted to determine total petroleum hydrocarbon (TPH)-degrading potential of two bacterial strains, Bacillus thuringiensis B3 and B. cereus B6, and two fungi, Geomyces pannorum HR and Geomyces sp. strain HV, all soil isolates obtained from an oil field located in north-east region of Ecuador. Crude oil-treated soil samples contained in wooden boxes received a mixture of all the four microorganisms and were incubated for 90 days in an open low-land area of Amazon rainforest. The percent removal of TPHs in soil samples that received the mixed microbial inoculum was 87.45, indicating the great potential of the soil isolates in field-scale removal of crude oil. The TPHs-degrading efficiency was verified by determining the toxicity of residues, remained in soil after biodegradation, toward viability of Artemia salina or seed germination and plant growth of cowpea. Our results clearly suggest that the selected soil isolates of bacteria and fungi could be effectively used for large-scale bioremediation of sites contaminated with crude oil.
Estimation of effective soil hydraulic properties at field scale via ground albedo neutron sensing
NASA Astrophysics Data System (ADS)
Rivera Villarreyes, C. A.; Baroni, G.; Oswald, S. E.
2012-04-01
Upscaling of soil hydraulic parameters is a big challenge in hydrological research, especially in model applications of water and solute transport processes. In this contest, numerous attempts have been made to optimize soil hydraulic properties using observations of state variables such as soil moisture. However, in most of the cases the observations are limited at the point-scale and then transferred to the model scale. In this way inherent small-scale soil heterogeneities and non-linearity of dominate processes introduce sources of error that can produce significant misinterpretation of hydrological scenarios and unrealistic predictions. On the other hand, remote-sensed soil moisture over large areas is also a new promising approach to derive effective soil hydraulic properties over its observation footprint, but it is still limited to the soil surface. In this study we present a new methodology to derive soil moisture at the intermediate scale between point-scale observations and estimations at the remote-sensed scale. The data are then used for the estimation of effective soil hydraulic parameters. In particular, ground albedo neutron sensing (GANS) was used to derive non-invasive soil water content in a footprint of ca. 600 m diameter and a depth of few decimeters. This approach is based on the crucial role of hydrogen compared to other landscape materials as neutron moderator. As natural neutron measured aboveground depends on soil water content, the vertical footprint of the GANS method, i.e. its penetration depth, does also. Firstly, this study was designed to evaluate the dynamics of GANS vertical footprint and derive a mathematical model for its prediction. To test GANS-soil moisture and its penetration depth, it was accompanied by other soil moisture measurements (FDR) located at 5, 20 and 40 cm depths over the GANS horizontal footprint in a sunflower field (Brandenburg, Germany). Secondly, a HYDRUS-1D model was set up with monitored values of crop height and meteorological variables as input during a four-month period. Parameter estimation (PEST) software was coupled to HYDRUS-1D in order to calibrate soil hydraulic properties based on soil water content data. Thirdly, effective soil hydraulic properties were derived from GANS-soil moisture. Our observations show the potential of GANS to compensate the lack of information at the intermediate scale, soil water content estimation and effective soil properties. Despite measurement volumes, GANS-derived soil water content compared quantitatively to FDRs at several depths. For one-hour estimations, root mean square error was estimated as 0.019, 0.029 and 0.036 m3/m3 for 5 cm, 20 cm and 40 cm depths, respectively. In the context of soil hydraulic properties, this first application of GANS method succeed and its estimations were comparable to those derived by other approaches.
NASA Astrophysics Data System (ADS)
Flores, Alejandro N.; Bras, Rafael L.; Entekhabi, Dara
2012-08-01
Soil moisture information is critical for applications like landslide susceptibility analysis and military trafficability assessment. Existing technologies cannot observe soil moisture at spatial scales of hillslopes (e.g., 100 to 102 m) and over large areas (e.g., 102 to 105 km2) with sufficiently high temporal coverage (e.g., days). Physics-based hydrologic models can simulate soil moisture at the necessary spatial and temporal scales, albeit with error. We develop and test a data assimilation framework based on the ensemble Kalman filter for constraining uncertain simulated high-resolution soil moisture fields to anticipated remote sensing products, specifically NASA's Soil Moisture Active-Passive (SMAP) mission, which will provide global L band microwave observation approximately every 2-3 days. The framework directly assimilates SMAP synthetic 3 km radar backscatter observations to update hillslope-scale bare soil moisture estimates from a physics-based model. Downscaling from 3 km observations to hillslope scales is achieved through the data assimilation algorithm. Assimilation reduces bias in near-surface soil moisture (e.g., top 10 cm) by approximately 0.05 m3/m3and expected root-mean-square errors by at least 60% in much of the watershed, relative to an open loop simulation. However, near-surface moisture estimates in channel and valley bottoms do not improve, and estimates of profile-integrated moisture throughout the watershed do not substantially improve. We discuss the implications of this work, focusing on ongoing efforts to improve soil moisture estimation in the entire soil profile through joint assimilation of other satellite (e.g., vegetation) and in situ soil moisture measurements.
NASA Technical Reports Server (NTRS)
Mcginnies, W. G.; Haase, E. F. (Principal Investigator); Musick, H. B. (Compiler)
1973-01-01
The author has identified the following significant results. Ground truth spectral signature data for various types of scenes, including ground with and without annuals, and various shrubs, were collected. When these signature data are plotted with infrared (MSS band 6 or 7) reflectivity on one axis and red (MSS band 5) reflectivity on the other axis, clusters of data from the various types of scenes are distinct. This method of expressing spectral signature data appears to be more useful for distinguishing types of scenes than a simple infrared to red reflectivity ration. Large areas of varnished desert pavement are visible and mappable on ERTS-1 and high altitude aircraft imagery. A large scale vegetation pattern was found to be correlated with the presence of the desert pavement. The large scale correlation was used in mapping the vegetation of the area. It was found that a distinctive soil type was associated with the presence of the varnished desert pavement. The high salinity and exchangeable sodium percentage of this soil type provide a basis for the explanation of both the large scale and small scale vegetation pattern.
Dispersal Mutualism Incorporated into Large-Scale, Infrequent Disturbances
Parker, V. Thomas
2015-01-01
Because of their influence on succession and other community interactions, large-scale, infrequent natural disturbances also should play a major role in mutualistic interactions. Using field data and experiments, I test whether mutualisms have been incorporated into large-scale wildfire by whether the outcomes of a mutualism depend on disturbance. In this study a seed dispersal mutualism is shown to depend on infrequent, large-scale disturbances. A dominant shrubland plant (Arctostaphylos species) produces seeds that make up a persistent soil seed bank and requires fire to germinate. In post-fire stands, I show that seedlings emerging from rodent caches dominate sites experiencing higher fire intensity. Field experiments show that rodents (Perimyscus californicus, P. boylii) do cache Arctostaphylos fruit and bury most seed caches to a sufficient depth to survive a killing heat pulse that a fire might drive into the soil. While the rodent dispersal and caching behavior itself has not changed compared to other habitats, the environmental transformation caused by wildfire converts the caching burial of seed from a dispersal process to a plant fire adaptive trait, and provides the context for stimulating subsequent life history evolution in the plant host. PMID:26151560
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs
2015-04-01
Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture conditions. CAD is used both for controlled drainage practices and for sub-irrigation. The DSS has a core of the plot-scale SWAP model (soil-water-atmosphere-plant), extended with a process-based module for the simulation of oxygen stress for plant roots. This module involves macro-scale and micro-scale gas diffusion, as well as the plant physiological demand of oxygen, to simulate transpiration reduction due to limited oxygen availability. Continuous measurements of soil moisture content, groundwater level, and drainage level are used to calibrate the SWAP model each day. This leads to an optimal reproduction of the actual soil moisture conditions by data assimilation in the first step in the DSS process. During the next step, near-future (+10 days) soil moisture conditions and drought and oxygen stress are predicted using weather forecasts. Finally, optimal drainage levels to minimize stress are simulated, which can be established by CAD. Linkage to a grid-based hydrological simulation model (SPHY) facilitates studying the spatial dynamics of soil moisture and associated implications for management at the regional scale. Thus, by using local-scale measurements, process-based models and weather forecasts to anticipate on near-future conditions, not only field-scale water management but also regional surface water management can be optimized both in space and time.
The feasibility of large-scale fungal bioaugmentation was evaluated by assessing the ability of the lignin-degrading fungus Phanerochaete sordida to decrease the soil concentrations of pentachlorophenol (PCP) and 13 priority pollutant polynuclear aromatic (PNA) creosote component...
Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland
USDA-ARS?s Scientific Manuscript database
Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...
Multi-profile analysis of soil moisture within the U.S. Climate Reference Network
USDA-ARS?s Scientific Manuscript database
Soil moisture estimates are crucial for hydrologic modeling and agricultural decision-support efforts. These measurements are also pivotal for long-term inquiries regarding the impacts of climate change and the resulting droughts over large spatial and temporal scales. However, it has only been t...
NASA Astrophysics Data System (ADS)
Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn
2015-04-01
Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.
Retrieving pace in vegetation growth using precipitation and soil moisture
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, D. C.; Singh, V. P.
2013-12-01
The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).
NASA Astrophysics Data System (ADS)
Gao, B.; Smits, K. M.
2017-12-01
Evaporation is a strongly coupled exchange process of mass, momentum and energy between the atmosphere and the soil. Several mechanisms influence evaporation, such as the atmospheric conditions, the structure of the soil surface, and the physical properties of the soil. Among the previous studies associated with evaporation modeling, most efforts use uncoupled models which simplify the influences of the atmosphere and soil through the use of resistance terms. Those that do consider the coupling between the free flow and porous media flow mainly consider flat terrain with grain-scale roughness. However, larger obstacles, which may form drags or ridges allowing normal convective air flow through the soil, are common in nature and may affect the evaporation significantly. Therefore, the goal of this work is to study the influence of large obstacles such as wavy surfaces on the flow behavior within the soil and exchange processes to the atmosphere under turbulent free-flow conditions. For simplicity, the soil surface with large obstacles are represented by a simple wavy surface. To do this, we modified a previously developed theory for two-phase two-component porous-medium flow, coupling it to single-phase two-component turbulent flow to simulate and analyze the evaporation from wavy soil surfaces. Detailed laboratory scale experiments using a wind tunnel interfaced with a porous media tank were carried out to test the modeling results. The characteristics of turbulent flow across a permeable wavy surface are discussed. Results demonstrate that there is an obvious recirculation zone formed at the surface, which is special because of the accumulation of water vapor and the thicker boundary layer in this area. In addition, the influences of both the free flow and porous medium on the evaporation are also analyzed. The porous medium affects the evaporation through the amount of water it can provide to the soil surface; while the atmosphere influences the evaporation through the gradients formed within the boundary layer. This study gives a primary cognition on the evaporation from bare soil surface with obstacles. Ongoing work will include a deep understanding of the mechanisms which may provide the basis for land-atmosphere study on field scale.
NASA Astrophysics Data System (ADS)
Subin, Z. M.; Sulman, B. N.; Malyshev, S.; Shevliakova, E.
2013-12-01
Soil moisture is a crucial control on surface energy fluxes, vegetation properties, and soil carbon cycling. Its interactions with ecosystem processes are highly nonlinear across a large range, as both drought stress and anoxia can impede vegetation and microbial growth. Earth System Models (ESMs) generally only represent an average soil-moisture state in grid cells at scales of 50-200 km, and as a result are not able to adequately represent the effects of subgrid heterogeneity in soil moisture, especially in regions with large wetland areas. We addressed this deficiency by developing the first ESM-coupled subgrid hillslope-hydrological model, TiHy (Tiled-hillslope Hydrology), embedded within the Geophysical Fluid Dynamics Laboratory (GFDL) land model. In each grid cell, one or more representative hillslope geometries are discretized into land model tiles along an upland-to-lowland gradient. These geometries represent ~1 km hillslope-scale hydrological features and allow for flexible representation of hillslope profile and plan shapes, in addition to variation of subsurface properties among or within hillslopes. Each tile (which may represent ~100 m along the hillslope) has its own surface fluxes, vegetation state, and vertically-resolved state variables for soil physics and biogeochemistry. Resolution of water state in deep layers (~200 m) down to bedrock allows for physical integration of groundwater transport with unsaturated overlying dynamics. Multiple tiles can also co-exist at the same vertical position along the hillslope, allowing the simulation of ecosystem heterogeneity due to disturbance. The hydrological model is coupled to the vertically-resolved Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) model, which captures non-linearity resulting from interactions between vertically-heterogeneous soil carbon and water profiles. We present comparisons of simulated water table depth to observations. We examine sensitivities to alternative parameterizations of hillslope geometry, macroporosity, and surface runoff / inundation, and to the choice of global topographic dataset and groundwater hydraulic conductivity distribution. Simulated groundwater dynamics among hillslopes tend to cluster into three regimes of wet and well-drained, wet but poorly-drained, and dry. In the base model configuration, near-surface gridcell-mean water tables exist in an excessively large area compared to observations, including large areas of the Eastern U.S. and Northern Europe. However, in better-drained areas, the decrease in water table depth along the hillslope gradient allows for realistic increases in ecosystem water availability and soil carbon downslope. The inclusion of subgrid hydrology can increase the equilibrium 0-2 m global soil carbon stock by a large factor, due to the nonlinear effect of anoxia. We conclude that this innovative modeling framework allows for the inclusion of hillslope-scale processes and the potential for wetland dynamics in an ESM without need for a high-resolution 3-dimensional groundwater model. Future work will include investigating the potential for future changes in land carbon fluxes caused by the effects of changing hydrological regime, particularly in peatland-rich areas poorly treated by current ESMs.
Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective
NASA Astrophysics Data System (ADS)
Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.
2015-12-01
Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.
USDA-ARS?s Scientific Manuscript database
Relevant data about subsurface water flow and solute transport at relatively large scales that are of interest to the public are inherently laborious and in most cases simply impossible to obtain. Upscaling in which fine-scale models and data are used to predict changes at the coarser scales is the...
Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke
2013-01-01
Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.
Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke
2013-01-01
Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277
López-Vizcaíno, R; Risco, C; Isidro, J; Rodrigo, S; Saez, C; Cañizares, P; Navarro, V; Rodrigo, M A
2017-01-01
This work describes the application electrokinetic fence technology to a soil polluted with herbicides in a large prototype containing 32 m 3 of soil. It compares performance in this large facility with results previously obtained in a pilot-scale mockup (175 L) and with results obtained in a lab-scale soil column (1 L), all of them operated under the same driving force: an electric field of 1.0 V cm -1 . Within this wide context, this work focuses on the effect on inorganic species contained in soil and describes the main processes occurring in the prototype facility, as well as the differences observed respect to the lower scale plants. Thus, despite the same processes can be described in the three plants, important differences are observed in the evolution of the current intensity, moisture and conductivity. They can be related to the less important electroosmotic fluxes in the larger facilities and to the very different distances between electrodes, which lead to very different distribution of species and even to a very different evolution of the resulting current intensity. 2-D maps of the main species at different relevant moments of the test are discussed and important information is drawn from them. Ions depletion from soil appears as a very important problem which should be prevented if the effect of natural bioremediation and/or phytoremediation on the removal or organics aims to be accounted. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav
2014-01-01
Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities.
Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav
2014-01-01
Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities. PMID:25474688
A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback.
Koven, C D; Schuur, E A G; Schädel, C; Bohn, T J; Burke, E J; Chen, G; Chen, X; Ciais, P; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Jafarov, E E; Krinner, G; Kuhry, P; Lawrence, D M; MacDougall, A H; Marchenko, S S; McGuire, A D; Natali, S M; Nicolsky, D J; Olefeldt, D; Peng, S; Romanovsky, V E; Schaefer, K M; Strauss, J; Treat, C C; Turetsky, M
2015-11-13
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming. © 2015 The Authors.
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C. D.; Schuur, E. A. G.; Schädel, C.; Bohn, T. J.; Burke, E. J.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Jafarov, E. E.; Krinner, G.; Kuhry, P.; Lawrence, D. M.; MacDougall, A. H.; Marchenko, S. S.; McGuire, A. D.; Natali, S. M.; Nicolsky, D. J.; Olefeldt, D.; Peng, S.; Romanovsky, V. E.; Schaefer, K. M.; Strauss, J.; Treat, C. C.; Turetsky, M.
2015-01-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming. PMID:26438276
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C.D.; Schuur, E.A.G.; Schädel, C.; Bohn, T. J.; Burke, E. J.; Chen, G.; Chen, X.; Ciais, P.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Jafarov, Elchin E.; Krinner, G.; Kuhry, P.; Lawrence, D.M.; MacDougall, A. H.; Marchenko, Sergey S.; McGuire, A. David; Natali, Susan M.; Nicolsky, D.J.; Olefeldt, David; Peng, S.; Romanovsky, V.E.; Schaefer, Kevin M.; Strauss, J.; Treat, C.C.; Turetsky, M.
2015-01-01
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of −14 to −19 Pg C °C−1 on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
Global pattern and controls of soil microbial metabolic quotient
Xu, Xiaofeng; Schimel, Joshua P.; Janssens, Ivan A.; ...
2017-05-02
The microbial metabolic quotient (MMQ), microbial respiration per unit of biomass, is a fundamental factor controlling heterotrophic respiration, the largest carbon flux in soils. The magnitude and controls of MMQ at regional scale remain uncertain. We compiled a comprehensive data set of MMQ to investigate the global patterns and controls of MMQ in top 30 cm soils. Published MMQ values, generally measured in laboratory microcosms, were adjusted on ambient soil temperature using long-term (30 yr) average site soil temperature and a Q10 = 2. The area-weighted global average of MMQ_Soil is estimated as 1.8 (1.5–2.2) (95% confidence interval) lmol C•hmore » -1•mmol -1 microbial biomass carbon (MBC) with substantial variations across biomes and between cropland and natural ecosystems. Variation was most closely associated with biological factors, followed by edaphic and meteorological parameters. MMQ_Soil was greatest in sandy clay and sandy clay loam and showed a pH maximum of 6.7 - 0.1 (mean ± se). At large scale, MMQ_Soil varied with latitude and mean annual temperature (MAT), and was negatively correlated with microbial N:P ratio, supporting growth rate theory. These trends led to large differences in MMQ_Soil between natural ecosystems and cropland. When MMQ was adjusted to 11°C (MMQ_Ref), the global MAT in the top 30 cm of soils, the area-weighted global averages of MMQ_Ref was 1.5 (1.3–1.8) lmol C•mmol MBC -1•h -1. The values, trends, and controls of MMQ_Soil add to our understanding of soil microbial influences on soil carbon cycling and could be used to represent microbial activity in global carbon models.« less
Global pattern and controls of soil microbial metabolic quotient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua P.; Janssens, Ivan A.
The microbial metabolic quotient (MMQ), microbial respiration per unit of biomass, is a fundamental factor controlling heterotrophic respiration, the largest carbon flux in soils. The magnitude and controls of MMQ at regional scale remain uncertain. We compiled a comprehensive data set of MMQ to investigate the global patterns and controls of MMQ in top 30 cm soils. Published MMQ values, generally measured in laboratory microcosms, were adjusted on ambient soil temperature using long-term (30 yr) average site soil temperature and a Q10 = 2. The area-weighted global average of MMQ_Soil is estimated as 1.8 (1.5–2.2) (95% confidence interval) lmol C•hmore » -1•mmol -1 microbial biomass carbon (MBC) with substantial variations across biomes and between cropland and natural ecosystems. Variation was most closely associated with biological factors, followed by edaphic and meteorological parameters. MMQ_Soil was greatest in sandy clay and sandy clay loam and showed a pH maximum of 6.7 - 0.1 (mean ± se). At large scale, MMQ_Soil varied with latitude and mean annual temperature (MAT), and was negatively correlated with microbial N:P ratio, supporting growth rate theory. These trends led to large differences in MMQ_Soil between natural ecosystems and cropland. When MMQ was adjusted to 11°C (MMQ_Ref), the global MAT in the top 30 cm of soils, the area-weighted global averages of MMQ_Ref was 1.5 (1.3–1.8) lmol C•mmol MBC -1•h -1. The values, trends, and controls of MMQ_Soil add to our understanding of soil microbial influences on soil carbon cycling and could be used to represent microbial activity in global carbon models.« less
NASA Astrophysics Data System (ADS)
Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.
2013-12-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.
Fujinuma, Junichi; Harrison, Rhett D
2012-01-01
Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.
Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J
2016-04-01
Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujinuma, Junichi; Harrison, Rhett D.
2012-01-01
Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects. PMID:22615977
Covariation in Plant Functional Traits and Soil Fertility within Two Species-Rich Forests
Liu, Xiaojuan; Swenson, Nathan G.; Wright, S. Joseph; Zhang, Liwen; Song, Kai; Du, Yanjun; Zhang, Jinlong; Mi, Xiangcheng; Ren, Haibao; Ma, Keping
2012-01-01
The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20×20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied. PMID:22509355
Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.
2017-04-01
The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C / inorganic N in the rhizosphere). However, especially the elemental mapping requires more sophisticated computational approaches to evaluate (and quantify) the spatial heterogeneities of biogeochemical properties in intact soil systems.
NASA Technical Reports Server (NTRS)
Noble, Sarah
2009-01-01
A thick layer of regolith, fragmental and unconsolidated rock material, covers the entire lunar surface. This layer is the result of the continuous impact of meteoroids large and small and the steady bombardment of charged particles from the sun and stars. The regolith is generally about 4-5 m thick in mare regions and 10-15 m in highland areas (McKay et al., 1991) and contains all sizes of material from large boulders to sub-micron dust particles. Below the regolith is a region of large blocks of material, large-scale ejecta and brecciated bedrock, often referred to as the "megaregolith". Lunar soil is a term often used interchangeably with regolith, however, soil is defined as the subcentimeter fraction of the regolith (in practice though, soil generally refers to the submillimeter fraction of the regolith). Lunar dust has been defined in many ways by different researchers, but generally refers to only the very finest fractions of the soil, less than approx.10 or 20 microns. Lunar soil can be a misleading term, as lunar "soil" bears little in common with terrestrial soils. Lunar soil contains no organic matter and is not formed through biologic or chemical means as terrestrial soils are, but strictly through mechanical comminution from meteoroids and interaction with the solar wind and other energetic particles. Lunar soils are also not exposed to the wind and water that shapes the Earth. As a consequence, in contrast to terrestrial soils, lunar soils are not sorted in any way, by size, shape, or chemistry. Finally, without wind and water to wear down the edges, lunar soil grains tend to be sharp with fresh fractured surfaces.
Linking the climatic and geochemical controls on global soil carbon cycling
NASA Astrophysics Data System (ADS)
Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal
2015-04-01
Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are important through governing soil weathering and geochemistry. In conclusion, we pledge for a stronger implementation of geochemical soil properties to predict SOC stocks on a global scale. Understanding the effects of climate (temperature and precipitation) change on SOC dynamics also requires good understanding of the relationship between climate and soil geochemistry.
Banerjee, Samiran
2012-01-01
Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570
Selenium deficiency risk predicted to increase under future climate change
Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.
2017-01-01
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487
Selenium deficiency risk predicted to increase under future climate change.
Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E
2017-03-14
Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.
NASA Astrophysics Data System (ADS)
Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.
2016-12-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.
NASA Astrophysics Data System (ADS)
Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.
2016-12-01
Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative estimates of tree root reinforcement for best management practice of protection forests.
Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale.
Yin, Xiuling; Xu, Yingming; Huang, Rong; Huang, Qingqing; Xie, Zhonglei; Cai, Yanming; Liang, Xuefeng
2017-12-13
Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.
Shear strength of clay and silt embankments.
DOT National Transportation Integrated Search
2009-09-01
Highway embankment is one of the most common large-scale geotechnical facilities constructed in Ohio. In the past, the design of these embankments was largely based on soil shear strength properties that had been estimated from previously published e...
Harden, Jennifer W; Hugelius, Gustaf; Ahlström, Anders; Blankinship, Joseph C; Bond-Lamberty, Ben; Lawrence, Corey R; Loisel, Julie; Malhotra, Avni; Jackson, Robert B; Ogle, Stephen; Phillips, Claire; Ryals, Rebecca; Todd-Brown, Katherine; Vargas, Rodrigo; Vergara, Sintana E; Cotrufo, M Francesca; Keiluweit, Marco; Heckman, Katherine A; Crow, Susan E; Silver, Whendee L; DeLonge, Marcia; Nave, Lucas E
2018-02-01
Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan
2005-04-01
The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.
Soil Structure - A Neglected Component of Land-Surface Models
NASA Astrophysics Data System (ADS)
Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.
2017-12-01
Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.
Ki, Seo Jin; Ray, Chittaranjan; Hantush, Mohamed M
2015-06-15
A large-scale leaching assessment tool not only illustrates soil (or groundwater) vulnerability in unmonitored areas, but also can identify areas of potential concern for agrochemical contamination. This study describes the methodology of how the statewide leaching tool in Hawaii modified recently for use with pesticides and volatile organic compounds can be extended to the national assessment of soil vulnerability ratings. For this study, the tool was updated by extending the soil and recharge maps to cover the lower 48 states in the United States (US). In addition, digital maps of annual pesticide use (at a national scale) as well as detailed soil properties and monthly recharge rates (at high spatial and temporal resolutions) were used to examine variations in the leaching (loads) of pesticides for the upper soil horizons. Results showed that the extended tool successfully delineated areas of high to low vulnerability to selected pesticides. The leaching potential was high for picloram, medium for simazine, and low to negligible for 2,4-D and glyphosate. The mass loadings of picloram moving below 0.5 m depth increased greatly in northwestern and central US that recorded its extensive use in agricultural crops. However, in addition to the amount of pesticide used, annual leaching load of atrazine was also affected by other factors that determined the intrinsic aquifer vulnerability such as soil and recharge properties. Spatial and temporal resolutions of digital maps had a great effect on the leaching potential of pesticides, requiring a trade-off between data availability and accuracy. Potential applications of this tool include the rapid, large-scale vulnerability assessments for emerging contaminants which are hard to quantify directly through vadose zone models due to lack of full environmental data. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaidel'Man, F. R.
2009-01-01
The adverse human-induced changes in the water regime of soils leading to their degradation are considered. Factors of the human activity related to the water industry, agriculture, and silviculture are shown to play the most active role in the soil degradation. Among them are the large-scale hydraulic works on rivers, drainage and irrigation of soils, ameliorative and agricultural impacts, road construction, and uncontrolled impacts of industry and silviculture on the environment. The reasons for each case of soil degradation related to changes in the soil water regime are considered, and preventive measures are proposed. The role of secondary soil degradation processes is shown.
NASA Technical Reports Server (NTRS)
Arya, L. M. (Principal Investigator)
1980-01-01
Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.
USDA-ARS?s Scientific Manuscript database
Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. Responses of communities of mites and nematodes to changes in moisture availability are not well known, yet these organisms play ...
USDA-ARS?s Scientific Manuscript database
Proliferation of woody plants in grasslands and savannas (hereafter, “rangelands”) is a persistent problem globally. This widely-observed shift from grass to shrub dominance in rangelands worldwide has been heterogeneous in space and time largely due to cross-scale interactions between soils, climat...
USDA-ARS?s Scientific Manuscript database
Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impact...
USDA-ARS?s Scientific Manuscript database
The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...
A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
Koven, C. D.; Schuur, E. A. G.; Schadel, C.; ...
2015-10-05
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation–Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soilmore » temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2–33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9–112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of –14 to –19 Pg C °C–1 on a 100 year time scale. For CH 4 emissions, our approach assumes a fixed saturated area and that increases in CH 4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH 4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10–18%. In conclusion, the simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.« less
On the role of "internal variability" on soil erosion assessment
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone
2017-04-01
Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).
Fine-Scale Relief in the Amazon Drives Large Scale Ecohydrological Processes
NASA Astrophysics Data System (ADS)
Nobre, A. D.; Cuartas, A.; Hodnett, M.; Saleska, S. R.
2014-12-01
Access to soil water by roots is a key ecophysiological factor for plant productivity in natural systems. Periodically during dry seasons or critically during episodic climate droughts, shortage of water supply can reduce or severely impair plant life. At the other extreme persistent soil waterlogging will limit root respiration and restrict local establishment to adapted species, usually leading to stunted and less productive communities. Soil-water availability is therefore a very important climate variable controlling plant physiology and ecosystem dynamics. Terra-firme, the non-seasonally floodable terrain that covers 82% of the landscape in Amazonia,[1] supports the most massive part of the rainforest ecosystem. The availability of soil water data for terra-firme is scant and very coarse. This lack of data has hampered observational and modeling studies aiming to develop a large-scale integrative ecohydrological picture of Amazonia and its vulnerability to climate change. We have mapped the Amazon basin with a new terrain model developed in our group (HAND, Height Above the Nearest drainage[2]), delineating soil water environments using topographical data from the SRTM digital elevation model (250 m horizontal interpolated resolution). The preliminary results show that more than 50% of Terra-firme has the water table very close to the surface (up to 2 m deep), while the remainder of the upland landscape has variable degree of dependence on non-saturated soil (vadose layer). The mapping also shows extremely heterogeneous patterns of fine-scale relief across the basin, which implies complex ecohydrological regional forcing on the forest physiology. Ecoclimate studies should therefore take into account fine-scale relief and its implications for soil-water availability to plant processes. [1] Melack, J. M., & Hess, L. L. (2011). Remote sensing of the distribution and extent of wetlands in the Amazon basin. In W. J. Junk & M. Piedade (Eds.), Amazonian floodplain forests: Ecophysiology, ecology, biodiversity and sustainable management (pp. 1-28). Ecological Studies-Springer. [2] Nobre, A. D., Cuartas, L. A., Hodnett, M., … Saleska, S. (2011). Height Above the Nearest Drainage - a hydrologically relevant new terrain model. Journal of Hydrology, 404(1-2), 13-29
Importance of rodents for hydrology: lessons learnt from various field experiments
NASA Astrophysics Data System (ADS)
van Schaik, Loes; Zangerlé, Anne; Schneider, Anne-Kathrin; Schröder, Boris; Eccard, Jana
2017-04-01
organisms are known to create soil macropores of different sizes and with varying extent and orientation: most commonly earthworms, rodents, moles and roots. Preferential flow through macropore networks is dynamic and typically occurs when short individual macropores become connected at the hillslope scale as the nodes between the macropores become wet. Large lateral macropores may contribute to rapid subsurface stormflow of water and solutes at hillslope scale and supply a significant part of the catchment scale discharge during high intensity rainfall events even under relatively dry catchment state. Outflow from soil pipes, especially in the valley bottom or along the banking near to streams, is frequently observed, however, it remains a challenge to measure the spatial distribution, extent and connectivity of macropores at hill slope scales. We hypothesize that local information on organism abundances may be used as an indicator for spatial variability in infiltration, water storage and fluxes at the small scale and that knowledge on the landscape scale spatial distribution of organisms can provide information on connectivity of macropores at hillslope scale. Here we summarize the lessons learnt during three years of measurements aimed at determining the influence of rodent burrows on soil hydrology in a meso-scale catchment. Within the Attert Catchment (297 km2) in Luxembourg we performed sprinkling experiments with a brilliant blue tracer on twelve plots, of which six directly above rodent burrow openings and six on a surface without a rodent burrow opening, in order to examine the influence of the burrow openings on the infiltration pattern. Then we tested the extent of flow through mice burrows in different forest types, with varying geology and slope, by supplying 5 Liters of water with brilliant blue tracer directly to 24 burrow openings at soil surface. We excavated the burrows to measure how far the water was transported laterally in the burrow. Though we have serendipitous evidence of lateral water flow through large macropores in deeper soil layers from other projects, with the experiments we performed with the purpose to characterize this, the water did not seem to infiltrate into the burrow openings at the soil surface at all and the infiltration pattern under burrows was not different from that in soils without these openings. The five liter of brilliant blue dyed water which we poured into burrow openings did not flow far into the burrows, it generally infiltrated straight away into the surrounding soil. These results seem to show that the infiltration of water to rodent macropores during high intensity events does not take place at the soil surface but rather through other macropores, e.g. earthworm channels, which connect to deeper lateral channels. Also the lateral flow of water through the rodent burrows is apparently more effective in the deeper soils, where we occasionally saw a burrow with completely blue walls but little infiltration into the surrounding matrix.
NASA Astrophysics Data System (ADS)
Tuttle, S. E.; Salvucci, G.
2013-12-01
Validation of remotely sensed soil moisture is complicated by the difference in scale between remote sensing footprints and traditional ground-based soil moisture measurements. To address this issue, a new method was developed to evaluate the useful information content of remotely sensed soil moisture data using only large-scale precipitation (i.e. without modeling). Under statistically stationary conditions [Salvucci, 2001], precipitation conditionally averaged according to soil moisture (denoted E[P|S]) results in a sigmoidal shape in a manner that reflects the dependence of drainage, runoff, and evapotranspiration on soil moisture. However, errors in satellite measurement and algorithmic conversion of satellite data to soil moisture can degrade this relationship. Thus, remotely sensed soil moisture products can be assessed by the degree to which the natural sigmoidal relationship is preserved. The metric of mutual information was used as an error-dependent measure of the strength of the sigmoidal relationship, calculated from a two-dimensional histogram of soil moisture versus precipitation estimated using Gaussian mixture models. Three AMSR-E algorithms (VUA-NASA [Owe et al., 2001], NASA [Njoku et al., 2003], and U. Montana [Jones & Kimball, 2010]) were evaluated with the method for a nine-year period (2002-2011) over the contiguous United States at ¼° latitude-longitude resolution, using precipitation from the North American Land Data Assimilation System (NLDAS). The U. Montana product resulted in the highest mutual information for 57% of the region, followed by VUA-NASA and NASA at 40% and 3%, respectively. Areas where the U. Montana product yielded the maximum mutual information generally coincided with low vegetation biomass and flatter terrain, while the VUA-NASA product contained more useful information in more rugged and highly vegetated areas. Additionally, E[P|S] curves resulting from the Gaussian mixture method can potentially be decomposed into their conditional evapotranspiration and drainage plus runoff components using matrix factorization methods, allowing for time-averaged mapping of these fluxes over the study area.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-11-09
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities-for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals-were the main external sources of a large amount of Hg in the farmland soil.
Lavado Contador, J F; Maneta, M; Schnabel, S
2006-10-01
The capability of Artificial Neural Network models to forecast near-surface soil moisture at fine spatial scale resolution has been tested for a 99.5 ha watershed located in SW Spain using several easy to achieve digital models of topographic and land cover variables as inputs and a series of soil moisture measurements as training data set. The study methods were designed in order to determining the potentials of the neural network model as a tool to gain insight into soil moisture distribution factors and also in order to optimize the data sampling scheme finding the optimum size of the training data set. Results suggest the efficiency of the methods in forecasting soil moisture, as a tool to assess the optimum number of field samples, and the importance of the variables selected in explaining the final map obtained.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-01-01
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities—for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals—were the main external sources of a large amount of Hg in the farmland soil. PMID:27834884
Measuring lateral saturated soil hydraulic conductivity at different spatial scales
NASA Astrophysics Data System (ADS)
Di Prima, Simone; Marrosu, Roberto; Pirastru, Mario; Niedda, Marcello
2017-04-01
Among the soil hydraulic properties, saturated soil hydraulic conductivity, Ks, is particularly important since it controls many hydrological processes. Knowledge of this soil property allows estimation of dynamic indicators of the soil's ability to transmit water down to the root zone. Such dynamic indicators are valuable tools to quantify land degradation and developing 'best management' land use practice (Castellini et al., 2016; Iovino et al., 2016). In hillslopes, lateral saturated soil hydraulic conductivity, Ks,l, is a key factor since it controls subsurface flow. However, Ks,l data collected by point-scale measurements, including infiltrations tests, could be unusable for interpreting field hydrological processes and particularly subsurface flow in hillslopes. Therefore, they are generally not representative of subsurface processes at hillslope-scale due mainly to soil heterogeneities and the unknown total extent and connectivity of macropore network in the porous medium. On the other hand, large scale Ks,l measurements, which allow to average soil heterogeneities, are difficult and costly, thus remain rare. Reliable Ks,l values should be measured on a soil volume similar to the representative elementary volume (REV) in order to incorporate the natural heterogeneity of the soil. However, the REV may be considered site-specific since it is expected to increase for soils with macropores (Brooks et al., 2004). In this study, laboratory and in-situ Ks,l values are compared in order to detect the dependency Ks,l from the spatial scale of investigation. The research was carried out at a hillslope located in the Baratz Lake watershed, in northwest Sardinia, Italy, characterized by degraded vegetation (grassland established after fire or clearing of the maquis). The experimental area is about 60 m long, with an extent of approximately 2000 m2, and a mean slope of 30%. The soil depth is about 35 to 45 cm. The parent material is a very dense grayish, altered substratum of Permian sandstone that exhibits very low drainage, thus preventing deep water percolation (Castellini et al., 2016). In the laboratory, small-scale lateral and vertical saturated hydraulic conductivity, Ks,v, were determined by the constant-head permeameter method (Klute and Dirksen, 1986) on 20 soil cubes of 1331 cm3 of volume (Bagarello and Sgroi, 2008), allowing determination of mean Ks anisotropy for the hillslope. In the field, small-scale Ks,v was determined by infiltration runs of the BEST (Lassabatere et al., 2006) type carried out using a ring with an inner diameter of 0.15 m. The BEST-steady algorithm, proposed by Bagarello et al. (2014), was used to analyze the cumulative infiltration curves in order to decrease the failure rate of the BEST algorithms (Di Prima et al., 2016). The in situ Ks,l at an intermediate spatial scale was estimated by a trench test (Blanco-Canqui et al., 2002) carried out on a monolith 50 cm wide, 68 cm long and 34.5 cm deep (the depth to substratum). Finally, the large spatial scale (hillslope-scale) Ks,lvalue was estimated from the outflow of a 8.5 m large drain and from the perched water table levels monitored in the hillslope, following the methodology of Brooks et al. (2004). Anisotropy was not detected, since the soil cube experiments did not revealed significant differences between Ks,v and Ks,l values. The differences between the Ks datasets measured by the cube and the BEST methods were not statistically significant at p = 0.05. These methods yielded Ks values 6.4 and 5.8 times lower than the hillslope-scale Ks,l, respectively. The Ks,l value obtained by the trench experiment in the soil monolith was 1440 mm h-1, which was only 1.5 times higher than the hillslope-scale Ks,l. Probably, the chosen size of soil monolith was sufficient to properly represent the spatial heterogeneity of the soil in the hillslope. This finding need to be confirmed by further trench tests in soil monoliths to be carried out in the studied hillslope. References Bagarello, V., Di Prima, S., Iovino, M., 2014. Comparing Alternative Algorithms to Analyze the Beerkan Infiltration Experiment. Soil Science Society of America Journal 78, 724. doi:10.2136/sssaj2013.06.0231 Bagarello, V., Sgroi, A., 2008. Testing Soil Encasing Materials for Measuring Hydraulic Conductivity of a Sandy-Loam Soil by the Cube Methods. Soil Science Society of America Journal 72, 1048. doi:10.2136/sssaj2007.0022 Blanco-Canqui, H., Gantzer, C.J., Anderson, S.H., Alberts, E.E., Ghidey, F., 2002. Saturated Hydraulic Conductivity and Its Impact on Simulated Runoff for Claypan Soils. Soil Science Society of America Journal 66, 1596. doi:10.2136/sssaj2002.1596 Brooks, E.S., Boll, J., McDaniel, P.A., 2004. A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resour. Res. 40, W04208. doi:10.1029/2003WR002858 Castellini, M., Iovino, M., Pirastru, M., Niedda, M., Bagarello, V., 2016. Use of BEST Procedure to Assess Soil Physical Quality in the Baratz Lake Catchment (Sardinia, Italy). Soil Science Society of America Journal 0, 0. doi:10.2136/sssaj2015.11.0389 Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20-34. doi:10.1016/j.geoderma.2015.08.006 Iovino, M., Castellini, M., Bagarello, V., Giordano, G., 2016. Using Static and Dynamic Indicators to Evaluate Soil Physical Quality in a Sicilian Area. Land Degrad. Develop. 27, 200-210. doi:10.1002/ldr.2263 Klute, A., Dirksen, C., 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods sssabookseries, 687-734. doi:10.2136/sssabookser5.1.2ed.c28 Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Science Society of America Journal 70, 521. doi:10.2136/sssaj2005.0026
NASA Astrophysics Data System (ADS)
Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.
2015-06-01
This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.
Carbon loss from an unprecedented Arctic tundra wildfire.
Mack, Michelle C; Bret-Harte, M Syndonia; Hollingsworth, Teresa N; Jandt, Randi R; Schuur, Edward A G; Shaver, Gaius R; Verbyla, David L
2011-07-27
Arctic tundra soils store large amounts of carbon (C) in organic soil layers hundreds to thousands of years old that insulate, and in some cases maintain, permafrost soils. Fire has been largely absent from most of this biome since the early Holocene epoch, but its frequency and extent are increasing, probably in response to climate warming. The effect of fires on the C balance of tundra landscapes, however, remains largely unknown. The Anaktuvuk River fire in 2007 burned 1,039 square kilometres of Alaska's Arctic slope, making it the largest fire on record for the tundra biome and doubling the cumulative area burned since 1950 (ref. 5). Here we report that tundra ecosystems lost 2,016 ± 435 g C m(-2) in the fire, an amount two orders of magnitude larger than annual net C exchange in undisturbed tundra. Sixty per cent of this C loss was from soil organic matter, and radiocarbon dating of residual soil layers revealed that the maximum age of soil C lost was 50 years. Scaled to the entire burned area, the fire released approximately 2.1 teragrams of C to the atmosphere, an amount similar in magnitude to the annual net C sink for the entire Arctic tundra biome averaged over the last quarter of the twentieth century. The magnitude of ecosystem C lost by fire, relative to both ecosystem and biome-scale fluxes, demonstrates that a climate-driven increase in tundra fire disturbance may represent a positive feedback, potentially offsetting Arctic greening and influencing the net C balance of the tundra biome.
NASA Astrophysics Data System (ADS)
Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.
2012-09-01
The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.
NASA Astrophysics Data System (ADS)
Li, X. R.; He, M. Z.; Li, X. J.; Jia, R. L.
2012-04-01
Biological soil crusts (BSCs) are widespread communities of various diminutive organisms, including cryptogams such as cyanobacteria, algae, lichens and mosses, and other invisible organisms that are closely integrated with particles of topsoil. Few studies have considered their diversity and distribution pattern as related to environmental and climatic factors at different scales - in particular, little is known concerning the factors inducing the differences in crustal floral diversity for arid deserts in China. We investigated the distribution and characteristics of crustal communities with a total of 350 soil samplings in the main desert regions of northern China: the Horqin Sandland, Mu Us Sandland-Ordos Plateau, Tengger-Alxa Plateau, Qaidam Desert and Guerbantunggut Desert, which present a precipitation gradient, reducing from 450 mm in eastern to 80-100 mm in western deserts. The maximum cryptogamic species richness in crustal communities was 66, 42, 56, 22 and 54, respectively, in the above deserts. In general, species richness and biomass of crustal mosses were positive related with precipitation, while that of cyanobacteria and algae, as well as lichens were negative at a landscape scale. The results indicated topsoil physiochemical properties largely influenced the distribution pattern of crustal communities at the regional scale. Fine-textured and gypsum soils and soils with higher pH were favorable for various lichens, which were restricted by soils with higher total salt content. Moss species and biomass were closely related with soil water content rather than other properties, whereas there was higher diversity in cyanobacteria and algae at the site with relatively dry topsoil. In addition, the cover and biomass of mosses was positive correlated with the cover of C3 plants such as xerophytic shrubs due to providing shade. However, cover and biomass of lichens, cyanobacteria and algae were closely correlated with C4 plants, especially annuals, possibly as they created a relative stable and safe site for seed germination and survival in an aeolian environment, and increased carbon and nitrogen input into these nutrient-poor sandy substrates. At a small scale, diversity and biomass of crustal communities were largely determined by surface micro-geomorphology. Complex micro-geomorphology, such as small shrub-soil mounds and different location of stabilized dunes, has created various habitats that facilitate the maintaining of higher species diversity in BSCs due to re-allocation of dustfall deposition and surface water regime. These findings suggested that any disturbances will induce changes in cryptogamic diversity at the small scale. Variation of rainfall regime in future will result in conversion amongst the different types of BSCs, and may contribute to changes in desert ecosystem structure and function. Keywords: cryptogam species; distribution characteristics; precipitation gradient; soil physiochemical properties; different scale; Chinese deserts
Increased topsoil carbon stock across China's forests.
Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun
2014-08-01
Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models. © 2014 John Wiley & Sons Ltd.
Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands.
Voyron, Samuele; Ercole, Enrico; Ghignone, Stefano; Perotto, Silvia; Girlanda, Mariangela
2017-02-01
Mycorrhizal fungi are essential for the survival of orchid seedlings under natural conditions. The distribution of these fungi in soil can constrain the establishment and resulting spatial arrangement of orchids at the local scale, but the actual extent of occurrence and spatial patterns of orchid mycorrhizal (OrM) fungi in soil remain largely unknown. We addressed the fine-scale spatial distribution of OrM fungi in two orchid-rich Mediterranean grasslands by means of high-throughput sequencing of fungal ITS2 amplicons, obtained from soil samples collected either directly beneath or at a distance from adult Anacamptis morio and Ophrys sphegodes plants. Like ectomycorrhizal and arbuscular mycobionts, OrM fungi (tulasnelloid, ceratobasidioid, sebacinoid and pezizoid fungi) exhibited significant horizontal spatial autocorrelation in soil. However, OrM fungal read numbers did not correlate with distance from adult orchid plants, and several of these fungi were extremely sporadic or undetected even in the soil samples containing the orchid roots. Orchid mycorrhizal 'rhizoctonias' are commonly regarded as unspecialized saprotrophs. The sporadic occurrence of mycobionts of grassland orchids in host-rich stands questions the view of these mycorrhizal fungi as capable of sustained growth in soil. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo
2014-01-01
Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.
Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D
2015-01-01
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.
A Networked Sensor System for the Analysis of Plot-Scale Hydrology.
Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W; Navarro, Miguel; Li, Yimei; Slater, Thomas A; Liang, Yao; Liang, Xu
2017-03-20
This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.
A Networked Sensor System for the Analysis of Plot-Scale Hydrology
Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W.; Navarro, Miguel; Li, Yimei; Slater, Thomas A.; Liang, Yao; Liang, Xu
2017-01-01
This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments. PMID:28335534
Responding to Environmental Challenges in Central Asia and the Caspian Basin
2001-03-01
regional environment, political tension, economic destabilization and loss, to rendering large agricultural areas unsuitable for cultivation as...large-scale deforesta tion and inappropriate farm ing practices, particularly the cultivation of marginal lands without soil conserva tion measures
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.
2011-12-01
The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically important surface soils may be critically damaging for rangelands given inherent slow soil formation rates. This study presents a summary of fire effects on runoff and erosion across the rangeland-xeric forest continuum of the western US and highlights how that knowledge addresses post-fire hydrologic modeling needs. Further, we present a conceptual framework for advancing post-fire hydrologic vulnerability assessment and identify key areas for future research.
NASA Astrophysics Data System (ADS)
Sidle, R. C.
2013-12-01
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.
Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.
2000-01-01
Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.
Plant-soil-microbe interactions regulating soil C storage
NASA Astrophysics Data System (ADS)
Hofmockel, K. S.; Bach, E.; Williams, R.
2016-12-01
Integration across disciplines is required to identify the emergent microbial scale properties that regulate the release or occlusion of plant inputs in soil organic matter. To investigate how micro-scale processes influence soil carbon cycling, we measured microbial community composition and activity within soil aggregates monthly over two growing seasons of a long-term bioenergy field experiment. Using a biologically sensitive sieving technique, soil aggregates were isolated and microbial community activity and composition were measured. This aggregate approach revealed biogeochemical processes regulating C cycling that are not detected using whole soil approaches. Soil aggregation influenced microbe-substrate interactions, where diversified perennial grassland systems supported greater aggregation and reduced severity of aggregate turnover compared to corn systems. Aggregate turnover and concurrent increases in activity resulted in greater microbial biomass and physical protection of soil organic matter in prairie systems, especially fertilized prairies. Fertilized prairie enhanced microbial biomass, enzyme activity, and soil aggregation despite greater root biomass in unfertilized prairie. Independent of ecosystem or sampling date, N-acetyl-glucosaminidase activity and Nitrospirae abundance was greatest in large macroaggregates (>2000 µm), which harbored the highest C:N; cellobiohydrolase activity and Acidobacteria abundance was greatest in microaggregates (<250 µm) which had the lowest C:N. Aggregate fractions differed in microbial community composition (bacteria, archaea, and fungi) and potential enzyme activity, independent of cropping system. Microaggregates harbored significantly greater microbial diversity and richness across all bioenergy cropping systems. Together these results suggest that by mediating access to substrates, soil structure (aggregates) can influence the microbial community composition and extracellular enzyme activity to regulate ecosystem scale decomposition of soil organic matter.
Controls of Soil Spatial Variability in a Dry Tropical Forest.
Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman
2016-01-01
We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.
Controls of Soil Spatial Variability in a Dry Tropical Forest
Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman
2016-01-01
We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088
CH_{4} production in the deep soil as a source of stem CH_{4} emission in Fagus sylvatica}
NASA Astrophysics Data System (ADS)
Maier, Martin; Machacova, Katerina; Urban, Otmar; Lang, Friederike
2017-04-01
Predicting greenhouse gas (GHG) fluxes on a global scale requires understanding fluxes on the local scale. Understanding GHG processes in soil-plant-atmosphere systems is essential to understand and mitigate GHG fluxes on the local scale. Forests are known to act as carbon sink. Yet, trees at waterlogged sites are known to emit large amounts of CH4, what can offset the positive GHG balance due the CO2 that is sequestered as wood. Generally, upland trees like European beech (Fagus sylvatica L.) are assumed not to emit CH4, and the upland forest soils are regarded as CH4 sinks. Soil-atmosphere fluxes and stem-atmosphere fluxes of CH4 were studied together with soil gas profiles at two upland beech forest sites in Germany and Czech Republic. Soil was a net CH4 sink at both sites. While most trees showed no or low emissions, one beech tree had exorbitant CH4 emissions that were higher than the CH4 sink capacity of the soil. A soil survey showed strong redoximorphic color patterns in the soil adjacent to this tree. Although the soil around the tree was taking up CH4, the soil gas profiles around this tree showed CH4 production at a soil depth >0.3 m. We interpret the coincidence of the production of CH4 in the deep soil below the beech with the large stem emissions as strong hint that there is a transport link between the soil and stem. We think that the root system represents a preferential transport system for CH4 despite the fact that beech roots usually do not have a special gas transport tissue. The observed CH4 stem emissions represent an important CH4 flux in this ecosystem, and, thus, should be considered in future research. Acknowledgement This research was supported by the Czech Academy of Sciences and the German Academic Exchange Service within the project "Methane (CH4) and nitrous oxide (N2O) emissions from Fagus sylvatica trees" (DAAD-15-03), the Czech Science Foundation (17-18112Y), National Programme for Sustainability I (LO1415) and project DFG (MA 5826/2-1). We would like to thank Marek Jakubik, Sinikka Paulus, Ellen Halaburt and Sally Haddad for technical support.
Bao, Zhihua; Matsushita, Yuko; Morimoto, Sho; Hoshino, Yuko Takada; Suzuki, Chika; Nagaoka, Kazunari; Takenaka, Makoto; Murakami, Hiroharu; Kuroyanagi, Yukiko; Urashima, Yasufumi; Sekiguchi, Hiroyuki; Kushida, Atsuhiko; Toyota, Koki; Saito, Masanori; Tsushima, Seiya
2013-06-01
Andosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales. We collected soil samples from 9 agro-geographical sites with Andosol soils across an available P gradient (2048.1-59.1 mg P2O5·kg(-1)) to examine the influence of P availability on the fungal community diversity. We used polymerase chain reaction - denaturing gradient gel electrophoresis to analyze the fungal communities based on 18S rRNA genes. Statistical analyses revealed a high negative correlation between available P and fungal diversity (H'). Fungal diversity across all sites exhibited a significant hump-shaped relationship with available P (R(2) = 0.38, P < 0.001). In addition, the composition of the fungal community was strongly correlated with the available P gradient. The ribotype F6, which was positively correlated with available P, was closely related to Mortierella. The results show that both the diversity and the composition of the fungal community were influenced by available P concentrations in Andosols, at a large scale. This represents an important step toward understanding the processes responsible for the maintenance of fungal diversity in Andosolic soils.
Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till
2017-09-01
The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1 yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1 yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1 yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.
Sulfates on Mars: TES Observations and Thermal Inertia Data
NASA Astrophysics Data System (ADS)
Cooper, C. D.; Mustard, J. F.
2001-05-01
The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the sulfate material, although we currently lack the data to analyze sulfates on the outcrop scale. Analyzing our sulfate maps from spectral deconvolution together with thermal inertia data gives more information on the distribution of possible duricrusts, which provides insight into possible surface processes on Mars.
Total Storage and Landscape Partitioning of Soil Organic Carbon and Phytomass Carbon in Siberia
NASA Astrophysics Data System (ADS)
Siewert, M. B.; Hanisch, J.; Weiss, N.; Kuhry, P.; Hugelius, G.
2014-12-01
We present results of detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) from two study sites in Siberia. The study sites in the Tundra (Kytalyk) and the Taiga (Spasskaya Pad) reflect two contrasting environments in the continuous permafrost zone. In total 57 individual field sites (24 and 33 per study site respectively) have have been sampled for SOC and PC along transects cutting across different land covers. In Kytalyk the sampling depth for the soil pedons was 1 m depth. In Spasskaya Pad where the active layer was significantly deeper, we aimed for 2 m depth or tried to include at least the top of the permafrost. Here the average depth of soil profiles was 152 cm. PC was sampled from 1x1 m ground coverage plots. In Spasskaya Pad tree phytomass was also estimated on a 5x5 m plot. The SOC storage was calculated separately for the intervals 0-30 cm, 30-100 cm and 100-200 cm (the latter only for Spasskaya Pad), as well as for organic layer vs. mineral soil, active layer vs. permafrost and for cryoturbated soil horizons. Landscape partitioning was performed by thematic up-scaling using a vegetation based land cover classification of very high resolution (2x2 m) satellite imagery. Non-Metric Multidimensional Scaling (NMDS) was used to explore the relationship of SOC with PC and different soil and permafrost related variables. The results show that the different land cover classes can be considered distinct storages of SOC, but that PC is not significantly related to total SOC storage. At both study sites the 30-100 cm SOC storage is more important for the total SOC storage than the 0-30 cm interval, and large portions of the total SOC are stored in the permafrost. The largest contribution comes from wetland pedons, but highly cryoturbated individual non-wetland pedons can match these. In Kytalyk the landscape partitioning of SOC mostly follows large scale geomorphological features, while in Spasskaya pad forest type also has a large influence.
NASA Astrophysics Data System (ADS)
Sellers, Piers J.; Heiser, Mark D.; Hall, Forrest G.; Verma, Shashi B.; Desjardins, Raymond L.; Schuepp, Peter M.; Ian MacPherson, J.
1997-03-01
It is commonly assumed that biophysically based soil-vegetation-atmosphere transfer (SVAT) models are scale-invariant with respect to the initial boundary conditions of topography, vegetation condition and soil moisture. In practice, SVAT models that have been developed and tested at the local scale (a few meters or a few tens of meters) are applied almost unmodified within general circulation models (GCMs) of the atmosphere, which have grid areas of 50-500 km 2. This study, which draws much of its substantive material from the papers of Sellers et al. (1992c, J. Geophys. Res., 97(D17): 19033-19060) and Sellers et al. (1995, J. Geophys. Res., 100(D12): 25607-25629), explores the validity of doing this. The work makes use of the FIFE-89 data set which was collected over a 2 km × 15 km grassland area in Kansas. The site was characterized by high variability in soil moisture and vegetation condition during the late growing season of 1989. The area also has moderate topography. The 2 km × 15 km 'testbed' area was divided into 68 × 501 pixels of 30 m × 30 m spatial resolution, each of which could be assigned topographic, vegetation condition and soil moisture parameters from satellite and in situ observations gathered in FIFE-89. One or more of these surface fields was area-averaged in a series of simulation runs to determine the impact of using large-area means of these initial or boundary conditions on the area-integrated (aggregated) surface fluxes. The results of the study can be summarized as follows: 1. analyses and some of the simulations indicated that the relationships describing the effects of moderate topography on the surface radiation budget are near-linear and thus largely scale-invariant. The relationships linking the simple ratio vegetation index ( SR), the canopy conductance parameter (▽ F) and the canopy transpiration flux are also near-linear and similarly scale-invariant to first order. Because of this, it appears that simple area-averaging operations can be applied to these fields with relatively little impact on the calculated surface heat flux. 2. The relationships linking surface and root-zone soil wetness to the soil surface and canopy transpiration rates are non-linear. However, simulation results and observations indicate that soil moisture variability decreases significantly as an area dries out, which partially cancels out the effects of these non-linear functions.In conclusion, it appears that simple averages of topographic slope and vegetation parameters can be used to calculate surface energy and heat fluxes over a wide range of spatial scales, from a few meters up to many kilometers at least for grassland sites and areas with moderate topography. Although the relationships between soil moisture and evapotranspiration are non-linear for intermediate soil wetnesses, the dynamics of soil drying act to progressively reduce soil moisture variability and thus the impacts of these non-linearities on the area-averaged surface fluxes. These findings indicate that we may be able to use mean values of topography, vegetation condition and soil moisture to calculate the surface-atmosphere fluxes of energy, heat and moisture at larger length scales, to within an acceptable accuracy for climate modeling work. However, further tests over areas with different vegetation types, soils and more extreme topography are required to improve our confidence in this approach.
Pore-scale water dynamics during drying and the impacts of structure and surface wettability
NASA Astrophysics Data System (ADS)
Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.
2017-07-01
Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.
Saito, Kimiaki; Tanihata, Isao; Fujiwara, Mamoru; Saito, Takashi; Shimoura, Susumu; Otsuka, Takaharu; Onda, Yuichi; Hoshi, Masaharu; Ikeuchi, Yoshihiro; Takahashi, Fumiaki; Kinouchi, Nobuyuki; Saegusa, Jun; Seki, Akiyuki; Takemiya, Hiroshi; Shibata, Tokushi
2015-01-01
Soil deposition density maps of gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident were constructed on the basis of results from large-scale soil sampling. In total 10,915 soil samples were collected at 2168 locations. Gamma rays emitted from the samples were measured by Ge detectors and analyzed using a reliable unified method. The determined radioactivity was corrected to that of June 14, 2011 by considering the intrinsic decay constant of each nuclide. Finally the deposition maps were created for (134)Cs, (137)Cs, (131)I, (129m)Te and (110m)Ag. The radioactivity ratio of (134)Cs-(137)Cs was almost constant at 0.91 regardless of the locations of soil sampling. The radioactivity ratios of (131)I and (129m)Te-(137)Cs were relatively high in the regions south of the Fukushima NPP site. Effective doses for 50 y after the accident were evaluated for external and inhalation exposures due to the observed radioactive nuclides. The radiation doses from radioactive cesium were found to be much higher than those from the other radioactive nuclides. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey
2017-04-01
Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
Monte Carlo modelling of large scale NORM sources using MCNP.
Wallace, J D
2013-12-01
The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick
2017-04-01
Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.
Upscaling of soil moisture measurements in NW Italy
NASA Astrophysics Data System (ADS)
Ferraris, Stefano; Canone, Davide; Previati, Maurizio; Brunod, Christian; Ratto, Sara; Cauduro, Marco
2015-04-01
There is large mismatch in spatial scale between the climate and meteorological model grid, and the scale of soil and vegetation measurements. Remote sensing data can help to fit the model scale, but they cannot provide rootzone data. In this work some soil moisture datasets are analysed for the sake of providing larger scale estimation of soil moisture and water and energy fluxes. The first dataset refers to a plain site near Torino, where measurements are taken since 1997 (Baudena et al., 2012), and a mountain site close to the town. The second one is a dataset in the mountains of Valle d'Aosta (Brocca et al., 2013), where 4 years of data are available. The use of digital elevation models and vegetation maps is shown in this work. Some soil processes (e.g. Whalley et al., 2012) are usually disregarded, but in this work their possible impact is considered. References L. Brocca, A. Tarpanelli, T. Moramarco, F. Melone, S.M. Ratto, M. Cauduro, S. Ferraris, N. Berni, F. Ponziani, W. Wagner, T. Melzer (2013). Soil Moisture Estimation in Alpine Catchments through Modeling and Satellite Observations VADOSE ZONE JOURNAL, vol. 8-2, p. 1-10, doi:10.2136/vzj2012.0102 M. Baudena, I. Bevilacqua, D. Canone, S. Ferraris, M. Previati, A. Provenzale (2012). Soil water dynamics at a midlatitude test site: Field measurements and box modeling approaches. JOURNAL OF HYDROLOGY, vol. 414-415, p. 329-340, ISSN: 0022-1694, doi: 10.1016/j.jhydrol.2011.11.009 W.R. Whalley, G.P. Matthews, S. Ferraris (2012). The effect of compaction and shear deformation of saturated soil on hydraulic conductivity. SOIL & TILLAGE RESEARCH, vol. 125, p. 23-29, ISSN: 0167-1987
Global soil-climate-biome diagram: linking soil properties to climate and biota
NASA Astrophysics Data System (ADS)
Zhao, X.; Yang, Y.; Fang, J.
2017-12-01
As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.
Agricultural management explains historic changes in regional soil carbon stocks
van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark
2010-01-01
Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.
2017-12-01
Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration
The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)
NASA Astrophysics Data System (ADS)
Maher, K.; Chamberlain, C. P.
2010-12-01
Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.
NASA Astrophysics Data System (ADS)
West, A. J.; Arnold, M.; AumaItre, G.; Bourles, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.
2015-07-01
Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be challenging to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Catchment-scale erosional fluxes may be similar over short and long timescales if both are dominated by mass wasting sources such as gullies, landslides, and debris flows (e.g., as is evident in the landslide-dominated Khudi Khola of the Nepal High Himalaya, based on compiled data). As a consequence, simple comparison of catchment-scale fluxes will not necessarily pinpoint land use effects on soils where these are only a small part of the total erosion budget, unless rates of mass wasting are also considered. Estimates of the mass wasting contribution to erosion in the Likhu imply catchment-averaged soil production rates on the order of ~ 0.25-0.35 mm yr-1, though rates of mass wasting are poorly constrained. The deficit between our best estimates for soil production rates and measurements of soil loss rates supports conclusions from previous studies that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest, and scrubland may lead to rapid depletion of soil resources.
NASA Astrophysics Data System (ADS)
Ji, Xinye; Shen, Chaopeng; Riley, William J.
2015-12-01
Soil moisture statistical fractal is an important tool for downscaling remotely-sensed observations and has the potential to play a key role in multi-scale hydrologic modeling. The fractal was first introduced two decades ago, but relatively little is known regarding how its scaling exponents evolve in time in response to climatic forcings. Previous studies have neglected the process of moisture re-distribution due to regional groundwater flow. In this study we used a physically-based surface-subsurface processes model and numerical experiments to elucidate the patterns and controls of fractal temporal evolution in two U.S. Midwest basins. Groundwater flow was found to introduce large-scale spatial structure, thereby reducing the scaling exponents (τ), which has implications for the transferability of calibrated parameters to predict τ. However, the groundwater effects depend on complex interactions with other physical controls such as soil texture and land use. The fractal scaling exponents, while in general showing a seasonal mode that correlates with mean moisture content, display hysteresis after storm events that can be divided into three phases, consistent with literature findings: (a) wetting, (b) re-organizing, and (c) dry-down. Modeling experiments clearly show that the hysteresis is attributed to soil texture, whose "patchiness" is the primary contributing factor. We generalized phenomenological rules for the impacts of rainfall, soil texture, groundwater flow, and land use on τ evolution. Grid resolution has a mild influence on the results and there is a strong correlation between predictions of τ from different resolutions. Overall, our results suggest that groundwater flow should be given more consideration in studies of the soil moisture statistical fractal, especially in regions with a shallow water table.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.
2011-12-01
Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.
Green, Timothy R.; Freyberg, David L.
1995-01-01
Anisotropy in large-scale unsaturated hydraulic conductivity of layered soils changes with the moisture state. Here, state-dependent anisotropy is computed under conditions of large-scale gravity drainage. Soils represented by Gardner's exponential function are perfectly stratified, periodic, and inclined. Analytical integration of Darcy’s law across each layer results in a system of nonlinear equations that is solved iteratively for capillary suction at layer interfaces and for the Darcy flux normal to layering. Computed fluxes and suction profiles are used to determine both upscaled hydraulic conductivity in the principal directions and the corresponding “state-dependent” anisotropy ratio as functions of the mean suction. Three groups of layered soils are analyzed and compared with independent predictions from the stochastic results of Yeh et al. (1985b). The small-perturbation approach predicts appropriate behaviors for anisotropy under nonarid conditions. However, the stochastic results are limited to moderate values of mean suction; this limitation is linked to a Taylor series approximation in terms of a group of statistical and geometric parameters. Two alternative forms of the Taylor series provide upper and lower bounds for the state-dependent anisotropy of relatively dry soils.
The biogeochemical heterogeneity of tropical forests.
Townsend, Alan R; Asner, Gregory P; Cleveland, Cory C
2008-08-01
Tropical forests are renowned for their biological diversity, but also harbor variable combinations of soil age, chemistry and susceptibility to erosion or tectonic uplift. Here we contend that the combined effects of this biotic and abiotic diversity promote exceptional biogeochemical heterogeneity at multiple scales. At local levels, high plant diversity creates variation in chemical and structural traits that affect plant production, decomposition and nutrient cycling. At regional levels, myriad combinations of soil age, soil chemistry and landscape dynamics create variation and uncertainty in limiting nutrients that do not exist at higher latitudes. The effects of such heterogeneity are not well captured in large-scale estimates of tropical ecosystem function, but we suggest new developments in remote sensing can help bridge the gap.
Lee-Cruz, Larisa; Edwards, David P; Tripathi, Binu M; Adams, Jonathan M
2013-12-01
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.
NASA Astrophysics Data System (ADS)
Welle, Paul D.; Mauter, Meagan S.
2017-09-01
This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.
Patterns and drivers of soil microbial communities in temperate grasslands on the Mongolian plateau
NASA Astrophysics Data System (ADS)
Yang, Y.; Hu, H.; Hao, B.; Liu, Y.; Chen, Y.; Ma, W.
2016-12-01
Soil microorganisms play key roles in regulating many important ecosystem processes. However, our understanding of the patterns and drivers of soil microbial communities at the regional scale remains limited. In this study, on the basis of phospholipid fatty acid (PLFA) analysis, we investigated large-scale patterns and drivers of soil microbial communities using data from 78 sites between two depths (0-10 cm and 10-20 cm) within three major grassland types (desert steppe, typical steppe, and meadow steppe) on the Mongolian Plateau. Our findings demonstrated that, at the regional scale, the total soil microbial biomass, fungal biomass, bacterial biomass, and actinomycete biomass in Inner Mongolian temperate grasslands were all positively associated with mean annual precipitation (MAP), soil organic carbon (SOC), soil total nitrogen (TN), C:N ratio, plant aboveground biomass (AGB), and plant species richness (SR), but negatively correlated with mean annual temperature (MAT), soil bulk density (BD), and soil pH in both depths, except actinomycete biomass with MAP and BD in 10-20 cm. A stepwise regression analysis revealed that soil microbial community variations in Inner Mongolian temperate grasslands were mainly explained by C : N ratio in 0-10 cm, but by SR (total soil microbial biomass, fungal biomass, and actinomycete biomass) and MAT (bacterial biomass) in 10-20 cm. Our findings strongly indicate that the dominant drivers of spatial variations in soil microbial communities between 0-10 cm and 10-20 cm in the Inner Mongolia grasslands are significantly different, with edaphic factors (e.g., C: N ratio) in 0-10 cm but climatic (e.g, MAT) and/or biotic (e.g, SR) in 10-20 cm.
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
In situ soil COS exchange of a temperate mountain grassland under simulated drought.
Kitz, Florian; Gerdel, Katharina; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M; Wohlfahrt, Georg
2017-03-01
During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO 2 ), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO 2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO 2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m -2 s -1 ) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.
NASA Astrophysics Data System (ADS)
Bicalho, E. S.; Teixeira, D. B.; Panosso, A. R.; Perillo, L. I.; Iamaguti, J. L.; Pereira, G. T.; La Scala, N., Jr.
2012-04-01
Soil CO2 emission (FCO2) is influenced by chemical, physical and biological factors that affect the production of CO2 in the soil and its transport to the atmosphere, varying in time and space depending on environmental conditions, including the management of agricultural area. The aim of this study was to investigate the structure of spatial variability of FCO2 and soil properties by using fractal dimension (DF), derived from isotropic variograms at different scales, and construction of fractograms. The experimental area consisted of a regular grid of 60 × 60 m on sugarcane area under green management, containing 141 points spaced at minimum distances ranging from 0.5 to 10 m. Soil CO2 emission, soil temperature and soil moisture were evaluated over a period of 7 days, and soil chemical and physical properties were determined by sampling at a depth of 0.0 to 0.1 m. FCO2 showed an overall average of 1.51 µmol m-2 s-1, correlated significantly (p < 0.05) with soil physical factors such as soil bulk density, air-filled pore space, macroporosity and microporosity. Significant DF values were obtained in the characterization of FCO2 in medium and large scales (from 20 m). Variations in DF with the scale, which is the fractogram, indicate that the structure of FCO2 variability is similar to that observed for the soil temperature and total pore volume, and reverse for the other soil properties, except for macroporosity, sand content, soil organic matter, carbon stock, C/N ratio and CEC, which fractograms were not significantly correlated to the FCO2 fractogram. Thus, the structure of spatial variability for most soil properties, characterized by fractogram, presents a significant relationship with the structure of spatial variability of FCO2, generally with similar or dissimilar behavior, indicating the possibility of using the fractogram as tool to better observe the behavior of the spatial dependence of the variables along the scale.
NASA Astrophysics Data System (ADS)
Smith, David Charles
Construction of large scale ground coupled heat pump (GCHP) systems that operate with hundreds or even thousands of boreholes for the borehole heat exchangers (BHE) has increased in recent years with many coming on line in the past 10 years. Many large institutions are constructing these systems because of their ability to store energy in the subsurface for indoor cooling during the warm summer months and extract that energy for heating during the cool winter months. Despite the increase in GCHP system systems constructed, there have been few long term studies on how these large systems interact with the subsurface. The thermal response test (TRT) is the industry standard for determining the thermal properties of the rock and soil. The TRT is limited in that it can only be used to determine the effective thermal conductivity over the whole length of a single borehole at the time that it is administered. The TRT cannot account for long-term changes in the aquifer saturation, changes in groundwater flow, or characterize different rock and soil units by effectiveness for heat storage. This study established new methods and also the need for the characterization of the subsurface for the purpose of design and long-term monitoring for GCHP systems. These new methods show that characterizing the long-term changes in aquifer saturation and groundwater flow, and characterizing different rock and soil units are an important part of the design and planning process of these systems. A greater understanding of how large-scale GCHP systems interact with the subsurface will result in designs that perform more efficiently over a longer period of time and expensive modifications due to unforeseen changes in system performance will be reduced.
Landscape-Scale Soil Carbon Inventories by Microclimate Decomposition
NASA Astrophysics Data System (ADS)
Beaudette, D. E.; O'Geen, A. T.
2008-12-01
Estimation of carbon stocks in rangeland and foothill ecosystems is poised to become an important service once legislation regulating greenhouse gas emissions is passed. Trading of carbon credits and greenhouse gas emission/sequestration budgets for vegetated areas is largely dependent on an accurate and scale- dependent inventory of existing conditions. Soil survey presents one possible resource for surface carbon stocks, however these data are usually not mapped at the landscape-scale. Soil-landscape modeling techniques have been successfully used in several instances to predict the spatial variation in soil carbon. Most of these studies have used site exposure (aspect angle) as a categorical proxy for terrain-induced microclimate. Our objective was to model parameters related to soil microclimate (soil temperature and moisture) for the production of detailed maps of soil carbon and organic matter quality (i.e. C:N ratio). We used a solar radiation model and long-term monitoring of soil moisture and temperature to generate several models of soil microclimate. Parameterization of the ESRA (European Solar Radiation Atlas) solar radiation model (clear-sky version) was accomplished with daily estimates of the Linke turbidity factor, using local pyranometer measurements (11 year record). Our estimated daily radiance values correlated well with local weather station data (R2 = 0.965, p < 0.001). This model is included in the popular, open source GRASS GIS. A preliminary study based on 35 sites, spanning two contrasting landform types (and lithology), revealed a statistically significant relationship between annual radiation load and carbon (R2 = 0.75, p < 0.001). A highly significant relationship between C:N ratio and annual radiation load was identified as well (R2 = 0.99, p < 0.001). Solar radiation models are simple to use, and have the potential to refine previous soil-landscape modeling efforts that relied on aspect class or angle. Models linking surface processes with microclimate can be used to directly generate estimates of carbon, or used to down-scale soil survey-based estimates.
NASA Astrophysics Data System (ADS)
Nay, S. M.; D'Amore, D. V.
2009-12-01
The coastal temperate rainforest (CTR) along the northwest coast of North America is a large and complex mosaic of forests and wetlands located on an undulating terrain ranging from sea level to thousands of meters in elevation. This biome stores a dynamic portion of the total carbon stock of North America. The fate of the terrestrial carbon stock is of concern due to the potential for mobilization and export of this store to both the atmosphere as carbon respiration flux and ocean as dissolved organic and inorganic carbon flux. Soil respiration is the largest export vector in the system and must be accurately measured to gain any comprehensive understanding of how carbon moves though this system. Suitable monitoring tools capable of measuring carbon fluxes at small spatial scales are essential for our understanding of carbon dynamics at larger spatial scales within this complex assemblage of ecosystems. We have adapted instrumentation and developed a sampling strategy for optimizing replication of soil respiration measurements to quantify differences among spatially complex landscape units of the CTR. We start with the design of the instrument to ease the technological, ergonomic and financial barriers that technicians encounter in monitoring the efflux of CO2 from the soil. Our sampling strategy optimizes the physical efforts of the field work and manages for the high variation of flux measurements encountered in this difficult environment of rough terrain, dense vegetation and wet climate. Our soil respirometer incorporates an infra-red gas analyzer (LiCor Inc. LI-820) and an 8300 cm3 soil respiration chamber; the device is durable, lightweight, easy to operate and can be built for under $5000 per unit. The modest unit price allows for a multiple unit fleet to be deployed and operated in an intensive field monitoring campaign. We use a large 346 cm2 collar to accommodate as much micro spatial variation as feasible and to facilitate repeated measures for tracking temporal trends. Our collar design minimizes root interference yet provides a highly stable platform for coupling with the respirometer. Meso-scale variability characterized by large down woody debris, wind throw pits and mounds and surface roots is negotiated with by a hexagonal array of seven collars at two meter spacing (sample pod). Landscape scale variability is managed through stratification and replication amongst ecosystem types arrayed across a hydrologic gradient from bogs to forested wetlands to upland forests. Our strategy has allowed us to gather data sets consisting of approximately 1800 total observations with approximately 600 measurements per replication per year. Mean coefficients of variation (CV) at the collar (micro-scale) were approximately 0.67. The pod level mean CV was reduced to approximately 0.29 at the pod (meso-scale). The CV at the vegetation strata were 0.43, 0.18 and 0.21 for bog, forested wetland and upland forest respectively. With temperature and hydrological data we are able to measure and model carbon dynamics in this large and complex environment. The analysis of variability at the three spatial scales has confirmed that our approach is capturing and constraining the variability.
Lessons from historical rangeland revegetation for today's restoration
Bruce A. Roundy
1999-01-01
Rangeland revegetation in the Western United States historically was applied at a large scale for soil conservation and forage production purposes. Principles of revegetation that have developed over years of research include matching site potential and plant materials adaption, use of appropriate seedbed preparation and sowing techniques, and development of large...
Impacts of large-scale climatic disturbances on the terrestrial carbon cycle.
Erbrecht, Tim; Lucht, Wolfgang
2006-07-27
The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events.
Impacts of large-scale climatic disturbances on the terrestrial carbon cycle
Erbrecht, Tim; Lucht, Wolfgang
2006-01-01
Background The amount of carbon dioxide in the atmosphere steadily increases as a consequence of anthropogenic emissions but with large interannual variability caused by the terrestrial biosphere. These variations in the CO2 growth rate are caused by large-scale climate anomalies but the relative contributions of vegetation growth and soil decomposition is uncertain. We use a biogeochemical model of the terrestrial biosphere to differentiate the effects of temperature and precipitation on net primary production (NPP) and heterotrophic respiration (Rh) during the two largest anomalies in atmospheric CO2 increase during the last 25 years. One of these, the smallest atmospheric year-to-year increase (largest land carbon uptake) in that period, was caused by global cooling in 1992/93 after the Pinatubo volcanic eruption. The other, the largest atmospheric increase on record (largest land carbon release), was caused by the strong El Niño event of 1997/98. Results We find that the LPJ model correctly simulates the magnitude of terrestrial modulation of atmospheric carbon anomalies for these two extreme disturbances. The response of soil respiration to changes in temperature and precipitation explains most of the modelled anomalous CO2 flux. Conclusion Observed and modelled NEE anomalies are in good agreement, therefore we suggest that the temporal variability of heterotrophic respiration produced by our model is reasonably realistic. We therefore conclude that during the last 25 years the two largest disturbances of the global carbon cycle were strongly controlled by soil processes rather then the response of vegetation to these large-scale climatic events. PMID:16930463
Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet
NASA Astrophysics Data System (ADS)
Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi
2014-05-01
Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for the large trees accounted for 30% of total, which can lead high GPP. These results suggest that large trees play considerable role in carbon cycling and make a distinctive carbon allocation in the Bornean tropical rainforest.
Drivers of small scale variability in soil-atmosphere fluxes of CH4, N2O and CO2 in a forest soil
NASA Astrophysics Data System (ADS)
Maier, Martin; Nicolai, Clara; Wheeler, Denis; Lang, Friedeike; Paulus, Sinikka
2016-04-01
Soil-atmosphere fluxes of CH4, N2O and CO2 can vary on different spatial scales, on large scales between ecosystems but also within apparently homogenous sites. While CO2 and CH4 consumption is rather evenly distibuted in well aerated soils, the production of N2O and CH4 seems to occur at hot spots that can be associated with anoxic or suboxic conditions. Small-scale variability in soil properties is well-known from field soil assesment, affecting also soil aeration and thus theoretically, greenhouse gas fluxes. In many cases different plant species are associated with different soil conditions and vegetation mapping should therefor combined with soil mapping. Our research objective was explaining the small scale variability of greenhouse gas fluxes in an apparently homogeneous 50 years old Scots Pine stand in a former riparian flood plain.We combined greenhouse gas measurements and soil physical lab measurments with field soil assessment and vegetation mapping. Measurements were conducted with at 60 points at a plot of 30 X 30 m at the Hartheim monitoring site (SW Germany). For greenhouse gas measurements a non-steady state chamber system and laser analyser, and a photoacoustic analyser were used. Our study shows that the well aerated site was a substantial sink for atmospheric CH4 (-2.4 nmol/m² s) and also a for N2O (-0.4 nmol/m² s), but less pronounced, whereas CO2 production was a magnitude larger (2.6 μmol/m² s). The spatial variability of the CH4 consumption of the soils could be explained by the variability of the soil gas diffusivity (measured in situ + using soil cores). Deviations of this clear trend were only observed at points where decomposing woody debris was directly under the litter layer. Soil texture ranged from gravel, coarse sand, fine sand to pure silt, with coarser texture having higher soil gas diffusivity. Changes in texture were rather abrupt at some positions or gradual at other positions, and were well reflected in the vegetation structure. On patches of gravel and coarse sand there was hardly any ground vegatation, and a shrublayer was found only at silty patches Our results indicate that a stratification and regionalisation approach based on vegetation structure and soil texture represents a promising tool for the adjustment of sampling designs for soil gas flux measurement. Acknowledgement This research was financially supported by the project DFG (MA 5826/2-1).
Efficacy of cheap amendments for stabilizing trace elements in contaminated paddy fields.
Huang, Tai-Hsiang; Lai, Yun-Jie; Hseu, Zeng-Yei
2018-05-01
In situ stabilization of trace elements by adding cheap amendments is an emerging technology for large-scale soil remediation. Various amendments have been examined well in the literature, but related have focused predominantly on short-term laboratory scale incubation or pot experiments. This study applied dolomitic lime at 40 ton ha -1 , oyster shell (OS) at 80 ton ha -1 , and sugarcane bagasse compost (SC) at 60 ton ha -1 to a paddy field in Taiwan for two rice (Oryza sativa L.) cropping seasons. The aims of study were to gain an understanding of the bioavailable concentrations of Cr, Ni, Cu, and Zn in the amended soil and the metal uptake of rice for practical amendment use in field-scale remediation of contaminated soils. The treatments of lime and OS significantly (p < 0.05) decreased the 0.1 N HCl-extractable metals in the soil. The increase in soil pH was the key factor in decreasing the bioavailable pool of metals in the soil by using lime and OS. The concentrations of Cu, Zn, and Ni in the brown rice were substantially reduced only through the addition of OS, and thus OS met the requirement of being a cheap, locally available, and environmentally compatible amendment for field-scale soil remediation. The translocation of Cr in rice plants is heavily restricted, and thus no significant differences in Cr uptake by rice grain were observed between the different amendment treatments. However, SC is not recommended as an immobilization agent because it caused a pH decrease in the amended soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yi, H.; Gao, X.; Sorooshian, S.
2002-05-01
As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.
Dupont, A Ö C; Griffiths, R I; Bell, T; Bass, D
2016-06-01
A recent large-scale assessment of bacterial communities across a range of UK soil types showed that bacterial community structure was strongly determined by soil pH. We analysed a data set of eukaryotic 454 sequencing 18S rDNA from the surveyed samples and showed significant differences in eukaryotic assemblages according to pH class, mostly between low pH and higher pH soils. Soil eukaryote communities (per sample) differed most at the taxonomic rank approximating to order level. Taxonomies assigned with the Protist Ribosomal Reference and the Silva 119 databases were taxonomically inconsistent, mostly due to differing 18S annotations, although general structure and composition according to pH were coherent. A relatively small number of lineages, mostly putative parasitic protists and fungi, drive most differences between pH classes, with weaker contributions from bacterivores and autotrophs. Overall, soil parasites included a large diversity of alveolates, in particular apicomplexans. Phylogenetic analysis of alveolate lineages demonstrates a large diversity of unknown gregarines, novel perkinsids, coccidians, colpodellids and uncharacterized alveolates. Other novel and/or divergent lineages were revealed across the eukaryote tree of life. Our study provides an in-depth taxonomic evaluation of micro-eukaryotic diversity, and reveals novel lineages and insights into their relationships with environmental variables across soil gradients. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Huang, Zhang-ting; Li, Yong-fu; Jiang, Pei-kun; Chang, Scott X.; Song, Zhao-liang; Liu, Juan; Zhou, Guo-mo
2014-01-01
Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0–40 cm soil layer in bamboo plantations increased by 217 Mg C ha−1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha−1 yr−1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha−1 yr−1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change. PMID:24398703
NASA Astrophysics Data System (ADS)
van Wesemael, Bas; Nocita, Marco
2016-04-01
One of the problems for mapping of soil organic carbon (SOC) at large-scale based on visible - near and short wave infrared (VIS-NIR-SWIR) remote sensing techniques is the spatial variation of topsoil moisture when the images are collected. Soil moisture is certainly an aspect causing biased SOC estimations, due to the problems in discriminating reflectance differences due to either variations in organic matter or soil moisture, or their combination. In addition, the difficult validation procedures make the accurate estimation of soil moisture from optical airborne a major challenge. After all, the first millimeters of the soil surface reflect the signal to the airborne sensor and show a large spatial, vertical and temporal variation in soil moisture. Hence, the difficulty of assessing the soil moisture of this thin layer at the same moment of the flight. The creation of a soil moisture proxy, directly retrievable from the hyperspectral data is a priority to improve the large-scale prediction of SOC. This paper aims to verify if the application of the normalized soil moisture index (NSMI) to Airborne Prima Experiment (APEX) hyperspectral images could improve the prediction of SOC. The study area was located in the loam region of Wallonia, Belgium. About 40 samples were collected from bare fields covered by the flight lines, and analyzed in the laboratory. Soil spectra, corresponding to the sample locations, were extracted from the images. Once the NSMI was calculated for the bare fields' pixels, spatial patterns, presumably related to within field soil moisture variations, were revealed. SOC prediction models, built using raw and pre-treated spectra, were generated from either the full dataset (general model), or pixels belonging to one of the two classes of NSMI values (NSMI models). The best result, with a RMSE after validation of 1.24 g C kg-1, was achieved with a NSMI model, compared to the best general model, characterized by a RMSE of 2.11 g C kg-1. These results confirmed the advantage to controlling the effect of soil moisture on the detection of SOC. The NSMI proved to be a flexible concept, due to the possible use of different SWIR wavelengths, and ease of use, because measurements of soil moisture by other techniques are not needed. However, in the future, it will be important to assess the effectiveness of the NSMI for different soil types, and other hyperspectral sensors.
Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges.
Li, Jin-Tian; Baker, Alan J M; Ye, Zhi-Hong; Wang, Hong-Bin; Shu, Wen-Sheng
2012-10-01
Cadmium (Cd) is one of the most toxic and widely distributed pollutants in the environment. Cadmium contamination of soils has posed a serious threat to safe food production in many parts of the world. The authors present a comprehensive review of present status of phytoextraction technology for cleaning up Cd-contaminated soils, based primarily on the data resulting from both laboratory and field-scale studies that have been conducted to assess or improve the Cd phytoextraction potential of various plant species in the past decade. The encouraging results of field-scale studies have provided a fundamental basis to usher phytoextraction technology into practical use to remediate slightly to moderately Cd-contaminated soils in Europe and Asia, although this technology is not yet ready for widespread application. Chelators and microorganisms tested so far seem not to contribute to the applicability of Cd phytoextraction. The major challenges for the large-scale application of Cd phytoextraction are (a) how to further improve the efficiency of Cd phytoextraction, (b) how to cut the overall costs of Cd phytoextraction, and (c) how to get greater stakeholders' acceptance of Cd phytoextraction as a reliable option.
200 years of soil carbon nitrogen and phosphorus change across the United Kingdom
NASA Astrophysics Data System (ADS)
Tipping, Ed; Quinton, John; Davies, Jessica; Bell, Vicky; Carnell, Ed; Dragosits, Ulli; Muhammed, Shibu; Naden, Pam; Stuart, Marianne; Tomlinson, Sam; Whitmore, Andy; Wu, Lianhai
2015-04-01
Human intervention over the last 200 years has resulted in vast changes to the fluxes of nitrogen (N) and phosphorus (P) entering the United Kingdom's landscape. Industrialisation has resulted in N deposition, agricultural intensification has seen widespread use of N and P fertilizers and societal actions have resulted in extensive land use change. To understand the consequences of these anthropogenic inputs for our soils, freshwaters and ecosystems it is necessary to take an integrated long term large scale approach. Integration across the compartments of the critical zone - from atmosphere, plants to soil and stream - is necessary in order to trace the effects of deposition, fertilization, cultivation and land use change. Coherent integration of C, N and P dynamics is also crucial, as biological processes tightly couple these cycles, so that in unison C N and P control the generation of biomass and consequent production of soil organic matter, having knock on effects for dissolved and particulate fluxes and ecosystem function. The Long-Term Large-Scale (LTLS) project is developing an integrated model that simulates the pools and fluxes of carbon, nitrogen and phosphorus (C, N, and P) between atmospheric, vegetation, soil and aquatic systems for the whole of the United Kingdom for a period spanning from the onset of the industrial revolution up until the present day. In this paper we will present results demonstrating the changes in the soil macronutrient cycles in response to agrarian and social change in the United Kingdom over the last 200 years
Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Haverd, Vanessa
2018-01-01
The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.
NASA Astrophysics Data System (ADS)
Tang, G.; Bartlein, P. J.
2012-01-01
Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.
Critical carbon input to maintain current soil organic carbon stocks in global wheat systems
Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing
2016-01-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192
Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems
NASA Astrophysics Data System (ADS)
Wang, G.
2017-12-01
Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.
NASA Astrophysics Data System (ADS)
Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.
2015-12-01
The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model
NASA Astrophysics Data System (ADS)
Kathuria, D.; Mohanty, B.; Katzfuss, M.
2017-12-01
Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.
Where did my wifi go? Measuring soil moisture using wifi signal strength
NASA Astrophysics Data System (ADS)
Hut, Rolf; de Jeu, Richard
2015-04-01
Soil moisture is tricky to measure. Currently soil moisture is measured at small footprints using probes and other field devices, or at large footprints using satellites. Promising developments in measuring soil moisture are using fiber optic cables for measurements along a line, or using cosmos rays for field scale measurements. In this demonstration we present a low cost alternative to measure soil moisture at footprints of a few square meters. We use a wifi hotspot and a wifi dongle, both mounted in a cantenna for beam forming. We aim the hotspot on a piece of soil and put the dongle in the path of the reflection. By logging the signal strength of the wifi netwerk, we have a proxy for soil moisture. A first proof of concept is presented.
Biodegradation of hexachlorocyclohexane (HCH) by microorganisms.
Phillips, Theresa M; Seech, Alan G; Lee, Hung; Trevors, Jack T
2005-08-01
The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, A M; Ritz, K; Nunan, N
Soils are structurally heterogeneous across a wide range of spatio-temporal scales. Consequently, external environmental conditions do not have a uniform effect throughout the soil, resulting in a large diversity of micro-habitats. It has been suggested that soil function can be studied without explicit consideration of such fine detail, but recent research has indicated that the micro-scale distribution of organisms may be of importance for a mechanistic understanding of many soil functions. Due to a lack of techniques with adequate sensitivity for data collection at appropriate scales, the question 'How important are various soil processes acting at different scales for ecologicalmore » function?' is challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes which link high-resolution microscopy with isotopic analysis. The main advantage of NanoSIMS over other secondary ion mass spectrometers is the ability to operate at high mass resolution, whilst maintaining both excellent signal transmission and spatial resolution ({approx}50 nm). NanoSIMS has been used previously in studies focusing on presolar materials from meteorites, in material science, biology, geology and mineralogy. Recently, the potential of NanoSIMS as a new tool in the study of biophysical interfaces in soils has been demonstrated. This paper describes the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology. Practical considerations (sample size and preparation, simultaneous collection of isotopes, mass resolution, isobaric interference and quantification of the isotopes of interest) are discussed. Adequate sample preparation avoiding biases in the interpretation of NanoSIMS data due to artifacts and identification of regions-of interest are of most concerns in using NanoSIMS as a new tool in biogeochemistry and soil ecology. Finally, we review the areas of research most likely to benefit from the high resolving power attainable with this new approach.« less
Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H.
2006-01-01
1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses that soil fertility [particularly phosphorus (P), manganese (Mn) and zinc (Zn)] and/or moisture limit soil crust lichens and mosses at four spatial scales. 3. In support of the soil fertility hypothesis, we found that lichen-moss crusts were positively correlated with several nutrients [Mn, Zn, potassium (K) and magnesium (Mg) were most consistent] at three of four spatial scales ranging from 3.5 cm2 in area to c. 800 km2. In contrast, P was negatively correlated with lichen-moss crusts at three scales. 4. Community composition varied with micro-aspect on ridges in the soil crust. Three micro-aspects [north-north-west (NNW), east-north-east (ENE) and TOP] supported greater lichen and moss cover than the warmer, windward and more xeric micro-aspects [west-south-west (WSW) and south-south-east (SSE)]. This pattern was poorly related to soil fertility; rather, it was consistent with the moisture limitation hypothesis. 5. Synthesis and application. Use of crusts as desertification bioindicators requires knowledge of a site's potential for crust cover in the absence of desertification. We present a multi-scale model of crust potential as a function of site properties. Future quantitative studies can use this model to guide sampling efforts. Also, our results suggest new directions in restoration research: enhancement of moisture residence time and fertilization with key nutrients (Mn, Zn, K and Mg). Re-establishment of soil crusts in desertified lands will help regain lost soil stability and fertility, and facilitate plant re-establishment. ?? 2006 British Ecological Society.
Continental-scale patterns of canopy tree composition and function across Amazonia.
ter Steege, Hans; Pitman, Nigel C A; Phillips, Oliver L; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo
2006-09-28
The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.
Continental-scale patterns of canopy tree composition and function across Amazonia
NASA Astrophysics Data System (ADS)
Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo
2006-09-01
The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.
Passive Microwave Remote Sensing of Soil Moisture
NASA Technical Reports Server (NTRS)
Njoku, Eni G.; Entekhabi, Dara
1996-01-01
Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.
NASA Astrophysics Data System (ADS)
Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.
2017-12-01
Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting events and more prolonged response to drying cycles, as opposed to binary behavior in the control.
Drivers for spatial variability in agricultural soil organic carbon stocks in Germany
NASA Astrophysics Data System (ADS)
Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette
2017-04-01
Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description of the variability in soil physical parameters. Agronomic management impact on SOC stocks is important near the soil surface, but is mainly attributable to land-use and not to other management factors on this large regional scale. The importance of historical land-use practices as well as anthropogenic soil transformations to SOC stocks highlights the need for prudent soil management and conservation policies.
COSMOS: COsmic-ray Soil Moisture Observing System planned for the United States
NASA Astrophysics Data System (ADS)
Zweck, C.; Zreda, M.; Shuttleworth, J.; Zeng, X.
2008-12-01
Because soil water exerts a critical control on weather, climate, ecosystem, and water cycle, understanding soil moisture changes in time and space is crucial for many fields within natural sciences. A serious handicap in soil moisture measurements is the mismatch between limited point measurements using contact methods and remote sensing estimates over large areas. We present a novel method to measure soil moisture non- invasively at an intermediate spatial scale that will alleviate this problem. The method takes advantage of the dependence of cosmic-ray neutron intensity on the hydrogen content of soils (Zreda et al., Geophysical Research Letters, accepted). Low-energy cosmic-ray neutrons are produced and moderated in the soil, transported from the soil into the atmosphere where they are measured with a cosmic-ray neutron probe to provide integrated soil moisture content over a footprint of several hundred meters and a depth of a few decimeters. The method and the instrument are intended for deployment in the continental-scale COSMOS network that is designed to cover the contiguous region of the USA. Fully deployed, the COSMOS network will consist of up to 500 probes, and will provide continuous soil moisture content (together with atmospheric pressure, temperature and relative humidity) measured and reported hourly. These data will be used for initialization and assimilation of soil moisture conditions in weather and short-term (seasonal) climate forecasting, and for other land-surface applications.
Delgado-Baquerizo, Manuel; Fry, Ellen L; Eldridge, David J; de Vries, Franciska T; Manning, Peter; Hamonts, Kelly; Kattge, Jens; Boenisch, Gerhard; Singh, Brajesh K; Bardgett, Richard D
2018-04-19
We lack strong empirical evidence for links between plant attributes (plant community attributes and functional traits) and the distribution of soil microbial communities at large spatial scales. Using datasets from two contrasting regions and ecosystem types in Australia and England, we report that aboveground plant community attributes, such as diversity (species richness) and cover, and functional traits can predict a unique portion of the variation in the diversity (number of phylotypes) and community composition of soil bacteria and fungi that cannot be explained by soil abiotic properties and climate. We further identify the relative importance and evaluate the potential direct and indirect effects of climate, soil properties and plant attributes in regulating the diversity and community composition of soil microbial communities. Finally, we deliver a list of examples of common taxa from Australia and England that are strongly related to specific plant traits, such as specific leaf area index, leaf nitrogen and nitrogen fixation. Together, our work provides new evidence that plant attributes, especially plant functional traits, can predict the distribution of soil microbial communities at the regional scale and across two hemispheres. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Use of modeled and satelite soil moisture to estimate soil erosion in central and southern Italy.
NASA Astrophysics Data System (ADS)
Termite, Loris Francesco; Massari, Christian; Todisco, Francesca; Brocca, Luca; Ferro, Vito; Bagarello, Vincenzo; Pampalone, Vincenzo; Wagner, Wolfgang
2016-04-01
This study presents an accurate comparison between two different approaches aimed to enhance accuracy of the Universal Soil Loss Equation (USLE) in estimating the soil loss at the single event time scale. Indeed it is well known that including the observed event runoff in the USLE improves its soil loss estimation ability at the event scale. In particular, the USLE-M and USLE-MM models use the observed runoff coefficient to correct the rainfall erosivity factor. In the first case, the soil loss is linearly dependent on rainfall erosivity, in the second case soil loss and erosivity are related by a power law. However, the measurement of the event runoff is not straightforward or, in some cases, possible. For this reason, the first approach used in this study is the use of Soil Moisture For Erosion (SM4E), a recent USLE-derived model in which the event runoff is replaced by the antecedent soil moisture. Three kinds of soil moisture datasets have been separately used: the ERA-Interim/Land reanalysis data of the European Centre for Medium-range Weather Forecasts (ECMWF); satellite retrievals from the European Space Agency - Climate Change Initiative (ESA-CCI); modeled data using a Soil Water Balance Model (SWBM). The second approach is the use of an estimated runoff rather than the observed. Specifically, the Simplified Continuous Rainfall-Runoff Model (SCRRM) is used to derive the runoff estimates. SCRMM requires soil moisture data as input and at this aim the same three soil moisture datasets used for the SM4E have been separately used. All the examined models have been calibrated and tested at the plot scale, using data from the experimental stations for the monitoring of the erosive processes "Masse" (Central Italy) and "Sparacia" (Southern Italy). Climatic data and runoff and soil loss measures at the event time scale are available for the period 2008-2013 at Masse and for the period 2002-2013 at Sparacia. The results show that both the approaches can provide better results than the USLE. Specifically, the SM4E model has proven to be particularly effective at Masse, providing the best soil loss estimations, especially when the modeled soil moisture is used. In this case, the RSR index (ratio between the Root Mean Square Error and the Observed Standard deviation) is equal to 0.94. Instead, the SCRRM is able to better estimate the event runoff at Sparacia than at Masse, thus resulting in good performances of the USLE-derived models using the estimated runoff; however, even at Sparacia the SM4E with modeled soil moisture gives the better soil loss estimates, with RSR = 0.54. These results open an interesting scenario in the use of empirical models to determine soil loss at a large scale, since soil moisture is a not only a simple in situ measurement, but only a widely available information on a global scale from remote sensing.
Microbial diversity drives multifunctionality in terrestrial ecosystems
Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.
2016-01-01
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514
Microbial diversity drives multifunctionality in terrestrial ecosystems.
Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K
2016-01-28
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked differences; particularly at a shorter time scale (hours to days) in regions with coarse texture sandy soils. Furthermore, the partitioning of total runoff into near-surface interflows and baseflow components was also significantly different between the two simulations. Simulations with the coarser soil map produced comparatively higher baseflows. At longer time scales (months to seasons) where climatic factors plays a major role, the integrated fluxes and states from both sets of model simulations match fairly closely, despite the apparent discrepancy in the partitioning of total runoff.
Kas'ianov, V I
2005-01-01
The paper presents the results of a study of the impact of large-scale solid waste storage on ascariasis morbidity in the population. The use of sewage sediments as an organic soil fertilizer to grow strawberries and table greens is shown to substantially increase the risk of Ascaris infection in the population. Storage of solid domestic garbage on specialized dumping grounds does not lead to mass environmental pollution with geohelminthic eggs.
NASA Technical Reports Server (NTRS)
Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.
1998-01-01
Landsat thematic mapper data are used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation -the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.
NASA Technical Reports Server (NTRS)
Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.
1997-01-01
Landsat Thematic Mapper data is used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation-the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.
NASA Astrophysics Data System (ADS)
Ju, Weimin; Gao, Ping; Wang, Jun; Li, Xianfeng; Chen, Shu
2008-10-01
Soil water content (SWC) is an important factor affecting photosynthesis, growth, and final yields of crops. The information on SWC is of importance for mitigating the reduction of crop yields caused by drought through proper agricultural water management. A variety of methodologies have been developed to estimate SWC at local and regional scales, including field sampling, remote sensing monitoring and model simulations. The reliability of regional SWC simulation depends largely on the accuracy of spatial input datasets, including vegetation parameters, soil and meteorological data. Remote sensing has been proved to be an effective technique for controlling uncertainties in vegetation parameters. In this study, the vegetation parameters (leaf area index and land cover type) derived from the Moderate Resolution Imaging Spectrometer (MODIS) were assimilated into a process-based ecosystem model BEPS for simulating the variations of SWC in croplands of Jiangsu province, China. Validation shows that the BEPS model is able to capture 81% and 83% of across-site variations of SWC at 10 and 20 cm depths during the period from September to December, 2006 when a serous autumn drought occurred. The simulated SWC responded the events of rainfall well at regional scale, demonstrating the usefulness of our methodology for SWC and practical agricultural water management at large scales.
NASA Astrophysics Data System (ADS)
Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.
2009-04-01
A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).
Impacts of crop growth dynamics on soil quality at the regional scale
NASA Astrophysics Data System (ADS)
Gobin, Anne
2014-05-01
Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.
Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data
NASA Astrophysics Data System (ADS)
Dutta, D.; Kumar, P.; Greenberg, J. A.
2015-12-01
The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.
Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity
NASA Astrophysics Data System (ADS)
Morris, C. K.; Knighton, J.
2017-12-01
Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.
Impacts of rural land-use on overland flow and sediment transport
NASA Astrophysics Data System (ADS)
Fraser, S. L.; Jackson, B. M.; Norton, K. P.
2013-12-01
The loss of fertile topsoil over time, due to erosive processes, could have a major impact on New Zealand's economy as well as being devastating to individual land owners. Improved management of land use is needed to provide protection of soil from erosion by overland flow and aeolian processes. Effects of soil erosion and sedimentation result in an annual nationwide cost of NZ$123 million. Many previous New Zealand studies have focused on large scale soil movement from land sliding and gully erosion, including identifying risk areas. However, long term small scale erosion and degradation has been largely overlooked in the literature. Although small scale soil erosion is less apparent than mass movement, cumulative small scale soil loss over many years may have a significant impact for future land productivity. One approach to assessing the role of soil degradation is through the application of landscape models. Due to the time consuming collection of data and limited scales over which data can be collected, many models created are unique to a particular land type, land use or locality. Collection of additional datasets can broaden the use of such models by informing model representation and enhancing parameterisation. The Land Use Capability Index (LUCI), developed by Jackson et al (2013) is an example of a model that will benefit from additional data sets. LUCI is a multi-criteria GIS tool, designed to inform land management decisions by identifying areas of potential change, based on land characteristics and land use options. LUCI topographically routes overland flow and sediment using existing land characteristic maps and additionally incorporating sub-field scale data. The model then has the ability to utilise these data to enhance prediction at landscape scale. This study focuses on the influence of land use on small scale sediment transport and enhancing process representation and parameterisation to improve predictive ability of models, such as LUCI. Data are currently being collected in a small catchment at the foothills of the Tararua ranges, lower North Island of New Zealand. Gurlach traps are utilised in a step like array on a number of hillslopes to provide a comprehensive dataset of overland flow and sediment volume for different magnitude rainfall events. ArcGIS is used to calculate a contributing area to each trap. The study provides quantitative data linking overland flow to event magnitude for the rural land uses of pasture versus regenerating native forest at multiple slope angles. These data along with measured soil depth/slope relationships and stream monitoring data are used to inform process representation and parameterisation of LUCI at hillslope scale. LUCI is then used to explore implications at landscape scale. The data and modelling are intended to provide information to help in long-term land management decisions. Jackson, B., Pagella, T., Sinclair, F., Orellana, B., Henshaw, A., Reynolds, B., McIntyre, N., Wheater, H., and Eycott, A. 2013. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landscape and Urban Planning, 112(0): 74-88
NASA Astrophysics Data System (ADS)
Konings, A. G.; Bloom, A. A.; Liu, J.; Parazoo, N.; Schimel, D.; Bowman, K. W.
2016-12-01
Heterotrophic respiration is the dominant process causing the loss of soil organic carbon, the largest stock of carbon on earth. Temperature, soil moisture, substrate availability, and soil microbial composition can all affect the rate of heterotrophic respiration. Without isotopic or root-specific measurements, it can be difficult to separate the total soil respiration into autotrophic and heterotrophic respiration. As a result, the large-scale variability and seasonality of heterotrophic respiration remains unknown, especially outside the mid-latitudes. In this study, we use remote-sensing based observational constraints to estimate heterotrophic respiration at large scales. We combine net ecosystem exchange estimates from atmospheric inversions of the Carbon Monitoring System-Flux project (CMS-Flux) with a recently derived optimally-scaled GPP dataset based on satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a spatially-varying carbon use efficiency retrieved in a model-data fusion framework (CARDAMOM). The three datasets are combined into a Bayesian framework to derive the uncertainty distribution of global heterotrophic respiration allowing only physically realistic solutions (appropriate signs for all fluxes), In most Southern Hemisphere regions where precipitation and temperature are anti-correlated (e.g. dry African woodlands, Sahel, Southern India, etc..), the seasonality of heterotrophic respiration follows precipitation, not temperature. This results in an apparent anti-correlation between heterotrophic respiration and temperature. By comparison, a data-constrained terrestrial ecosystem model that does not simulate an effect of soil moisture on heterotrophic respiration did not show this anti-correlation. Data-driven heterotrophic respiration estimates such as those presented here may be used to benchmark model predictions of heterotrophic respiration in the future.
Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S
2011-01-01
Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants.
Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2007-02-01
SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.
NASA Astrophysics Data System (ADS)
Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron
2016-02-01
Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the globe, this study may have important applications in aiding water resources management in different regions.
NASA Astrophysics Data System (ADS)
Buarque, D. C.; Collischonn, W.; Paiva, R. C. D.
2012-04-01
This study presents the first application and preliminary results of the large scale hydrodynamic/hydrological model MGB-IPH with a new module to predict the spatial distribution of the basin erosion and river sediment transport in a daily time step. The MGB-IPH is a large-scale, distributed and process based hydrological model that uses a catchment based discretization and the Hydrological Response Units (HRU) approach. It uses physical based equations to simulate the hydrological processes, such as the Penman Monteith model for evapotranspiration, and uses the Muskingum Cunge approach and a full 1D hydrodynamic model for river routing; including backwater effects and seasonal flooding. The sediment module of the MGB-IPH model is divided into two components: 1) prediction of erosion over the basin and sediment yield to river network; 2) sediment transport along the river channels. Both MGB-IPH and the sediment module use GIS tools to display relevant maps and to extract parameters from SRTM DEM (a 15" resolution was adopted). Using the catchment discretization the sediment module applies the Modified Universal Soil Loss Equation to predict soil loss from each HRU considering three sediment classes defined according to the soil texture: sand, silt and clay. The effects of topography on soil erosion are estimated by a two-dimensional slope length (LS) factor which using the contributing area approach and a local slope steepness (S), both estimated for each DEM pixel using GIS algorithms. The amount of sediment releasing to the catchment river reach in each day is calculated using a linear reservoir. Once the sediment reaches the river they are transported into the river channel using an advection equation for silt and clay and a sediment continuity equation for sand. A sediment balance based on the Yang sediment transport capacity, allowing to compute the amount of erosion and deposition along the rivers, is performed for sand particles as bed load, whilst no erosion or deposition is allowed for silt and clay. The model was first applied on the Madeira River basin, one of the major tributaries of the Amazon River (~1.4*106 km2) accounting for 35% of the suspended sediment amount annually transported for the Amazon river to the ocean. Model results agree with observed data, mainly for monthly and annual time scales. The spatial distribution of soil erosion within the basin showed a large amount of sediment being delivered from the Andean regions of Bolivia and Peru. Spatial distribution of mean annual sediment along the river showed that Madre de Dios, Mamoré and Beni rivers transport the major amount of sediment. Simulated daily suspended solid discharge agree with observed data. The model is able to provide temporaly and spatialy distributed estimates of soil loss source over the basin, locations with tendency for erosion or deposition along the rivers, and to reproduce long term sediment yield at several locations. Despite model results are encouraging, further effort is needed to validate the model considering the scarcity of data at large scale.
Smap: A Hydrologist Goes Crazy with a New High-Quality Dataset
NASA Technical Reports Server (NTRS)
Koster, Randal
2018-01-01
By providing global measurements of near-surface soil moisture (down to about 5 cm) with unprecedented accuracy, the Soil Moisture Active/Passive (SMAP) satellite mission has opened the door to new and (in my opinion) exciting hydrological science. In this seminar, I present the results of a recent series of analyses performed with SMAP soil moisture data, covering a wide range of topics: (a) the characterization of the dynamics of near-surface soil moisture, with implications for forecasting soil moisture days into the future; (b) the multi-faceted character of the SMAP data, in the sense that different, established analysis approaches can extract information from the data that is largely (and perhaps unexpectedly) complementary; and (c) the interpretation of the data in the context of large-scale water fluxes. This final analysis is particularly exciting to me because it shows that, once the relevant algorithms are calibrated, precipitation and streamflow rates in hydrological basins can be estimated from the SMAP data alone - a reflection of the fact that the near-surface soil is a critical gateway between the atmospheric and subsurface branches of the hydrological cycle.
Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku
2009-01-01
Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050
[Soil and forest structure in the Colombian Amazon].
Calle-Rendón, Bayron R; Moreno, Flavio; Cárdenas López, Dairon
2011-09-01
Forests structural differences could result of environmental variations at different scales. Because soils are an important component of plant's environment, it is possible that edaphic and structural variables are associated and that, in consequence, spatial autocorrelation occurs. This paper aims to answer two questions: (1) are structural and edaphic variables associated at local scale in a terra firme forest of Colombian Amazonia? and (2) are these variables regionalized at the scale of work? To answer these questions we analyzed the data of a 6ha plot established in a terra firme forest of the Amacayacu National Park. Structural variables included basal area and density of large trees (diameter > or = 10cm) (Gdos and Ndos), basal area and density of understory individuals (diameter < 10cm) (Gsot and Nsot) and number of species of large trees (sp). Edaphic variables included were pH, organic matter, P, Mg, Ca, K, Al, sand, silt and clay. Structural and edaphic variables were reduced through a principal component analysis (PCA); then, the association between edaphic and structural components from PCA was evaluated by multiple regressions. The existence of regionalization of these variables was studied through isotropic variograms, and autocorrelated variables were spatially mapped. PCA found two significant components for structure, corresponding to the structure of large trees (G, Gdos, Ndos and sp) and of small trees (N, Nsot and Gsot), which explained 43.9% and 36.2% of total variance, respectively. Four components were identified for edaphic variables, which globally explained 81.9% of total variance and basically represent drainage and soil fertility. Regression analyses were significant (p < 0.05) and showed that the structure of both large and small trees is associated with greater sand contents and low soil fertility, though they explained a low proportion of total variability (R2 was 4.9% and 16.5% for the structure of large trees and small tress, respectively). Variables with spatial autocorrelation were the structure of small trees, Al, silt, and sand. Among them, Nsot and sand content showed similar patterns of spatial distribution inside the plot.
Regional-scale drivers of forest structure and function in northwestern Amazonia.
Higgins, Mark A; Asner, Gregory P; Anderson, Christopher B; Martin, Roberta E; Knapp, David E; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.
Current challenges in quantifying preferential flow through the vadose zone
NASA Astrophysics Data System (ADS)
Koestel, John; Larsbo, Mats; Jarvis, Nick
2017-04-01
In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Jurisch, Nicole; Garcia Alba, Juana; Albiac Borraz, Elisa; Schmidt, Marten; Huth, Vytas; Rogasik, Helmut; Rieckh, Helene; Verch, Gernot; Sommer, Michael; Augustin, Jürgen
2017-04-01
Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (ΔSOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial and temporal changes in SOC stocks, particularly pronounced on arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in ΔSOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal ΔSOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal as well as small-scale spatial dynamics of ΔSOC. Therefore, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot) was used. To verify our method, results were compared with ΔSOC observed by soil resampling. AC measurements were performed from 2010 to 2014 under a silage maize/winter fodder rye/sorghum-Sudan grass hybrid/alfalfa crop rotation at a colluvial depression located in the hummocky ground moraine landscape of NE Germany. Widespread in large areas of the formerly glaciated Northern Hemisphere, this depression type is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity in soil properties, such as SOC and nitrogen (Nt). After monitoring the initial stage during 2010, soil erosion was experimentally simulated by incorporating topsoil material from an eroded midslope soil into the plough layer of the colluvial depression. SOC stocks were quantified before and after soil manipulation and at the end of the study period. AC-based ΔSOC values corresponded well with the tendencies and magnitude of the results observed in the repeated soil inventory. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual ΔSOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial and short-term temporal dynamics of ΔSOC.
Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng
2014-01-01
In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.
Experimental evidence of the role of pores on movement and distribution of bacteria in soil
NASA Astrophysics Data System (ADS)
Kravchenko, Alexandra N.; Rose, Joan B.; Marsh, Terence L.; Guber, Andrey K.
2014-05-01
It has been generally recognized that micro-scale heterogeneity in soil environments can have a substantial effect on movement, fate, and survival of soil microorganisms. However, only recently the development of tools for micro-scale soil analyses, including X-ray computed micro-tomography (μ-CT), enabled quantitative analyses of these effects. The long-term goal of our work is to explore how differences in micro-scale characteristics of pore structures influence movement, spatial distribution patterns, and activities of soil microorganisms. Using X-ray μ-CT we found that differences in land use and management practices lead to development of contrasting patterns in pore size-distributions within intact soil aggregates. Then our experiments with Escherichia coli added to intact soil aggregates demonstrated that the differences in pore structures can lead to substantial differences in bacteria redistribution and movement within the aggregates. Specifically, we observed more uniform E.coli redistribution in aggregates with homogeneously spread pores, while heterogeneous pore structures resulted in heterogeneous E.coli patterns. Water flow driven by capillary forces through intact aggregate pores appeared to be the main contributor to the movement patterns of the introduced bacteria. Influence of pore structure on E.coli distribution within the aggregates further continued after the aggregates were subjected to saturated water flow. E. coli's resumed movement with saturated water flow and subsequent redistribution within the soil matrix was influenced by porosity, abundance of medium and large pores, pore tortuosity, and flow rates, indicating that greater flow accompanied by less convoluted pores facilitated E. coli transport within the intra-aggregate space. We also found that intra-aggregate heterogeneity of pore structures can have an effect on spatial distribution patterns of indigenous microbial populations. Preliminary analysis showed that in aggregates from an organic agricultural system with cover crops, characterized by greater intra-aggregate pore heterogeneity, bacteria of Actinobacteria and Firmicutes groups were more abundant in presence of large as compared to small pores. In contrast, no differences were observed in the aggregates from conventionally managed soil, overall characterized by homogeneous intra-aggregate pore patterns. Further research efforts are being directed towards quantification of the pore structure effects on activities and community composition of soil microorganisms.
NASA Astrophysics Data System (ADS)
Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.
2013-12-01
Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377
Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve
2003-02-01
Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.
The Soil Atlas of Africa: raising awareness and educate to the importance of soil
NASA Astrophysics Data System (ADS)
Dewitte, Olivier; Jones, Arwyn; Bosco, Claudio; Spaargaren, Otto; Montanarella, Luca
2010-05-01
The richness of African soil resources need to be protected for future generations. A number of threats are affecting the functioning of African soils, not only for the purpose of agricultural production, but also for other important environmental services that soil delivers to all of us. This is of particular importance once we know that many health-related problems in Africa are indirectly related to the services of soils. To raise the awareness of the general public, policy makers and other scientists to the importance of soil in Africa, the Joint Research Centre of the European Commission is to produce the first ever Soil Atlas of Africa. This is in collaboration with the African Union Commission, the Food and Agriculture Organization of the United Nations (FAO), the Africa Soil Science Society, ISRIC - World Soil Information and scientists from both Europe and Africa. The Atlas compiles existing information on different soil types as easily understandable maps (both at regional and continental scale) covering the African continent. The Soil Atlas of Africa intends to produce derived maps at continental scale with descriptive text (e.g. vulnerability to desertification, soil nutrient status, carbon stocks and sequestration potential, irrigable areas and water resources) as well as specific maps to illustrate threats such as soil erosion for instance. For each regional overview, large scale examples of soil maps and derived products are presented too. The Atlas will be published as a hardcover book containing 174 A3 pages, which will allow soils maps to be displayed at the A2 scale. Both French and English versions of the Atlas will be edited. The Atlas will be sold at a low cost and will be for free for educational purpose (Schools and Universities). A digital version on CD and eventually freely downloadable on internet will also be available. Together with the publication of the Atlas, associated datasets on soil characteristics for Africa will be made available. These datasets will be useful for making broad distinction among soil types and provide general trends at the global and regional scales. The datasets will be made accessible for free downloading from the portals of the SOIL Action (http://eusoils.jrc.ec.europa.eu/) and the ACP Observatory for Sustainable Development (http://acpobservatory.jrc.ec.europa.eu). The Atlas links the theme of soil with rural development and, at the same time, supports the goals of the EU Thematic Strategy for Soil Protection in conserving a threatened natural resource that is vital to human existence. Not only climate change, but also desertification and loss of biodiversity are strongly affecting soils globally, making the "Soil Atlas of Africa" relevant to a much larger community of stakeholders involved in the implementation of the three "Rio-Conventions" and allowing to explore possible synergies among international multilateral agreements towards global soil protection.
NASA Astrophysics Data System (ADS)
Ren, D.; Huang, G., Sr.; Xu, X.; Huang, Q., Sr.; Xiong, Y.
2016-12-01
Soil salinity analysis on a regional scale is of great significance for protecting agriculture production and maintaining eco-environmental health in arid and semi-arid irrigated areas. In this study, the Hetao Irrigation District (Hetao) in Inner Mongolia Autonomous Region, with suffering long-term soil salinization problems, was selected as the case study area. Field sampling experiments and investigations related to soil salt contents, crop growth and yields were carried out across the whole area, during April to August in 2015. Soil salinity characteristics in space and time were systematically analyzed for Hetao as well as the corresponding impacts on crops. Remotely sensed map of soil salinity distribution for surface soil was also derived based on the Landsat OLI data with a 30 m resolution. The results elaborated the temporal and spatial dynamics of soil salinity and the relationships with irrigation, groundwater depth and crop water consumption in Hetao. In addition, the strong spatial variability of salinization was clearly presented by the remotely sensed map of soil salinity. Further, the relationship between soil salinity and crop growth was analyzed, and then the impact degrees of soil salinization on cropping pattern, leaf area index, plant height and crop yield were preliminarily revealed. Overall, this study can provide very useful information for salinization control and guide the future agricultural production and soil-water management for the arid irrigation districts analogous to Hetao.
NASA Astrophysics Data System (ADS)
Sirianni, M.; Comas, X.; Shoemaker, B.; Job, M. J.; Cooper, H.
2016-12-01
Globally, wetland soils play an important role in regulating climate change by functioning as a source or sink for atmospheric carbon, particularly in terms of methane and carbon dioxide. While many historic studies defined the function of wetland soils in the global carbon budget, the gas-flux dynamics of subtropical wetlands is largely unknown. Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. The U.S. Geological Survey employs eddy covariance methods at several locations within the Preserve to quantify carbon and methane exchanges at ecosystem scales. While eddy covariance towers are a convenient tool for measuring gas fluxes, their footprint is spatially extensive (hundreds of meters); and thus spatial variability at smaller scales is masked by averaging or even overlooked. We intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a combination of geophysical, hydrologic and ecologic techniques. Preliminary results suggest that gas releases from flooded calcitic soils are much greater than organic soils. These results - and others - will help build a better understanding of the role of subtropical wetlands in the global carbon budget.
NASA Technical Reports Server (NTRS)
Caulfield, John; Crosson, William L.; Inguva, Ramarao; Laymon, Charles A.; Schamschula, Marius
1998-01-01
This is a followup on the preceding presentation by Crosson and Schamschula. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to disaggregate the microwave measurements to allow comparison with outputs from the hydrological models. Weighted interpolation and Bayesian methods are proposed to facilitate the comparison. While remote measurements occur at a large scale, they reflect underlying small-scale features. We can give continuing estimates of the small scale features by correcting the simple 0th-order, starting with each small-scale model with each large-scale measurement using a straightforward method based on Kalman filtering.
Assessment of soil moisture dynamics on an irrigated maize field using cosmic ray neutron sensing
NASA Astrophysics Data System (ADS)
Scheiffele, Lena Maria; Baroni, Gabriele; Oswald, Sascha E.
2015-04-01
In recent years cosmic ray neutron sensing (CRS) developed as a valuable, indirect and non-invasive method to estimate soil moisture at a scale of tens of hectares, covering the gap between point scale measurements and large scale remote sensing techniques. The method is particularly promising in cropped and irrigated fields where invasive installation of belowground measurement devices could conflict with the agricultural management. However, CRS is affected by all hydrogen pools in the measurement footprint and a fast growing biomass provides some challenges for the interpretation of the signal and application of the method for detecting soil moisture. For this aim, in this study a cosmic ray probe was installed on a field near Braunschweig (Germany) during one maize growing season (2014). The field was irrigated in stripes of 50 m width using sprinkler devices for a total of seven events. Three soil sampling campaigns were conducted throughout the growing season to assess the effect of different hydrogen pools on calibration results. Additionally, leaf area index and biomass measurements were collected to provide the relative contribution of the biomass on the CRS signal. Calibration results obtained with the different soil sampling campaigns showed some discrepancy well correlated with the biomass growth. However, after the calibration function was adjusted to account also for lattice water and soil organic carbon, thus representing an equivalent water content of the soil, the differences decreased. Soil moisture estimated with CRS responded well to precipitation and irrigation events, confirming also the effective footprint of the method (i.e., radius 300 m) and showing occurring water stress for the crop. Thus, the dynamics are in agreement with the soil moisture determined with point scale measurements but they are less affected by the heterogeneous moisture conditions within the field. For this reason, by applying a detailed calibration, CRS proves to be a valuable method for the application on agricultural sites to assess and improve irrigation management.
NASA Astrophysics Data System (ADS)
Matos, K.; Alves Meira Neto, A.; Troch, P. A. A.; Volkmann, T.
2017-12-01
Hydrological processes at the hillslope scale are complex and heterogeneous, but monitoring hillslopes with a large number of sensors or replicate experimental designs is rarely feasible. The Landscape Evolution Observatory (LEO) at Biosphere 2 consists of three replicated, large (330 m2) artificial hillslopes (East, Center and West) packed with 1-m depth of initially homogeneous, basaltic soil. Each landscape contains a spatially dense network of sensors capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture content and water potential, as well as the hillslope-integrated water balance components. A sophisticated irrigation system allows performing controlled forcing experiments. The three hillslopes are thought to be nearly identical, however recent data showed significant differences in discharge and storage behavior. A 45-day periodic-steady-state tracer experiment was conducted in November and December of 2016, where a 3.5-day long, identical irrigation sequence was repeated 15 times. Each sequence's rainfall, runoff, and storage dynamics were recorded, and distributed moisture characteristics were derived using paired moisture content and matric potential data from 496 positions in each hillslope. In order to understand why the three hillslopes behave hydrologically different, we analyzed soil water retention characteristics at various scales ranging from individually paired moisture and matric potential to whole-hillslope soil water retention characteristics. The results confirm the distinct hydrological behavior between the three hillslopes. The East and West hillslopes behave more similar with respect to the release of water. In contrast, the East and Center hillslopes are more similar with respect to their storage behavior. The differences in hillslope behavior arising from three identically built hillslopes are a surprising and beneficial opportunity to explore how differences in small-scale heterogeneity can impact hydrological dynamics at the hillslope scale.
Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal D.; Balsamo, Gianpaolo; Lawrence, David M.
2018-01-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison. PMID:29645013
NASA Technical Reports Server (NTRS)
Dirmeyer, Paul A.; Wu, Jiexia; Norton, Holly E.; Dorigo, Wouter A.; Quiring, Steven M.; Ford, Trenton W.; Santanello, Joseph A., Jr.; Bosilovich, Michael G.; Ek, Michael B.; Koster, Randal Dean;
2016-01-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses out perform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.
Dirmeyer, Paul A; Wu, Jiexia; Norton, Holly E; Dorigo, Wouter A; Quiring, Steven M; Ford, Trenton W; Santanello, Joseph A; Bosilovich, Michael G; Ek, Michael B; Koster, Randal D; Balsamo, Gianpaolo; Lawrence, David M
2016-04-01
Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those we find that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely due to differences in instrumentation, calibration and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory) and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.
A new mechanistic framework to predict OCS fluxes in soils
NASA Astrophysics Data System (ADS)
Sauze, Joana; Ogee, Jérôme; Launois, Thomas; Kesselmeier, Jürgen; Van Diest, Heidi; Wingate, Lisa
2015-04-01
A better description of the amplitude of photosynthetic and respiratory gross CO2 fluxes at large scales is needed to improve our predictions of the current and future global CO2 cycle. Carbonyl sulfide (COS) is the most abundant sulphur gas in the atmosphere and has been proposed as a new tracer of gross photosynthesis, as the uptake of COS from the atmosphere is dominated by the activity of carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyses CO2 hydration during photosynthesis. However, soils also exchange COS with the atmosphere and there is growing evidence that this flux must also be accounted for in atmospheric budgets. In this context a new mechanistic description of soil-atmosphere COS exchange is clearly needed. Soils can take up COS from the atmosphere as the soil biota also contain CA, and COS emissions from soils have also been reported in agricultural fields or anoxic soils. Previous studies have also shown that soil COS fluxes present an optimum soil water content and soil temperature. Here we propose a new mechanistic framework to predict the fluxes of COS between the soils and the atmosphere. We describe the COS soil budget by a first-order reaction-diffusion-production equation, assuming that the hydrolysis of COS by CA is total and irreversible. To describe COS diffusion through the soil matrix, we use different formulations of soil air-filled pore space and temperature, depending on the turbulence level above the soil surface. Using this model we are able to explain the observed presence of an optimum temperature for soil COS uptake and show how this optimum can shift to cooler temperatures in the presence of soil COS emissions. Our model can also explain the observed optimum with soil moisture content previously described in the literature (e.g. Van Diest & Kesselmeier, 2008) as a result of diffusional constraints on COS hydrolysis. These diffusional constraints are also responsible for the response of COS uptake to soil weight and depth observed by Kesselmeier et al. (1999). In order to simulate the exact COS uptake rates and patterns observed on several soils collected from a range of biomes (Van Diest & Kesselmeier, 2008) different CA activities had to be evoked in each soil type, coherent with the expected soil microbial population size and diversity. A better description of the drivers governing soil CA activity and COS emissions from soils is needed before incorporating our new mechanistic model of soil-atmosphere COS uptake in large-scale ecosystem models and COS atmospheric budgets.
NASA Astrophysics Data System (ADS)
Chen, Jinlei; Wen, Jun; Tian, Hui
2016-02-01
Soil moisture plays an increasingly important role in the cycle of energy-water exchange, climate change, and hydrologic processes. It is usually measured at a point site, but regional soil moisture is essential for validating remote sensing products and numerical modeling results. In the study reported in this paper, the minimal number of required sites (NRS) for establishing a research observational network and the representative single sites for regional soil moisture estimation are discussed using the soil moisture data derived from the ;Maqu soil moisture observational network; (101°40‧-102°40‧E, 33°30‧-35°45‧N), which is supported by Chinese Academy of Science. Furthermore, the best up-scaling method suitable for this network has been studied by evaluating four commonly used up-scaling methods. The results showed that (1) Under a given accuracy requirement R ⩾ 0.99, RMSD ⩽ 0.02 m3/m3, NRS at both 5 and 10 cm depth is 10. (2) Representativeness of the sites has been validated by time stability analysis (TSA), time sliding correlation analysis (TSCA) and optimal combination of sites (OCS). NST01 is the most representative site at 5 cm depth for the first two methods; NST07 and NST02 are the most representative sites at 10 cm depth. The optimum combination sites at 5 cm depth are NST01, NST02, and NST07. NST05, NST08, and NST13 are the best group at 10 cm depth. (3) Linear fitting, compared with other three methods, is the best up-scaling method for all types of representative sites obtained above, and linear regression equations between a single site and regional soil moisture are established hereafter. ;Single site; obtained by OCS has the greatest up-scaling effect, and TSCA takes the second place. (4) Linear fitting equations show good practicability in estimating the variation of regional soil moisture from July 3, 2013 to July 3, 2014, when a large number of observed soil moisture data are lost.
Forest soil chemistry and terrain attributes in a Catskills watershed
Johnson, C.E.; Ruiz-Mendez, J. J.; Lawrence, G.B.
2000-01-01
Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pH(w), effective cation-exchange capacity (CEC(e)), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pH(w) together explained 33 to 66% of the variation in exchangeable bases and CEC(e). Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CEC(e) (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CEC(e) occupied by H explained 44% of the variation in pH(w). Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pHw, effective cation-exchange capacity (CECe), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pHw together explained 33 to 66% of the variation in exchangeable bases and CECe. Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CECe (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CECe occupied by H explained 44% of the variation in pHw. Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.
The analysis of soil cores polluted with certain metals using the Box-Cox transformation.
Meloun, Milan; Sánka, Milan; Nemec, Pavel; Krítková, Sona; Kupka, Karel
2005-09-01
To define the soil properties for a given area or country including the level of pollution, soil survey and inventory programs are essential tools. Soil data transformations enable the expression of the original data on a new scale, more suitable for data analysis. In the computer-aided interactive analysis of large data files of soil characteristics containing outliers, the diagnostic plots of the exploratory data analysis (EDA) often find that the sample distribution is systematically skewed or reject sample homogeneity. Under such circumstances the original data should be transformed. The Box-Cox transformation improves sample symmetry and stabilizes spread. The logarithmic plot of a profile likelihood function enables the optimum transformation parameter to be found. Here, a proposed procedure for data transformation in univariate data analysis is illustrated on a determination of cadmium content in the plough zone of agricultural soils. A typical soil pollution survey concerns the determination of the elements Be (16 544 values available), Cd (40 317 values), Co (22 176 values), Cr (40 318 values), Hg (32 344 values), Ni (34 989 values), Pb (40 344 values), V (20 373 values) and Zn (36 123 values) in large samples.
Chen, Shiling; Yu, Weiwei; Zhang, Zhi; Luo, Surong
2015-03-01
Biogas slurry, as a quality organic fertilizer, is widely used on large scale livestock farmland in Southwest China. In the present study, slurry collected from anaerobic tank of dairy farm was used to irrigate farmland having typical purple soil in Chongquing, China. The study revealed that irrigation with biogasslurry increased soil ammonium nitrogen and soil nitrate by 47.8 and 19% respectively as compared to control check. The average soil available phosphorus and soil phosphorus absorption co-efficient changed slightly. Relative enzyme activities of N and P transformation were indicated by catalase, urease, invertase and phosphatase activity. Irrigation period and irrigation quantity were selected as variable factor Catalase, invertase and urease activity was highest when irrigation period and irrigation quantitiy was 4 days and 500 ml; whereas highest phosphatase activity increased significantly in purple irrigated by biogas slurry. The result of the present study is helpful in finding optimum irrigation conditions required for enzyme activity within defined range. It further reveals that biogas slurry enriches soil with various nutrients by enhancing N, P content and enzyme activities as well as it also deals with large number of biogas slurry for protecting the environment.
Devastating Carolina Floods Viewed by NASA SMAP
2015-10-08
Surface soil moisture in the Southeastern United States as retrieved from NASA's Soil Moisture Active Passive (SMAP) satellite observatory at around 6 a.m. on Oct. 5, 2015. Large parts of South Carolina appear blue, representing the impact of heavy localized rains and flooding. Regions in blue indicate areas with saturated soil conditions and possible standing water. Large-scale flooding was experienced all over South Carolina on Oct. 5-6, 2015. As of Oct. 7, 17 deaths had been attributed to these floods, with heavy economic losses. In some regions, the intensity of these floods was described as a 1,000-year storm (1-in-1,000 chance of happening in any given year). At least 14 dams have already failed as a result of these floods. http://photojournal.jpl.nasa.gov/catalog/PIA20001
Assessing and Projecting Greenhouse Gas Release due to Abrupt Permafrost Degradation
NASA Astrophysics Data System (ADS)
Saito, K.; Ohno, H.; Yokohata, T.; Iwahana, G.; Machiya, H.
2017-12-01
Permafrost is a large reservoir of frozen soil organic carbon (SOC; about half of all the terrestrial storage). Therefore, its degradation (i.e., thawing) under global warming may lead to a substantial amount of additional greenhouse gas (GHG) release. However, understanding of the processes, geographical distribution of such hazards, and implementation of the relevant processes in the advanced climate models are insufficient yet so that variations in permafrost remains one of the large source of uncertainty in climatic and biogeochemical assessment and projections. Thermokarst, induced by melting of ground ice in ice-rich permafrost, leads to dynamic surface subsidence up to 60 m, which further affects local and regional societies and eco-systems in the Arctic. It can also accelerate a large-scale warming process through a positive feedback between released GHGs (especially methane), atmospheric warming and permafrost degradation. This three-year research project (2-1605, Environment Research and Technology Development Fund of the Ministry of the Environment, Japan) aims to assess and project the impacts of GHG release through dynamic permafrost degradation through in-situ and remote (e.g., satellite and airborn) observations, lab analysis of sampled ice and soil cores, and numerical modeling, by demonstrating the vulnerability distribution and relative impacts between large-scale degradation and such dynamic degradation. Our preliminary laboratory analysis of ice and soil cores sampled in 2016 at the Alaskan and Siberian sites largely underlain by ice-rich permafrost, shows that, although gas volumes trapped in unit mass are more or less homogenous among sites both for ice and soil cores, large variations are found in the methane concentration in the trapped gases, ranging from a few ppm (similar to that of the atmosphere) to hundreds of thousands ppm We will also present our numerical approach to evaluate relative impacts of GHGs released through dynamic permafrost degradations, by implementing conceptual modeling to assess and project distribution and affected amount of ground ice and SOC.
Guo, X; Fu, B; Ma, K; Chen, L
2000-08-01
Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.
Trends in soil moisture and real evapotranspiration in Douro River for the period 1980-2010
NASA Astrophysics Data System (ADS)
García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
This study analyzes the evolution of different hydrological variables, such as soil moisture and real evapotranspiration, for the last 30 years, in the Douro Basin, the most extensive basin in the Iberian Peninsula. The different components of the real evaporation, connected to the soil moisture content, can be important when analyzing the intensity of droughts and heat waves, and particularly relevant for the study of the climate change impacts. The real evapotranspiration and soil moisture data are provided by simulations obtained using the Variable Infiltration Capacity (VIC) hydrological model. This model is a large-scale hydrologic model and allows estimates of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cells and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset are used as input variables for VIC model. The simulations have a spatial resolution of about 9 km, and the analysis is carried out on a seasonal time-scale. Additionally, we compare these results with those obtained from a dynamical downscaling driven by ERA-Interim data using the Weather Research and Forecasting (WRF) model, with the same spatial resolution. The results obtained from Spain02 data show a decrease in soil moisture at different parts of the basin during spring and summer, meanwhile soil moisture seems to be increased for autumn. No significant changes are found for real evapotranspiration. Keywords: real evapotranspiration, soil moisture, Douro Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.
2016-01-01
Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.
Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F.
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling. PMID:27501148
Representation of Stormflow and a More Responsive Water Table in a TOPMODEL-Based Hydrology Model
NASA Technical Reports Server (NTRS)
Shaman, Jeffrey; Stieglitz, Marc; Engel, Victor; Koster, Randal; Stark, Colin; Houser, Paul R. (Technical Monitor)
2001-01-01
This study presents two new modeling strategies. First, a methodology for representing the physical process of stormflow within a TOPMODEL framework is developed. In using this approach, discharge at quickflow time scales is simulated and a fuller depiction of hydrologic activity is brought about. Discharge of water from the vadose zone is permitted in a physically realistic manner without a priori assumption of the level within the soil column at which stormflow saturation can take place. Determination of the stormflow contribution to discharge is made using the equation for groundwater flow. No new parameters are needed. Instead, regions of near saturation that develop during storm events, producing vertical recharge, are allowed to contribute to soil column discharge. These stormflow contributions to river runoff, as for groundwater flow contributions, are a function of catchment topography and local hydraulic conductivity at the depth of these regions of near saturation. The second approach improves groundwater flow response through a reduction of porosity and field capacity with depth in the soil column. Large storm events are better captured and a more dynamic water table develops with application of this modified soil column profile (MSCP). The MSCP predominantly reflects soil depth differences in upland and lowland regions of a watershed. Combined, these two approaches - stormflow and the MSCP - provide a more accurate representation of the time scales at which soil column discharge responds and a more complete depiction of hydrologic activity. Storm events large and small are better simulated, and some of the biases previously evident in TOPMODEL simulations are reduced.
NASA Astrophysics Data System (ADS)
Felfelani, F.; Pokhrel, Y. N.
2017-12-01
In this study, we use in-situ observations and satellite data of soil moisture and groundwater to improve irrigation and groundwater parameterizations in the version 4.5 of the Community Land Model (CLM). The irrigation application trigger, which is based on the soil moisture deficit mechanism, is enhanced by integrating soil moisture observations and the data from the Soil Moisture Active Passive (SMAP) mission which is available since 2015. Further, we incorporate different irrigation application mechanisms based on schemes used in various other land surface models (LSMs) and carry out a sensitivity analysis using point simulations at two different irrigated sites in Mead, Nebraska where data from the AmeriFlux observational network are available. We then conduct regional simulations over the entire High Plains region and evaluate model results with the available irrigation water use data at the county-scale. Finally, we present results of groundwater simulations by implementing a simple pumping scheme based on our previous studies. Results from the implementation of current irrigation parameterization used in various LSMs show relatively large difference in vertical soil moisture content profile (e.g., 0.2 mm3/mm3) at point scale which is mostly decreased when averaged over relatively large regions (e.g., 0.04 mm3/mm3 in the High Plains region). It is found that original irrigation module in CLM 4.5 tends to overestimate the soil moisture content compared to both point observations and SMAP, and the results from the improved scheme linked with the groundwater pumping scheme show better agreement with the observations.
Using LUCAS topsoil database to estimate soil organic carbon content in local spectral libraries
NASA Astrophysics Data System (ADS)
Castaldi, Fabio; van Wesemael, Bas; Chabrillat, Sabine; Chartin, Caroline
2017-04-01
The quantification of the soil organic carbon (SOC) content over large areas is mandatory to obtain accurate soil characterization and classification, which can improve site specific management at local or regional scale exploiting the strong relationship between SOC and crop growth. The estimation of the SOC is not only important for agricultural purposes: in recent years, the increasing attention towards global warming highlighted the crucial role of the soil in the global carbon cycle. In this context, soil spectroscopy is a well consolidated and widespread method to estimate soil variables exploiting the interaction between chromophores and electromagnetic radiation. The importance of spectroscopy in soil science is reflected by the increasing number of large soil spectral libraries collected in the world. These large libraries contain soil samples derived from a consistent number of pedological regions and thus from different parent material and soil types; this heterogeneity entails, in turn, a large variability in terms of mineralogical and organic composition. In the light of the huge variability of the spectral responses to SOC content and composition, a rigorous classification process is necessary to subset large spectral libraries and to avoid the calibration of global models failing to predict local variation in SOC content. In this regard, this study proposes a method to subset the European LUCAS topsoil database into soil classes using a clustering analysis based on a large number of soil properties. The LUCAS database was chosen to apply a standardized multivariate calibration approach valid for large areas without the need for extensive field and laboratory work for calibration of local models. Seven soil classes were detected by the clustering analyses and the samples belonging to each class were used to calibrate specific partial least square regression (PLSR) models to estimate SOC content of three local libraries collected in Belgium (Loam belt and Wallonia) and Luxembourg. The three local libraries only consist of spectral data (199 samples) acquired using the same protocol as the one used for the LUCAS database. SOC was estimated with a good accuracy both within each local library (RMSE: 1.2 ÷ 5.4 g kg-1; RPD: 1.41 ÷ 2.06) and for the samples of the three libraries together (RMSE: 3.9 g kg-1; RPD: 2.47). The proposed approach could allow to estimate SOC everywhere in Europe only collecting spectra, without the need for chemical laboratory analyses, exploiting the potentiality of the LUCAS database and specific PLSR models.
GEMAS: CNS concentrations and C/N ratios in European agricultural soil.
Matschullat, Jörg; Reimann, Clemens; Birke, Manfred; Dos Santos Carvalho, Debora
2018-06-15
A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing - despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20cm of ploughed soil (A p horizon) at 2108 sites with an even sampling density of one site per 2500km 2 for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3wt% (median: 2.20wt%) and TOC from 0.40 to 46.0wt% (median: 1.80wt%). Total nitrogen ranged from 0.018 to 2.64wt% (median: 0.169wt%) and TS from 0.008 to 9.74wt% (median: 0.034wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aznavourian, Ronald; Puvirajesinghe, Tania M.; Brûlé, Stéphane; Enoch, Stefan; Guenneau, Sébastien
2017-11-01
We begin with a brief historical survey of discoveries of quasi-crystals and graphene, and then introduce the concept of transformation crystallography, which consists of the application of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-projection method from periodic structures in higher-dimensional space. We analyze elastic wave propagation in the transformed crystals and (Penrose-type) quasi-crystals with the finite difference time domain freeware SimSonic. We consider geometric transforms underpinning the design of seismic cloaks with square, circular, elliptical and peanut shapes in the context of honeycomb crystals that can be viewed as scaled-up versions of graphene. Interestingly, the use of morphing techniques leads to the design of cloaks with interpolated geometries reminiscent of Victor Vasarely’s artwork. Employing the case of transformed graphene-like (honeycomb) structures allows one to draw useful analogies between large-scale seismic metamaterials such as soils structured with columns of concrete or grout with soil and nanoscale biochemical metamaterials. We further identify similarities in designs of cloaks for elastodynamic and hydrodynamic waves and cloaks for diffusion (heat or mass) processes, as these are underpinned by geometric transforms. Experimental data extracted from field test analysis of soil structured with boreholes demonstrates the application of crystallography to large scale phononic crystals, coined as seismic metamaterials, as they might exhibit low frequency stop bands. This brings us to the outlook of mechanical metamaterials, with control of phonon emission in graphene through extreme anisotropy, attenuation of vibrations of suspension bridges via low frequency stop bands and the concept of transformed meta-cities. We conclude that these novel materials hold strong applications spanning different disciplines or across different scales from biophysics to geophysics.
NASA Astrophysics Data System (ADS)
Allen, M. F.
2013-05-01
Fungal hyphae represent the second largest standing crop biomass in most terrestrial ecosystems. Mycorrhizal fungal hyphae are largely using newly-fixed carbon to explore the soil volume and provide nutrients and water to the host plant. Yet we know almost nothing about their dynamics in situ. We used a high-resolution (100x) automated minirhizotron to take daily images of mycorrhizal fungal hyphae in three distinct environments to describe fungal dynamics, a tropical rainforest (La Selva Biological Station, Costa Rica), a hot desert (Boyd Deep Canyon University of California NRS, USA), and a Mediterranean-climate mixed conifer forest (James San Jacinto University of California NRS, USA). 4400 images per tube per day were organized into mosaics, observed, and hyphal dynamics measured. All tube locations were also fitted with soil sensors for CO2, temperature (T), and soil moisture (SM), and atmospheric sensors for relative humidity, PAR, precipitation, and air temperature. At all sites, mycorrhizal fungal hyphae responded rapidly to precipitation and drying events. By observing individual hyphae, we found that both production and mortality peaked in association with these events. In the rain forest, soils were normally wet, restricting gas diffusion. Soil CO2 levels went as high as 50,000ppm. Hyphae continued to grow all year, but there was a peak in growth as soils dried, followed by mortality as the long dry period continued, as SM and soil CO2 declined but T increased. In the hot desert, soils were very dry except immediately following a large precipitation event. With precipitation, fine roots and hyphae start growing within a day. CO2 levels go up to 20,000ppm but then drop rapidly as CO2 diffuses out of the soil profile. Hyphal lengths remain high until they slowly die back. At the conifer forest, hyphae responded to precipitation and soil warming, but some persisted through the dry season and under snow. These observations tell us that newer technologies allow us to undertake comparative analyses of soil organisms, such as fungi, on time scale at which the respond to changing weather events and to track individual hyphae to determine turnover, the crucial missing datapoint in carbon modeling. They also tell us that each different ecosystem responds differently, and non-linearly to changes in T and SM, with dramatic shifts in C fluxes. If we are to obtain a mechanistic understanding of global carbon dynamics, we need to understand how soil organisms respond to both fine-scale and coarse scale shifts in different ecosystems.
NASA Astrophysics Data System (ADS)
Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd
2016-04-01
The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.
Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers
2009-01-01
Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils. PMID:20003362
Remote sensing of physiographic soil units of Bennett County, South Dakota
NASA Technical Reports Server (NTRS)
Frazee, C. J.; Gropper, J. L.; Westin, F. C.
1973-01-01
A study was conducted in Bennett County, South Dakota, to establish a rangeland test site for evaluating the usefulness of ERTS data for mapping soil resources in rangeland areas. Photographic imagery obtained in October, 1970, was analyzed to determine which type of imagery is best for mapping drainage and land use patterns. Imagery of scales ranging from 1:1,000,000 to 1.20,000 was used to delineate soil-vegetative physiographic units. The photo characteristics used to define physiographic units were texture, drainage pattern, tone pattern, land use pattern and tone. These units will be used as test data for evaluating ERTS data. The physiographic units were categorized into a land classification system. The various categories which were delineated at the different scales of imagery were designed to be useful for different levels of land use planning. The land systems are adequate only for planning of large areas for general uses. The lowest category separated was the facet. The facets have a definite soil composition and represent different soil landscapes. These units are thought to be useful for providing natural resource information needed for local planning.
Characterization of hot spots for natural chloroform formation: Relevance for groundwater quality
NASA Astrophysics Data System (ADS)
Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels
2015-04-01
Chloroform soil hot spot may deteriorate groundwater quality and may even result in chloroform concentration exceeding the Danish maximum limit of 1 µg/L in groundwater for potable use. In order to characterize the soil properties important for the chloroform production, various ecosystems were examined with respect to soil air chloroform and soil organic matter type and content. Coniferous forest areas, responsible for highest chloroform concentrations, were examined on widely different scales from km to cm scale. Furthermore, regular soil gas measurements including chloroform were performed during 4 seasons at various depths, together with various meteorological measurements and soil temperature recordings. Laboratory incubation experiments were also performed on undisturbed soil samples in order to examine the role of various microbiota, fungi and bacteria. To identify hot spots responsible for the natural contamination we have measured the production of chloroform in the upper soil from different terrestrial systems. Field measurements of chloroform in top soil air were used as production indicators. The production was however not evenly distributed at any scale. The ecosystems seem to have quite different net-productions of chloroform from very low in grassland to very high in some coniferous forests. Within the forest ecosystem we found large variation in chloroform concentrations depending on vegetation. In beech forest we found the lowest values, somewhat higher in an open pine forest, but the highest concentrations were detected in spruce forest without any vegetation beneath. Within this ecotype, it appeared that the variation was also large; hot spots with 2-4 decades higher production than the surrounding area. These hot spots were not in any way visually different from the surroundings and were of variable size from 3 to 20 meters in diameter. Besides this, measurements within a seemingly homogenous hot spot showed that there was still high variability at 10 cm level. We suggest that the mechanism behind the formation of chloroform is an unspecific chlorination of organic matter, caused by microbial activity in the soil forming trichloroacetyl compounds. Laboratory measurements on intact soil cores have identified that the F and H horizons in the forest soil are the main producers of chloroform. Despite various attempts to identify the mechanisms responsible for the variability within a visually and chemically homogeneous area we have not yet succeeded. Parameters like soil respiration, inorganic and total organic chlorine, organic matter and soil structure were studied without any significant difference in favour of hot spots. By the use of 13C-isotopes we could identify the natural origin of the chloroform, and over a three years period we could conclude that the hot spots were permanent on the sites. At the same time a significant seasonal variation were measured depending on temperature and soil moisture.
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
NASA Astrophysics Data System (ADS)
Barnes, M. E.; Hart, S. C.; Johnson, D. W.; Meadows, M. W.
2015-12-01
Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites. Over the entire 3-year study, nutrient fluxes were greater in the fall for all mineral soil nutrients except Ca2+ and Mg2+. Calcium fluxes were consistent with previous results; however, Mg2+ demonstrated no statistical significance between fall and spring sampling dates. Generally, the number of high statistical outliers persisted through time for Ca2+ and Mg2+, suggesting hot spots for these nutrients. In contrast, large seasonal and annual changes in the number of high statistical outliers occurred for NH4+, NO3-, and PO43-, nutrients whose availabilities are more mediated by microbial activity than base cations. Further elucidation of the mechanisms responsible for nutrient hot spot-hot moment phenomena within soil should be invaluable for improving the predictive capacity of biogeochemical models and for scaling these models across space and time.
NASA Astrophysics Data System (ADS)
Zizala, Daniel
2015-04-01
Soil water and wind erosion (possibly tillage erosion) is the most significant soil degradation factor in the Czech Republic. Moreover, this phenomenon also affects seriously quality of water sources., About 50 % of arable land are endangered by water erosion and about 10 % of arable land are endangered wind erosion in the Czech Republic. These processes have been accelerated by human activity. Specific condition of agriculture land in the Czech Republic including highland relief and particularly size of land parcel and intensification of agriculture does not enable to reduce flow of runoff water. Insufficient protection against accelerated erosion processes is related to lack of landscape and hydrographic elements and large area of agricultural plots. Currently, this issue is solved at plot scale by field investigation or at regional scale using numerical and empirical erosion models. Nevertheless, these models enable only to predict the potential of soil erosion. Large scale assessment of actual degradation level of soils is based on expert knowledge. However, there are still many uncertainties in this issue. Therefore characterization of actual degradation level of soil is required especially for assessment of long-term impact of soil erosion on soil fertility. Soil degradation by erosion can be effectively monitored or quantified by modern tools of remote sensing with variable level of detail accessible. Aims of our study is to analyse the applicability of remote sensing for monitoring of actual soil degradation by erosion. Satellite and aerial image data (multispectral and hyperspectral), terrain attributes and data from field investigation are the main source for this analyses. The first step was the delimitation of bare soils using supervised classification of the set of Landsat scenes from 2000 - 2014. The most suitable period of time for obtaining spectral image data with the lowest vegetation cover of soil was determined. The results were verified by statistical data of areas under farm crops from Czech Statistical Office. Information on number of scenes where bare soils are identified for each land parcel is available. This set of images with bare soils is used for assessment of soil degradation stage. Some land parcels were found without vegetation cover up to 40 times. Analysis was performed on 5 test sites in the Czech Republic and also using data from database of Soil Erosion Monitoring of Agricultural Land. Currently, more than 500 erosion events are registered in this database. Additional remote sensing data (Hyperion data, aerial hyperspectral data) was used for detailed analysis on the test sites. Results reveal that satellite imagery set, soil maps, terrain attributes and erosion modelling can be successfully applied in assessment of actual soil degradation by erosion. The research has been supported by the project no. QJ330118 "Using Remote Sensing for Monitoring of Soil Degradation by Erosion and Erosion Effects" funding by Ministry of Agriculture.
Tondera, Katharina; Koenen, Stefan; Pinnekamp, Johannes
2013-01-01
A main source of surface water pollution in Western Europe stems from combined sewer overflow. One of the few technologies available to reduce this pollution is the retention soil filter. In this research project, we evaluated the cleaning efficiency of retention soil filters measuring the concentration ratio of standard wastewater parameters and bacteria according to factors limiting efficiency, such as long dry phases or phases of long-lasting retention. Furthermore, we conducted an initial investigation on how well retention soil filters reduce certain micropollutants on large-scale plants. There was little precipitation during the 1-year sampling phase, which led to fewer samples than expected. Nevertheless, we could verify how efficiently retention soil filters clean total suspended solids. Our results show that retention soil filters are not only able to eliminate bacteria, but also to retain some of the micropollutants investigated here. As the filters were able to reduce diclofenac, bisphenol A and metoprolol by a median rate of almost 75%, we think that further investigations should be made into the reduction processes in the filter. At this point, a higher accuracy in the results could be achieved by conducting bench-scale experiments.
Feedbacks Between Soil Structure and Microbial Activities in Soil
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.
2017-12-01
Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate formation could alter how we currently treat our predictions of soil biogeochemistry. Current predictions are largely site- or biome-specific; quantitative mechanisms could underpin "rules" that operate at the pore-scale leading to more robust, mechanistic models.
Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D
2016-12-01
Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.
The importance of stochasticity and internal variability in geomorphic erosion system
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Fatichi, S.
2016-12-01
Understanding soil erosion is essential for a range of studies but the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. Indeed, data from multiple environments indicate that fluvial soil loss is highly non-unique and its frequency distributions exhibit heavy tails. We reveal that these features are attributed to the high sensitivity of erosion response to micro-scale variations of soil erodibility - `geomorphic internal variability'. The latter acts as an intermediary between forcing and erosion dynamics, augmenting the conventionally emphasized effects of `external variability' (climate, topography, land use, management form). Furthermore, we observe a reduction of erosion non-uniqueness at larger temporal scales that correlates with environment stochasticity. Our analysis shows that this effect can be attributed to the larger likelihood of alternating characteristic regimes of sediment dynamics. The corollary of this study is that the glaring gap - the inherently large uncertainties and the fallacy of representativeness of central tendencies - must be conceded in soil loss assessments. Acknowledgement: This research was supported by a grant (16AWMP-B083066-03) from Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government, and by the faculty research fund of Sejong University in 2016.
Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges
Li, Jin-Tian; Baker, Alan J. M.; Ye, Zhi-Hong; Wang, Hong-Bin; Shu, Wen-Sheng
2012-01-01
Cadmium (Cd) is one of the most toxic and widely distributed pollutants in the environment. Cadmium contamination of soils has posed a serious threat to safe food production in many parts of the world. The authors present a comprehensive review of present status of phytoextraction technology for cleaning up Cd-contaminated soils, based primarily on the data resulting from both laboratory and field-scale studies that have been conducted to assess or improve the Cd phytoextraction potential of various plant species in the past decade. The encouraging results of field-scale studies have provided a fundamental basis to usher phytoextraction technology into practical use to remediate slightly to moderately Cd-contaminated soils in Europe and Asia, although this technology is not yet ready for widespread application. Chelators and microorganisms tested so far seem not to contribute to the applicability of Cd phytoextraction. The major challenges for the large-scale application of Cd phytoextraction are (a) how to further improve the efficiency of Cd phytoextraction, (b) how to cut the overall costs of Cd phytoextraction, and (c) how to get greater stakeholders’ acceptance of Cd phytoextraction as a reliable option. PMID:23335842
Koufopoulou, Sofia; Michalopoulos, Charalampos; Tzamtzis, Nikolaos; Pappa, Athina
2014-06-01
Long term fire retardant (LTR) application for forest fire prevention purposes as well as wildland fires can result in chemical leaching from forest soils. Large quantities of sodium (Na), aluminium (Al), iron (Fe), manganese (Mn), copper (Cu) and silicon (Si) in leachates, mainly due to ammonium (one of the major LTR components) soil deposition, could affect the groundwater quality. The leaching of Na, Al, Fe, Mn, Cu and Si due to nitrogen based LTR application (Fire Trol 931) was studied at laboratory scale. The concentrations of Na(+), Al(3+), Fe(3+)/Fe(2+), Mn(2+), Cu(2+) and Si(4+) were measured in the resulting leachates from pots with forest soil and pine trees alone and in combination with fire. The leaching of Na, Fe and Si from treated pots was significantly greater than that from control pots. The leaching of Al, Mn and Cu was extremely low.
Mesoscale monitoring of the soil freeze/thaw boundary from orbital microwave radiometry
NASA Technical Reports Server (NTRS)
Dobson, Craig; Ulaby, Fawwaz T.; Zuerndorfer, Brian; England, Anthony W.
1990-01-01
A technique was developed for mapping the spatial extent of frozen soils from the spectral characteristics of the 10.7 to 37 GHz radiobrightness. Through computational models for the spectral radiobrightness of diurnally heated freesing soils, a distinctive radiobrightness signature was identified for frozen soils, and the signature was cast as a discriminant for unsupervised classification. In addition to large area images, local area spatial averages of radiobrightness were calculated for each radiobrightness channel at 7 meteorologic sites within the test region. Local area averages at the meteorologic sites were used to define the preliminary boundaries in the Freeze Indicator discriminate. Freeze Indicator images based upon Nimbus 7, Scanning Multichannel Microwave Radiometer (SMMR) data effectively map temporal variations in the freeze/thaw pattern for the northern Great Plains at the time scale of days. Diurnal thermal gradients have a small but measurable effect upon the SMMR spectral gradient. Scale-space filtering can be used to improve the spatial resolution of a freeze/thaw classified image.
Informing soil models using pedotransfer functions: challenges and perspectives
NASA Astrophysics Data System (ADS)
Pachepsky, Yakov; Romano, Nunzio
2015-04-01
Pedotransfer functions (PTFs) are empirical relationships between parameters of soil models and more easily obtainable data on soil properties. PTFs have become an indispensable tool in modeling soil processes. As alternative methods to direct measurements, they bridge the data we have and data we need by using soil survey and monitoring data to enable modeling for real-world applications. Pedotransfer is extensively used in soil models addressing the most pressing environmental issues. The following is an attempt to provoke a discussion by listing current issues that are faced by PTF development. 1. As more intricate biogeochemical processes are being modeled, development of PTFs for parameters of those processes becomes essential. 2. Since the equations to express PTF relationships are essentially unknown, there has been a trend to employ highly nonlinear equations, e.g. neural networks, which in theory are flexible enough to simulate any dependence. This, however, comes with the penalty of large number of coefficients that are difficult to estimate reliably. A preliminary classification applied to PTF inputs and PTF development for each of the resulting groups may provide simple, transparent, and more reliable pedotransfer equations. 3. The multiplicity of models, i.e. presence of several models producing the same output variables, is commonly found in soil modeling, and is a typical feature in the PTF research field. However, PTF intercomparisons are lagging behind PTF development. This is aggravated by the fact that coefficients of PTF based on machine-learning methods are usually not reported. 4. The existence of PTFs is the result of some soil processes. Using models of those processes to generate PTFs, and more general, developing physics-based PTFs remains to be explored. 5. Estimating the variability of soil model parameters becomes increasingly important, as the newer modeling technologies such as data assimilation, ensemble modeling, and model abstraction, become progressively more popular. The variability PTFs rely on the spatio-temporal dynamics of soil variables, and that opens new sources of PTF inputs stemming from technology advances such as monitoring networks, remote and proximal sensing, and omics. 6. Burgeoning PTF development has not so far affected several persisting regional knowledge gaps. Remarkably little effort was put so far into PTF development for saline soils, calcareous and gypsiferous soils, peat soils, paddy soils, soils with well expressed shrink-swell behavior, and soils affected by freeze-thaw cycles. 7. Soils from tropical regions are quite often considered as a pseudo-entity for which a single PTF can be applied. This assumption will not be needed as more regional data will be accumulated and analyzed. 8. Other advances in regional PTFs will be possible due to presence of large databases on region-specific useful PTF inputs such as moisture equivalent, laser diffractometry data, or soil specific surface. 9. Most of flux models in soils, be it water, solutes, gas, or heat, involve parameters that are scale-dependent. Including scale dependencies in PTFs will be critical to improve PTF usability. 10. Another scale-related matter is pedotransfer for coarse-scale soil modeling, for example, in weather or climate models. Soil hydraulic parameters in these models cannot be measured and the efficiency of the pedotransfer can be evaluated only in terms of its utility. There is a pressing need to determine combinations of pedotransfer and upscaling procedures that can lead to the derivation of suitable coarse-scale soil model parameters. 11. The spatial coarse scale often assumes a coarse temporal support, and that may lead to including in PTFs other environmental variables such as topographic, weather, and management attributes. 12. Some PTF inputs are time- or space-dependent, and yet little is known whether the spatial or temporal structure of PTF outputs is properly predicted from such inputs 13. Further exploration is needed to use PTF as a source of hypotheses on and insights into relationships between soil processes and soil composition as well as between soil structure and soil functioning. PTFs are empirical relationships and their accuracy outside the database used for the PTF development is essentially unknown. Therefore they should never be considered as an ultimate source of parameters in soil modeling. Rather they strive to provide a balance between accuracy and availability. The primary role of PTF is to assist in modeling for screening and comparative purposes, establishing ranges and/or probability distributions of model parameters, and creating realistic synthetic soil datasets and scenarios. Developing and improving PTFs will remain the mainstream way of packaging data and knowledge for applications of soil modeling.
Preferential flow from pore to landscape scales
NASA Astrophysics Data System (ADS)
Koestel, J. K.; Jarvis, N.; Larsbo, M.
2017-12-01
In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).
Pagliero, Liliana; Bouraoui, Fayçal; Willems, Patrick; Diels, Jan
2014-01-01
The Water Framework Directive of the European Union requires member states to achieve good ecological status of all water bodies. A harmonized pan-European assessment of water resources availability and quality, as affected by various management options, is necessary for a successful implementation of European environmental legislation. In this context, we developed a methodology to predict surface water flow at the pan-European scale using available datasets. Among the hydrological models available, the Soil Water Assessment Tool was selected because its characteristics make it suitable for large-scale applications with limited data requirements. This paper presents the results for the Danube pilot basin. The Danube Basin is one of the largest European watersheds, covering approximately 803,000 km and portions of 14 countries. The modeling data used included land use and management information, a detailed soil parameters map, and high-resolution climate data. The Danube Basin was divided into 4663 subwatersheds of an average size of 179 km. A modeling protocol is proposed to cope with the problems of hydrological regionalization from gauged to ungauged watersheds and overparameterization and identifiability, which are usually present during calibration. The protocol involves a cluster analysis for the determination of hydrological regions and multiobjective calibration using a combination of manual and automated calibration. The proposed protocol was successfully implemented, with the modeled discharges capturing well the overall hydrological behavior of the basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
T. C. Hutchinson
1976-01-01
Sulphur dioxide emissions have occurred on a gigantic scale at Sudbury from nickel-copper smelters. Soil erosion has followed the destruction of large areas of forest. Rainfall has been found highly acidic, frequently less than pH 3.0 in 1971. Metal accumulation in the soils (to distances of 50 km) have occurred for nickel and copper. The combination of heavy metal...
NASA Astrophysics Data System (ADS)
Schindewolf, Marcus; Schultze, Nico; Schönke, Daniela; Amorim, Ricardo S. S.; Schmidt, Jürgen
2014-05-01
The study area of central Mato Grosso is subjected to severe soil erosion. Continuous erosion leads to massive losses of top soil and related organic carbon. Consequently agricultural soil soils suffer a drop in soil fertility which only can be balanced by mineral fertilization. In order to control soil degradation and organic carbon losses of Mato Grosso cropland soils a process based soil loss and deposition model is used. Applying the model it will be possible to: - identify the main areas affected by soil erosion or deposition in different scales under present and future climate and socio-economic conditions - estimate the related nutrient and organic carbon losses/yields - figure out site-related causes of soil mobilization/deposition - locate sediment and sediment related nutrient and organic matter pass over points into surface water bodies - estimate the impacts of climate and land use changes on the losses of top soil, sediment bound nutrients and organic carbon. Model input parameters include digital elevation data, precipitation characteristics and standard soil properties as particle size distribution, total organic carbon (TOC) and bulk density. The effects of different types of land use and agricultural management practices are accounted for by varying site-specific parameters predominantly related to soil surface properties such as erosional resistance, hydraulic roughness and percentage ground cover. In this context the existing EROSION 3D soil parameter data base deducted from large scale rainfall simulations in Germany is verified for application in the study area, using small scale disc type rainfall simulator with an additional runoff reflux approach. Thus it's possible to enlarge virtual plot length up to at least 10 m. Experimental plots are located in Cuiabá region of central Mato Grosso in order to cover the most relevant land use variants and tillage practices in the region. Results show that derived model parameters are highly influenced by soil management. This indicates a high importance of tillage impact on resistance to erosion, mulch cover and TOC. The measured parameter ranges can generally be confirmed by the existing data base, which only need to be completed due to changed phenological stages in Mato Grosso compared to German conditions.
NASA Astrophysics Data System (ADS)
Watzinger, A.; Feichtmair, S.; Rempt, F.; Anders, E.; Wimmer, B.; Kitzler, B.; Zechmeister-Boltenstern, S.; Horacek, M.; Zehetner, F.; Kloss, S.; Richoz, S.; Soja, G.
2012-04-01
The effects of biochar amendment on plant growth and on the chemical / physical soil characteristics are well explored but only few studies have investigated the impact on soil microorganisms. The response of the soil microbial community to biochar amendment was investigated by phospholipid fatty acid (PLFA) analysis in (i) a large scale pot experiment, (ii) a small scale pot experiment using 13C labeled biochar and (iii) an incubation study using 13C labeled biochar. In the large scale pot experiment, three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) and four different types of biochar were investigated. In total, 25 treatments with 5 replicates each were set up and monitored over a year. The results from the pot experiments showed no significant influence of biochar amendment on the total microbial biomass in the first 100 days after biochar addition. However, discriminant analysis showed a distinction of biochar and control soils as well as a strong effect of the pyrolysis temperature on the microbial composition. The effect of biochar was dependent on the type of soil. In the Planosol, some PLFAs were affected positively, especially when adding biochar with a low pyrolysis temperature, in the first month. In the long term, microbial community composition altered. Growth of fungi and gram negative bacteria was enhanced. In the Chernozem, PLFAs from various microbial groups decreased in the long term. Variability in the incubation study was low. Consequently, many PLFAs were significantly affected by biochar amendment. Again, in the Planosol, gram negative bacteria, actinomycetes and, after 2 weeks, gram positive bacteria increased under biochar amendment whereas in the chernozem total microbial biomass and gram positive bacteria were negatively affected in the long term. The 13C labeling studies confirmed the low degradability of the biochar, i.e. no alteration of the content and the δ13C in the soil organic matter within 100 days, decreased CO2 emission after biochar addition and little 13C signature from the biochar in the respired CO2. The uptake of the labeled biochar into the microbial PLFAs was analysed and will provide an evidence if biochar was used as a carbon source. In addition, the long term effect of biochar amendment (beyond 100 days) on the soil microbial community is currently investigated. These results will be also presented in the oncoming meeting.
Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang
2017-05-01
A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle
2015-04-01
Soil-landscape modelling has received growing attention as it allows us to evaluate the interaction between earth surface and soil bio-physical processes. At the landscape scale, human-induced land use change has altered the balance between soil erosion and production, and largely modified sediment fluxes. Intensification in soil redistribution rates affects the interaction between soil chemical, physical and biological processes at the landscape scale. Here, we evaluate the SPEROS-LT model, a spatially explicit 3D model combining a dynamic representation of land use, soil erosion and deposition and the soil carbon cycle. We assess the impact of millennial-scale human-induced land use change on sediment fluxes and carbon dynamics in the Dijle catchement (central Belgium). The watershed has undergone a 3000 years continuous human-induced alteration of the vegetation covers for agricultural characterized by Our study is based on land use reconstructions for the last 3000 years, including massive deforestation for agriculture in Roman Times and the Middle Ages followed by urbanization in the last 150 years. Land use reconstructions rely on simple land use allocation rules based on slope gradients. SPEROS-LT is parametrized for erosion rates against available figures in the literature by changing the transport capacity and the transfer coefficient which defines the amount of flux transferred between different land uses. Carbon content profiles at steady state (i.e. without influence of erosion or deposition) are calibrated for each land use and for the first upper meter of soil by comparing modeled profiles to an averaged observed profiles in stable areas of the pedologic region. We present a model sensitivity analysis and a full validation of the predicted soil carbon storage (horizontally, i.e. in space, and vertically, i.e. with depth) using a large database of observational data. The results indicate (i) a good agreement of the erosion rates. Speros LT modeled erosion and export rates, both modern and averaged over the last millennium, fall into the published range. Mean erosion rate over the last 1000 years equals 4.6 t/ha over the entire catchment while the export rate is 1.2 t/ha. (ii) Carbon content in the erosion areas is well predicted for lower soil layers (from 20 to 80 cm) where no significant differences were found between observational and modeled C content. There is though a significant difference for the top soil where modeled mean is 0.92% compared to the 0.8% in observations. (iii) erosion and deposition's spatial patterns are relatively well represented: correspondence between erosion areas as extracted from the digital soil map and modeled erosion maps higher for slightly truncated areas than in high truncation areas (55% of the modeled erosions pixels correspond to a non-depositional area compared to 37%). Correspondence between the model and the soil map increases with the total deposition ranging from 19% to 30% Yet, the model overestimated the carbon content in depositional areas, where statistical differences between observed and modeled carbon amount were found for each soil layers. This indicates that other factors, not accounted for by the model, influence carbon turnover for these sites. They may have a different dynamic than eroding places, cycling carbon faster or transferring it quicker to higher depth. Overall, the results indicates that the model performs relatively well in predicting sediment fluxes and carbon amount on long time scale during transient simulation. They underline the importance of developing an integrated approach to understand the dynamic and interactions at the landscape scale.
NASA Astrophysics Data System (ADS)
Vincent, Sébastien; Lemercier, Blandine; Berthier, Lionel; Walter, Christian
2015-04-01
Accurate soil information over large extent is essential to manage agronomical and environmental issues. Where it exists, information on soil is often sparse or available at coarser resolution than required. Typically, the spatial distribution of soil at regional scale is represented as a set of polygons defining soil map units (SMU), each one describing several soil types not spatially delineated, and a semantic database describing these objects. Delineation of soil types within SMU, ie spatial disaggregation of SMU allows improved soil information's accuracy using legacy data. The aim of this study was to predict soil types by spatial disaggregation of SMU through a decision tree approach, considering expert knowledge on soil-landscape relationships embedded in soil databases. The DSMART (Disaggregation and Harmonization of Soil Map Units Through resampled Classification Trees) algorithm developed by Odgers et al. (2014) was used. It requires soil information, environmental covariates, and calibration samples, to build then extrapolate decision trees. To assign a soil type to a particular spatial position, a weighed random allocation approach is applied: each soil type in the SMU is weighted according to its assumed proportion of occurrence in the SMU. Thus soil-landscape relationships are not considered in the current version of DSMART. Expert rules on soil distribution considering the relief, parent material and wetlands location were proposed to drive the procedure of allocation of soil type to sampled positions, in order to integrate the soil-landscape relationships. Semantic information about spatial organization of soil types within SMU and exhaustive landscape descriptors were used. In the eastern part of Brittany (NW France), 171 soil types were described; their relative area in the SMU were estimated, geomorphological and geological contexts were recorded. The model predicted 144 soil types. An external validation was performed by comparing predicted with effectively observed soil types derived from available soil maps at scale of 1:25.000 or 1:50.000. Overall accuracies were 63.1% and 36.2%, respectively considering or not the adjacent pixels. The introduction of expert rules based on soil-landscape relationships to allocate soil types to calibration samples enhanced dramatically the results in comparison with a simple weighted random allocation procedure. It also enabled the production of a comprehensive soil map, retrieving expected spatial organization of soils. Estimation of soil properties for various depths is planned using disaggregated soil types, according to the GlobalSoilmap.net specifications. Odgers, N.P., Sun, W., McBratney, A.B., Minasny, B., Clifford, D., 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma 214, 91-100.
Predicting Regional Drought on Sub-Seasonal to Decadal Time Scales
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Suarez, Max; Koster, Randal
2011-01-01
Drought occurs on a wide range of time scales, and within a variety of different types of regional climates. It is driven foremost by an extended period of reduced precipitation, but it is the impacts on such quantities as soil moisture, streamflow and crop yields that are often most important from a users perspective. While recognizing that different users have different needs for drought information, it is nevertheless important to understand that progress in predicting drought and satisfying such user needs, largely hinges on our ability to improve predictions of precipitation. This talk reviews our current understanding of the physical mechanisms that drive precipitation variations on subseasonal to decadal time scales, and the implications for predictability and prediction skill. Examples are given highlighting the phenomena and mechanisms controlling precipitation on monthly (e.g., stationary Rossby waves, soil moisture), seasonal (ENSO) and decadal time scales (PD and AMO).
Butterfield, Bradley J.; Bradford, John B.; Armas, Cristina; Prieto, Ivan; Pugnaire, Francisco I.
2016-01-01
Taken together, the results of this simulation study suggest that plant effects on soil moisture are predictable based on relatively general relationships between precipitation inputs and differential evaporation and transpiration rates between plant and interspace microsites that are largely driven by temperature. In particular, this study highlights the importance of differentiating between temporal and spatial variation in weather and climate, respectively, in determining plant effects on available soil moisture. Rather than focusing on the somewhat coarse-scale predictions of the SGH, it may be more beneficial to explicitly incorporate plant effects on soil moisture into predictive models of plant-plant interaction outcomes in drylands.
NASA Astrophysics Data System (ADS)
Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi
2013-04-01
Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these modelling approaches have been developed at small space scales. Their extension to the applicative macroscale of the regional model is not a simple task mainly because of the heterogeneity of vadose zone properties, as well as of non-linearity of hydrological processes. Besides, one of the problems when applying distributed models is that spatial and temporal scales for data to be used as input in the models vary on a wide range of scales and are not always consistent with the model structure. Under these conditions, a strictly deterministic response to questions about the fate of a pollutant in the soil is impossible. At best, one may answer "this is the average behaviour within this uncertainty band". Consequently, the extension of these equations to account for regional-scale processes requires the uncertainties of the outputs be taken into account if the pollution vulnerability maps that may be drawn are to be used as agricultural management tools. A map generated without a corresponding map of associated uncertainties has no real utility. The stochastic stream tube approach is a frequently used to the water flux and solute transport through the vadose zone at applicative scales. This approach considers the field soil as an ensemble of parallel and statistically independent tubes, assuming only vertical flow. The stream tubes approach is generally used in a probabilistic framework. Each stream tube defines local flow properties that are assumed to vary randomly between the different stream tubes. Thus, the approach allows average water and solute behaviour be described, along with the associated uncertainty bands. These stream tubes are usually considered to have parameters that are vertically homogeneous. This would be justified by the large difference between the horizontal and vertical extent of the spatial applicative scale. Vertical is generally overlooked. Obviously, all the model outputs are conditioned by this assumption. The latter, in turn, is more dictated by the lack of information on vertical variability of soil properties. It is our opinion that, with sufficient information on soil horizonation and with an appropriate horizontal resolution, it may be demonstrated that model outputs may be largely sensitive to the vertical variability of stream tubes, even at applicative scales. Horizon differentiation is one of the main observations made by pedologists while describing soils and most analytical data are given according to soil horizons. Over the last decades, soil horizonation has been subjected to regular monitoring for mapping soil variation at regional scales. Accordingly, this study mainly aims to developing a regional-scale simulation approach for vadose zone flow and transport that use real soil profiles data based on information on vertical variability of soils. As to the methodology, the parallel column concept was applied to account for the effect of vertical heterogeneity on variability of water flow and solute transport in the vadose zone. Even if the stream tube approach was mainly introduced for (unrealistic) vertically homogeneous soils, we extended their use to real vertically variable soils. The approach relies on available datasets coming from different sources and offers quantitative answers to soil and groundwater vulnerability to non-point source of chemicals and pathogens at regional scale within a defined confidence interval. This result will be pursued through the design and building up of a spatial database containing 1). Detailed pedological information, 2). Hydrological properties mainly measured in the investigated area in different soil horizons, 3). Water table depth, 4). Spatially distributed climatic temporal series, and 5). Land use. The area of interest for the study is located in the sub-basin of Metaponto agricultural site, located in southern Basilicata Region in Italy, covering approximately 11,698 hectares, crossed by two main rivers, Sinni and Agri and from many secondary water bodies. Distributed output of soil pollutant leaching behaviour, with corresponding statistical uncertainties, will be provided and finally visualized in GIS maps. The example pollutants considered cover much of the practical pollution conditions one may found in the reality. Nevertheless, this regional- scale methodology may be applied to any specific pollutants for any soil, climatic and land use conditions. Also, as the approach is built on physically based equations, it may be extended to the predictions of any water and solute storage and fluxes (i.e., groundwater recharge) in the vadose zone. By integrating the scientific results with economic and political considerations, and with advanced information technologies, the NPS-pollution assessment may become a powerful decision support tool for guiding activities involving soil and groundwater resources and, more in general, for managing environmental resources.
Quick clay and landslides of clayey soils.
Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; De Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel
2009-10-30
We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.
Quick Clay and Landslides of Clayey Soils
NASA Astrophysics Data System (ADS)
Khaldoun, Asmae; Moller, Peder; Fall, Abdoulaye; Wegdam, Gerard; de Leeuw, Bert; Méheust, Yves; Otto Fossum, Jon; Bonn, Daniel
2009-10-01
We study the rheology of quick clay, an unstable soil responsible for many landslides. We show that above a critical stress the material starts flowing abruptly with a very large viscosity decrease caused by the flow. This leads to avalanche behavior that accounts for the instability of quick clay soils. Reproducing landslides on a small scale in the laboratory shows that an additional factor that determines the violence of the slides is the inhomogeneity of the flow. We propose a simple yield stress model capable of reproducing the laboratory landslide data, allowing us to relate landslides to the measured rheology.
NASA Astrophysics Data System (ADS)
Coppola, A.; Comegna, V.; de Simone, L.
2009-04-01
Non-point source (NPS) pollution in the vadose zone is a global environmental problem. The knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and sub disciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. The main issues encountered by NPS groundwater vulnerability assessment, as discussed by Stewart [2001], are the large spatial scales, the complex processes that govern fluid flow and solute transport in the unsaturated zone, the absence of unsaturated zone measurements of diffuse pesticide concentrations in 3-D regional-scale space as these are difficult, time consuming, and prohibitively costly, and the computational effort required for solving the nonlinear equations for physically-based modeling of regional scale, heterogeneous applications. As an alternative solution, here is presented an approach that is based on coupling of transfer function and GIS modeling that: a) is capable of solute concentration estimation at a depth of interest within a known error confidence class; b) uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application; c) can dynamically support decision making through thematic mapping and 3D scenarios This result was pursued through 1) the design and building of a spatial database containing environmental and physical information regarding the study area, 2) the development of the transfer function procedure for layered soils, 3) the final representation of results through digital mapping and 3D visualization. One side GIS modeled environmental data in order to characterize, at regional scale, soil profile texture and depth, land use, climatic data, water table depth, potential evapotranspiration; on the other side such information was implemented in the up-scaling procedure of the Jury's TFM resulting in a set of texture based travel time probability density functions for layered soils each describing a characteristic leaching behavior for soil profiles with similar hydraulic properties. Such behavior, in terms of solute travel time to water table, was then imported back into GIS and finally estimation groundwater vulnerability for each soil unit was represented into a map as well as visualized in 3D.
Large-scale model of flow in heterogeneous and hierarchical porous media
NASA Astrophysics Data System (ADS)
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
Ginocchio, Rosanna; Carvallo, Gastón; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepúlveda, Nancy
2004-01-01
Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.
NASA Technical Reports Server (NTRS)
Perlwitz, Jan; Tegen, Ina; Miller, Ron L.
2000-01-01
The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably dominated by physical processes with short time scales. The experiments show that dust radiative forcing can lead to significant changes both in the soil dust cycle and in the climate state. To estimate dust concentration and radiative forcing by dust more accurately, dust size distributions and dust single scattering albedo in the model should be a function of the source region, because dust concentration and climate response to dust radiative forcing are sensitive to dust radiative parameters.
NASA Astrophysics Data System (ADS)
Siewert, Matthias; Hugelius, Gustaf
2017-04-01
Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support vector machines, artificial neural networks and random forests show promising results as a toolbox for mapping permafrost-affected soils. Yet, these new methods do not decrease our dependency from soil pedon data from the field. In contrary, soil pedon data represents an urgent research priority. Statistical analyses are provided as an indication for best practice of soil pedon sampling for the quantification and the model representation of SOC stored in permafrost-affected soils.
Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion
NASA Astrophysics Data System (ADS)
Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.
2017-07-01
Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.
Soils as Sediment database: closing a gap between soil science and geomorphology
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2016-04-01
Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil. Key areas where such an understanding is essential are all issues related to the lateral movement of soil-bound substances that affect the nature of soils itself, as well as water or vegetation downslope from the source area. The redistribution of eroded soil falls several disciplines, most notably soil science, agronomy, hydrology and geomorphology. Accordingly, the way sediment is described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil as sediment would represent a step forward. To develop such a proxy, a database collating relevant soil and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil as sediment.
NASA Astrophysics Data System (ADS)
Schreiner-McGraw, A. P.; Vivoni, E. R.; Mascaro, G.; Franz, T. E.
2016-01-01
Soil moisture dynamics reflect the complex interactions of meteorological conditions with soil, vegetation and terrain properties. In this study, intermediate-scale soil moisture estimates from the cosmic-ray neutron sensing (CRNS) method are evaluated for two semiarid ecosystems in the southwestern United States: a mesquite savanna at the Santa Rita Experimental Range (SRER) and a mixed shrubland at the Jornada Experimental Range (JER). Evaluations of the CRNS method are performed for small watersheds instrumented with a distributed sensor network consisting of soil moisture sensor profiles, an eddy covariance tower, and runoff flumes used to close the water balance. We found a very good agreement between the CRNS method and the distributed sensor network (root mean square error (RMSE) of 0.009 and 0.013 m3 m-3 at SRER and JER, respectively) at the hourly timescale over the 19-month study period, primarily due to the inclusion of 5 cm observations of shallow soil moisture. Good agreement was also obtained in soil moisture changes estimated from the CRNS and watershed water balance methods (RMSE of 0.001 and 0.082 m3 m-3 at SRER and JER, respectively), with deviations due to bypassing of the CRNS measurement depth during large rainfall events. Once validated, the CRNS soil moisture estimates were used to investigate hydrological processes at the footprint scale at each site. Through the computation of the water balance, we showed that drier-than-average conditions at SRER promoted plant water uptake from deeper soil layers, while the wetter-than-average period at JER resulted in percolation towards deeper soils. The CRNS measurements were then used to quantify the link between evapotranspiration and soil moisture at a commensurate scale, finding similar predictive relations at both sites that are applicable to other semiarid ecosystems in the southwestern US.
Ruiz-Navarro, Antonio; Barberá, Gonzalo G; Albaladejo, Juan; Querejeta, José I
2016-12-01
We investigated the magnitude and drivers of spatial variability in soil and plant δ 15 N across the landscape in a topographically complex semiarid ecosystem. We hypothesized that large spatial heterogeneity in water availability, soil fertility and vegetation cover would be positively linked to high local-scale variability in δ 15 N. We measured foliar δ 15 N in three dominant plant species representing contrasting plant functional types (tree, shrub, grass) and mycorrhizal association types (ectomycorrhizal or arbuscular mycorrhizal). This allowed us to investigate whether δ 15 N responds to landscape-scale environmental heterogeneity in a consistent way across species. Leaf δ 15 N varied greatly within species across the landscape and was strongly spatially correlated among co-occurring individuals of the three species. Plant δ 15 N correlated tightly with soil δ 15 N and key measures of soil fertility, water availability and vegetation productivity, including soil nitrogen (N), organic carbon (C), plant-available phosphorus (P), water-holding capacity, topographic moisture indices and normalized difference vegetation index. Multiple regression models accounted for 62-83% of within-species variation in δ 15 N across the landscape. The tight spatial coupling and interdependence of the water, N and C cycles in drylands may allow the use of leaf δ 15 N as an integrative measure of variations in moisture availability, biogeochemical activity, soil fertility and vegetation productivity (or 'site quality') across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen
2016-04-01
Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many scales. The method has a great potential to improve spatial performance of hydrological models, and help to assess regional soil moisture states for agriculture and flood risk management.
Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia
Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso
2015-01-01
Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-04-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
NASA Astrophysics Data System (ADS)
Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.
2010-10-01
Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.
Evaluation Criteria and Results of Full Scale Testing of Bridge Abutment Made from Reinforced Soil
NASA Astrophysics Data System (ADS)
Hildebrand, Maciej; Rybak, Jarosław
2017-10-01
Structures made of reinforced soil can be evaluated for their safety based on a load testing. Measurement results are essentially evaluated by displacements of surcharge (mainly in vertical direction) and facing elements (mainly in horizontal direction). Displacements are within several tenths to several millimetres and they can be taken by common geodetic equipment. Due to slow soil consolidation (progress of displacements) under constant load, observations should be made over several days or even weeks or months. A standard procedure of heating of geotextiles, used in laboratory conditions to simulate long term behaviour cannot be used in a natural scale. When the load is removed, the soil unloading occurs. Both the progress of displacements and soil unloading after unloading of the structure are the key presumptions for evaluating its safety (stability). Assessment of measuring results must be preceded by assuming even the simplest model of the structure, so as it could be possible to estimate the expected displacements under controlled load. In view of clearly random nature of soil parameters of retaining structure composed of reinforced soil and due to specific erection technology of reinforced soil structure, the assessment of its condition is largely based on expert’s judgment. It is an essential and difficult task to interpret very small displacements which are often enough disturbed by numerous factors like temperature, insolation, precipitation, vehicles, etc. In the presented paper, the authors tried to establish and juxtapose some criteria for a load test of a bridge abutment and evaluate their suitability for decision making. Final remarks are based on authors experience from a real full scale load test.
Small scale rainfall simulators: Challenges for a future use in soil erosion research
NASA Astrophysics Data System (ADS)
Ries, Johannes B.; Iserloh, Thomas; Seeger, Manuel
2013-04-01
Rainfall simulation on micro-plot scale is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. The produced data are of great significance not only for the analysis of the simulated processes, but also as a source of input-data for soil erosion modelling. The reliability of the data is therefore of paramount importance, and quality management of rainfall simulation procedure a general responsibility of the rainfall simulation community. This was an accepted outcome at the "International Rainfall Simulator Workshop 2011" at Trier University. The challenges of the present and near future use of small scale rainfall simulations concern the comparability of results and scales, the quality of the data for soil erosion modelling, and further technical developments to overcome physical limitations and constraints. Regarding the high number of research questions, different fields of application, and due to the great technical creativity of researchers, a large number of different types of rainfall simulators is available. But each of the devices produces a different rainfall, leading to different kinetic energy values influencing soil surface and erosion processes. Plot sizes are also variable, as well as the experimental simulation procedures. As a consequence, differing runoff and erosion results are produced. The presentation summarises the three important aspects of rainfall simulations, following a processual order: 1. Input-factor "rain" and its calibration 2. Surface-factor "plot" and its documentation 3. Output-factors "runoff" and "sediment concentration" Finally, general considerations about the limitations and challenges for further developments and applications of rainfall simulation data are presented.
Numerical analysis of field-scale transport of bromacil
NASA Astrophysics Data System (ADS)
Russo, David; Tauber-Yasur, Inbar; Laufer, Asher; Yaron, Bruno
Field-scale transport of bromacil (5-bromo-3- sec-butyl-6-methyluracil) was analyzed using two different model processes for local description of the transport. The first was the classical, one-region convection dispersion equation (CDE) model while the second was the two-region, mobile-immobile (MIM) model. The analyses were performed by means of detailed three-dimensional, numerical simulations of the flow and the transport [Russo, D., Zaidel, J. and Laufer, A., Numerical analysis of flow and transport in a three-dimensional partially saturated heterogeneous soil. Water Resour. Res., 1998, in press], employing local soil hydraulic properties parameters from field measurements and local adsorption/desorption coefficients and the first-order degradation rate coefficient from laboratory measurements. Results of the analyses suggest that for a given flow regime, mass exchange between the mobile and the immobile regions retards the bromacil degradation, considerably affects the distribution of the bromacil resident concentration, c, at relatively large travel times, slightly affects the spatial moments of the distribution of c, and increases the skewing of the bromacil breakthrough and the uncertainty in its prediction, compared with the case in which the soil contained only a single (mobile) region. Mean and standard deviation of the simulated concentration profiles at various elapsed times were compared with measurements from a field-scale transport experiment [Tauber-Yasur, I., Hadas, A., Russo, D. and Yaron, B., Leaching of terbuthylazine and bromacil through field soils. Water, Air Soil Poln., 1998, in press] conducted at the Bet Dagan site. Given the limitations of the present study (e.g. the lack of detailed field data on the spatial variability of the soil chemical properties) the main conclusion of the present study is that the field-scale transport of bromacil at the Bet Dagan site is better quantified with the MIM model than the CDE model.
Soils of Walker Branch Watershed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lietzke, D.A.
1994-03-01
The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1,200 usingmore » a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed.« less
NASA Astrophysics Data System (ADS)
Montanarella, Luca
2015-07-01
The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.
Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir
2018-06-01
Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.
Regional modeling of wind erosion in the North West and South West of Iran
NASA Astrophysics Data System (ADS)
Mirmousavi, S. H.
2016-08-01
About two-thirds of the Iran's area is located in the arid and semiarid region. Lack of soil moisture and vegetation is poor in most areas can lead to soil erosion caused by wind. So that the annual suffered severe damage to large areas of rich soils. Modeling studies of wind erosion in Iran is very low and incomplete. Therefore, this study aimed to wind erosion modeling, taking into three factors: wind speed, vegetation and soil types have been done. Wind erosion sensitivity was modeled using the key factors of soil sensitivity, vegetation cover and wind erodibility as proxies. These factors were first estimated separately by factor sensitivity maps and later combined by fuzzy logic into a regional-scale wind erosion sensitivity map. Large areas were evaluated by using publicly available datasets of remotely sensed vegetation information, soil maps and meteorological data on wind speed. The resulting estimates were verified by field studies and examining the economic losses from wind erosion as compensated by the state insurance company. The spatial resolution of the resulting sensitivity map is suitable for regional applications, as identifying sensitive areas is the foundation for diverse land development control measures and implementing management activities.
Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests
NASA Technical Reports Server (NTRS)
Potter, C. S.; Peterson, David L. (Technical Monitor)
1997-01-01
Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.
NASA Astrophysics Data System (ADS)
Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick
2017-12-01
Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.
Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems
NASA Astrophysics Data System (ADS)
Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng
2016-01-01
The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.
Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems.
Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng
2016-01-19
The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m(2) quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.
Studying and understanding the environmental impacts of the Three Gorges Dam in China
NASA Astrophysics Data System (ADS)
Schönbrodt-Stitt, Sarah; Stumpf, Felix; Schmidt, Karsten; Althaus, Paul; Bi, Renneng; Bieger, Katrin; Buzzo, Giovanni; Dumperth, Christian; Fohrer, Nicola; Rohn, Joachim; Strehmel, Alexander; Udelhoven, Thomas; Wei, Xiang; Zimmermann, Karsten; Scholten, Thomas
2013-04-01
Since its planning phase and its completion and start of operation in 2009, the Three Gorges Dam (TGD) at the Yangtze River, has been discussed in a controversial manner. Due to considerable resettlements along with the associated expansion of the infrastructure network and large-scale shifts in land use and management, the TGD in Central China is among the most prominent human-induced examples for large-scale environmental impacts. As a consequence of the rapid ecosystem changes, the region is largely characterized by an enormous boost of typical geo-risks such as soil erosion, mass movements, and diffuse sediment and matter fluxes into the reservoir. Within the joint research project YANGTZE-GEO, Chinese and German scientists jointly focus on the human-induced environmental changes in the reservoir of the TGD after the impoundment of the Yangtze River and its tributaries. An integrative approach was set up in order to combine multi-scale investigation methods and state-of-the-art techniques from soil science, geology, hydrology, geophysics, geodesy, remote sensing, and data survey and monitoring. By means of eco-hydrological and soil erosion modeling, geo-statistical approaches such as digital soil mapping and Artificial Neuronal Networks, spatially and temporally differentiated simulation of the water budget as well as the balance of diffuse matter such as phosphorus and sediment, three-dimensional dynamic modeling, seismoacoustics and terrestrial radarinterferometry, multi-temporal land use classification from recent and historical remote sensing data and laser scanning, the research aims at (i) the understanding of the mechanisms and anthropogenic and environmental control factors of the environmental changes in the highly dynamic region and (ii) the development of spatially explicit land use options and recommendations for a sustainable land use management. Finally, based on the integrate modelling, we aim at the conception of a monitoring- and measuring network and early-warning system including local and regional authorities. Thus, the studies will contribute to a better understanding of the dimensions and dynamics of the ecological consequences of such large dam projects at the Yangtze River and worldwide.
Li, Yang; Jing, Yuan Shu; Qin, Ben Ben
2017-01-01
The analysis of the characteristics and footprint climatology of farmland water and heat fluxes has great significance to strengthen regional climate resource management and improve the hydrothermal resource utilization in the region of red soil. Based on quality controlled data from large aperture scintillometer and automatic meteorological station in hilly region of red soil, this paper analyzed in detail the characteristics of farmland water and heat fluxes at different temporal scales and the corresponding source area distribution of flux measurement in the non-rainy season and crop growth period in hilly region of red soil. The results showed that the diurnal variation of water and heat fluxes showed a unimodal trend, but compared with the sunny day, the diurnal variation curves fluctuated more complicatedly on cloudy day. In the whole, either ten-day periods or month scale, the water and heat fluxes were greater in August than in September, while the net radiation flux was more distributed to latent heat exchange. The proportion of net radiation to latent heat flux decreased in September compared to August, but the sensible heat flux was vice versa. With combined effects of weather conditions (particularly wind), stability, and surface condition, the source areas of flux measurement at different temporal scales showed different distribution characteristics. Combined with the underlying surface crops, the source areas at different temporal scales also had different contribution sources.
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands
NASA Astrophysics Data System (ADS)
Jackson-Blake, L.; Helliwell, R. C.; Britton, A. J.; Gibbs, S.; Coull, M. C.; Dawson, L.
2012-04-01
Nitrogen (N) deposition continues to threaten upland ecosystems, contributing to acidification, eutrophication and biodiversity loss. We present results from a monitoring study aimed at investigating the fate of this deposited N within a relatively pristine catchment in the Cairngorm Mountains (Scotland). Six sites were established along an elevation gradient (486 - 908 m) spanning the key habitats of temperate maritime uplands. Bulk deposition chemistry, soil carbon content, soil solution chemistry, soil temperature and soil moisture content were monitored over a 5 year period, making this the first study of its kind in a maritime Alpine environment. Results were used to assess spatial variability in soil solution N and to investigate the factors and processes driving this variability. Highest soil solution inorganic N concentrations were found in the alpine soils at the top of the hillslope. Soil carbon stock, dissolved organic carbon concentration and factors representing site hydrology were the best predictors of nitrate concentration. These factors act as proxies for changing net biological uptake and soil/water contact time, and support the hypothesis that spatial variations in soil solution nitrate are controlled by habitat N retention capacity. Soil percent carbon was a better predictor of soil solution N concentration than mass of carbon. Ammonium was less affected by soil hydrology than nitrate and showed the effects of net mineralization inputs, particularly at Racomitrium heath and peaty sites. We hypothesize that high ammonium concentrations at the Racomitrium heath are related to the mineralization of microbial cell tissue during times of stress, largely in the absence of plant uptake. Due to the spatial heterogeneity in N leaching potential, a fine-scale approach to assessing surface water vulnerability to N leaching is recommended over the broad scale, critical loads approach currently in use, particularly for sensitive areas.
NASA Astrophysics Data System (ADS)
Kalmanova, V. B.; Matiushkina, L. A.
2018-01-01
The authors analyze soil relations with other elements of the city ecosystem (the position in the landscape, soil-forming rocks and lithology, vegetation and its state) to develop the legend and map of soils in the City of Birobidzhan (scale 1:25 000). The focus of study is the morphological structure of urban soils with different degree of disturbance of these relations under the impact of technical effects, economic and recreational activities of the city population. The soil cover structure is composed of four large ecological groups of soils: natural untransformed, natural with a disturbed surface, anthropogenic soils and technogenic surface formations. Using cartometry of the mapped soil contours the authors created the scheme of soil-ecological city zoning, which in a general way depicts the state of soil ecological functions in the city as well as identified zones of soils with preserved, partially and fully distured ecological functions and zones of local geochemical anomalies at the initial formation stage (environmental risk zones).
The distribution of soil phosphorus for global biogeochemical modeling
Yang, Xiaojuan; Post, Wilfred M.; Thornton, Peter E.; ...
2013-04-16
We discuss that phosphorus (P) is a major element required for biological activity in terrestrial ecosystems. Although the total P content in most soils can be large, only a small fraction is available or in an organic form for biological utilization because it is bound either in incompletely weathered mineral particles, adsorbed on mineral surfaces, or, over the time of soil formation, made unavailable by secondary mineral formation (occluded). In order to adequately represent phosphorus availability in global biogeochemistry–climate models, a representation of the amount and form of P in soils globally is required. We develop an approach that buildsmore » on existing knowledge of soil P processes and databases of parent material and soil P measurements to provide spatially explicit estimates of different forms of naturally occurring soil P on the global scale. We assembled data on the various forms of phosphorus in soils globally, chronosequence information, and several global spatial databases to develop a map of total soil P and the distribution among mineral bound, labile, organic, occluded, and secondary P forms in soils globally. The amount of P, to 50cm soil depth, in soil labile, organic, occluded, and secondary pools is 3.6 ± 3, 8.6 ± 6, 12.2 ± 8, and 3.2 ± 2 Pg P (Petagrams of P, 1 Pg = 1 × 10 15g) respectively. The amount in soil mineral particles to the same depth is estimated at 13.0 ± 8 Pg P for a global soil total of 40.6 ± 18 Pg P. The large uncertainty in our estimates reflects our limited understanding of the processes controlling soil P transformations during pedogenesis and a deficiency in the number of soil P measurements. In spite of the large uncertainty, the estimated global spatial variation and distribution of different soil P forms presented in this study will be useful for global biogeochemistry models that include P as a limiting element in biological production by providing initial estimates of the available soil P for plant uptake and microbial utilization.« less
Effects of low-scale landscape structures on aeolian transport processes on arable land
NASA Astrophysics Data System (ADS)
Siegmund, Nicole; Funk, Roger; Koszinsky, Sylvia; Buschiazzo, Daniel Eduardo; Sommer, Michael
2018-06-01
The landscape of the semiarid Pampa in central Argentina is characterized by late Pleistocene aeolian deposits, covering large plains with sporadic dune structures. Since the current land use changed from extensive livestock production within the Caldenal forest ecosystem to arable land, the wind erosion risk increased distinctly. We measured wind erosion and deposition patterns at the plot scale and investigated the spatial variability of the erosion processes. The wind-induced mass-transport was measured with 18 Modified Wilson and Cooke samplers (MWAC), installed on a 1.44 ha large field in a 20 × 40 m grid. Physical and chemical soil properties from the upper soil as well as a digital elevation model were recorded in a 20 × 20 m grid. In a 5-month measuring campaign data from seven storms with three different wind directions was obtained. Results show very heterogeneous patterns of erosion and deposition for each storm and indicate favoured erosion on windward and deposits on leeward terrain positions. Furthermore, a multiple regression model was build, explaining up to 70% of the spatial variance of erosion by just using four predictors: topsoil thickness, relative elevation, soil organic carbon content and slope direction. Our findings suggest a structure-process-structure complex where the landscape structure determines the effects of recent wind erosion processes which again slowly influence the structure, leading to a gradual increase of soil heterogeneity.
Wu, Yunzhao; Tang, Zesheng
2014-01-01
In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface. PMID:24526892
Measurement of surface water runoff from plots of two different sizes
NASA Astrophysics Data System (ADS)
Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel
2002-05-01
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.
FARM TO COLLEGE: REDUCING FOOD MILES THROUGH DIRECT PURCHASING
Food systems geared toward a global economy concentrate agricultural production into specific geographic areas. Mechanized, large scale agriculture leads to soil exhaustion, loss of crop diversity, contamination of water bodies by pesticide and fertilizer run-off and excessive f...
Agricultural Geophysics: Past, present, and future
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
Comparing soil moisture memory in satellite observations and models
NASA Astrophysics Data System (ADS)
Stacke, Tobias; Hagemann, Stefan; Loew, Alexander
2013-04-01
A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the latter in the deepest layer. From this we conclude that the seasonal soil moisture variations dominate the memory close to the surface but these are dampened in lower layers where the memory is mainly affected by longer term variations.
Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pittock, A. B.; Walsh, K.
1990-01-01
The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.
SoilNet - A Zigbee based soil moisture sensor network
NASA Astrophysics Data System (ADS)
Bogena, H. R.; Weuthen, A.; Rosenbaum, U.; Huisman, J. A.; Vereecken, H.
2007-12-01
Soil moisture plays a key role in partitioning water and energy fluxes, in providing moisture to the atmosphere for precipitation, and controlling the pattern of groundwater recharge. Large-scale soil moisture variability is driven by variation of precipitation and radiation in space and time. At local scales, land cover, soil conditions, and topography act to redistribute soil moisture. Despite the importance of soil moisture, it is not yet measured in an operational way, e.g. for a better prediction of hydrological and surface energy fluxes (e.g. runoff, latent heat) at larger scales and in the framework of the development of early warning systems (e.g. flood forecasting) and the management of irrigation systems. The SoilNet project aims to develop a sensor network for the near real-time monitoring of soil moisture changes at high spatial and temporal resolution on the basis of the new low-cost ZigBee radio network that operates on top of the IEEE 802.15.4 standard. The sensor network consists of soil moisture sensors attached to end devices by cables, router devices and a coordinator device. The end devices are buried in the soil and linked wirelessly with nearby aboveground router devices. This ZigBee wireless sensor network design considers channel errors, delays, packet losses, and power and topology constraints. In order to conserve battery power, a reactive routing protocol is used that determines a new route only when it is required. The sensor network is also able to react to external influences, e.g. such as rainfall occurrences. The SoilNet communicator, routing and end devices have been developed by the Forschungszentrum Juelich and will be marketed through external companies. We will present first results of experiments to verify network stability and the accuracy of the soil moisture sensors. Simultaneously, we have developed a data management and visualisation system. We tested the wireless network on a 100 by 100 meter forest plot equipped with 25 end devices each consisting of 6 vertically arranged soil moisture sensors. The next step will be the instrumentation of two small catchments (~30 ha) with a 30 m spacing of the end devices. juelich.de/icg/icg-4/index.php?index=739
Land-Climate Feedbacks in Indian Summer Monsoon Rainfall
NASA Astrophysics Data System (ADS)
Asharaf, Shakeel; Ahrens, Bodo
2016-04-01
In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.
Impact of downslope soil transport on carbon storage and fate in permafrost dominated landscapes
NASA Astrophysics Data System (ADS)
Shelef, E.; Rowland, J. C.; Wilson, C. J.; Altmann, G.; Hilley, G. E.
2014-12-01
A large fraction of high latitude permafrost-dominated landscapes are covered by soil mantled hillslopes. In these landscapes, soil organic carbon (SOC) accumulates and is lost through lateral transport processes. At present, these processes are not included in regional or global landsurface climate models. We present preliminary results of a soil transport and storage model over a permafrost dominated hillslope. In this model soil carbon is transported downslope within a mobile layer that thaws every summer. The model tracks soil transport and its subsequent storage at the hillslope's base. In a scenario where a carbon poor subsurface is blanketed by a carbon-rich surface layer, the progressive downslope soil transport can result in net carbon sequestration. This sequestration occurs because SOC is carried from the hilllsope's near-surface layer, where it is produced by plants and is capable of decomposing, into depositional sites at the hillslope's base where it is stored in frozen deposits such that it's decomposition rate is effectively zero. We use the model to evaluate the quantities of carbon stored in depositional settings during the Holocene, and to predict changes in sequestration rate in response to thaw depth thickening expected to occur within the next century due to climate-change. At the Holocene time scale, we show that a large amount of SOC is likely stored in depositional sites that comprise only a small fraction of arctic landscapes. The convergent topography of these sites makes them susceptible to fluvial erosion and suggests that increased fluvial incision in response to climate-change-induced thawing has the potential to release significant amounts of carbon to the river system, and potentially to the atmosphere. At the time scale of the next century, increased thaw depth may increase soil-transport rates on hillslopes and therefore increase SOC sequestration rates at a magnitude that may partly compensate for the carbon release expected from permafrost thawing. Model guided field data collection is essential to reduce the uncertainty of these estimates.
Microwave Remote Sensing and the Cold Land Processes Field Experiment
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.
Pessoa, Luiz Guilherme Medeiros; Freire, Maria Betânia Galvão Dos Santos; Wilcox, Bradford Paul; Green, Colleen Heather Machado; De Araújo, Rômulo José Tolêdo; De Araújo Filho, José Coelho
2016-11-01
In northeastern Brazil, large swaths of once-productive soils have been severely degraded by soil salinization, but the true extent of the damage has not been assessed. Emerging remote sensing technology based on hyperspectral analysis offers one possibility for large-scale assessment, but it has been unclear to what extent the spectral properties of soils are related to salinity characteristics. The purpose of this study was to characterize the spectral properties of degraded (saline) and non-degraded agricultural soils in northeastern Brazil and determine the extent to which these properties correspond to soil salinity. We took soil samples from 78 locations within a 45,000-km 2 site in Pernambuco State. We used cluster analysis to group the soil samples on the basis of similarities in salinity and sodicity levels, and then obtained spectral data for each group. The physical properties analysis indicated a predominance of the coarse sand fraction in almost all the soil groups, and total porosity was similar for all the groups. The chemical analysis revealed different levels of degradation among the groups, ranging from non-degraded to strongly degraded conditions, as defined by the degree of salinity and sodicity. The soil properties showing the highest correlation with spectral reflectance were the exchangeable sodium percentage followed by fine sand. Differences in the reflectance curves for the various soil groups were relatively small and were not significant. These results suggest that, where soil crusts are not present, significant challenges remain for using hyperspectral remote sensing to assess soil salinity in northeastern Brazil.
Effect of aggregation on SOC transport: linking soil properties to sediment organic matter
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2016-04-01
Soils are an interface between the Earth's spheres and shaped by the nature of the interaction between them. The relevance of soil properties for the nature of the interaction between atmosphere, hydrosphere and biosphere is well-studied and accepted, on point- or ecotone-scale. However, this understanding of the largely vertical connections between spheres is not matched by a similar recognition of soil properties affecting processes acting largely in a lateral way across the land surface, such as erosion, transport and deposition of soil and the associated organic matter. Understanding the redistribution of eroded soil organic matter falls into several disciplines, most notably soil science, agronomy, hydrology and geomorphology, and recently into biogeochemistry. Accordingly, the way soil and sediment are described differs: in soil science, aggregation and structure are essential properties, while most process-based soil erosion models treat soil as a mixture of individual mineral grains, based on concepts derived in fluvial geomorphology or civil engineering. The actual behavior of aggregated sediment and the associated organic matter is not reflected by either approach and difficult to capture due to the dynamic nature of aggregation, especially in an environment such as running water. Still, a proxy to assess the uncertainties introduced by aggregation on the behavior of soil/sediment organic while moving in water across landscapes and into the aquatic system would represent a major step forward. To develop such a proxy, a database collating relevant soil, organic matter and sediment properties could serve as an initial step to identify which soil types and erosion scenarios are prone to generate a high uncertainty compared to the use of soil texture in erosion models. Furthermore, it could serve to develop standardized analytical procedures for appropriate description of soil and organic matter as sediment.
Factors influencing stream baseflow transit times in tropical montane watersheds
NASA Astrophysics Data System (ADS)
Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.
2016-04-01
Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.
Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Yueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.
Brown, David M; Okoro, Samson; van Gils, Juami; van Spanning, Rob; Bonte, Matthijs; Hutchings, Tony; Linden, Olof; Egbuche, Uzoamaka; Bruun, Kim Bye; Smith, Jonathan W N
2017-10-15
Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella
The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.
NASA Astrophysics Data System (ADS)
West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.
2014-08-01
Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.
Soil Organic Carbon and Below Ground Biomass: Development of New GLOBE Special Measurements
NASA Technical Reports Server (NTRS)
Levine, Elissa; Haskett, Jonathan
1999-01-01
A scientific consensus is building that changes in the atmospheric concentrations of radiatively active gases are changing the climate (IPCC, 1990). One of these gases CO2 has been increasing in concentration due to additions from anthropogenic sources that are primarily industrial and land use related. The soil contains a very large pool of carbon, estimated at 1550 Gt (Lal 1995) which is larger than the atmospheric and biosphere pools of carbon combined (Greenland, 1995). The flux between the soil and the atmosphere is very large, 60 Pg C/yr (Lal 1997), and is especially important because the soil can act as either a source or a sink for carbon. On any given landscape, as much as 50% of the biomass that provides the major source of carbon can be below ground. In addition, the movement of carbon in and out of the soil is mediated by the living organisms. At present, there is no widespread sampling of soil biomass in any consistent or coordinated manner. Current large scale estimates of soil carbon are limited by the number and widely dispersed nature of the data points available. A measurement of the amount of carbon in the soil would supplement existing carbon data bases as well as provide a benchmark that can be used to determine whether the soil is storing carbon or releasing it to the atmosphere. Information on the below ground biomass would be a valuable addition to our understanding of net primary productivity and standing biomass. The addition of these as special measurements within GLOBE would be unique in terms of areal extent and continuity, and make a real contribution to scientific understanding of carbon dynamics.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H
2010-08-01
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.
NASA Astrophysics Data System (ADS)
Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric
2016-04-01
SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.
Remote Imaging Applied to Schistosomiasis Control: The Anning River Project
NASA Technical Reports Server (NTRS)
Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng
1997-01-01
The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).
NASA Astrophysics Data System (ADS)
Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia
2017-04-01
Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.
Tolerable soil erosion in Europe
NASA Astrophysics Data System (ADS)
Verheijen, Frank; Jones, Bob; Rickson, Jane; Smith, Celina
2010-05-01
Soil loss by erosion has been identified as an important threat to soils in Europe* and is recognised as a contributing process to soil degradation and associated deterioration, or loss, of soil functioning. From a policy perspective, it is imperative to establish well-defined baseline values to evaluate soil erosion monitoring data against. For this purpose, accurate baseline values - i.e. tolerable soil loss - need to be differentiated at appropriate scales for monitoring and, ideally, should take soil functions and even changing environmental conditions into account. The concept of tolerable soil erosion has been interpreted in the scientific literature in two ways: i) maintaining the dynamic equilibrium of soil quantity, and ii) maintaining biomass production, at a location. The first interpretation ignores soil quality by focusing only on soil quantity. The second approach ignores many soil functions by focusing only on the biomass (particularly crop) production function of soil. Considering recognised soil functions, tolerable soil erosion may be defined as 'any mean annual cumulative (all erosion types combined) soil erosion rate at which a deterioration or loss of one or more soil functions does not occur'. Assumptions and problems of this definition will be discussed. Soil functions can generally be judged not to deteriorate as long as soil erosion does not exceed soil formation. At present, this assumption remains largely untested, but applying the precautionary principle appears to be a reasonable starting point. Considering soil formation rates by both weathering and dust deposition, it is estimated that for the majority of soil forming factors in most European situations, soil formation rates probably range from ca. 0.3 - 1.4 t ha-1 yr-1. Although the current agreement on these values seems relatively strong, how the variation within the range is spatially distributed across Europe and how this may be affected by climate, land use and land management change in the future remains largely unexplored. * http://ec.europa.eu/environment/soil/pdf/com_2006_0231_en.pdf
Statistical-physical model of the hydraulic conductivity
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Usowicz, J. B.; Lukowski, M. I.
2012-04-01
The water content in unsaturated subsurface soil layer is determined by processes of exchanging mass and energy between media of soil and atmosphere, and particular members of layered media. Generally they are non-homogeneous on different scales, considering soil porosity, soil texture including presence of vegetation elements in the root zone, and canopy above the surface, and varying biomass density of plants above the surface in clusters. That heterogeneity determines statistically effective values of particular physical properties. This work considers mainly those properties which determine the hydraulic conductivity of soil. This property is necessary for characterizing physically water transfer in the root zone and access of nutrient matter for plants, but it also the water capacity on the field scale. The temporal variability of forcing conditions and evolutionarily changing vegetation causes substantial effects of impact on the water capacity in large scales, bringing the evolution of water conditions in the entire area, spanning a possible temporal state in the range between floods and droughts. The dynamic of this evolution of water conditions is highly determined by vegetation but is hardly predictable in evaluations. Hydrological models require feeding with input data determining hydraulic properties of the porous soil which are proposed in this paper by means of the statistical-physical model of the water hydraulic conductivity. The statistical-physical model was determined for soils being typical in Euroregion Bug, Eastern Poland. The model is calibrated on the base of direct measurements in the field scales, and enables determining typical characteristics of water retention by the retention curves bounding the hydraulic conductivity to the state of water saturation of the soil. The values of the hydraulic conductivity in two reference states are used for calibrating the model. One is close to full saturation, and another is for low water content far from saturation, in a particular case of the soil type. Effects of calibrating a soil depends on assumed ranges of soil properties engaged to recognizing the soil type. Among those properties, the key role is for the bulk density, the porosity and its dependence on the specific area of the soil. The aim of this work is to provide such variables of auxiliary data to SMOS, which would bring a relation of the soil moisture to the water capacity, under retrieving SM from SMOS L1C data. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.
NASA Astrophysics Data System (ADS)
Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.
2003-12-01
Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant-based information. VSIM, which is based on the concept that equilibrium exists between climate, soils, and LAI, was used to simulate vine water stress, water use, and irrigation requirements during a single year for the site. Using the simple water-balance model with the dense characterization data, we will discuss: (1) the ability to predict vineyard soil water content at the small scales of soil heterogeneity that are observed in nature at the local-scale, (2) the relative importance of plant, climate, and soil information to predictions of the soil water balance at the site, (3) the influence of crop cover in the water balance predictions.
Assessment of groundwater recharge in an ash-fall mantled karst aquifer of southern Italy
NASA Astrophysics Data System (ADS)
Manna, F.; Nimmo, J. R.; De Vita, P.; Allocca, V.
2014-12-01
In southern Italy, Mesozoic carbonate formations, covered by ash-fall pyroclastic soils, are large karst aquifers and major groundwater resources. For these aquifers, even though Allocca et al., 2014 estimated a mean annual groundwater recharge coefficient at regional scale, a more complete understanding of the recharge processes at small spatio-temporal scale is a primary scientific target. In this paper, we study groundwater recharge processes in the Acqua della Madonna test site (Allocca et al., 2008) through the integrated analysis of piezometric levels, rainfall, soil moisture and air temperature data. These were gathered with hourly frequency by a monitoring station in 2008. We applied the Episodic Master Recharge method (Nimmo et al., 2014) to identify episodes of recharge and estimate the Recharge to Precipitation Ratio (RPR) at both the individual-episode and annual time scales. For different episodes of recharge observed, RPR ranges from 97% to 37%, with an annual mean around 73%. This result has been confirmed by a soil water balance and the application of the Thornthwaite-Mather method to estimate actual evapotranspiration. Even though it seems higher than RPRs typical of some parts of the world, it is very close to the mean annual groundwater recharge coefficient estimated at the regional scale for the karst aquifers of southern Italy. In addition, the RPR is affected at the daily scale by both antecedent soil moisture and rainfall intensity, as demonstrated by a statistically significant multiple linear regression among such hydrological variables. In particular, the recharge magnitude is great for low storm intensity and high antecedent soil moisture value. The results advance the comprehension of groundwater recharge processes in karst aquifers, and the sensitivity of RPR to antecedent soil moisture and rainfall intensity facilitates the prediction of the influence of climate and precipitation regime change on the groundwater recharge process.
Assessing soil biodiversity potentials in Europe.
Aksoy, Ece; Louwagie, Geertrui; Gardi, Ciro; Gregor, Mirko; Schröder, Christoph; Löhnertz, Manuel
2017-07-01
Soil is important as a critical component for the functioning of terrestrial ecosystems. The largest part of the terrestrial biodiversity relies, directly or indirectly, on soil. Furthermore, soil itself is habitat to a great diversity of organisms. The suitability of soil to host such a diversity is strongly related to its physico-chemical features and environmental properties. However, due to the complexity of both soil and biodiversity, it is difficult to identify a clear and unambiguous relationship between environmental parameters and soil biota. Nevertheless, the increasing diffusion of a more integrated view of ecosystems, and in particular the development of the concept of ecosystem services, highlights the need for a better comprehension of the role played by soils in offering these services, including the habitat provision. An assessment of the capability of soils to host biodiversity would contribute to evaluate the quality of soils in order to help policy makers with the development of appropriate and sustainable management actions. However, so far, the heterogeneity of soils has been a barrier to the production of a large-scale framework that directly links soil features to organisms living within it. The current knowledge on the effects of soil physico-chemical properties on biota and the available data at continental scale open the way towards such an evaluation. In this study, the soil habitat potential for biodiversity was assessed and mapped for the first time throughout Europe by combining several soil features (pH, soil texture and soil organic matter) with environmental parameters (potential evapotranspiration, average temperature, soil biomass productivity and land use type). Considering the increasingly recognized importance of soils and their biodiversity in providing ecosystem services, the proposed approach appears to be a promising tool that may contribute to open a forum on the need to include soils in future environmental policy making decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
Rapid response of soil fungal communities to low and high intensity fire
NASA Astrophysics Data System (ADS)
Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari
2016-04-01
Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high burned soils within one growing season. Community results from both burn treatments suggest an increase in patchy spatial distribution of EMF. The importance of incorporating mixed fire effects in fuel management practices will help to provide EMF refugia for dry forest regeneration. Our studies highlight the strong and rapid fungal community responses to fires and differences among fires of different severities. We theorize that quick initiation of EMF recolonization is possible depending on the size of high burn patches, proximity of low and unburned soil, and survival of nearby hosts.
Variation of Desert Soil Hydraulic Properties with Pedogenic Maturity
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; Perkins, K. S.; Mirus, B. B.; Schmidt, K. M.; Miller, D. M.; Stock, J. D.; Singha, K.
2006-12-01
Older alluvial desert soils exhibit greater pedogenic maturity, having more distinct desert pavements, vesicular (Av) horizons, and more pronounced stratification from processes such as illuviation and salt accumulation. These and related effects strongly influence the soil hydraulic properties. Older soils have been observed to have lower saturated hydraulic conductivity, and possibly greater capacity to retain water, but the quantitative effect of specific pedogenic features on the soil water retention or unsaturated hydraulic conductivity (K) curves is poorly known. With field infiltration/redistribution experiments on three different-aged soils developed within alluvial wash deposits in the Mojave National Preserve, we evaluated effective hydraulic properties over a scale of several m horizontally and to 1.5 m depth. We then correlated these properties with pedogenic features. The selected soils are (1) recently deposited sediments, (2) a soil of early Holocene age, and (3) a highly developed soil of late Pleistocene age. In each experiment we ponded water in a 1-m-diameter infiltration ring for 2.3 hr. For several weeks we monitored subsurface water content and matric pressure using surface electrical resistance imaging, dielectric-constant probes, heat-dissipation probes, and tensiometers. Analysis of these data using an inverse modeling technique gives the water retention and K properties needed for predictive modeling. Some properties show a consistent trend with soil age. Progressively more developed surface and near-surface features such as desert pavement and Av horizons are the likely cause of an observed consistent decline of infiltration capacity with soil age. Other properties, such as vertical flow retardation by layer contrasts, appear to have a more complicated soil-age dependence. The wash deposits display distinct depositional layering that has a retarding effect on vertical flow, an effect that may be less pronounced in the older Holocene soil, where the original depositional structure has a relatively modest influence. Anisotropy at the scale of centimeters is of major importance in the Pleistocene soil, with developed horizons that tend to hold water within about 0.5 m of the surface for a longer duration than in the two younger soils. Correlation of these and related pedogenic features with soil hydraulic properties is a first step toward the estimation of effective hydraulic properties of widely varying Mojave Desert soils, as needed for large-scale evaluation of soil moisture dynamics in relation to ecological habitat quality.
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Keizer, Jan Jacob
2017-04-01
Models can be invaluable tools to assess and manage the impacts of forest fires on hydrological and erosion processes. Immediately after fires, models can be used to identify priority areas for post-fire interventions or assess the risks of flooding and downstream contamination. In the long term, models can be used to evaluate the long-term implications of a fire regime for soil protection, surface water quality and potential management risks, or determine how changes to fire regimes, caused e.g. by climate change, can impact soil and water quality. However, several challenges make post-fire modelling particularly difficult: • Fires change vegetation cover and properties, such as by changing soil water repellency or by adding an ash layer over the soil; these processes, however are not described in currently used models, so that existing models need to be modified and tested. • Vegetation and soils recover with time since fire, changing important model parameters, so that the recovery processes themselves also need to be simulated, including the role of post-fire interventions. • During the window of vegetation and soil disturbance, particular weather conditions, such as the occurrence of severe droughts or extreme rainfall events, can have a large impact on the amount of runoff and erosion produced in burnt areas, so that models that smooth out these peak responses and rather simulate "long-term" average processes are less useful. • While existing models can simulate reasonable well slope-scale runoff generation and associated sediment losses and their catchment-scale routing, few models can accommodate the role of the ash layer or its transport by overland flow, in spite of its importance for soil fertility losses and downstream contamination. This presentation will provide an overview of the importance of post-fire hydrological and erosion modelling as well as of the challenges it faces and of recent efforts made to overcome these challenges. It will illustrate these challenges with two examples: probabilistic approaches to simulate the impact of different vegetation regrowth and post-fire climate combinations on runoff and erosion; and model developments for post-fire soil water repellency with different levels of complexity. It will also present an inventory of the current state-of-the-art and propose future research directions, both on post-fire models themselves and on their integration with other models in large-scale water resource assessment management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Mengmeng; Liu, Shanshan; Wang, Feng
We report that soil transplant serves as a proxy to simulate climate changes. Recently, we have shown that southward transplant of black soil and northward transplant of red soil altered soil microbial communities and biogeochemical variables. However, fundamental differences in soil types have prevented direct comparison between southward and northward transplants. To tackle it, herein we report an analysis of microbial communities of Cambisol soil in an agriculture field after 4 years of adaptation to southward and northward soil transplants over large transects. Analysis of bare fallow soils revealed concurrent increase in microbial functional diversity and coarse-scale taxonomic diversity atmore » both transplanted sites, as detected by GeoChip 3.0 and DGGE, respectively. Furthermore, a correlation between microbial functional diversity and taxonomic diversity was detected, which was masked in maize cropped soils. Mean annual temperature, soil moisture, and nitrate (NO 3¯-N) showed strong correlations with microbial communities. In addition, abundances of ammonium-oxidizing genes (amoA) and denitrification genes were correlated with nitrification capacity and NO 3¯-N contents, suggesting that microbial responses to soil transplant could alter microbe-mediated biogeochemical cycle at the ecosystem level.« less
Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks
NASA Astrophysics Data System (ADS)
Lorenz, K.
2015-12-01
Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.
2014-12-01
Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged mineral surfaces and variably charged edges, and the potential role of amphiphilic proteins in providing adsorptive layers for SOM-mineral interfaces. Our efforts at characterizing these systems through combined modeling and simulation and NMR will also be discussed.
NASA Astrophysics Data System (ADS)
Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Fujinuma, Y.; Mukai, H.; Takahashi, Y.; Kakubari, Y.; Wang, Q.; Nakane, K.
2007-12-01
Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux. The system equips 8 to 24 large automated chambers (90*90*50 cm, L*W*H). Since 1997, we have installed the chamber systems in the tundra in west Siberia, boreal forest in Alaska, cool- temperate and temperate forests in Japan, Korea and China, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 effluxes were estimated to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 30 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. From 2007, a big project that funded by Ministry of the Environment of Japan (MOE) has launched to evaluate the response and feedback of soil carbon dynamics of Japanese forest ecosystems to global change. We are installing another 6 chamber systems at the six of Japanese typical forests to conduct the soil warming experiments. For scaling-up the chamber experiments and understanding the mechanisms of soil organic matter (SOM) dynamics to global change, soil samples from about 100 forest ecosystems will be incubated for modeling development. Furthermore, the environmental (temperature and CO2) controlled large open-top chambers have been employed to investigate the balance of SOM (the input from litter falls and loss due to the decomposition) of forest ecosystems with global change.
Wang, Xiaoyue; Wang, Feng; Jiang, Yuji
2013-01-01
Decomposition of plant residues is largely mediated by soil-dwelling microorganisms whose activities are influenced by both climate conditions and properties of the soil. However, a comprehensive understanding of their relative importance remains elusive, mainly because traditional methods, such as soil incubation and environmental surveys, have a limited ability to differentiate between the combined effects of climate and soil. Here, we performed a large-scale reciprocal soil transplantation experiment, whereby microbial communities associated with straw decomposition were examined in three initially identical soils placed in parallel in three climate regions of China (red soil, Chao soil, and black soil, located in midsubtropical, warm-temperate, and cold-temperate zones). Maize straws buried in mesh bags were sampled at 0.5, 1, and 2 years after the burial and subjected to chemical, physical, and microbiological analyses, e.g., phospholipid fatty acid analysis for microbial abundance, community-level physiological profiling, and 16S rRNA gene denaturing gradient gel electrophoresis, respectively, for functional and phylogenic diversity. Results of aggregated boosted tree analysis show that location rather soil is the primary determining factor for the rate of straw decomposition and structures of the associated microbial communities. Principal component analysis indicates that the straw communities are primarily grouped by location at any of the three time points. In contrast, microbial communities in bulk soil remained closely related to one another for each soil. Together, our data suggest that climate (specifically, geographic location) has stronger effects than soil on straw decomposition; moreover, the successive process of microbial communities in soils is slower than those in straw residues in response to climate changes. PMID:23524671
NASA Technical Reports Server (NTRS)
Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.
1993-01-01
New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.
Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.
2017-12-01
Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.
, multi-scale observing systems under challenging field conditions to document unexpectedly large soil CO2 pleased to recognize the Building Technology and Urban Systems Division's Retro-commissioning Sensor synthetic biology while providing novel approaches for crop engineering to support Berkeley Lab and DOE's
Application of geophysical methods to agriculture: An overview
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
Soil chemistry in lithologically diverse datasets: the quartz dilution effect
Bern, Carleton R.
2009-01-01
National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.
Chamizo, Sonia; Belnap, Jayne; Elridge, David J; Issa, Oumarou M
2016-01-01
Biocrusts exert a strong influence on hydrological processes in drylands by modifying numerous soil properties that affect water retention and movement in soils. Yet, their role in these processes is not clearly understood due to the large number of factors that act simultaneously and can mask the biocrust effect. The influence of biocrusts on soil hydrology depends on biocrust intrinsic characteristics such as cover, composition, and external morphology, which differ greatly among climate regimes, but also on external factors as soil type, topography and vegetation distribution patterns, as well as interactions among these factors. This chapter reviews the most recent literature published on the role of biocrusts in infiltration and runoff, soil moisture, evaporation and non-rainfall water inputs (fog, dew, water absorption), in an attempt to elucidate the key factors that explain how biocrusts affect land hydrology. In addition to the crust type and site characteristics, recent studies point to the crucial importance of the type of rainfall and the spatial scale at which biocrust effects are analyzed to understand their role in hydrological processes. Future studies need to consider the temporal and spatial scale investigated to obtain more accurate generalizations on the role of biocrusts in land hydrology.
NASA Astrophysics Data System (ADS)
O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.
2017-12-01
Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on the Kaibab Plateau, AZ. Our results predicted that climate-induced vegetation changes will result in annual runoff declines of 2%-10% in the next century, but that restoration reversed these declines. We also predict that restoration treatments will protect water quality by reducing the incidence of high severity fire and the associated erosion.
NASA Astrophysics Data System (ADS)
Yuhendar, A. H.; Wusqa, U.; Kartiko, R. D.; Raya, N. R.; Misbahudin
2016-05-01
Large-scale landslide occurred in Margamukti village, Pangalengan, Bandung Regency, West Java Province, Indonesia. The landslide damaged geothermal gas pipeline along 300 m in Wayang Windu Geothermal Field. Based on field observation, landslide occured in rotational sliding movement. Laboratory analysis were conducted to obtain the characteristics of the soil. Based on the condition of the landslide in this area, the Factor of Safety can be simulated by the soil mechanics approach. Factor of safety analysis based on soil cohesion and internal friction angle was conducted using manual sensitivity analysis for back analysis. The analysis resulted soil cohesion in critical condition (FS<1) is 6.01 kPa. This value is smaller than cohesion of undisturbed slope soil sample. Water from rainfall is the most important instability factors in research area. Because it decreases cohesion in soils and increases weight and pore water pressure in granular media.
Global comparison reveals biogenic weathering as driven by nutrient limitation at ecosystem scale
NASA Astrophysics Data System (ADS)
Boy, Jens; Godoy, Roberto; Dechene, Annika; Shibistova, Olga; Amir, Hamid; Iskandar, Issi; Fogliano, Bruno; Boy, Diana; McCulloch, Robert; Andrino, Alberto; Gschwendtner, Silvia; Marin, Cesar; Sauheitl, Leopold; Dultz, Stefan; Mikutta, Robert; Guggenberger, Georg
2017-04-01
A substantial contribution of biogenic weathering in ecosystem nutrition, especially by symbiotic microorganisms, has often been proposed, but large-scale in vivo studies are still missing. Here we compare a set of ecosystems spanning from the Antarctic to tropical forests for their potential biogenic weathering and its drivers. To address biogenic weathering rates, we installed mineral mesocosms only accessible for bacteria and fungi for up to 4 years, which contained freshly broken and defined nutrient-baring minerals in soil A horizons of ecosystems along a gradient of soil development differing in climate and plant species communities. Alterations of the buried minerals were analyzed by grid-intersection, confocal lascer scanning microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy on the surface and on thin sections. On selected sites, carbon fluxes were tracked by 13C labeling, and microbial community was identified by DNA sequencing. In young ecosystems (protosoils) biogenic weathering is almost absent and starts after first carbon accumulation by aeolian (later litter) inputs and is mainly performed by bacteria. With ongoing soil development and appearance of symbiotic (mycorrhized) plants, nutrient availability in soil increasingly drove biogenic weathering, and fungi became the far more important players than bacteria. We found a close relation between fungal biogenic weathering and available potassium across all 16 forested sites in the study, regardless of the dominant mycorrhiza type (AM or EM), climate, and plant-species composition. We conclude that nutrient limitations at ecosystem scale are generally counteracted by adapted fungal biogenic weathering. The close relation between fungal weathering and plant-available nutrients over a large range of severely contrasting ecosystems points towards a direct energetic support of these weathering processes by the photoautotrophic community, making biogenic weathering a directional on-demand process common in all types of ecosystems.
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review
Zhang, Dianjun; Zhou, Guoqing
2016-01-01
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research. PMID:27548168
Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
Zhang, Dianjun; Zhou, Guoqing
2016-08-17
As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.
Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska
NASA Astrophysics Data System (ADS)
Hartery, Sean; Commane, Róisín; Lindaas, Jakob; Sweeney, Colm; Henderson, John; Mountain, Marikate; Steiner, Nicholas; McDonald, Kyle; Dinardo, Steven J.; Miller, Charles E.; Wofsy, Steven C.; Chang, Rachel Y.-W.
2018-01-01
Methane (CH4) is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. In this study, we analyze a subset of in situ CH4 aircraft observations made over Alaska during the growing seasons of 2012-2014 as part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Net surface CH4 fluxes are estimated using a Lagrangian particle dispersion model which quantitatively links surface emissions from Alaska and the western Yukon with observations of enhanced CH4 in the mixed layer. We estimate that between May and September, net CH4 emissions from the region of interest were 2.2 ± 0.5 Tg, 1.9 ± 0.4 Tg, and 2.3 ± 0.6 Tg of CH4 for 2012, 2013, and 2014, respectively. If emissions are only attributed to two biogenic eco-regions within our domain, then tundra regions were the predominant source, accounting for over half of the overall budget despite only representing 18 % of the total surface area. Boreal regions, which cover a large part of the study region, accounted for the remainder of the emissions. Simple multiple linear regression analysis revealed that, overall, CH4 fluxes were largely driven by soil temperature and elevation. In regions specifically dominated by wetlands, soil temperature and moisture at 10 cm depth were important explanatory variables while in regions that were not wetlands, soil temperature and moisture at 40 cm depth were more important, suggesting deeper methanogenesis in drier soils. Although similar environmental drivers have been found in the past to control CH4 emissions at local scales, this study shows that they can be used to generate a statistical model to estimate the regional-scale net CH4 budget.
NASA Astrophysics Data System (ADS)
Lee Zhi Yi, Amelia; Dercon, Gerd; Blackburn, Carl; Kheng, Heng Lee
2017-04-01
In the event of a large-scale nuclear accident, the swift implementation of response actions is imperative. For food and agriculture, it is important to restrict contaminated food from being produced or gathered, and to put in place systems to prevent contaminated produce from entering the food chain. Emergency tools and response protocols exist to assist food control and health authorities but they tend to focus on radioactivity concentrations in food products as a means of restricting the distribution and sale of contaminated produce. Few, if any, emergency tools or protocols focus on the food production environment, for example radioactivity concentrations in soils. Here we present the Operational Intervention Levels for Soils (OIL for Soils) concept, an optimization tool developed at the IAEA to facilitate agricultural decision making and to improve nuclear emergency preparedness and response capabilities. Effective intervention relies on the prompt availability of radioactivity concentration data and the ability to implement countermeasures. Sampling in food and agriculture can be demanding because it may involve large areas and many sample types. In addition, there are finite resources available in terms of manpower and laboratory support. Consequently, there is a risk that timely decision making will be hindered and food safety compromised due to time taken to sample and analyse produce. However, the OILs for Soils concept developed based on experience in Japan can help in this situation and greatly assist authorities responsible for agricultural production. OILs for Soils - pre-determined reference levels of air dose rates linked to radionuclide concentrations in soils - can be used to trigger response actions particularly important for agricultural and food protection. Key considerations in the development of the OILs for Soils are: (1) establishing a pragmatic sampling approach to prioritize and optimize available resources and data requirements for decision making in agricultural sites: (2) creating a system that is adaptable to different countries, and; (3) developing a framework to calculate default values of OILs for Soils for application during an emergency. The OILs for Soils reference levels are calculated using a mathematical model. Empirical equations, paired with radionuclide data (e.g. Cs-134, Cs-137 and I-131) from the ICRU 53 report, are utilized to determine soil contamination from aerial monitoring air dose rate data. Modelling allows soil contamination values to be readily approximated and this is used to prioritize soil and food sampling sites. Reference levels are based on a model that considers radionuclide transfer factors for up-take into plants, soil density, and soil sampling depth. Decision actions for determined reference levels are suggested for processed foods, animal products, animal feed and crop products (including plants at the growing stage, mature stage, fallow farmland, and forestry products). With these steps, OILs for Soils provide practical guidance that will equip authorities to respond efficiently and help maintain the safety of the food supply during large-scale nuclear or radiological emergency situations.
How does pedogenesis drive plant diversity?
Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.
2013-01-01
Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.
Chrysikou, Loukia; Gemenetzis, Panagiotis; Kouras, Athanasios; Manoli, Evangelia; Terzi, Eleni; Samara, Constantini
2008-02-01
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), including hexaclorocyclohexanes (HCHs) and DDTs, as well as trace elements were determined in soil and vegetation samples collected from the surrounding area of the landfill "Tagarades", the biggest in northern Greece, following a large scale fire involving approximately 50,000 tons of municipal waste. High concentrations of total PAHs, PCBs and heavy metals were found inside the landfill (1475 microg kg(-1) dw, 399 microg kg(-1) dw and 29.8 mg kg(-1) dw, respectively), whereas concentrations in the surrounding soils were by far lower ranging between 11.2-28.1 microg kg(-1) dw for PAHs, 4.02-11.2 microg kg(-1) dw for PCBs and 575-1207 mg kg(-1) dw for heavy metals. The distribution of HCHs and DDTs were quite different since certain soils exhibited equal or higher concentrations than the landfill. In vegetation, the concentrations of PAHs, PCBs, HCHs and DDTs ranged from 14.1-34.7, 3.64-25.9, 1.41-32.1 and 0.61-4.03 microg kg(-1) dw, respectively, while those of heavy metals from 81 to 159 mg kg(-1) dw. The results of the study indicated soil and vegetation pollution levels in the surroundings of the landfill comparable to those reported for other Greek locations. The impact from the landfill fire was not evident partially due to the presence of recent and past inputs from other activities (agriculture, vehicular transport, earlier landfill fires).
NASA Astrophysics Data System (ADS)
Wang, L.; Yuan, X.; Xie, Z.
2017-12-01
Flash drought has been receiving attention recently due to its rapid development and vast damage on crops in the growing season. Accompanied with heatwave and rainfall deficit, the soil moisture decreased rapidly in a short time and may lead to the failure of root water uptake and large-scale crops wither. There are two types of flash droughts according to the causes (Mo and Lettenmaier, 2016), i.e., heat wave flash drought and rainfall deficit flash drought. Here, based on pentad-mean surface air temperature and precipitation observations from over two thousand meteorological stations as well as soil moisture and ET estimations from three global reanalysis products, the characteristics and evolution of the two types of flash droughts over China are being explored. Heat wave flash drought is more likely to occur in humid and semi-humid areas, such as southern China, while rainfall deficit flash drought is more likely to occur in northern China. Unlike the traditional drought that persists for a few months to decades, the mean durations of both types of flash droughts are very short. We use monthly mean soil moisture to calculate sub-seasonal to seasonal (S2S) soil moisture drought, and compare its characteristics and preferred conditions such as the large-scale atmospheric circulation and oceanic anomaly for both types of flash droughts. The percentages of flash drought in different periods of S2S drought are also being explored to see the potential relationship between flash drought and S2S drought over different regions.
Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias
2015-05-01
Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.