Sample records for large scale spatial

  1. Design and implementation of a distributed large-scale spatial database system based on J2EE

    NASA Astrophysics Data System (ADS)

    Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia

    2003-03-01

    With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.

  2. Process, pattern and scale: hydrogeomorphology and plant diversity in forested wetlands across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Alexander, L.; Hupp, C. R.; Forman, R. T.

    2002-12-01

    Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.

  3. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  4. Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    DTIC Science & Technology

    2010-01-25

    2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and

  5. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales

    PubMed Central

    Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.

    2014-01-01

    Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949

  6. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  7. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  8. Male group size, female distribution and changes in sexual segregation by Roosevelt elk

    PubMed Central

    Peterson, Leah M.

    2017-01-01

    Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076

  9. Large Scale Density Estimation of Blue and Fin Whales (LSD)

    DTIC Science & Technology

    2014-09-30

    172. McDonald, MA, Hildebrand, JA, and Mesnick, S (2009). Worldwide decline in tonal frequencies of blue whale songs . Endangered Species Research 9...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...estimating blue and fin whale density that is effective over large spatial scales and is designed to cope with spatial variation in animal density utilizing

  10. An invariability-area relationship sheds new light on the spatial scaling of ecological stability.

    PubMed

    Wang, Shaopeng; Loreau, Michel; Arnoldi, Jean-Francois; Fang, Jingyun; Rahman, K Abd; Tao, Shengli; de Mazancourt, Claire

    2017-05-19

    The spatial scaling of stability is key to understanding ecological sustainability across scales and the sensitivity of ecosystems to habitat destruction. Here we propose the invariability-area relationship (IAR) as a novel approach to investigate the spatial scaling of stability. The shape and slope of IAR are largely determined by patterns of spatial synchrony across scales. When synchrony decays exponentially with distance, IARs exhibit three phases, characterized by steeper increases in invariability at both small and large scales. Such triphasic IARs are observed for primary productivity from plot to continental scales. When synchrony decays as a power law with distance, IARs are quasilinear on a log-log scale. Such quasilinear IARs are observed for North American bird biomass at both species and community levels. The IAR provides a quantitative tool to predict the effects of habitat loss on population and ecosystem stability and to detect regime shifts in spatial ecological systems, which are goals of relevance to conservation and policy.

  11. Explorative Function in Williams Syndrome Analyzed through a Large-Scale Task with Multiple Rewards

    ERIC Educational Resources Information Center

    Foti, F.; Petrosini, L.; Cutuli, D.; Menghini, D.; Chiarotti, F.; Vicari, S.; Mandolesi, L.

    2011-01-01

    This study aimed to evaluate spatial function in subjects with Williams syndrome (WS) by using a large-scale task with multiple rewards and comparing the spatial abilities of WS subjects with those of mental age-matched control children. In the present spatial task, WS participants had to explore an open space to search nine rewards placed in…

  12. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  13. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.

  14. Mapping spatial patterns of denitrifiers at large scales (Invited)

    NASA Astrophysics Data System (ADS)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  15. How large is large enough for insects? Forest fragmentation effects at three spatial scales

    NASA Astrophysics Data System (ADS)

    Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.

    2005-02-01

    Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.

  16. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP [Investigating the scale dependence of SCM simulated precipitation and cloud by using gridded forcing data at SGP

    DOE PAGES

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-05

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  17. Scaling properties of the Arctic sea ice Deformation from Buoy Dispersion Analysis

    NASA Astrophysics Data System (ADS)

    Weiss, J.; Rampal, P.; Marsan, D.; Lindsay, R.; Stern, H.

    2007-12-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over time scales from 3 hours to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate -the Arctic sea ice cover- stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e. it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multi-scale fracturing/faulting processes.

  18. Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems.

    PubMed

    Shackell, Nancy L; Fisher, Jonathan A D; Frank, Kenneth T; Lawton, Peter

    2012-01-01

    The spatial scale of similarity among fish communities is characteristically large in temperate marine systems: connectivity is enhanced by high rates of dispersal during the larval/juvenile stages and the increased mobility of large-bodied fish. A larger spatial scale of similarity (low beta diversity) is advantageous in heavily exploited systems because locally depleted populations are more likely to be "rescued" by neighboring areas. We explored whether the spatial scale of similarity changed from 1970 to 2006 due to overfishing of dominant, large-bodied groundfish across a 300 000-km2 region of the Northwest Atlantic. Annually, similarities among communities decayed slowly with increasing geographic distance in this open system, but through time the decorrelation distance declined by 33%, concomitant with widespread reductions in biomass, body size, and community evenness. The decline in connectivity stemmed from an erosion of community similarity among local subregions separated by distances as small as 100 km. Larger fish, of the same species, contribute proportionally more viable offspring, so observed body size reductions will have affected maternal output. The cumulative effect of nonlinear maternal influences on egg/larval quality may have compromised the spatial scale of effective larval dispersal, which may account for the delayed recovery of certain member species. Our study adds strong support for using the spatial scale of similarity as an indicator of metacommunity stability both to understand the spatial impacts of exploitation and to refine how spatial structure is used in management plans.

  19. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  20. Spatial Covariability of Temperature and Hydroclimate as a Function of Timescale During the Common Era

    NASA Astrophysics Data System (ADS)

    McKay, N.

    2017-12-01

    As timescale increases from years to centuries, the spatial scale of covariability in the climate system is hypothesized to increase as well. Covarying spatial scales are larger for temperature than for hydroclimate, however, both aspects of the climate system show systematic changes on large-spatial scales on orbital to tectonic timescales. The extent to which this phenomenon is evident in temperature and hydroclimate at centennial timescales is largely unknown. Recent syntheses of multidecadal to century-scale variability in hydroclimate during the past 2k in the Arctic, North America, and Australasia show little spatial covariability in hydroclimate during the Common Era. To determine 1) the evidence for systematic relationships between the spatial scale of climate covariability as a function of timescale, and 2) whether century-scale hydroclimate variability deviates from the relationship between spatial covariability and timescale, we quantify this phenomenon during the Common Era by calculating the e-folding distance in large instrumental and paleoclimate datasets. We calculate this metric of spatial covariability, at different timescales (1, 10 and 100-yr), for a large network of temperature and precipitation observations from the Global Historical Climatology Network (n=2447), from v2.0.0 of the PAGES2k temperature database (n=692), and from moisture-sensitive paleoclimate records North America, the Arctic, and the Iso2k project (n = 328). Initial results support the hypothesis that the spatial scale of covariability is larger for temperature, than for precipitation or paleoclimate hydroclimate indicators. Spatially, e-folding distances for temperature are largest at low latitudes and over the ocean. Both instrumental and proxy temperature data show clear evidence for increasing spatial extent as a function of timescale, but this phenomenon is very weak in the hydroclimate data analyzed here. In the proxy hydroclimate data, which are predominantly indicators of effective moisture, e-folding distance increases from annual to decadal timescales, but does not continue to increase to centennial timescales. Future work includes examining additional instrumental and proxy datasets of moisture variability, and extending the analysis to millennial timescales of variability.

  1. Scaling properties of sea ice deformation from buoy dispersion analysis

    NASA Astrophysics Data System (ADS)

    Rampal, P.; Weiss, J.; Marsan, D.; Lindsay, R.; Stern, H.

    2008-03-01

    A temporal and spatial scaling analysis of Arctic sea ice deformation is performed over timescales from 3 h to 3 months and over spatial scales from 300 m to 300 km. The deformation is derived from the dispersion of pairs of drifting buoys, using the IABP (International Arctic Buoy Program) buoy data sets. This study characterizes the deformation of a very large solid plate (the Arctic sea ice cover) stressed by heterogeneous forcing terms like winds and ocean currents. It shows that the sea ice deformation rate depends on the scales of observation following specific space and time scaling laws. These scaling properties share similarities with those observed for turbulent fluids, especially for the ocean and the atmosphere. However, in our case, the time scaling exponent depends on the spatial scale, and the spatial exponent on the temporal scale, which implies a time/space coupling. An analysis of the exponent values shows that Arctic sea ice deformation is very heterogeneous and intermittent whatever the scales, i.e., it cannot be considered as viscous-like, even at very large time and/or spatial scales. Instead, it suggests a deformation accommodated by a multiscale fracturing/faulting processes.

  2. Multi-scale approaches for high-speed imaging and analysis of large neural populations

    PubMed Central

    Ahrens, Misha B.; Yuste, Rafael; Peterka, Darcy S.; Paninski, Liam

    2017-01-01

    Progress in modern neuroscience critically depends on our ability to observe the activity of large neuronal populations with cellular spatial and high temporal resolution. However, two bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting large video data is challenging to analyze. Second, there is an explicit tradeoff between imaging speed, signal-to-noise, and field of view: with current recording technology we cannot image very large neuronal populations with simultaneously high spatial and temporal resolution. Here we describe multi-scale approaches for alleviating both of these bottlenecks. First, we show that spatial and temporal decimation techniques based on simple local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium video data into estimates of single-cell neural activity. Second, once the shapes of individual neurons have been identified at fine scale (e.g., after an initial phase of conventional imaging with standard temporal and spatial resolution), we find that the spatial/temporal resolution tradeoff shifts dramatically: after demixing we can accurately recover denoised fluorescence traces and deconvolved neural activity of each individual neuron from coarse scale data that has been spatially decimated by an order of magnitude. This offers a cheap method for compressing this large video data, and also implies that it is possible to either speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution. PMID:28771570

  3. Simulation of nitrate reduction in groundwater - An upscaling approach from small catchments to the Baltic Sea basin

    NASA Astrophysics Data System (ADS)

    Hansen, A. L.; Donnelly, C.; Refsgaard, J. C.; Karlsson, I. B.

    2018-01-01

    This paper describes a modeling approach proposed to simulate the impact of local-scale, spatially targeted N-mitigation measures for the Baltic Sea Basin. Spatially targeted N-regulations aim at exploiting the considerable spatial differences in the natural N-reduction taking place in groundwater and surface water. While such measures can be simulated using local-scale physically-based catchment models, use of such detailed models for the 1.8 million km2 Baltic Sea basin is not feasible due to constraints on input data and computing power. Large-scale models that are able to simulate the Baltic Sea basin, on the other hand, do not have adequate spatial resolution to simulate some of the field-scale measures. Our methodology combines knowledge and results from two local-scale physically-based MIKE SHE catchment models, the large-scale and more conceptual E-HYPE model, and auxiliary data in order to enable E-HYPE to simulate how spatially targeted regulation of agricultural practices may affect N-loads to the Baltic Sea. We conclude that the use of E-HYPE with this upscaling methodology enables the simulation of the impact on N-loads of applying a spatially targeted regulation at the Baltic Sea basin scale to the correct order-of-magnitude. The E-HYPE model together with the upscaling methodology therefore provides a sound basis for large-scale policy analysis; however, we do not expect it to be sufficiently accurate to be useful for the detailed design of local-scale measures.

  4. A worldwide analysis of the impact of forest cover change on annual runoff across multiple spatial scales

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Liu, S.

    2017-12-01

    Despite extensive studies on hydrological responses to forest cover change in small watersheds, the hydrological responses to forest change and associated mechanisms across multiple spatial scales have not been fully understood. This review thus examined about 312 watersheds worldwide to provide a generalized framework to evaluate hydrological responses to forest cover change and to identify the contribution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest change related hydrological responses in small (<1000 km2) and large watersheds (≥1000 km2). Key findings include: 1) the increase in annual runoff associated with forest cover loss is statistically significant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; 2) the sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in large watersheds; 3) annual runoff is more sensitive to forest cover change in water-limited watersheds than in energy-limited watersheds across all spatial scales; and 4) small mixed forest-dominated watersheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change. These findings improve the understanding of hydrological response to forest cover change at different spatial scales and provide a scientific underpinning to future watershed management in the context of climate change and increasing anthropogenic disturbances.

  5. Model simulations and proxy-based reconstructions for the European region in the past millennium (Invited)

    NASA Astrophysics Data System (ADS)

    Zorita, E.

    2009-12-01

    One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.

  6. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend.

    PubMed

    Post, Eric; Forchhammer, Mads C

    2004-06-22

    According to ecological theory, populations whose dynamics are entrained by environmental correlation face increased extinction risk as environmental conditions become more synchronized spatially. This prediction is highly relevant to the study of ecological consequences of climate change. Recent empirical studies have indicated, for example, that large-scale climate synchronizes trophic interactions and population dynamics over broad spatial scales in freshwater and terrestrial systems. Here, we present an analysis of century-scale, spatially replicated data on local weather and the population dynamics of caribou in Greenland. Our results indicate that spatial autocorrelation in local weather has increased with large-scale climatic warming. This increase in spatial synchrony of environmental conditions has been matched, in turn, by an increase in the spatial synchrony of local caribou populations toward the end of the 20th century. Our results indicate that spatial synchrony in environmental conditions and the populations influenced by them are highly variable through time and can increase with climatic warming. We suggest that if future warming can increase population synchrony, it may also increase extinction risk.

  7. A CONCEPTUAL FRAMEWORK FOR SELECTING AND ANALYZING STRESSOR DATA TO STUDY SPECIES RICHNESS AT LARGE SPATIAL SCALES

    EPA Science Inventory

    In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...

  8. Bridging the gap between small and large scale sediment budgets? - A scaling challenge in the Upper Rhone Basin, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Blöthe, Jan; Hoffmann, Thomas; Schrott, Lothar

    2016-04-01

    A large number of sediment budgets have been compiled on different temporal and spatial scales in alpine regions. Detailed sediment budgets based on the quantification of a number of sediment storages (e.g. talus cones, moraine deposits) exist only for a few small scale drainage basins (up to 10² km²). In contrast, large scale sediment budgets (> 10³ km²) consider only long term sediment sinks such as valley fills and lakes. Until now, these studies often neglect small scale sediment storages in the headwaters. However, the significance of these sediment storages have been reported. A quantitative verification whether headwaters function as sediment source regions is lacking. Despite substantial transport energy in mountain environments due to steep gradients and high relief, sediment flux in large river systems is frequently disconnected from alpine headwaters. This leads to significant storage of coarse-grained sediment along the flow path from rockwall source regions to large sedimentary sinks in major alpine valleys. To improve the knowledge on sediment budgets in large scale alpine catchments and to bridge the gap between small and large scale sediment budgets, we apply a multi-method approach comprising investigations on different spatial scales in the Upper Rhone Basin (URB). The URB is the largest inneralpine basin in the European Alps with a size of > 5400 km². It is a closed system with Lake Geneva acting as an ultimate sediment sink for suspended and clastic sediment. We examine the spatial pattern and volumes of sediment storages as well as the morphometry on the local and catchment-wide scale. We mapped sediment storages and bedrock in five sub-regions of the study area (Goms, Lötschen valley, Val d'Illiez, Vallée de la Liène, Turtmann valley) in the field and from high-resolution remote sensing imagery to investigate the spatial distribution of different sediment storage types (e.g. talus deposits, debris flow cones, alluvial fans). These sub-regions cover all three litho-tectonic units of the URB (Helvetic nappes, Penninic nappes, External massifs) and different catchment sizes to capture the inherent variability. Different parameters characterizing topography, surface characteristics, and vegetation cover are analyzed for each storage type. The data is then used in geostatistical models (PCA, stepwise logistic regression) to predict the spatial distribution of sediment storage for the whole URB. We further conduct morphometric analyses of the URB to gain information on the varying degree of glacial imprint and postglacial landscape evolution and their control on the spatial distribution of sediment storage in a large scale drainage basin. Geophysical methods (ground penetrating radar and electrical resistivity tomography) are applied on different sediment storage types on the local scale to estimate mean thicknesses. Additional data from published studies are used to complement our dataset. We integrate the local data in the statistical model on the spatial distribution of sediment storages for the whole URB. Hence, we can extrapolate the stored sediment volumes to the regional scale in order to bridge the gap between small and large scale studies.

  9. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    PubMed

    Basille, Mathieu; Van Moorter, Bram; Herfindal, Ivar; Martin, Jodie; Linnell, John D C; Odden, John; Andersen, Reidar; Gaillard, Jean-Michel

    2013-01-01

    Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  10. Spatial scaling of non-native fish richness across the United States

    Treesearch

    Qinfeng Guo; Julian D. Olden

    2014-01-01

    A major goal and challenge of invasion ecology is to describe and interpret spatial and temporal patterns of species invasions. Here, we examined fish invasion patterns at four spatially structured and hierarchically nested scales across the contiguous United States (i.e., from large to small: region, basin, watershed, and sub-watershed). All spatial relationships in...

  11. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  12. Modeling Alaska boreal forests with a controlled trend surface approach

    Treesearch

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  13. Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems

    USGS Publications Warehouse

    Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca

    2018-01-01

    Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.

  14. [Spatial point pattern analysis of main trees and flowering Fargesia qinlingensis in Abies fargesii forests in Mt Taibai of the Qinling Mountains, China].

    PubMed

    Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai

    2017-11-01

    In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.

  15. Experienced and Novice Teachers' Concepts of Spatial Scale

    ERIC Educational Resources Information Center

    Jones, M. Gail; Tretter, Thomas; Taylor, Amy; Oppewal, Tom

    2008-01-01

    Scale is one of the thematic threads that runs through nearly all of the sciences and is considered one of the major prevailing ideas of science. This study explored novice and experienced teachers' concepts of spatial scale with a focus on linear sizes from very small (nanoscale) to very large (cosmic scale). Novice teachers included…

  16. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover

    NASA Astrophysics Data System (ADS)

    Niesterowicz, Jacek; Stepinski, Tomasz F.

    2017-10-01

    The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.

  17. OpenMP parallelization of a gridded SWAT (SWATG)

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Hou, Jinliang; Cao, Yongpan; Gu, Juan; Huang, Chunlin

    2017-12-01

    Large-scale, long-term and high spatial resolution simulation is a common issue in environmental modeling. A Gridded Hydrologic Response Unit (HRU)-based Soil and Water Assessment Tool (SWATG) that integrates grid modeling scheme with different spatial representations also presents such problems. The time-consuming problem affects applications of very high resolution large-scale watershed modeling. The OpenMP (Open Multi-Processing) parallel application interface is integrated with SWATG (called SWATGP) to accelerate grid modeling based on the HRU level. Such parallel implementation takes better advantage of the computational power of a shared memory computer system. We conducted two experiments at multiple temporal and spatial scales of hydrological modeling using SWATG and SWATGP on a high-end server. At 500-m resolution, SWATGP was found to be up to nine times faster than SWATG in modeling over a roughly 2000 km2 watershed with 1 CPU and a 15 thread configuration. The study results demonstrate that parallel models save considerable time relative to traditional sequential simulation runs. Parallel computations of environmental models are beneficial for model applications, especially at large spatial and temporal scales and at high resolutions. The proposed SWATGP model is thus a promising tool for large-scale and high-resolution water resources research and management in addition to offering data fusion and model coupling ability.

  18. Mapping the distribution of the denitrifier community at large scales (Invited)

    NASA Astrophysics Data System (ADS)

    Philippot, L.; Bru, D.; Ramette, A.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 740 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  19. CROSS-SCALE CORRELATIONS AND THE DESIGN AND ANALYSIS OF AVIAN HABITAT SELECTION STUDIES

    EPA Science Inventory

    It has long been suggested that birds select habitat hierarchically, progressing from coarser to finer spatial scales. This hypothesis, in conjunction with the realization that many organisms likely respond to environmental patterns at multiple spatial scales, has led to a large ...

  20. Relaxation in two dimensions and the 'sinh-Poisson' equation

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Matthaeus, W. H.; Stribling, W. T.; Martinez, D.; Oughton, S.

    1992-01-01

    Long-time states of a turbulent, decaying, two-dimensional, Navier-Stokes flow are shown numerically to relax toward maximum-entropy configurations, as defined by the "sinh-Poisson" equation. The large-scale Reynolds number is about 14,000, the spatial resolution is (512)-squared, the boundary conditions are spatially periodic, and the evolution takes place over nearly 400 large-scale eddy-turnover times.

  1. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  2. Optical correlator using very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators

    NASA Technical Reports Server (NTRS)

    Turner, Richard M.; Jared, David A.; Sharp, Gary D.; Johnson, Kristina M.

    1993-01-01

    The use of 2-kHz 64 x 64 very-large-scale integrated circuit/ferroelectric-liquid-crystal electrically addressed spatial light modulators as the input and filter planes of a VanderLugt-type optical correlator is discussed. Liquid-crystal layer thickness variations that are present in the devices are analyzed, and the effects on correlator performance are investigated through computer simulations. Experimental results from the very-large-scale-integrated / ferroelectric-liquid-crystal optical-correlator system are presented and are consistent with the level of performance predicted by the simulations.

  3. Large scale, synchronous variability of marine fish populations driven by commercial exploitation.

    PubMed

    Frank, Kenneth T; Petrie, Brian; Leggett, William C; Boyce, Daniel G

    2016-07-19

    Synchronous variations in the abundance of geographically distinct marine fish populations are known to occur across spatial scales on the order of 1,000 km and greater. The prevailing assumption is that this large-scale coherent variability is a response to coupled atmosphere-ocean dynamics, commonly represented by climate indexes, such as the Atlantic Multidecadal Oscillation and North Atlantic Oscillation. On the other hand, it has been suggested that exploitation might contribute to this coherent variability. This possibility has been generally ignored or dismissed on the grounds that exploitation is unlikely to operate synchronously at such large spatial scales. Our analysis of adult fishing mortality and spawning stock biomass of 22 North Atlantic cod (Gadus morhua) stocks revealed that both the temporal and spatial scales in fishing mortality and spawning stock biomass were equivalent to those of the climate drivers. From these results, we conclude that greater consideration must be given to the potential of exploitation as a driving force behind broad, coherent variability of heavily exploited fish species.

  4. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  5. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  6. Behavioral self-organization underlies the resilience of a coastal ecosystem.

    PubMed

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R; Herman, Peter M J; van de Koppel, Johan

    2017-07-25

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds ( Mytilus edulis ) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance.

  7. Behavioral self-organization underlies the resilience of a coastal ecosystem

    PubMed Central

    de Paoli, Hélène; van der Heide, Tjisse; van den Berg, Aniek; Silliman, Brian R.; Herman, Peter M. J.

    2017-01-01

    Self-organized spatial patterns occur in many terrestrial, aquatic, and marine ecosystems. Theoretical models and observational studies suggest self-organization, the formation of patterns due to ecological interactions, is critical for enhanced ecosystem resilience. However, experimental tests of this cross-ecosystem theory are lacking. In this study, we experimentally test the hypothesis that self-organized pattern formation improves the persistence of mussel beds (Mytilus edulis) on intertidal flats. In natural beds, mussels generate self-organized patterns at two different spatial scales: regularly spaced clusters of mussels at centimeter scale driven by behavioral aggregation and large-scale, regularly spaced bands at meter scale driven by ecological feedback mechanisms. To test for the relative importance of these two spatial scales of self-organization on mussel bed persistence, we conducted field manipulations in which we factorially constructed small-scale and/or large-scale patterns. Our results revealed that both forms of self-organization enhanced the persistence of the constructed mussel beds in comparison to nonorganized beds. Small-scale, behaviorally driven cluster patterns were found to be crucial for persistence, and thus resistance to wave disturbance, whereas large-scale, self-organized patterns facilitated reformation of small-scale patterns if mussels were dislodged. This study provides experimental evidence that self-organization can be paramount to enhancing ecosystem persistence. We conclude that ecosystems with self-organized spatial patterns are likely to benefit greatly from conservation and restoration actions that use the emergent effects of self-organization to increase ecosystem resistance to disturbance. PMID:28696313

  8. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce.

    PubMed

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2013-11-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS - a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing.

  9. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  10. A spatial picture of the synthetic large-scale motion from dynamic roughness

    NASA Astrophysics Data System (ADS)

    Huynh, David; McKeon, Beverley

    2017-11-01

    Jacobi and McKeon (2011) set up a dynamic roughness apparatus to excite a synthetic, travelling wave-like disturbance in a wind tunnel, boundary layer study. In the present work, this dynamic roughness has been adapted for a flat-plate, turbulent boundary layer experiment in a water tunnel. A key advantage of operating in water as opposed to air is the longer flow timescales. This makes accessible higher non-dimensional actuation frequencies and correspondingly shorter synthetic length scales, and is thus more amenable to particle image velocimetry. As a result, this experiment provides a novel spatial picture of the synthetic mode, the coupled small scales, and their streamwise development. It is demonstrated that varying the roughness actuation frequency allows for significant tuning of the streamwise wavelength of the synthetic mode, with a range of 3 δ-13 δ being achieved. Employing a phase-locked decomposition, spatial snapshots are constructed of the synthetic large scale and used to analyze its streamwise behavior. Direct spatial filtering is used to separate the synthetic large scale and the related small scales, and the results are compared to those obtained by temporal filtering that invokes Taylor's hypothesis. The support of AFOSR (Grant # FA9550-16-1-0361) is gratefully acknowledged.

  11. Advanced Image Processing Techniques for Maximum Information Recovery

    DTIC Science & Technology

    2006-11-01

    0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision...available information from an image. Some radio frequency and optical sensors collect large-scale sets of spatial imagery data whose content is often...Some radio frequency and optical sensors collect large- scale sets of spatial imagery data whose content is often obscured by fog, clouds, foliage

  12. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  13. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome

    PubMed Central

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522

  14. Forest Ecosystem Analysis Using a GIS

    Treesearch

    S.G. McNulty; W.T. Swank

    1996-01-01

    Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...

  15. Spatio-temporal dynamics of a tree-killing beetle and its predator

    Treesearch

    Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings

    2016-01-01

    Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal...

  16. Homogenization analysis of invasion dynamics in heterogeneous landscapes with differential bias and motility.

    PubMed

    Yurk, Brian P

    2018-07-01

    Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.

  17. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less

  18. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    PubMed

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  20. Influence of land use on water quality in a tropical landscape: a multi-scale analysis

    PubMed Central

    Yackulic, Charles B.; Lim, Yili; Arce-Nazario, Javier A.

    2015-01-01

    There is a pressing need to understand the consequences of human activities, such as land transformations, on watershed ecosystem services. This is a challenging task because different indicators of water quality and yield are expected to vary in their responsiveness to large versus local-scale heterogeneity in land use and land cover (LUC). Here we rely on water quality data collected between 1977 and 2000 from dozens of gauge stations in Puerto Rico together with precipitation data and land cover maps to (1) quantify impacts of spatial heterogeneity in LUC on several water quality indicators; (2) determine the spatial scale at which this heterogeneity influences water quality; and (3) examine how antecedent precipitation modulates these impacts. Our models explained 30–58% of observed variance in water quality metrics. Temporal variation in antecedent precipitation and changes in LUC between measurements periods rather than spatial variation in LUC accounted for the majority of variation in water quality. Urbanization and pasture development generally degraded water quality while agriculture and secondary forest re-growth had mixed impacts. The spatial scale over which LUC influenced water quality differed across indicators. Turbidity and dissolved oxygen (DO) responded to LUC in large-scale watersheds, in-stream nitrogen concentrations to LUC in riparian buffers of large watersheds, and fecal matter content and in-stream phosphorus concentration to LUC at the sub-watershed scale. Stream discharge modulated impacts of LUC on water quality for most of the metrics. Our findings highlight the importance of considering multiple spatial scales for understanding the impacts of human activities on watershed ecosystem services. PMID:26146455

  1. Control factors and scale analysis of annual river water, sediments and carbon transport in China.

    PubMed

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-11

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  2. Polymer Physics of the Large-Scale Structure of Chromatin.

    PubMed

    Bianco, Simona; Chiariello, Andrea Maria; Annunziatella, Carlo; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    We summarize the picture emerging from recently proposed models of polymer physics describing the general features of chromatin large scale spatial architecture, as revealed by microscopy and Hi-C experiments.

  3. SPATIAL SCALE OF AUTOCORRELATION IN WISCONSIN FROG AND TOAD SURVEY DATA

    EPA Science Inventory

    The degree to which local population dynamics are correlated with nearby sites has important implications for metapopulation dynamics and landscape management. Spatially extensive monitoring data can be used to evaluate large-scale population dynamic processes. Our goals in this ...

  4. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  5. Double inflation - A possible resolution of the large-scale structure problem

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Villumsen, Jens V.; Vittorio, Nicola; Silk, Joseph; Juszkiewicz, Roman

    1987-01-01

    A model is presented for the large-scale structure of the universe in which two successive inflationary phases resulted in large small-scale and small large-scale density fluctuations. This bimodal density fluctuation spectrum in an Omega = 1 universe dominated by hot dark matter leads to large-scale structure of the galaxy distribution that is consistent with recent observational results. In particular, large, nearly empty voids and significant large-scale peculiar velocity fields are produced over scales of about 100 Mpc, while the small-scale structure over less than about 10 Mpc resembles that in a low-density universe, as observed. Detailed analytical calculations and numerical simulations are given of the spatial and velocity correlations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version ofmore » the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. As a result, other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.« less

  7. Demonstration of Hadoop-GIS: A Spatial Data Warehousing System Over MapReduce

    PubMed Central

    Aji, Ablimit; Sun, Xiling; Vo, Hoang; Liu, Qioaling; Lee, Rubao; Zhang, Xiaodong; Saltz, Joel; Wang, Fusheng

    2016-01-01

    The proliferation of GPS-enabled devices, and the rapid improvement of scientific instruments have resulted in massive amounts of spatial data in the last decade. Support of high performance spatial queries on large volumes data has become increasingly important in numerous fields, which requires a scalable and efficient spatial data warehousing solution as existing approaches exhibit scalability limitations and efficiency bottlenecks for large scale spatial applications. In this demonstration, we present Hadoop-GIS – a scalable and high performance spatial query system over MapReduce. Hadoop-GIS provides an efficient spatial query engine to process spatial queries, data and space based partitioning, and query pipelines that parallelize queries implicitly on MapReduce. Hadoop-GIS also provides an expressive, SQL-like spatial query language for workload specification. We will demonstrate how spatial queries are expressed in spatially extended SQL queries, and submitted through a command line/web interface for execution. Parallel to our system demonstration, we explain the system architecture and details on how queries are translated to MapReduce operators, optimized, and executed on Hadoop. In addition, we will showcase how the system can be used to support two representative real world use cases: large scale pathology analytical imaging, and geo-spatial data warehousing. PMID:27617325

  8. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Treesearch

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  9. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities

    PubMed Central

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior. PMID:29535614

  10. Large-Scale Brain Networks Supporting Divided Attention across Spatial Locations and Sensory Modalities.

    PubMed

    Santangelo, Valerio

    2018-01-01

    Higher-order cognitive processes were shown to rely on the interplay between large-scale neural networks. However, brain networks involved with the capability to split attentional resource over multiple spatial locations and multiple stimuli or sensory modalities have been largely unexplored to date. Here I re-analyzed data from Santangelo et al. (2010) to explore the causal interactions between large-scale brain networks during divided attention. During fMRI scanning, participants monitored streams of visual and/or auditory stimuli in one or two spatial locations for detection of occasional targets. This design allowed comparing a condition in which participants monitored one stimulus/modality (either visual or auditory) in two spatial locations vs. a condition in which participants monitored two stimuli/modalities (both visual and auditory) in one spatial location. The analysis of the independent components (ICs) revealed that dividing attentional resources across two spatial locations necessitated a brain network involving the left ventro- and dorso-lateral prefrontal cortex plus the posterior parietal cortex, including the intraparietal sulcus (IPS) and the angular gyrus, bilaterally. The analysis of Granger causality highlighted that the activity of lateral prefrontal regions were predictive of the activity of all of the posteriors parietal nodes. By contrast, dividing attention across two sensory modalities necessitated a brain network including nodes belonging to the dorsal frontoparietal network, i.e., the bilateral frontal eye-fields (FEF) and IPS, plus nodes belonging to the salience network, i.e., the anterior cingulated cortex and the left and right anterior insular cortex (aIC). The analysis of Granger causality highlights a tight interdependence between the dorsal frontoparietal and salience nodes in trials requiring divided attention between different sensory modalities. The current findings therefore highlighted a dissociation among brain networks implicated during divided attention across spatial locations and sensory modalities, pointing out the importance of investigating effective connectivity of large-scale brain networks supporting complex behavior.

  11. Validation of Satellite Retrieved Land Surface Variables

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.

  12. Review and synthesis of problems and directions for large scale geographic information system development

    NASA Technical Reports Server (NTRS)

    Boyle, A. R.; Dangermond, J.; Marble, D.; Simonett, D. S.; Tomlinson, R. F.

    1983-01-01

    Problems and directions for large scale geographic information system development were reviewed and the general problems associated with automated geographic information systems and spatial data handling were addressed.

  13. Biodiversity in canopy-forming algae: Structure and spatial variability of the Mediterranean Cystoseira assemblages

    NASA Astrophysics Data System (ADS)

    Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; Rosso, A.; Pinna, S.

    2018-07-01

    In the Mediterranean Sea, Cystoseira species are the most important canopy-forming algae in shallow rocky bottoms, hosting high biodiverse sessile and mobile communities. A large-scale study has been carried out to investigate the structure of the Cystoseira-dominated assemblages at different spatial scales and to test the hypotheses that alpha and beta diversity of the assemblages, the abundance and the structure of epiphytic macroalgae, epilithic macroalgae, sessile macroinvertebrates and mobile macroinvertebrates associated to Cystoseira beds changed among scales. A hierarchical sampling design in a total of five sites across the Mediterranean Sea (Croatia, Montenegro, Sardinia, Tuscany and Balearic Islands) was used. A total of 597 taxa associated to Cystoseira beds were identified with a mean number per sample ranging between 141.1 ± 6.6 (Tuscany) and 173.9 ± 8.5(Sardinia). A high variability at small (among samples) and large (among sites) scale was generally highlighted, but the studied assemblages showed different patterns of spatial variability. The relative importance of the different scales of spatial variability should be considered to optimize sampling designs and propose monitoring plans of this habitat.

  14. Satellite-based characterization of climatic conditions before large-scale general flowering events in Peninsular Malaysia

    PubMed Central

    Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md.; Fletcher, Christine

    2016-01-01

    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon. PMID:27561887

  15. Satellite-based characterization of climatic conditions before large-scale general flowering events in Peninsular Malaysia.

    PubMed

    Azmy, Muna Maryam; Hashim, Mazlan; Numata, Shinya; Hosaka, Tetsuro; Noor, Nur Supardi Md; Fletcher, Christine

    2016-08-26

    General flowering (GF) is a unique phenomenon wherein, at irregular intervals, taxonomically diverse trees in Southeast Asian dipterocarp forests synchronize their reproduction at the community level. Triggers of GF, including drought and low minimum temperatures a few months previously has been limitedly observed across large regional scales due to lack of meteorological stations. Here, we aim to identify the climatic conditions that trigger large-scale GF in Peninsular Malaysia using satellite sensors, Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), to evaluate the climatic conditions of focal forests. We observed antecedent drought, low temperature and high photosynthetic radiation conditions before large-scale GF events, suggesting that large-scale GF events could be triggered by these factors. In contrast, we found higher-magnitude GF in forests where lower precipitation preceded large-scale GF events. GF magnitude was also negatively influenced by land surface temperature (LST) for a large-scale GF event. Therefore, we suggest that spatial extent of drought may be related to that of GF forests, and that the spatial pattern of LST may be related to that of GF occurrence. With significant new findings and other results that were consistent with previous research we clarified complicated environmental correlates with the GF phenomenon.

  16. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  17. Scaling analysis of cloud and rain water in marine stratocumulus and implications for scale-aware microphysical parameterizations

    NASA Astrophysics Data System (ADS)

    Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.

    2017-12-01

    The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model microphysics schemes.

  18. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  19. Spatial Modeling and Uncertainty Assessment of Fine Scale Surface Processes Based on Coarse Terrain Elevation Data

    NASA Astrophysics Data System (ADS)

    Rasera, L. G.; Mariethoz, G.; Lane, S. N.

    2017-12-01

    Frequent acquisition of high-resolution digital elevation models (HR-DEMs) over large areas is expensive and difficult. Satellite-derived low-resolution digital elevation models (LR-DEMs) provide extensive coverage of Earth's surface but at coarser spatial and temporal resolutions. Although useful for large scale problems, LR-DEMs are not suitable for modeling hydrologic and geomorphic processes at scales smaller than their spatial resolution. In this work, we present a multiple-point geostatistical approach for downscaling a target LR-DEM based on available high-resolution training data and recurrent high-resolution remote sensing images. The method aims at generating several equiprobable HR-DEMs conditioned to a given target LR-DEM by borrowing small scale topographic patterns from an analogue containing data at both coarse and fine scales. An application of the methodology is demonstrated by using an ensemble of simulated HR-DEMs as input to a flow-routing algorithm. The proposed framework enables a probabilistic assessment of the spatial structures generated by natural phenomena operating at scales finer than the available terrain elevation measurements. A case study in the Swiss Alps is provided to illustrate the methodology.

  20. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  1. The combined effects of exogenous and endogenous variability on the spatial distribution of ant communities in a forested ecosystem (Hymenoptera: Formicidae).

    PubMed

    Yitbarek, Senay; Vandermeer, John H; Allen, David

    2011-10-01

    Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.

  2. Scaling up the diversity-resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire.

    PubMed

    Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N

    2016-04-01

    Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.

  3. 'Fracking', Induced Seismicity and the Critical Earth

    NASA Astrophysics Data System (ADS)

    Leary, P.; Malin, P. E.

    2012-12-01

    Issues of 'fracking' and induced seismicity are reverse-analogous to the equally complex issues of well productivity in hydrocarbon, geothermal and ore reservoirs. In low hazard reservoir economics, poorly producing wells and low grade ore bodies are many while highly producing wells and high grade ores are rare but high pay. With induced seismicity factored in, however, the same distribution physics reverses the high/low pay economics: large fracture-connectivity systems are hazardous hence low pay, while high probability small fracture-connectivity systems are non-hazardous hence high pay. Put differently, an economic risk abatement tactic for well productivity and ore body pay is to encounter large-scale fracture systems, while an economic risk abatement tactic for 'fracking'-induced seismicity is to avoid large-scale fracture systems. Well productivity and ore body grade distributions arise from three empirical rules for fluid flow in crustal rock: (i) power-law scaling of grain-scale fracture density fluctuations; (ii) spatial correlation between spatial fluctuations in well-core porosity and the logarithm of well-core permeability; (iii) frequency distributions of permeability governed by a lognormality skewness parameter. The physical origin of rules (i)-(iii) is the universal existence of a critical-state-percolation grain-scale fracture-density threshold for crustal rock. Crustal fractures are effectively long-range spatially-correlated distributions of grain-scale defects permitting fluid percolation on mm to km scales. The rule is, the larger the fracture system the more intense the percolation throughput. As percolation pathways are spatially erratic and unpredictable on all scales, they are difficult to model with sparsely sampled well data. Phenomena such as well productivity, induced seismicity, and ore body fossil fracture distributions are collectively extremely difficult to predict. Risk associated with unpredictable reservoir well productivity and ore body distributions can be managed by operating in a context which affords many small failures for a few large successes. In reverse view, 'fracking' and induced seismicity could be rationally managed in a context in which many small successes can afford a few large failures. However, just as there is every incentive to acquire information leading to higher rates of productive well drilling and ore body exploration, there are equal incentives for acquiring information leading to lower rates of 'fracking'-induced seismicity. Current industry practice of using an effective medium approach to reservoir rock creates an uncritical sense that property distributions in rock are essentially uniform. Well-log data show that the reverse is true: the larger the length scale the greater the deviation from uniformity. Applying the effective medium approach to large-scale rock formations thus appears to be unnecessarily hazardous. It promotes the notion that large scale fluid pressurization acts against weakly cohesive but essentially uniform rock to produce large-scale quasi-uniform tensile discontinuities. Indiscriminate hydrofacturing appears to be vastly more problematic in reality than as pictured by the effective medium hypothesis. The spatial complexity of rock, especially at large scales, provides ample reason to find more controlled pressurization strategies for enhancing in situ flow.

  4. Concepts: Integrating population survey data from different spatial scales, sampling methods, and species

    USGS Publications Warehouse

    Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.

    2017-01-01

    Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).

  5. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    PubMed

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  6. Landscape-scale distribution and persistence of genetically modified oilseed rape (Brassica napus) in Manitoba, Canada.

    PubMed

    Knispel, Alexis L; McLachlan, Stéphane M

    2010-01-01

    Genetically modified herbicide-tolerant (GMHT) oilseed rape (OSR; Brassica napus L.) was approved for commercial cultivation in Canada in 1995 and currently represents over 95% of the OSR grown in western Canada. After a decade of widespread cultivation, GMHT volunteers represent an increasing management problem in cultivated fields and are ubiquitous in adjacent ruderal habitats, where they contribute to the spread of transgenes. However, few studies have considered escaped GMHT OSR populations in North America, and even fewer have been conducted at large spatial scales (i.e. landscape scales). In particular, the contribution of landscape structure and large-scale anthropogenic dispersal processes to the persistence and spread of escaped GMHT OSR remains poorly understood. We conducted a multi-year survey of the landscape-scale distribution of escaped OSR plants adjacent to roads and cultivated fields. Our objective was to examine the long-term dynamics of escaped OSR at large spatial scales and to assess the relative importance of landscape and localised factors to the persistence and spread of these plants outside of cultivation. From 2005 to 2007, we surveyed escaped OSR plants along roadsides and field edges at 12 locations in three agricultural landscapes in southern Manitoba where GMHT OSR is widely grown. Data were analysed to examine temporal changes at large spatial scales and to determine factors affecting the distribution of escaped OSR plants in roadside and field edge habitats within agricultural landscapes. Additionally, we assessed the potential for seed dispersal between escaped populations by comparing the relative spatial distribution of roadside and field edge OSR. Densities of escaped OSR fluctuated over space and time in both roadside and field edge habitats, though the proportion of GMHT plants was high (93-100%). Escaped OSR was positively affected by agricultural landscape (indicative of cropping intensity) and by the presence of an adjacent field planted to OSR. Within roadside habitats, escaped OSR was also strongly associated with large-scale variables, including road surface (indicative of traffic intensity) and distance to the nearest grain elevator. Conversely, within field edges, OSR density was affected by localised crop management practices such as mowing, soil disturbance and herbicide application. Despite the proximity of roadsides and field edges, there was little evidence of spatial aggregation among escaped OSR populations in these two habitats, especially at very fine spatial scales (i.e. <100 m), suggesting that natural propagule exchange is infrequent. Escaped OSR populations were persistent at large spatial and temporal scales, and low density in a given landscape or year was not indicative of overall extinction. As a result of ongoing cultivation and transport of OSR crops, escaped GMHT traits will likely remain predominant in agricultural landscapes. While escaped OSR in field edge habitats generally results from local seeding and management activities occurring at the field-scale, distribution patterns within roadside habitats are determined in large part by seed transport occurring at the landscape scale and at even larger regional scales. Our findings suggest that these large-scale anthropogenic dispersal processes are sufficient to enable persistence despite limited natural seed dispersal. This widespread dispersal is likely to undermine field-scale management practices aimed at eliminating escaped and in-field GMHT OSR populations. Agricultural transport and landscape-scale cropping patterns are important determinants of the distribution of escaped GM crops. At the regional level, these factors ensure ongoing establishment and spread of escaped GMHT OSR despite limited local seed dispersal. Escaped populations thus play an important role in the spread of transgenes and have substantial implications for the coexistence of GM and non-GM production systems. Given the large-scale factors driving the spread of escaped transgenes, localised co-existence measures may be impracticable where they are not commensurate with regional dispersal mechanisms. To be effective, strategies aimed at reducing contamination from GM crops should be multi-scale in approach and be developed and implemented at both farm and landscape levels of organisation. Multiple stakeholders should thus be consulted, including both GM and non-GM farmers, as well as seed developers, processors, transporters and suppliers. Decisions to adopt GM crops require thoughtful and inclusive consideration of the risks and responsibilities inherent in this new technology.

  7. The Large -scale Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Flin, Piotr

    A review of the Large-scale structure of the Universe is given. A connection is made with the titanic work by Johannes Kepler in many areas of astronomy and cosmology. A special concern is made to spatial distribution of Galaxies, voids and walls (cellular structure of the Universe). Finaly, the author is concluding that the large scale structure of the Universe can be observed in much greater scale that it was thought twenty years ago.

  8. Intensive agriculture erodes β-diversity at large scales.

    PubMed

    Karp, Daniel S; Rominger, Andrew J; Zook, Jim; Ranganathan, Jai; Ehrlich, Paul R; Daily, Gretchen C

    2012-09-01

    Biodiversity is declining from unprecedented land conversions that replace diverse, low-intensity agriculture with vast expanses under homogeneous, intensive production. Despite documented losses of species richness, consequences for β-diversity, changes in community composition between sites, are largely unknown, especially in the tropics. Using a 10-year data set on Costa Rican birds, we find that low-intensity agriculture sustained β-diversity across large scales on a par with forest. In high-intensity agriculture, low local (α) diversity inflated β-diversity as a statistical artefact. Therefore, at small spatial scales, intensive agriculture appeared to retain β-diversity. Unlike in forest or low-intensity systems, however, high-intensity agriculture also homogenised vegetation structure over large distances, thereby decoupling the fundamental ecological pattern of bird communities changing with geographical distance. This ~40% decline in species turnover indicates a significant decline in β-diversity at large spatial scales. These findings point the way towards multi-functional agricultural systems that maintain agricultural productivity while simultaneously conserving biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  9. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE PAGES

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy; ...

    2018-02-07

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  10. Cross-Scale Molecular Analysis of Chemical Heterogeneity in Shale Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Zhao; Bechtel, Hans A.; Kneafsey, Timothy

    The organic and mineralogical heterogeneity in shale at micrometer and nanometer spatial scales contributes to the quality of gas reserves, gas flow mechanisms and gas production. Here, we demonstrate two molecular imaging approaches based on infrared spectroscopy to obtain mineral and kerogen information at these mesoscale spatial resolutions in large-sized shale rock samples. The first method is a modified microscopic attenuated total reflectance measurement that utilizes a large germanium hemisphere combined with a focal plane array detector to rapidly capture chemical images of shale rock surfaces spanning hundreds of micrometers with micrometer spatial resolution. The second method, synchrotron infrared nano-spectroscopy,more » utilizes a metallic atomic force microscope tip to obtain chemical images of micrometer dimensions but with nanometer spatial resolution. This chemically "deconvoluted" imaging at the nano-pore scale is then used to build a machine learning model to generate a molecular distribution map across scales with a spatial span of 1000 times, which enables high-throughput geochemical characterization in greater details across the nano-pore and micro-grain scales and allows us to identify co-localization of mineral phases with chemically distinct organics and even with gas phase sorbents. Finally, this characterization is fundamental to understand mineral and organic compositions affecting the behavior of shales.« less

  11. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    NASA Astrophysics Data System (ADS)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  12. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  13. Optimal configurations of spatial scale for grid cell firing under noise and uncertainty

    PubMed Central

    Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil

    2014-01-01

    We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144

  14. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    USGS Publications Warehouse

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands <10 y old). Although raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  15. Multiscale spatial and small-scale temporal variation in the composition of Riverine fish communities.

    PubMed

    Growns, Ivor; Astles, Karen; Gehrke, Peter

    2006-03-01

    We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.

  16. Ghost reefs: Nautical charts document large spatial scale of coral reef loss over 240 years

    PubMed Central

    McClenachan, Loren; O’Connor, Grace; Neal, Benjamin P.; Pandolfi, John M.; Jackson, Jeremy B. C.

    2017-01-01

    Massive declines in population abundances of marine animals have been documented over century-long time scales. However, analogous loss of spatial extent of habitat-forming organisms is less well known because georeferenced data are rare over long time scales, particularly in subtidal, tropical marine regions. We use high-resolution historical nautical charts to quantify changes to benthic structure over 240 years in the Florida Keys, finding an overall loss of 52% (SE, 6.4%) of the area of the seafloor occupied by corals. We find a strong spatial dimension to this decline; the spatial extent of coral in Florida Bay and nearshore declined by 87.5% (SE, 7.2%) and 68.8% (SE, 7.5%), respectively, whereas that of offshore areas of coral remained largely intact. These estimates add to finer-scale loss in live coral cover exceeding 90% in some locations in recent decades. The near-complete elimination of the spatial coverage of nearshore coral represents an underappreciated spatial component of the shifting baseline syndrome, with important lessons for other species and ecosystems. That is, modern surveys are typically designed to assess change only within the species’ known, extant range. For species ranging from corals to sea turtles, this approach may overlook spatial loss over longer time frames, resulting in both overly optimistic views of their current conservation status and underestimates of their restoration potential. PMID:28913420

  17. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    NASA Astrophysics Data System (ADS)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  18. Spatial Interpretation of Tower, Chamber and Modelled Terrestrial Fluxes in a Tropical Forest Plantation

    NASA Astrophysics Data System (ADS)

    Whidden, E.; Roulet, N.

    2003-04-01

    Interpretation of a site average terrestrial flux may be complicated in the presence of inhomogeneities. Inhomogeneity may invalidate the basic assumptions of aerodynamic flux measurement. Chamber measurement may miss or misinterpret important temporal or spatial anomalies. Models may smooth over important nonlinearities depending on the scale of application. Although inhomogeneity is usually seen as a design problem, many sites have spatial variance that may have a large impact on net flux, and in many cases a large homogeneous surface is unrealistic. The sensitivity and validity of a site average flux are investigated in the presence of an inhomogeneous site. Directional differences are used to evaluate the validity of aerodynamic methods and the computation of a site average tower flux. Empirical and modelling methods are used to interpret the spatial controls on flux. An ecosystem model, Ecosys, is used to assess spatial length scales appropriate to the ecophysiologic controls. A diffusion model is used to compare tower, chamber, and model data, by spatially weighting contributions within the tower footprint. Diffusion model weighting is also used to improve tower flux estimates by producing footprint averaged ecological parameters (soil moisture, soil temperature, etc.). Although uncertainty remains in the validity of measurement methods and the accuracy of diffusion models, a detailed spatial interpretation is required at an inhomogeneous site. Flux estimation between methods improves with spatial interpretation, showing the importance to an estimation of a site average flux. Small-scale temporal and spatial anomalies may be relatively unimportant to overall flux, but accounting for medium-scale differences in ecophysiological controls is necessary. A combination of measurements and modelling can be used to define the appropriate time and length scales of significant non-linearity due to inhomogeneity.

  19. A large scale GIS geodatabase of soil parameters supporting the modeling of conservation practice alternatives in the United States

    USDA-ARS?s Scientific Manuscript database

    Water quality modeling requires across-scale support of combined digital soil elements and simulation parameters. This paper presents the unprecedented development of a large spatial scale (1:250,000) ArcGIS geodatabase coverage designed as a functional repository of soil-parameters for modeling an...

  20. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  1. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows. PMID:24497978

  2. Spatial structure of seagrass suggests that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical multispecies meadows.

    PubMed

    Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W

    2014-01-01

    Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows.

  3. A watershed scale spatially-distributed model for streambank erosion rate driven by channel curvature

    NASA Astrophysics Data System (ADS)

    McMillan, Mitchell; Hu, Zhiyong

    2017-10-01

    Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.

  4. Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatima

    Magnetic fields are observed to exist on all scales in many astrophysical sources such as stars, galaxies, and accretion discs. Understanding the origin of large scale magnetic fields, whereby the field emerges on spatial scales large compared to the fluctuations, has been a particularly long standing challenge. Our physics objective are: 1) what are the minimum ingredients for large-scale dynamo growth? 2) could a large-scale magnetic field grow out of turbulence and sustained despite the presence of dissipation? These questions are fundamental for understanding the large-scale dynamo in both laboratory and astrophysical plasmas. Here, we report major new findings inmore » the area of Large-Scale Dynamo (magnetic field generation).« less

  5. Evaluation of an index of biotic integrity approach to assess fish assemblage condition in Western USA streams and rivers at varying spatial scales

    EPA Science Inventory

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data ...

  6. Taking the pulse of a continent: Expanding site-based research infrastructure for regional- to continental-scale ecology

    USDA-ARS?s Scientific Manuscript database

    Many of the most dramatic and surprising effects of global change on ecological systems will occur across large spatial extents, from regions to continents. Multiple ecosystem types will be impacted across a range of interacting spatial and temporal scales. The ability of ecologists to understand an...

  7. MONITORING COASTAL RESOURCES AT MULTIPLE SPATIAL AND TEMPORAL SCALES: LESSONS FROM EMAP 2001 EMAP SYMPOSIUM, APRIL 24-27, PENSACOLA BEACH, FL

    EPA Science Inventory

    In 1990, EMAP's Coastal Monitoring Program conducted its first regional sampling program in the Virginian Province. This first effort focused only at large spatial scales (regional) with some stratification to examine estuarine types. In the ensuing decade, EMAP-Coastal has condu...

  8. EPIC-Simulated and MODIS-Derived Leaf Area Index (LAI) Comparisons Across mMltiple Spatial Scales RSAD Oral Poster based session

    EPA Science Inventory

    Leaf Area Index (LAI) is an important parameter in assessing vegetation structure for characterizing forest canopies over large areas at broad spatial scales using satellite remote sensing data. However, satellite-derived LAI products can be limited by obstructed atmospheric cond...

  9. Environmental Controls on Multi-Scale Soil Nutrient Variability in the Tropics: the Importance of Land-Cover Change

    NASA Astrophysics Data System (ADS)

    Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.

    2003-12-01

    The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.

  10. Optimizing the scale of markets for water quality trading

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Patterson, Lauren A.; Chen, Yanyou; Schnier, Kurt E.; Yates, Andrew J.

    2014-09-01

    Applying market approaches to environmental regulations requires establishing a spatial scale for trading. Spatially large markets usually increase opportunities for abatement cost savings but increase the potential for pollution damages (hot spots), vice versa for spatially small markets. We develop a coupled hydrologic-economic modeling approach for application to point source emissions trading by a large number of sources and apply this approach to the wastewater treatment plants (WWTPs) within the watershed of the second largest estuary in the U.S. We consider two different administrative structures that govern the trade of emission permits: one-for-one trading (the number of permits required for each unit of emission is the same for every WWTP) and trading ratios (the number of permits required for each unit of emissions varies across WWTP). Results show that water quality regulators should allow trading to occur at the river basin scale as an appropriate first-step policy, as is being done in a limited number of cases via compliance associations. Larger spatial scales may be needed under conditions of increased abatement costs. The optimal scale of the market is generally the same regardless of whether one-for-one trading or trading ratios are employed.

  11. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  12. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  13. Spatial Heterogeneity in the Strength of Plant-Herbivore Interactions under Predation Risk: The Tale of Bison Foraging in Wolf Country

    PubMed Central

    Harvey, Léa; Fortin, Daniel

    2013-01-01

    Spatial heterogeneity in the strength of trophic interactions is a fundamental property of food web spatial dynamics. The feeding effort of herbivores should reflect adaptive decisions that only become rewarding when foraging gains exceed 1) the metabolic costs, 2) the missed opportunity costs of not foraging elsewhere, and 3) the foraging costs of anti-predator behaviour. Two aspects of these costs remain largely unexplored: the link between the strength of plant-herbivore interactions and the spatial scale of food-quality assessment, and the predator-prey spatial game. We modeled the foraging effort of free-ranging plains bison (Bison bison bison) in winter, within a mosaic of discrete meadows. Spatial patterns of bison herbivory were largely driven by a search for high net energy gains and, to a lesser degree, by the spatial game with grey wolves (Canis lupus). Bison decreased local feeding effort with increasing metabolic and missed opportunity costs. Bison herbivory was most consistent with a broad-scale assessment of food patch quality, i.e., bison grazed more intensively in patches with a low missed opportunity cost relative to other patches available in the landscape. Bison and wolves had a higher probability of using the same meadows than expected randomly. This co-occurrence indicates wolves are ahead in the spatial game they play with bison. Wolves influenced bison foraging at fine scale, as bison tended to consume less biomass at each feeding station when in meadows where the risk of a wolf's arrival was relatively high. Also, bison left more high-quality vegetation in large than small meadows. This behavior does not maximize their energy intake rate, but is consistent with bison playing a shell game with wolves. Our assessment of bison foraging in a natural setting clarifies the complex nature of plant-herbivore interactions under predation risk, and reveals how spatial patterns in herbivory emerge from multi-scale landscape heterogeneity. PMID:24039909

  14. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau.

    PubMed

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-08-24

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions.

  15. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-08-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302-480 km, while the annual precipitation showed smaller scales of 111-182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions.

  16. Satellite measurements reveal strong anisotropy in spatial coherence of climate variations over the Tibet Plateau

    PubMed Central

    Chen, Deliang; Tian, Yudong; Yao, Tandong; Ou, Tinghai

    2016-01-01

    This study uses high-resolution, long-term satellite observations to evaluate the spatial scales of the climate variations across the Tibet Plateau (TP). Both land surface temperature and precipitation observations of more than 10 years were analysed with a special attention to eight existing ice-core sites in the TP. The temporal correlation for the monthly or annual anomalies between any two points decreases exponentially with their spatial distance, and we used the e-folding decay constant to quantify the spatial scales. We found that the spatial scales are strongly direction-dependent, with distinctive patterns in the west-east and south-north orientations, for example. Meanwhile, in the same directions the scales are largely symmetric backward and forward. Focusing on the west-east and south-north directions, we found the spatial coherence in the first is generally stronger than in the second. The annual surface temperature had typical spatial scales of 302–480 km, while the annual precipitation showed smaller scales of 111–182 km. The majority of the eight ice-core sites exhibit scales much smaller than the typical scales over the TP as a whole. These results provide important observational basis for the selection of appropriate downscaling strategies, deployment of climate-data collection networks, and interpreting paleoclimate reconstructions. PMID:27553388

  17. Recurrent patterning in the daily foraging routes of hamadryas baboons (Papio hamadryas): spatial memory in large-scale versus small-scale space.

    PubMed

    Schreier, Amy L; Grove, Matt

    2014-05-01

    The benefits of spatial memory for foraging animals can be assessed on two distinct spatial scales: small-scale space (travel within patches) and large-scale space (travel between patches). While the patches themselves may be distributed at low density, within patches resources are likely densely distributed. We propose, therefore, that spatial memory for recalling the particular locations of previously visited feeding sites will be more advantageous during between-patch movement, where it may reduce the distances traveled by animals that possess this ability compared to those that must rely on random search. We address this hypothesis by employing descriptive statistics and spectral analyses to characterize the daily foraging routes of a band of wild hamadryas baboons in Filoha, Ethiopia. The baboons slept on two main cliffs--the Filoha cliff and the Wasaro cliff--and daily travel began and ended on a cliff; thus four daily travel routes exist: Filoha-Filoha, Filoha-Wasaro, Wasaro-Wasaro, Wasaro-Filoha. We use newly developed partial sum methods and distribution-fitting analyses to distinguish periods of area-restricted search from more extensive movements. The results indicate a single peak in travel activity in the Filoha-Filoha and Wasaro-Filoha routes, three peaks of travel activity in the Filoha-Wasaro routes, and two peaks in the Wasaro-Wasaro routes; and are consistent with on-the-ground observations of foraging and ranging behavior of the baboons. In each of the four daily travel routes the "tipping points" identified by the partial sum analyses indicate transitions between travel in small- versus large-scale space. The correspondence between the quantitative analyses and the field observations suggest great utility for using these types of analyses to examine primate travel patterns and especially in distinguishing between movement in small versus large-scale space. Only the distribution-fitting analyses are inconsistent with the field observations, which may be due to the scale at which these analyses were conducted. © 2013 Wiley Periodicals, Inc.

  18. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of data from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes, particularly regarding the trade-off between precision and potential bias of parameter estimates at varying spatial scales.

  19. Monitoring survival rates of Swainson's Thrush Catharus ustulatus at multiple spatial scales

    USGS Publications Warehouse

    Rosenberg, D.K.; DeSante, D.F.; McKelvey, K.S.; Hines, J.E.

    1999-01-01

    We estimated survival rates of Swainson's Thrush, a common, neotropical, migratory landbird, at multiple spatial scales, using data collected in the western USA from the Monitoring Avian Productivity and Survivorship Programme. We evaluated statistical power to detect spatially heterogeneous survival rates and exponentially declining survival rates among spatial scales with simulated populations parameterized from results of the Swainson's Thrush analyses. Models describing survival rates as constant across large spatial scales did not fit the data. The model we chose as most appropriate to describe survival rates of Swainson's Thrush allowed survival rates to vary among Physiographic Provinces, included a separate parameter for the probability that a newly captured bird is a resident individual in the study population, and constrained capture probability to be constant across all stations. Estimated annual survival rates under this model varied from 0.42 to 0.75 among Provinces. The coefficient of variation of survival estimates ranged from 5.8 to 20% among Physiographic Provinces. Statistical power to detect exponentially declining trends was fairly low for small spatial scales, although large annual declines (3% of previous year's rate) were likely to be detected when monitoring was conducted for long periods of time (e.g. 20 years). Although our simulations and field results are based on only four years of date from a limited number and distribution of stations, it is likely that they illustrate genuine difficulties inherent to broadscale efforts to monitor survival rates of territorial landbirds. In particular, our results suggest that more attention needs to be paid to sampling schemes of monitoring programmes particularly regarding the trade-off between precison and potential bias o parameter estimates at varying spatial scales.

  20. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-08-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS - a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive.

  1. Hadoop-GIS: A High Performance Spatial Data Warehousing System over MapReduce

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Vo, Hoang; Lee, Rubao; Liu, Qiaoling; Zhang, Xiaodong; Saltz, Joel

    2013-01-01

    Support of high performance queries on large volumes of spatial data becomes increasingly important in many application domains, including geospatial problems in numerous fields, location based services, and emerging scientific applications that are increasingly data- and compute-intensive. The emergence of massive scale spatial data is due to the proliferation of cost effective and ubiquitous positioning technologies, development of high resolution imaging technologies, and contribution from a large number of community users. There are two major challenges for managing and querying massive spatial data to support spatial queries: the explosion of spatial data, and the high computational complexity of spatial queries. In this paper, we present Hadoop-GIS – a scalable and high performance spatial data warehousing system for running large scale spatial queries on Hadoop. Hadoop-GIS supports multiple types of spatial queries on MapReduce through spatial partitioning, customizable spatial query engine RESQUE, implicit parallel spatial query execution on MapReduce, and effective methods for amending query results through handling boundary objects. Hadoop-GIS utilizes global partition indexing and customizable on demand local spatial indexing to achieve efficient query processing. Hadoop-GIS is integrated into Hive to support declarative spatial queries with an integrated architecture. Our experiments have demonstrated the high efficiency of Hadoop-GIS on query response and high scalability to run on commodity clusters. Our comparative experiments have showed that performance of Hadoop-GIS is on par with parallel SDBMS and outperforms SDBMS for compute-intensive queries. Hadoop-GIS is available as a set of library for processing spatial queries, and as an integrated software package in Hive. PMID:24187650

  2. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  3. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    PubMed

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  4. On large-scale dynamo action at high magnetic Reynolds number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cattaneo, F.; Tobias, S. M., E-mail: smt@maths.leeds.ac.uk

    2014-07-01

    We consider the generation of magnetic activity—dynamo waves—in the astrophysical limit of very large magnetic Reynolds number. We consider kinematic dynamo action for a system consisting of helical flow and large-scale shear. We demonstrate that large-scale dynamo waves persist at high Rm if the helical flow is characterized by a narrow band of spatial scales and the shear is large enough. However, for a wide band of scales the dynamo becomes small scale with a further increase of Rm, with dynamo waves re-emerging only if the shear is then increased. We show that at high Rm, the key effect ofmore » the shear is to suppress small-scale dynamo action, allowing large-scale dynamo action to be observed. We conjecture that this supports a general 'suppression principle'—large-scale dynamo action can only be observed if there is a mechanism that suppresses the small-scale fluctuations.« less

  5. Assessing the effects of fire disturbances on ecosystems: A scientific agenda for research and management

    USGS Publications Warehouse

    Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.

    1999-01-01

    A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.

  6. Are the traditional large-scale drought indices suitable for shallow water wetlands? An example in the Everglades.

    PubMed

    Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K

    2017-08-01

    Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The statistical power to detect cross-scale interactions at macroscales

    USGS Publications Warehouse

    Wagner, Tyler; Fergus, C. Emi; Stow, Craig A.; Cheruvelil, Kendra S.; Soranno, Patricia A.

    2016-01-01

    Macroscale studies of ecological phenomena are increasingly common because stressors such as climate and land-use change operate at large spatial and temporal scales. Cross-scale interactions (CSIs), where ecological processes operating at one spatial or temporal scale interact with processes operating at another scale, have been documented in a variety of ecosystems and contribute to complex system dynamics. However, studies investigating CSIs are often dependent on compiling multiple data sets from different sources to create multithematic, multiscaled data sets, which results in structurally complex, and sometimes incomplete data sets. The statistical power to detect CSIs needs to be evaluated because of their importance and the challenge of quantifying CSIs using data sets with complex structures and missing observations. We studied this problem using a spatially hierarchical model that measures CSIs between regional agriculture and its effects on the relationship between lake nutrients and lake productivity. We used an existing large multithematic, multiscaled database, LAke multiscaled GeOSpatial, and temporal database (LAGOS), to parameterize the power analysis simulations. We found that the power to detect CSIs was more strongly related to the number of regions in the study rather than the number of lakes nested within each region. CSI power analyses will not only help ecologists design large-scale studies aimed at detecting CSIs, but will also focus attention on CSI effect sizes and the degree to which they are ecologically relevant and detectable with large data sets.

  8. One Spatial Map or Many? Spatial Coding of Connected Environments

    ERIC Educational Resources Information Center

    Han, Xue; Becker, Suzanna

    2014-01-01

    We investigated how humans encode large-scale spatial environments using a virtual taxi game. We hypothesized that if 2 connected neighborhoods are explored jointly, people will form a single integrated spatial representation of the town. However, if the neighborhoods are first learned separately and later observed to be connected, people will…

  9. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  10. The spatial and temporal domains of modern ecology.

    PubMed

    Estes, Lyndon; Elsen, Paul R; Treuer, Timothy; Ahmed, Labeeb; Caylor, Kelly; Chang, Jason; Choi, Jonathan J; Ellis, Erle C

    2018-05-01

    To understand ecological phenomena, it is necessary to observe their behaviour across multiple spatial and temporal scales. Since this need was first highlighted in the 1980s, technology has opened previously inaccessible scales to observation. To help to determine whether there have been corresponding changes in the scales observed by modern ecologists, we analysed the resolution, extent, interval and duration of observations (excluding experiments) in 348 studies that have been published between 2004 and 2014. We found that observational scales were generally narrow, because ecologists still primarily use conventional field techniques. In the spatial domain, most observations had resolutions ≤1 m 2 and extents ≤10,000 ha. In the temporal domain, most observations were either unreplicated or infrequently repeated (>1 month interval) and ≤1 year in duration. Compared with studies conducted before 2004, observational durations and resolutions appear largely unchanged, but intervals have become finer and extents larger. We also found a large gulf between the scales at which phenomena are actually observed and the scales those observations ostensibly represent, raising concerns about observational comprehensiveness. Furthermore, most studies did not clearly report scale, suggesting that it remains a minor concern. Ecologists can better understand the scales represented by observations by incorporating autocorrelation measures, while journals can promote attentiveness to scale by implementing scale-reporting standards.

  11. Hierarchical spatial models for predicting tree species assemblages across large domains

    Treesearch

    Andrew O. Finley; Sudipto Banerjee; Ronald E. McRoberts

    2009-01-01

    Spatially explicit data layers of tree species assemblages, referred to as forest types or forest type groups, are a key component in large-scale assessments of forest sustainability, biodiversity, timber biomass, carbon sinks and forest health monitoring. This paper explores the utility of coupling georeferenced national forest inventory (NFI) data with readily...

  12. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    NASA Astrophysics Data System (ADS)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  13. Spatial Distribution of Coffee Wilt Disease Under Roguing and Replanting Conditions: A Case Study from Kaweri Estate in Uganda.

    PubMed

    Pinard, F; Makune, S E; Campagne, P; Mwangi, J

    2016-11-01

    Based on time and spatial dynamic considerations, this study evaluates the potential role of short- and long-distance dispersal in the spread of coffee wilt disease (CWD) in a large commercial Robusta coffee estate in Uganda (Kaweri, 1,755 ha) over a 4-year period (2008 to 2012). In monthly surveys, total disease incidence, expansion of infection foci, and the occurrence of isolated infected trees were recorded and submitted to spatial analysis. Incidence was higher and disease progression faster in old coffee plantings compared with young plantings, indicating a lack of efficiency of roguing for reducing disease development in old plantings. At large spatial scale (approximately 1 km), Moran indices (both global and local) revealed the existence of clusters characterized by contrasting disease incidences. This suggested that local environmental conditions were heterogeneous or there were spatial interactions among blocks. At finer spatial scale (approximately 200 m), O-ring statistics revealed positive correlation between distant infection sites across distances as great as 60 m. Although these observations indicate the role of short-distance dispersal in foci expansion, dispersal at greater distances (>20 m) appeared to also contribute to both initiation of new foci and disease progression at coarser spatial scales. Therefore, our results suggested the role of aerial dispersal in CWD progression.

  14. Spatial Temporal Mathematics at Scale: An Innovative and Fully Developed Paradigm to Boost Math Achievement among All Learners

    ERIC Educational Resources Information Center

    Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.

    2010-01-01

    This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…

  15. A hierarchical spatial framework for forest landscape planning.

    Treesearch

    Pete Bettinger; Marie Lennette; K. Norman Johnson; Thomas A. Spies

    2005-01-01

    A hierarchical spatial framework for large-scale, long-term forest landscape planning is presented along with example policy analyses for a 560,000 ha area of the Oregon Coast Range. The modeling framework suggests utilizing the detail provided by satellite imagery to track forest vegetation condition and for representation of fine-scale features, such as riparian...

  16. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  17. Predicting above-ground density and distribution of small mammal prey species at large spatial scales

    Treesearch

    Lucretia E. Olson; John R. Squires; Robert J. Oakleaf; Zachary P. Wallace; Patricia L. Kennedy

    2017-01-01

    Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal...

  18. Genetic structuring of northern myotis (Myotis septentrionalis) at multiple spatial scales

    USGS Publications Warehouse

    Johnson, Joshua B.; Roberts, James H.; King, Timothy L.; Edwards, John W.; Ford, W. Mark; Ray, David A.

    2014-01-01

    Although groups of bats may be genetically distinguishable at large spatial scales, the effects of forest disturbances, particularly permanent land use conversions on fine-scale population structure and gene flow of summer aggregations of philopatric bat species are less clear. We genotyped and analyzed variation at 10 nuclear DNA microsatellite markers in 182 individuals of the forest-dwelling northern myotis (Myotis septentrionalis) at multiple spatial scales, from within first-order watersheds scaling up to larger regional areas in West Virginia and New York. Our results indicate that groups of northern myotis were genetically indistinguishable at any spatial scale we considered, and the collective population maintained high genetic diversity. It is likely that the ability to migrate, exploit small forest patches, and use networks of mating sites located throughout the Appalachian Mountains, Interior Highlands, and elsewhere in the hibernation range have allowed northern myotis to maintain high genetic diversity and gene flow regardless of forest disturbances at local and regional spatial scales. A consequence of maintaining high gene flow might be the potential to minimize genetic founder effects following population declines caused currently by the enzootic White-nose Syndrome.

  19. A holistic approach for large-scale derived flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Apel, Heiko; Hundecha, Yeshewatesfa; Guse, Björn; Sergiy, Vorogushyn; Merz, Bruno

    2017-04-01

    Spatial consistency, which has been usually disregarded because of the reported methodological difficulties, is increasingly demanded in regional flood hazard (and risk) assessments. This study aims at developing a holistic approach for deriving flood frequency at large scale consistently. A large scale two-component model has been established for simulating very long-term multisite synthetic meteorological fields and flood flow at many gauged and ungauged locations hence reflecting the spatially inherent heterogeneity. The model has been applied for the region of nearly a half million km2 including Germany and parts of nearby countries. The model performance has been multi-objectively examined with a focus on extreme. By this continuous simulation approach, flood quantiles for the studied region have been derived successfully and provide useful input for a comprehensive flood risk study.

  20. StePS: Stereographically Projected Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-05-01

    StePS (Stereographically Projected Cosmological Simulations) compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to simulate the evolution of the large-scale structure. This eliminates the need for periodic boundary conditions, which are a numerical convenience unsupported by observation and which modifies the law of force on large scales in an unrealistic fashion. StePS uses stereographic projection for space compactification and naive O(N2) force calculation; this arrives at a correlation function of the same quality more quickly than standard (tree or P3M) algorithms with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence StePS can function as a high-speed prediction tool for modern large-scale surveys.

  1. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  2. Responses of infaunal populations to benthoscape structure and the potential importance of transition zones

    USGS Publications Warehouse

    Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.

    2003-01-01

    Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.

  3. Spatial correlations, clustering and percolation-like transitions in homicide crimes

    NASA Astrophysics Data System (ADS)

    Alves, L. G. A.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2015-07-01

    The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focusing on local scales (city level) and much less is known about these patterns at larger scales, e.g. at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (˜5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase-transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.

  4. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    PubMed

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.

  5. Water balance model for Kings Creek

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.

    1990-01-01

    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  6. Income inequality and income segregation.

    PubMed

    Reardon, Sean F; Bischoff, Kendra

    2011-01-01

    This article investigates how the growth in income inequality from 1970 to 2000 affected patterns of income segregation along three dimensions: the spatial segregation of poverty and affluence, race-specific patterns of income segregation, and the geographic scale of income segregation. The evidence reveals a robust relationship between income inequality and income segregation, an effect that is larger for black families than for white families. In addition, income inequality affects income segregation primarily through its effect on the large-scale spatial segregation of affluence rather than by affecting the spatial segregation of poverty or by altering small-scale patterns of income segregation.

  7. Where to put things? Spatial land management to sustain biodiversity and economic returns

    EPA Science Inventory

    Expanding human population and economic growth have led to large-scale conversion of natural habitat to human-dominated landscapes with consequent large-scale declines in biodiversity. Conserving biodiversity, while at the same time meeting expanding human needs, is an issue of u...

  8. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  9. Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals

    DOE PAGES

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...

    2018-02-09

    Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less

  10. DNA barcoding at riverscape scales: Assessing biodiversity among fishes of the genus Cottus (Teleostei) in northern Rocky Mountain streams

    Treesearch

    Michael K. Young; Kevin S. McKelvey; Kristine L. Pilgrim; Michael K. Schwartz

    2013-01-01

    There is growing interest in broad-scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification...

  11. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  12. Mach Number effects on turbulent superstructures in wall bounded flows

    NASA Astrophysics Data System (ADS)

    Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven

    2017-11-01

    Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.

  13. Relative Contribution of Matrix Structure, Patch Resources and Management to the Local Densities of Two Large Blue Butterfly Species

    PubMed Central

    Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal

    2016-01-01

    The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011–12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales. PMID:28005942

  14. Relative Contribution of Matrix Structure, Patch Resources and Management to the Local Densities of Two Large Blue Butterfly Species.

    PubMed

    Kajzer-Bonk, Joanna; Skórka, Piotr; Nowicki, Piotr; Bonk, Maciej; Król, Wiesław; Szpiłyk, Damian; Woyciechowski, Michal

    2016-01-01

    The type of matrix, the landscape surrounding habitat patches, may determine the distribution and function of local populations. However, the matrix is often heterogeneous, and its various components may differentially contribute to metapopulation processes at different spatial scales, a phenomenon that has rarely been investigated. The aim of this study was to estimate the relative importance of matrix composition and spatial scale, habitat quality, and management intensity on the occurrence and density of local populations of two endangered large blue butterflies: Phengaris teleius and P. nausithous. Presence and abundance data were assessed over two years, 2011-12, in 100 local patches within two heterogeneous regions (near Kraków and Tarnów, southern Poland). The matrix composition was analyzed at eight spatial scales. We observed high occupancy rates in both species, regions and years. With the exception of area and isolation, almost all of the matrix components contributed to Phengaris sp. densities. The different matrix components acted at different spatial scales (grassland cover within 4 and 3 km, field cover within 0.4 and 0.3 km and water cover within 4 km radii for P. teleius and P. nausithous, respectively) and provided the highest independent contribution to the butterfly densities. Additionally, the effects of a 0.4 km radius of forest cover and a food plant cover on P. teleius, and a 1 km radius of settlement cover and management intensity on P. nausithous densities were observed. Contrary to former studies we conclude that the matrix heterogeneity and spatial scale rather than general matrix type are of relevance for densities of butterflies. Conservation strategies for these umbrella species should concentrate on maintaining habitat quality and managing matrix composition at the most appropriate spatial scales.

  15. Large-scale modeling of rain fields from a rain cell deterministic model

    NASA Astrophysics Data System (ADS)

    FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia

    2006-04-01

    A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.

  16. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    PubMed

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  18. Evolution of Scaling Emergence in Large-Scale Spatial Epidemic Spreading

    PubMed Central

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Background Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. Methodology/Principal Findings In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. Conclusions/Significance The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease. PMID:21747932

  19. Spatial scale and distribution of neurovascular signals underlying decoding of orientation and eye of origin from fMRI data

    PubMed Central

    Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida

    2016-01-01

    Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637

  20. Stocking rate effects on spatial heterogeneity in vegetation cover in a grazing-resistant grassland

    USDA-ARS?s Scientific Manuscript database

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  1. Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland

    USDA-ARS?s Scientific Manuscript database

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  2. A Bayesian method for assessing multiscalespecies-habitat relationships

    USGS Publications Warehouse

    Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.

    2017-01-01

    ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.

  3. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  4. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    PubMed

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  5. pycola: N-body COLA method code

    NASA Astrophysics Data System (ADS)

    Tassev, Svetlin; Eisenstein, Daniel J.; Wandelt, Benjamin D.; Zaldarriagag, Matias

    2015-09-01

    pycola is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains, which trades accuracy at small-scales to gain computational speed without sacrificing accuracy at large scales. This is especially useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering and weak lensing. The COLA method achieves its speed by calculating the large-scale dynamics exactly using LPT while letting the N-body code solve for the small scales, without requiring it to capture exactly the internal dynamics of halos.

  6. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  7. Space and time scales in human-landscape systems.

    PubMed

    Kondolf, G Mathias; Podolak, Kristen

    2014-01-01

    Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.

  8. Tracing Galactic Outflows to the Source: Spatially Resolved Feedback in M83 with COS

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2016-10-01

    Star-formation (SF) feedback plays a vital role in shaping galaxy properties, but there are many open questions about how this feedback is created, propagated, and felt by galaxies. SF-driven feedback can be observationally constrained with rest-frame UV absorption-line spectroscopy that accesses a range of powerful gas density and kinematic diagnostics. Studies at both high and low redshift show clear evidence for large-scale outflows in star-forming galaxies that scale with galaxy SF rate. However, by sampling one sightline or the galaxy as a whole, these studies are not tailored to reveal how the large-scale outflows develop from their ultimate sources at the scale of individual SF regions. We propose the first spatially-resolved COS G130M/G160M (1130-1800 A) study of the ISM in the nearby (4.6 Mpc) face-on spiral starburst M83 using individual young star clusters as background sources. This is the first down-the-barrel study where blueshifted absorptions can be identified directly with outflowing gas in a spatially resolved fashion. The kpc-scale flows sampled by the COS pointings will be anchored to the properties of the large-scale (10-100 kpc) flows thanks to the wealth of multi-wavelength observations of M83 from X-ray to radio. A comparison of COS data with mock spectra from constrained simulations of spiral galaxies with FIRE (Feedback In Realistic Environments; a code with unprecedented 1-100 pc spatial resolution and self-consistent treatments of stellar feedback) will provide an important validation of these simulations and will supply the community with a powerful and well-tested tool for galaxy formation predictions applicable to all redshifts.

  9. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    NASA Astrophysics Data System (ADS)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  10. A Spatial Method to Calculate Small-Scale Fisheries Extent

    NASA Astrophysics Data System (ADS)

    Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.

    2016-02-01

    Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.

  11. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro- but not micro-geographical scale.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat; Song, Minshu; Shulgina, Irina

    2015-01-01

    Detecting local adaptation and its spatial scale is one of the most important questions of evolutionary biology. However, recognition of the effect of local selection can be challenging when there is considerable environmental variation across the distance at the whole species range. We analyzed patterns of local adaptation in emmer wheat, Triticum dicoccoides, at two spatial scales, small (inter-population distance less than one km) and large (inter-population distance more than 50 km) using several approaches. Plants originating from four distinct habitats at two geographic scales (cold edge, arid edge and two topographically dissimilar core locations) were reciprocally transplanted and their success over time was measured as 1) lifetime fitness in a year of planting, and 2) population growth four years after planting. In addition, we analyzed molecular (SSR) and quantitative trait variation and calculated the QST/FST ratio. No home advantage was detected at the small spatial scale. At the large spatial scale, home advantage was detected for the core population and the cold edge population in the year of introduction via measuring life-time plant performance. However, superior performance of the arid edge population in its own environment was evident only after several generations via measuring experimental population growth rate through genotyping with SSRs allowing counting the number of plants and seeds per introduced genotype per site. These results highlight the importance of multi-generation surveys of population growth rate in local adaptation testing. Despite predominant self-fertilization of T. dicoccoides and the associated high degree of structuring of genetic variation, the results of the QST - FST comparison were in general agreement with the pattern of local adaptation at the two spatial scales detected by reciprocal transplanting.

  12. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Treesearch

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  13. Upper Washita River experimental watersheds: Multiyear stability of soil water content profiles

    USDA-ARS?s Scientific Manuscript database

    Scaling in situ soil water content time series data to a large spatial domain is a key element of watershed environmental monitoring and modeling. The primary method of estimating and monitoring large-scale soil water content distributions is via in situ networks. It is critical to establish the s...

  14. Fractals and Spatial Methods for Mining Remote Sensing Imagery

    NASA Technical Reports Server (NTRS)

    Lam, Nina; Emerson, Charles; Quattrochi, Dale

    2003-01-01

    The rapid increase in digital remote sensing and GIS data raises a critical problem -- how can such an enormous amount of data be handled and analyzed so that useful information can be derived quickly? Efficient handling and analysis of large spatial data sets is central to environmental research, particularly in global change studies that employ time series. Advances in large-scale environmental monitoring and modeling require not only high-quality data, but also reliable tools to analyze the various types of data. A major difficulty facing geographers and environmental scientists in environmental assessment and monitoring is that spatial analytical tools are not easily accessible. Although many spatial techniques have been described recently in the literature, they are typically presented in an analytical form and are difficult to transform to a numerical algorithm. Moreover, these spatial techniques are not necessarily designed for remote sensing and GIS applications, and research must be conducted to examine their applicability and effectiveness in different types of environmental applications. This poses a chicken-and-egg problem: on one hand we need more research to examine the usability of the newer techniques and tools, yet on the other hand, this type of research is difficult to conduct if the tools to be explored are not accessible. Another problem that is fundamental to environmental research are issues related to spatial scale. The scale issue is especially acute in the context of global change studies because of the need to integrate remote-sensing and other spatial data that are collected at different scales and resolutions. Extrapolation of results across broad spatial scales remains the most difficult problem in global environmental research. There is a need for basic characterization of the effects of scale on image data, and the techniques used to measure these effects must be developed and implemented to allow for a multiple scale assessment of the data before any useful process-oriented modeling involving scale-dependent data can be conducted. Through the support of research grants from NASA, we have developed a software module called ICAMS (Image Characterization And Modeling System) to address the need to develop innovative spatial techniques and make them available to the broader scientific communities. ICAMS provides new spatial techniques, such as fractal analysis, geostatistical functions, and multiscale analysis that are not easily available in commercial GIS/image processing software. By bundling newer spatial methods in a user-friendly software module, researchers can begin to test and experiment with the new spatial analysis methods and they can gauge scale effects using a variety of remote sensing imagery. In the following, we describe briefly the development of ICAMS and present application examples.

  15. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  16. Spatial patterns of native freshwater mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa

    2016-01-01

    Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.

  17. Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria

    PubMed Central

    Morelli, Federico

    2017-01-01

    Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818

  18. Large-Scale Atmospheric Teleconnection Patterns Associated with the Interannual Variability of Heatwaves in East Asia and Its Decadal Changes

    NASA Astrophysics Data System (ADS)

    Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.

    2017-12-01

    Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.

  19. Spatial discretization of large watersheds and its influence on the estimation of hillslope sediment yield

    USDA-ARS?s Scientific Manuscript database

    The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially distributed soil loss estimat...

  20. Land use and climate affect Black Tern, Northern Harrier, and Marsh Wren abundance in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Forcey, Greg M.; Thogmartin, Wayne E.; Linz, George M.; McKann, Patrick C.

    2014-01-01

    Bird populations are influenced by many environmental factors at both large and small scales. Our study evaluated the influences of regional climate and land-use variables on the Northern Harrier (Circus cyaneus), Black Tern (Childonias niger), and Marsh Wren (Cistothorus palustris) in the prairie potholes of the upper Midwest of the United States. These species were chosen because their diverse habitat preference represent the spectrum of habitat conditions present in the Prairie Potholes, ranging from open prairies to dense cattail marshes. We evaluated land-use covariates at three logarithmic spatial scales (1,000 ha, 10,000 ha, and 100,000 ha) and constructed models a priori using information from published habitat associations and climatic influences. The strongest influences on the abundance of each of the three species were the percentage of wetland area across all three spatial scales and precipitation in the year preceding that when bird surveys were conducted. Even among scales ranging over three orders of magnitude the influence of spatial scale was small, as models with the same variables expressed at different scales were often in the best model subset. Examination of the effects of large-scale environmental variables on wetland birds elucidated relationships overlooked in many smaller-scale studies, such as the influences of climate and habitat variables at landscape scales. Given the spatial variation in the abundance of our focal species within the prairie potholes, our model predictions are especially useful for targeting locations, such as northeastern South Dakota and central North Dakota, where management and conservation efforts would be optimally beneficial. This modeling approach can also be applied to other species and geographic areas to focus landscape conservation efforts and subsequent small-scale studies, especially in constrained economic climates.

  1. Environment and host as large-scale controls of ectomycorrhizal fungi.

    PubMed

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  2. A Spectral Method for Spatial Downscaling

    PubMed Central

    Reich, Brian J.; Chang, Howard H.; Foley, Kristen M.

    2014-01-01

    Summary Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this article, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. PMID:24965037

  3. Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: Determinants and consequences for recruitment

    USGS Publications Warehouse

    Etherington, L.L.; Eggleston, D.B.

    2003-01-01

    We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.

  4. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell W

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositionsmore » which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.« less

  5. Measuring high-density built environment for public health research: Uncertainty with respect to data, indicator design and spatial scale.

    PubMed

    Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu

    2018-05-07

    Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.

  6. Biodiversity and ecosystem stability across scales in metacommunities

    PubMed Central

    Wang, Shaopeng; Loreau, Michel

    2016-01-01

    Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536

  7. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  8. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  9. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring should be strengthened.

  10. Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area

    NASA Astrophysics Data System (ADS)

    Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.

    2013-04-01

    Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.

  11. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion.

    PubMed

    Klein, Brennan J; Li, Zhi; Durgin, Frank H

    2016-04-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion

    PubMed Central

    Klein, Brennan J.; Li, Zhi; Durgin, Frank H.

    2015-01-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884

  13. Large-scale changes in network interactions as a physiological signature of spatial neglect

    PubMed Central

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L.; Callejas, Alicia; Astafiev, Serguei V.; Metcalf, Nicholas V.; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z.; Carter, Alex R.; Shulman, Gordon L.

    2014-01-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n = 84) heterogeneous sample of first-ever stroke patients (within 1–2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. PMID:25367028

  14. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  15. Human seizures couple across spatial scales through travelling wave dynamics

    NASA Astrophysics Data System (ADS)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  16. Going the distance: spatial scale of athletic experience affects the accuracy of path integration.

    PubMed

    Smith, Alastair D; Howard, Christina J; Alcock, Niall; Cater, Kirsten

    2010-09-01

    Evidence suggests that athletically trained individuals are more accurate than untrained individuals in updating their spatial position through idiothetic cues. We assessed whether training at different spatial scales affects the accuracy of path integration. Groups of rugby players (large-scale training) and martial artists (small-scale training) participated in a triangle-completion task: they were led (blindfolded) along two sides of a right-angled triangle and were required to complete the hypotenuse by returning to the origin. The groups did not differ in their assessment of the distance to the origin, but rugby players were more accurate than martial artists in assessing the correct angle to turn (heading), and landed significantly closer to the origin. These data support evidence that distance and heading components can be dissociated. Furthermore, they suggest that the spatial scale at which an individual is trained may affect the accuracy of one component of path integration but not the other.

  17. Spatial adaptive sampling in multiscale simulation

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Barros, Kipton; Cieren, Emmanuel; Elango, Venmugil; Junghans, Christoph; Lookman, Turab; Mohd-Yusof, Jamaludin; Pavel, Robert S.; Rivera, Axel Y.; Roehm, Dominic; McPherson, Allen L.; Germann, Timothy C.

    2014-07-01

    In a common approach to multiscale simulation, an incomplete set of macroscale equations must be supplemented with constitutive data provided by fine-scale simulation. Collecting statistics from these fine-scale simulations is typically the overwhelming computational cost. We reduce this cost by interpolating the results of fine-scale simulation over the spatial domain of the macro-solver. Unlike previous adaptive sampling strategies, we do not interpolate on the potentially very high dimensional space of inputs to the fine-scale simulation. Our approach is local in space and time, avoids the need for a central database, and is designed to parallelize well on large computer clusters. To demonstrate our method, we simulate one-dimensional elastodynamic shock propagation using the Heterogeneous Multiscale Method (HMM); we find that spatial adaptive sampling requires only ≈ 50 ×N0.14 fine-scale simulations to reconstruct the stress field at all N grid points. Related multiscale approaches, such as Equation Free methods, may also benefit from spatial adaptive sampling.

  18. Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study

    PubMed Central

    2013-01-01

    Background There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological cancer registry in Germany. Methods Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0 or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive predictive values. The Bayesian smoothing models were evaluated using ROC curves. Results With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale. At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood, showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted by data aggregation. Conclusion High resolution spatial scales seem more appropriate as data base for cancer cluster testing and monitoring than the commonly used aggregated scales. We suggest the development of a two-stage approach that combines methods with high detection rates as a first-line screening with methods of higher predictive ability at the second stage. PMID:24314148

  19. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  20. Silver Hake Tracks Changes in Northwest Atlantic Circulation

    EPA Science Inventory

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic pro...

  1. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  2. Spatially dependent responses of a large-river fish assemblage to bank stabilization and side channels

    USGS Publications Warehouse

    Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.

    2017-01-01

    The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools did not differ. The strengths of the relationships among fish assemblages, bank stabilization, and side channels were spatially scale dependent; optimum spatial scales ranged from less than 200 m to 3,200 m up- and downstream, suggesting that bank stabilization and side channels influenced fish assemblages across multiple spatial scales.

  3. The problem of ecological scaling in spatially complex, nonequilibrium ecological systems [chapter 3

    Treesearch

    Samuel A. Cushman; Jeremy Littell; Kevin McGarigal

    2010-01-01

    In the previous chapter we reviewed the challenges posed by spatial complexity and temporal disequilibrium to efforts to understand and predict the structure and dynamics of ecological systems. The central theme was that spatial variability in the environment and population processes fundamentally alters the interactions between species and their environments, largely...

  4. Spatial Pattern of Standing Timber Value across the Brazilian Amazon

    PubMed Central

    Ahmed, Sadia E.; Ewers, Robert M.

    2012-01-01

    The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520

  5. Factors Driving Potential Ammonia Oxidation in Canadian Arctic Ecosystems: Does Spatial Scale Matter?

    PubMed Central

    Banerjee, Samiran

    2012-01-01

    Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation. PMID:22081570

  6. Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats?

    PubMed Central

    Akkaynak, Derya; Siemann, Liese A.; Barbosa, Alexandra

    2017-01-01

    Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging. PMID:28405370

  7. Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats?

    PubMed

    Akkaynak, Derya; Siemann, Liese A; Barbosa, Alexandra; Mäthger, Lydia M

    2017-03-01

    Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.

  8. Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas.

    PubMed

    Zhang, Zejun; Sheppard, James K; Swaisgood, Ronald R; Wang, Guan; Nie, Yonggang; Wei, Wei; Zhao, Naxun; Wei, Fuwen

    2014-01-01

    We report on the first study to track the spatial behaviors of wild giant pandas (Ailuropoda melanoleuca) using high-resolution global positioning system (GPS) telemetry. Between 2008 and 2009, 4 pandas (2 male and 2 female) were tracked in Foping Reserve, China for an average of 305 days (± 54.8 SE). Panda home ranges were larger than those of previous very high frequency tracking studies, with a bimodal distribution of space-use and distinct winter and summer centers of activity. Home range sizes were larger in winter than in summer, although there was considerable individual variability. All tracked pandas exhibited individualistic, unoriented and multiphasic movement paths, with a high level of tortuosity within seasonal core habitats and directed, linear, large-scale movements between habitats. Pandas moved from low elevation winter habitats to high elevation (>2000 m) summer habitats in May, when temperatures averaged 17.5 °C (± 0.3 SE), and these large-scale movements took <1 month to complete. The peak in panda mean elevation occurred in Jul, after which they began slow, large-scale movements back to winter habitats that were completed in Nov. An adult female panda made 2 longdistance movements during the mating season. Pandas remain close to rivers and streams during winter, possibly reflecting the elevated water requirements to digest their high-fiber food. Panda movement path tortuosity and first-passage-time as a function of spatial scale indicated a mean peak in habitat search effort and patch use of approximately 700 m. Despite a high degree of spatial overlap between panda home ranges, particularly in winter, we detected neither avoidance nor attraction behavior between conspecifics. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  9. Using radiocarbon to investigate soil respiration impacts on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Phillips, C. L.; LaFranchi, B. W.; McFarlane, K. J.; Desai, A. R.

    2013-12-01

    While soil respiration is believed to represent the largest single source of CO2 emissions on a global scale, there are few tools available to measure soil emissions at large spatial scales. We investigated whether radiocarbon (14C) abundance in CO2 could be used to detect and characterize soil emissions in the atmosphere, taking advantage of the fact that 14C abundance in soil carbon is elevated compared to the background atmosphere, a result of thermonuclear weapons testing during the mid-20th Century (i.e. bomb-C). Working in a temperate hardwood forest in Northern Wisconsin during 2011-12, we made semi-high-frequency measurements of CO2 at nested spatial scales from the soil subsurface to 150 m above ground level. These measurements were used to investigate seasonal patterns in respired C sources, and to evaluate whether variability in soil-respired Δ14C could also be detected in atmospheric measurements. In our ground-level measurements we found large seasonal variation in soil-respired 14CO2 that correlated with soil moisture, which was likely related to root activity. Atmospheric measurements of 14CO2 in the forest canopy (2 to 30m) were used to construct Keeling plots, and these provided larger spatial-scale estimates of respired 14CO2 that largely agreed with the soil-level measurements. In collaboration with the NOAA we also examined temporal patterns of 14CO2 at the Park Falls tall-tower (150m), and found elevated 14CO2 levels during summer months that likely resulted from increased respiration from heterotrophic sources. These results demonstrate that a fingerprint from soil-respired CO2 can be detected in the seasonal patterns of atmospheric 14CO2, even at a regionally-integrating spatial scale far from the soil surface.

  10. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data.

    PubMed

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H

    2012-11-06

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the "big data" challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce.

  11. Towards Building a High Performance Spatial Query System for Large Scale Medical Imaging Data

    PubMed Central

    Aji, Ablimit; Wang, Fusheng; Saltz, Joel H.

    2013-01-01

    Support of high performance queries on large volumes of scientific spatial data is becoming increasingly important in many applications. This growth is driven by not only geospatial problems in numerous fields, but also emerging scientific applications that are increasingly data- and compute-intensive. For example, digital pathology imaging has become an emerging field during the past decade, where examination of high resolution images of human tissue specimens enables more effective diagnosis, prediction and treatment of diseases. Systematic analysis of large-scale pathology images generates tremendous amounts of spatially derived quantifications of micro-anatomic objects, such as nuclei, blood vessels, and tissue regions. Analytical pathology imaging provides high potential to support image based computer aided diagnosis. One major requirement for this is effective querying of such enormous amount of data with fast response, which is faced with two major challenges: the “big data” challenge and the high computation complexity. In this paper, we present our work towards building a high performance spatial query system for querying massive spatial data on MapReduce. Our framework takes an on demand index building approach for processing spatial queries and a partition-merge approach for building parallel spatial query pipelines, which fits nicely with the computing model of MapReduce. We demonstrate our framework on supporting multi-way spatial joins for algorithm evaluation and nearest neighbor queries for microanatomic objects. To reduce query response time, we propose cost based query optimization to mitigate the effect of data skew. Our experiments show that the framework can efficiently support complex analytical spatial queries on MapReduce. PMID:24501719

  12. Distribution of Wild Mammal Assemblages along an Urban–Rural–Forest Landscape Gradient in Warm-Temperate East Asia

    PubMed Central

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban–rural–forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban–rural–forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization. PMID:23741495

  13. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    NASA Astrophysics Data System (ADS)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  14. Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia.

    PubMed

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban-rural-forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban-rural-forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of management according to the degree of urbanization.

  15. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  16. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks

    PubMed Central

    Mantini, D.; Marzetti, L.; Corbetta, M.; Romani, G.L.; Del Gratta, C.

    2017-01-01

    Two major non-invasive brain mapping techniques, electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), have complementary advantages with regard to their spatial and temporal resolution. We propose an approach based on the integration of EEG and fMRI, enabling the EEG temporal dynamics of information processing to be characterized within spatially well-defined fMRI large-scale networks. First, the fMRI data are decomposed into networks by means of spatial independent component analysis (sICA), and those associated with intrinsic activity and/or responding to task performance are selected using information from the related time-courses. Next, the EEG data over all sensors are averaged with respect to event timing, thus calculating event-related potentials (ERPs). The ERPs are subjected to temporal ICA (tICA), and the resulting components are localized with the weighted minimum norm (WMNLS) algorithm using the task-related fMRI networks as priors. Finally, the temporal contribution of each ERP component in the areas belonging to the fMRI large-scale networks is estimated. The proposed approach has been evaluated on visual target detection data. Our results confirm that two different components, commonly observed in EEG when presenting novel and salient stimuli respectively, are related to the neuronal activation in large-scale networks, operating at different latencies and associated with different functional processes. PMID:20052528

  17. Up, Down, and All Around: Scale-Dependent Spatial Variation in Rocky-Shore Communities of Fildes Peninsula, King George Island, Antarctica

    PubMed Central

    Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván

    2014-01-01

    Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114

  18. Large Scale Density Estimation of Blue and Fin Whales: Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large Scale Density Estimation of Blue and Fin Whales ...Utilizing Sparse Array Data to Develop and Implement a New Method for Estimating Blue and Fin Whale Density Len Thomas & Danielle Harris Centre...to develop and implement a new method for estimating blue and fin whale density that is effective over large spatial scales and is designed to cope

  19. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With increasing sampling points per field, we averaged the measured abundance of the sampling within each field to obtain a more representative value of the field average. Doubling the samplings per field strongly improved the model performance criteria (explained deviance 0.38 and correlation coefficient 0.73). With 50 sampling points per field the performance criteria were 0.91 and 0.97 respectively for explained deviance and correlation coefficient. The relationship between number of samplings and performance criteria can be described with a saturation curve. Beyond five samples per field the model improvement becomes rather small. With this contribution we wish to discuss the impact of data variability at sampling scale on model performance and the implications for sampling design and assessment of model results as well as ecological inferences.

  20. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  1. Impact of spatially correlated pore-scale heterogeneity on drying porous media

    NASA Astrophysics Data System (ADS)

    Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran

    2017-07-01

    We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.

  2. [Research progress on hydrological scaling].

    PubMed

    Liu, Jianmei; Pei, Tiefan

    2003-12-01

    With the development of hydrology and the extending effect of mankind on environment, scale issue has become a great challenge to many hydrologists due to the stochasticism and complexity of hydrological phenomena and natural catchments. More and more concern has been given to the scaling issues to gain a large-scale (or small-scale) hydrological characteristic from a certain known catchments, but hasn't been solved successfully. The first part of this paper introduced some concepts about hydrological scale, scale issue and scaling. The key problem is the spatial heterogeneity of catchments and the temporal and spatial variability of hydrological fluxes. Three approaches to scale were put forward in the third part, which were distributed modeling, fractal theory and statistical self similarity analyses. Existing problems and future research directions were proposed in the last part.

  3. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  4. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  5. Effect of spatial and temporal scales on habitat suitability modeling: A case study of Ommastrephes bartramii in the northwest pacific ocean

    NASA Astrophysics Data System (ADS)

    Gong, Caixia; Chen, Xinjun; Gao, Feng; Tian, Siquan

    2014-12-01

    Temporal and spatial scales play important roles in fishery ecology, and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution. The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling, with the western stock of winter-spring cohort of neon flying squid ( Ommastrephes bartramii) in the northwest Pacific Ocean as an example. In this study, the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used. We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°, 1° and 2°), four longitude scales (0.5°, 1°, 2° and 4°), and three temporal scales (week, fortnight, and month). The coefficients of variation (CV) of the weekly, biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise. This study shows that the optimal temporal and spatial scales with the lowest CV are month, and 0.5° latitude and 0.5° longitude for O. bartramii in the northwest Pacific Ocean. This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts. We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.

  6. Large-scale impacts of herbivores on the structural diversity of African savannas

    PubMed Central

    Asner, Gregory P.; Levick, Shaun R.; Kennedy-Bowdoin, Ty; Knapp, David E.; Emerson, Ruth; Jacobson, James; Colgan, Matthew S.; Martin, Roberta E.

    2009-01-01

    African savannas are undergoing management intensification, and decision makers are increasingly challenged to balance the needs of large herbivore populations with the maintenance of vegetation and ecosystem diversity. Ensuring the sustainability of Africa's natural protected areas requires information on the efficacy of management decisions at large spatial scales, but often neither experimental treatments nor large-scale responses are available for analysis. Using a new airborne remote sensing system, we mapped the three-dimensional (3-D) structure of vegetation at a spatial resolution of 56 cm throughout 1640 ha of savanna after 6-, 22-, 35-, and 41-year exclusions of herbivores, as well as in unprotected areas, across Kruger National Park in South Africa. Areas in which herbivores were excluded over the short term (6 years) contained 38%–80% less bare ground compared with those that were exposed to mammalian herbivory. In the longer-term (> 22 years), the 3-D structure of woody vegetation differed significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy cover in the areas without herbivores. Our maps revealed 2 scales of ecosystem response to herbivore consumption, one broadly mediated by geologic substrate and the other mediated by hillslope-scale variation in soil nutrient availability and moisture conditions. Our results are the first to quantitatively illustrate the extent to which herbivores can affect the 3-D structural diversity of vegetation across large savanna landscapes. PMID:19258457

  7. Phytoplankton plasticity drives large variability in carbon fixation efficiency

    NASA Astrophysics Data System (ADS)

    Ayata, Sakina-Dorothée.; Lévy, Marina; Aumont, Olivier; Resplandy, Laure; Tagliabue, Alessandro; Sciandra, Antoine; Bernard, Olivier

    2014-12-01

    Phytoplankton C:N stoichiometry is highly flexible due to physiological plasticity, which could lead to high variations in carbon fixation efficiency (carbon consumption relative to nitrogen). However, the magnitude, as well as the spatial and temporal scales of variability, remains poorly constrained. We used a high-resolution biogeochemical model resolving various scales from small to high, spatially and temporally, in order to quantify and better understand this variability. We find that phytoplankton C:N ratio is highly variable at all spatial and temporal scales (5-12 molC/molN), from mesoscale to regional scale, and is mainly driven by nitrogen supply. Carbon fixation efficiency varies accordingly at all scales (±30%), with higher values under oligotrophic conditions and lower values under eutrophic conditions. Hence, phytoplankton plasticity may act as a buffer by attenuating carbon sequestration variability. Our results have implications for in situ estimations of C:N ratios and for future predictions under high CO2 world.

  8. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Treesearch

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  9. Emerging factors associated with the decline of a gray fox population and multi-scale land cover associations of mesopredators in the Chicago metropolitan area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, Alison N.; /Ohio State U.

    Statewide surveys of furbearers in Illinois indicate gray (Urocyon cinereoargenteus) and red (Vulpes vulpes) foxes have experienced substantial declines in relative abundance, whereas other species such as raccoons (Procyon lotor) and coyotes (Canis latrans) have exhibited dramatic increases during the same time period. The cause of the declines of gray and red foxes has not been identified, and the current status of gray foxes remains uncertain. Therefore, I conducted a large-scale predator survey and tracked radiocollared gray foxes from 2004 to 2007 in order to determine the distribution, survival, cause-specific mortality sources and land cover associations of gray foxes inmore » an urbanized region of northeastern Illinois, and examined the relationships between the occurrence of gray fox and the presence other species of mesopredators, specifically coyotes and raccoons. Although generalist mesopredators are common and can reach high densities in many urban areas their urban ecology is poorly understood due to their secretive nature and wariness of humans. Understanding how mesopredators utilize urbanized landscapes can be useful in the management and control of disease outbreaks, mitigation of nuisance wildlife issues, and gaining insight into how mesopredators shape wildlife communities in highly fragmented areas. I examined habitat associations of raccoons, opossums (Didelphis virginiana), domestic cats (Felis catus), coyotes, foxes (gray and red), and striped skunks (Mephitis mephitis) at multiple spatial scales in an urban environment. Gray fox occurrence was rare and widely dispersed, and survival estimates were similar to other studies. Gray fox occurrence was negatively associated with natural and semi-natural land cover types. Fox home range size increased with increasing urban development suggesting that foxes may be negatively influenced by urbanization. Gray fox occurrence was not associated with coyote or raccoon presence. However, spatial avoidance and mortality due to coyote predation was documented and disease was a major mortality source for foxes. The declining relative abundance of gray fox in Illinois is likely a result of a combination of factors. Assessment of habitat associations indicated that urban mesopredators, particularly coyotes and foxes, perceived the landscape as relatively homogeneous and that urban mesopredators interacted with the environment at scales larger than that accommodated by remnant habitat patches. Coyote and fox presence was found to be associated with a high degree of urban development at large and intermediate spatial scales. However, at a small spatial scale fox presence was associated with high density urban land cover whereas coyote presence was associated with urban development with increased forest cover. Urban habitats can offer a diversity of prey items and anthropogenic resources and natural land cover could offer coyotes daytime resting opportunities in urban areas where they may not be as tolerated as smaller foxes. Raccoons and opossums were found to utilize moderately developed landscapes with interspersed natural and semi-natural land covers at a large spatial scale, which may facilitate dispersal movements. At intermediate and small spatial scales, both species were found to utilize areas that were moderately developed and included forested land cover. These results indicated that raccoons and opossums used natural areas in proximity to anthropogenic resources. At a large spatial scale, skunk presence was associated with highly developed landscapes with interspersed natural and semi-natural land covers. This may indicate that skunks perceived the urban matrix as more homogeneous than raccoons or opossums. At an intermediate spatial scale skunks were associated with moderate levels of development and increased forest cover, which indicated that they might utilize natural land cover in proximity to human-dominated land cover. At the smallest spatial scale skunk presence was associated with forested land cover surrounded by a suburban matrix. Compared to raccoons and opossums, skunks may not be tolerated in close proximity to human development in urban areas. Domestic cat presence was positively associated with increasingly urbanized and less diverse landscapes with decreased amounts of forest and urban open space at the largest spatial scale. At an intermediate spatial scale, cat presence was associated with a moderate degree of urban development characterized by increased forest cover, and at a small spatial scale cat presence was associated with a high degree of urbanization. Free-ranging domestic cats are often associated with human-dominated landscapes and likely utilize remnant natural habitat patches for hunting purposes, which may have implications for native predator and prey species existing in fragmented habitat patches in proximity to human development.« less

  10. A SPATIALLY EXPLICIT HIERARCHICAL APPROACH TO MODELING COMPLEX ECOLOGICAL SYSTEMS: THEORY AND APPLICATIONS. (R827676)

    EPA Science Inventory

    Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...

  11. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  12. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    PubMed

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Modulation of Small-scale Turbulence Structure by Large-scale Motions in the Absence of Direct Energy Transfer.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1996-11-01

    Previous DNS studies indicate that small-scale structure can be directly altered through ``distant'' dynamical interactions by energetic forcing of the large scales. To remove the possibility of stimulating energy transfer between the large- and small-scale motions in these long-range interactions, we here perturb the large scale structure without altering its energy content by suddenly altering only the phases of large-scale Fourier modes. Scale-dependent changes in turbulence structure appear as a non zero difference field between two simulations from identical initial conditions of isotropic decaying turbulence, one perturbed and one unperturbed. We find that the large-scale phase perturbations leave the evolution of the energy spectrum virtually unchanged relative to the unperturbed turbulence. The difference field, on the other hand, is strongly affected by the perturbation. Most importantly, the time scale τ characterizing the change in in turbulence structure at spatial scale r shortly after initiating a change in large-scale structure decreases with decreasing turbulence scale r. Thus, structural information is transferred directly from the large- to the smallest-scale motions in the absence of direct energy transfer---a long-range effect which cannot be explained by a linear mechanism such as rapid distortion theory. * Supported by ARO grant DAAL03-92-G-0117

  14. Spatial organization of chromatin domains and compartments in single chromosomes

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan; Su, Jun-Han; Beliveau, Brian; Bintu, Bogdan; Moffitt, Jeffrey; Wu, Chao-Ting; Zhuang, Xiaowei

    The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.

  15. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  16. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  17. Assessment of Disturbance at Three Spatial Scales in Two Large Tropical Reservoirs

    EPA Science Inventory

    Large reservoirs vary from lentic to lotic systems in time and space. Therefore our objective was to assess disturbance gradients for two large tropical reservoirs and their influences on benthic macroinvertebrates. We tested three hypothesis: 1) a disturbance gradient of environ...

  18. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales

    PubMed Central

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865

  19. The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales.

    PubMed

    Millette, Katie L; Keyghobadi, Nusha

    2015-01-01

    Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.

  20. Coexistence between wildlife and humans at fine spatial scales.

    PubMed

    Carter, Neil H; Shrestha, Binoj K; Karki, Jhamak B; Pradhan, Narendra Man Babu; Liu, Jianguo

    2012-09-18

    Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal's Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger-human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge-meeting human needs while sustaining wildlife.

  1. Integrating High-Resolution Datasets to Target Mitigation Efforts for Improving Air Quality and Public Health in Urban Neighborhoods

    PubMed Central

    Shandas, Vivek; Voelkel, Jackson; Rao, Meenakshi; George, Linda

    2016-01-01

    Reducing exposure to degraded air quality is essential for building healthy cities. Although air quality and population vary at fine spatial scales, current regulatory and public health frameworks assess human exposures using county- or city-scales. We build on a spatial analysis technique, dasymetric mapping, for allocating urban populations that, together with emerging fine-scale measurements of air pollution, addresses three objectives: (1) evaluate the role of spatial scale in estimating exposure; (2) identify urban communities that are disproportionately burdened by poor air quality; and (3) estimate reduction in mobile sources of pollutants due to local tree-planting efforts using nitrogen dioxide. Our results show a maximum value of 197% difference between cadastrally-informed dasymetric system (CIDS) and standard estimations of population exposure to degraded air quality for small spatial extent analyses, and a lack of substantial difference for large spatial extent analyses. These results provide the foundation for improving policies for managing air quality, and targeting mitigation efforts to address challenges of environmental justice. PMID:27527205

  2. Scale and modeling issues in water resources planning

    USGS Publications Warehouse

    Lins, H.F.; Wolock, D.M.; McCabe, G.J.

    1997-01-01

    Resource planners and managers interested in utilizing climate model output as part of their operational activities immediately confront the dilemma of scale discordance. Their functional responsibilities cover relatively small geographical areas and necessarily require data of relatively high spatial resolution. Climate models cover a large geographical, i.e. global, domain and produce data at comparatively low spatial resolution. Although the scale differences between model output and planning input are large, several techniques have been developed for disaggregating climate model output to a scale appropriate for use in water resource planning and management applications. With techniques in hand to reduce the limitations imposed by scale discordance, water resource professionals must now confront a more fundamental constraint on the use of climate models-the inability to produce accurate representations and forecasts of regional climate. Given the current capabilities of climate models, and the likelihood that the uncertainty associated with long-term climate model forecasts will remain high for some years to come, the water resources planning community may find it impractical to utilize such forecasts operationally.

  3. Parameterizing a Large-scale Water Balance Model in Regions with Sparse Data: The Tigris-Euphrates River Basins as an Example

    NASA Astrophysics Data System (ADS)

    Flint, A. L.; Flint, L. E.

    2010-12-01

    The characterization of hydrologic response to current and future climates is of increasing importance to many countries around the world that rely heavily on changing and uncertain water supplies. Large-scale models that can calculate a spatially distributed water balance and elucidate groundwater recharge and surface water flows for large river basins provide a basis of estimates of changes due to future climate projections. Unfortunately many regions in the world have very sparse data for parameterization or calibration of hydrologic models. For this study, the Tigris and Euphrates River basins were used for the development of a regional water balance model at 180-m spatial scale, using the Basin Characterization Model, to estimate historical changes in groundwater recharge and surface water flows in the countries of Turkey, Syria, Iraq, Iran, and Saudi Arabia. Necessary input parameters include precipitation, air temperature, potential evapotranspiration (PET), soil properties and thickness, and estimates of bulk permeability from geologic units. Data necessary for calibration includes snow cover, reservoir volumes (from satellite data and historic, pre-reservoir elevation data) and streamflow measurements. Global datasets for precipitation, air temperature, and PET were available at very large spatial scales (50 km) through the world scale databases, finer scale WorldClim climate data, and required downscaling to fine scales for model input. Soils data were available through world scale soil maps but required parameterization on the basis of textural data to estimate soil hydrologic properties. Soil depth was interpreted from geomorphologic interpretation and maps of quaternary deposits, and geologic materials were categorized from generalized geologic maps of each country. Estimates of bedrock permeability were made on the basis of literature and data on driller’s logs and adjusted during calibration of the model to streamflow measurements where available. Results of historical water balance calculations throughout the Tigris and Euphrates River basins will be shown along with details of processing input data to provide spatial continuity and downscaling. Basic water availability analysis for recharge and runoff is readily available from a determinisitic solar radiation energy balance model and a global potential evapotranspiration model and global estimates of precipitation and air temperature. Future climate estimates can be readily applied to the same water and energy balance models to evaluate future water availability for countries around the globe.

  4. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees. PMID:22567132

  5. Large scale anomalies in the microwave background: causation and correlation.

    PubMed

    Aslanyan, Grigor; Easther, Richard

    2013-12-27

    Most treatments of large scale anomalies in the microwave sky are a posteriori, with unquantified look-elsewhere effects. We contrast these with physical models of specific inhomogeneities in the early Universe which can generate these apparent anomalies. Physical models predict correlations between candidate anomalies and the corresponding signals in polarization and large scale structure, reducing the impact of cosmic variance. We compute the apparent spatial curvature associated with large-scale inhomogeneities and show that it is typically small, allowing for a self-consistent analysis. As an illustrative example we show that a single large plane wave inhomogeneity can contribute to low-l mode alignment and odd-even asymmetry in the power spectra and the best-fit model accounts for a significant part of the claimed odd-even asymmetry. We argue that this approach can be generalized to provide a more quantitative assessment of potential large scale anomalies in the Universe.

  6. Exploring Potential of Crowdsourced Geographic Information in Studies of Active Travel and Health: Strava Data and Cycling Behaviour

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2017-09-01

    In development of sustainable transportation and green city, policymakers encourage people to commute by cycling and walking instead of motor vehicles in cities. One the one hand, cycling and walking enables decrease in air pollution emissions. On the other hand, cycling and walking offer health benefits by increasing people's physical activity. Earlier studies on investigating spatial patterns of active travel (cycling and walking) are limited by lacks of spatially fine-grained data. In recent years, with the development of information and communications technology, GPS-enabled devices are popular and portable. With smart phones or smart watches, people are able to record their cycling or walking GPS traces when they are moving. A large number of cyclists and pedestrians upload their GPS traces to sport social media to share their historical traces with other people. Those sport social media thus become a potential source for spatially fine-grained cycling and walking data. Very recently, Strava Metro offer aggregated cycling and walking data with high spatial granularity. Strava Metro aggregated a large amount of cycling and walking GPS traces of Strava users to streets or intersections across a city. Accordingly, as a kind of crowdsourced geographic information, the aggregated data is useful for investigating spatial patterns of cycling and walking activities, and thus is of high potential in understanding cycling or walking behavior at a large spatial scale. This study is a start of demonstrating usefulness of Strava Metro data for exploring cycling or walking patterns at a large scale.

  7. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    PubMed Central

    2012-01-01

    Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales. PMID:22429883

  8. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    PubMed

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the survival and growth of seedlings and saplings damaged by foraging peccaries. Given the abundance of fruit produced by each palm, the widespread effects of these small-scale disturbances appear, over long time-scales, to cause directional changes in community structure at larger scales.

  9. Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale

    NASA Astrophysics Data System (ADS)

    Cotté, Cédric; Guinet, Christophe; Taupier-Letage, Isabelle; Mate, Bruce; Petiau, Estelle

    2009-05-01

    Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales ( Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20-100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill ( Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.

  10. Instantaneous variance scaling of AIRS thermodynamic profiles using a circular area Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.

    2018-05-01

    Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.

  11. Multi-Timescale Analysis of the Spatial Representativeness of In Situ Soil Moisture Data within Satellite Footprints

    NASA Astrophysics Data System (ADS)

    Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.

    2018-01-01

    We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.

  12. Soil organic carbon - a large scale paired catchment assessment

    NASA Astrophysics Data System (ADS)

    Kunkel, V.; Hancock, G. R.; Wells, T.

    2016-12-01

    Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.

  13. Biodiversity and ecosystem stability across scales in metacommunities.

    PubMed

    Wang, Shaopeng; Loreau, Michel

    2016-05-01

    Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales. © 2016 John Wiley & Sons Ltd/CNRS.

  14. Insights and challenges to Intergrating data from diverse ecological networks

    USDA-ARS?s Scientific Manuscript database

    Many of the most dramatic and surprising effects of global change occur across large spatial extents, from regions to continents, that impact multiple ecosystem types across a range of interacting spatial and temporal scales. The ability of ecologists and interdisciplinary scientists to understand a...

  15. Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation.

    PubMed

    Gething, Peter W; Patil, Anand P; Hay, Simon I

    2010-04-01

    Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty--the fidelity of predictions at each mapped pixel--but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.

  16. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  17. Multi-scale geophysical study to model the distribution and development of fractures in relation to the knickpoint in the Luquillo Critical Zone Observatory (Puerto Rico)

    NASA Astrophysics Data System (ADS)

    Comas, X.; Wright, W. J.; Hynek, S. A.; Ntarlagiannis, D.; Terry, N.; Job, M. J.; Fletcher, R. C.; Brantley, S.

    2017-12-01

    Previous studies in the Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) have shown that regolith materials are rapidly developed from the alteration of quartz diorite bedrock, and create a blanket on top of the bedrock with a thickness that decreases with proximity to the knickpoint. The watershed is also characterized by a system of heterogeneous fractures that likely drive bedrock weathering and the formation of corestones and associated spheroidal fracturing and rindlets. Previous efforts to characterize the spatial distribution of fractures were based on aerial images that did not account for the architecture of the critical zone below the subsurface. In this study we use an array of near-surface geophysical methods at multiple scales to better understand how the spatial distribution and density of fractures varies with topography and proximity to the knickpoint. Large km-scale surveys using ground penetrating radar (GPR), terrain conductivity, and capacitively coupled resistivity, were combined with smaller scale surveys (10-100 m) using electrical resistivity imaging (ERI), and shallow seismics, and were directly constrained with boreholes from previous studies. Geophysical results were compared to theoretical models of compressive stress as due to gravity and regional compression, and showed consistency at describing increased dilation of fractures with proximity to the knickpoint. This study shows the potential of multidisciplinary approaches to model critical zone processes at multiple scales of measurement and high spatial resolution. The approach can be particularly efficient at large km-scales when applying geophysical methods that allow for rapid data acquisition (i.e. walking pace) at high spatial resolution (i.e. cm scales).

  18. Snow depth spatial structure from hillslope to basin scale

    NASA Astrophysics Data System (ADS)

    Deems, J. S.

    2017-12-01

    Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.

  19. Regional hydro-climatic impacts of contemporary Amazonian deforestation

    NASA Astrophysics Data System (ADS)

    Khanna, Jaya

    More than 17% of the Amazon rainforest has been cleared in the past three decades triggering important climatological and societal impacts. This thesis is devoted to identifying and explaining the regional hydroclimatic impacts of this change employing multidecadal satellite observations and numerical simulations providing an integrated perspective on this topic. The climatological nature of this study motivated the implementation and application of a cloud detection technique to a new geostationary satellite dataset. The resulting sub daily, high spatial resolution, multidecadal time series facilitated the detection of trends and variability in deforestation triggered cloud cover changes. The analysis was complemented by satellite precipitation, reanalysis and ground based datasets and attribution with the variable resolution Ocean-Land-Atmosphere-Model. Contemporary Amazonian deforestation affects spatial scales of hundreds of kilometers. But, unlike the well-studied impacts of a few kilometers scale deforestation, the climatic response to contemporary, large scale deforestation is neither well observed nor well understood. Employing satellite datasets, this thesis shows a transition in the regional hydroclimate accompanying increasing scales of deforestation, with downwind deforested regions receiving 25% more and upwind deforested regions receiving 25% less precipitation from the deforested area mean. Simulations robustly reproduce these shifts when forced with increasing deforestation alone, suggesting a negligible role of large-scale decadal climate variability in causing the shifts. Furthermore, deforestation-induced surface roughness variations are found necessary to reproduce the observed spatial patterns in recent times illustrating the strong scale-sensitivity of the climatic response to Amazonian deforestation. This phenomenon, inconsequential during the wet season, is found to substantially affect the regional hydroclimate in the local dry and parts of transition seasons, hence occurring in atmospheric conditions otherwise less conducive to thermal convection. Evidence of this phenomenon is found at two large scale deforested areas considered in this thesis. Hence, the 'dynamical' mechanism, which affects the seasons most important for regional ecology, emerges as an impactful convective triggering mechanism. The phenomenon studied in this thesis provides context for thinking about the climate of a future, more patchily forested Amazonia, by articulating relationships between climate and spatial scales of deforestation.

  20. Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward

    NASA Astrophysics Data System (ADS)

    Daley, T. M.

    2012-12-01

    The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.

  1. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  2. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  3. Comparison of H-alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Wilcox, J. M.; Svalgaard, L.; Scherrer, P. H.; Mcintosh, P. S.

    1977-01-01

    Two methods of observing the neutral line of the large-scale photospheric magnetic field are compared: neutral line positions inferred from H-alpha photographs (McIntosh and Nolte, 1975) and observations of the photospheric magnetic field made with low spatial resolution (three minutes) and high sensitivity using the Stanford magnetograph. The comparison is found to be very favorable.

  4. The mosaic structure of plasma bulk flows in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.

    1995-01-01

    Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.

  5. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  6. Temporal and spatial mapping of red grouper Epinephelus morio sound production.

    PubMed

    Wall, C C; Simard, P; Lindemuth, M; Lembke, C; Naar, D F; Hu, C; Barnes, B B; Muller-Karger, F E; Mann, D A

    2014-11-01

    The goals of this project were to determine the daily, seasonal and spatial patterns of red grouper Epinephelus morio sound production on the West Florida Shelf (WFS) using passive acoustics. An 11 month time series of acoustic data from fixed recorders deployed at a known E. morio aggregation site showed that E. morio produce sounds throughout the day and during all months of the year. Increased calling (number of files containing E. morio sound) was correlated to sunrise and sunset, and peaked in late summer (July and August) and early winter (November and December). Due to the ubiquitous production of sound, large-scale spatial mapping across the WFS of E. morio sound production was feasible using recordings from shorter duration-fixed location recorders and autonomous underwater vehicles (AUVs). Epinephelus morio were primarily recorded in waters 15-93 m deep, with increased sound production detected in hard bottom areas and within the Steamboat Lumps Marine Protected Area (Steamboat Lumps). AUV tracks through Steamboat Lumps, an offshore marine reserve where E. morio hole excavations have been previously mapped, showed that hydrophone-integrated AUVs could accurately map the location of soniferous fish over spatial scales of <1 km. The results show that passive acoustics is an effective, non-invasive tool to map the distribution of this species over large spatial scales. © 2014 The Fisheries Society of the British Isles.

  7. Large-scale changes in network interactions as a physiological signature of spatial neglect.

    PubMed

    Baldassarre, Antonello; Ramsey, Lenny; Hacker, Carl L; Callejas, Alicia; Astafiev, Serguei V; Metcalf, Nicholas V; Zinn, Kristi; Rengachary, Jennifer; Snyder, Abraham Z; Carter, Alex R; Shulman, Gordon L; Corbetta, Maurizio

    2014-12-01

    The relationship between spontaneous brain activity and behaviour following focal injury is not well understood. Here, we report a large-scale study of resting state functional connectivity MRI and spatial neglect following stroke in a large (n=84) heterogeneous sample of first-ever stroke patients (within 1-2 weeks). Spatial neglect, which is typically more severe after right than left hemisphere injury, includes deficits of spatial attention and motor actions contralateral to the lesion, and low general attention due to impaired vigilance/arousal. Patients underwent structural and resting state functional MRI scans, and spatial neglect was measured using the Posner spatial cueing task, and Mesulam and Behavioural Inattention Test cancellation tests. A principal component analysis of the behavioural tests revealed a main factor accounting for 34% of variance that captured three correlated behavioural deficits: visual neglect of the contralesional visual field, visuomotor neglect of the contralesional field, and low overall performance. In an independent sample (21 healthy subjects), we defined 10 resting state networks consisting of 169 brain regions: visual-fovea and visual-periphery, sensory-motor, auditory, dorsal attention, ventral attention, language, fronto-parietal control, cingulo-opercular control, and default mode. We correlated the neglect factor score with the strength of resting state functional connectivity within and across the 10 resting state networks. All damaged brain voxels were removed from the functional connectivity:behaviour correlational analysis. We found that the correlated behavioural deficits summarized by the factor score were associated with correlated multi-network patterns of abnormal functional connectivity involving large swaths of cortex. Specifically, dorsal attention and sensory-motor networks showed: (i) reduced interhemispheric functional connectivity; (ii) reduced anti-correlation with fronto-parietal and default mode networks in the right hemisphere; and (iii) increased intrahemispheric connectivity with the basal ganglia. These patterns of functional connectivity:behaviour correlations were stronger in patients with right- as compared to left-hemisphere damage and were independent of lesion volume. Our findings identify large-scale changes in resting state network interactions that are a physiological signature of spatial neglect and may relate to its right hemisphere lateralization. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Plot-scale field experiment of surface hydrologic processes with EOS implications

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  9. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  10. SPATIAL PATTERN OF FUTURE VULNERABILITY OF STREAM EUTROPHICATION IN THE MID-ATLANTIC REGION OF THE UNITED STATES

    EPA Science Inventory

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the d...

  11. Spatial perspectives in state-and-transition models: A missing link to land management?

    USDA-ARS?s Scientific Manuscript database

    Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...

  12. Scale dependence of the diversity-stability relationship in a temperate grassland.

    PubMed

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  13. Breed locally, disperse globally: Fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist

    Treesearch

    Jennifer C. Pierson; Fred W. Allendorf; Pierre Drapeau; Michael K. Schwartz

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic...

  14. Mapping canopy gap fraction and leaf area index at continent-scale from satellite lidar

    NASA Astrophysics Data System (ADS)

    Mahoney, C.; Hopkinson, C.; Held, A. A.

    2015-12-01

    Information on canopy cover is essential for understanding spatial and temporal variability in vegetation biomass, local meteorological processes and hydrological transfers within vegetated environments. Gap fraction (GF), an index of canopy cover, is often derived over large areas (100's km2) via airborne laser scanning (ALS), estimates of which are reasonably well understood. However, obtaining country-wide estimates is challenging due to the lack of spatially distributed point cloud data. The Geoscience Laser Altimeter System (GLAS) removes spatial limitations, however, its large footprint nature and continuous waveform data measurements make derivations of GF challenging. ALS data from 3 Australian sites are used as a basis to scale-up GF estimates to GLAS footprint data by the use of a physically-based Weibull function. Spaceborne estimates of GF are employed in conjunction with supplementary predictor variables in the predictive Random Forest algorithm to yield country-wide estimates at a 250 m spatial resolution; country-wide estimates are accompanied with uncertainties at the pixel level. Preliminary estimates of effective Leaf Area Index (eLAI) are also presented by converting GF via the Beer-Lambert law, where an extinction coefficient of 0.5 is employed; deemed acceptable at such spatial scales. The need for such wide-scale quantification of GF and eLAI are key in the assessment and modification of current forest management strategies across Australia. Such work also assists Australia's Terrestrial Ecosystem Research Network (TERN), a key asset to policy makers with regards to the management of the national ecosystem, in fulfilling their government issued mandates.

  15. Spatial and seasonal dynamics of brook trout populations inhabiting a central Appalachian watershed

    USGS Publications Warehouse

    Petty, J.T.; Lamothe, P.J.; Mazik, P.M.

    2005-01-01

    We quantified the watershed-scale spatial population dynamics of brook trout Salvelinus fontinalis in the Second Fork, a third-order tributary of Shavers Fork in eastern West Virginia. We used visual surveys, electrofishing, and mark-recapture techniques to quantify brook trout spawning intensity, population density, size structure, and demographic rates (apparent survival and immigration) throughout the watershed. Our analyses produced the following results. Spawning by brook trout was concentrated in streams with small basin areas (i.e., segments draining less than 3 km2), relatively high alkalinity (>10 mg CaCO3/L), and high amounts of instream cover. The spatial distribution of juvenile and small-adult brook trout within the watershed was relatively stable and was significantly correlated with spawning intensity. However, no such relationship was observed for large adults, which exhibited highly variable distribution patterns related to seasonally important habitat features, including instream cover, stream depth and width, and riparian canopy cover. Brook trout survival and immigration rates varied seasonally, spatially, and among size-classes. Differential survival and immigration tended to concentrate juveniles and small adults in small, alkaline streams, whereas dispersal tended to redistribute large adults at the watershed scale. Our results suggest that spatial and temporal variations in spawning, survival, and movement interact to determine the distribution, abundance, and size structure of brook trout populations at a watershed scale. These results underscore the importance of small tributaries for the persistence of brook trout in this watershed and the need to consider watershed-scale processes when designing management plans for Appalachian brook trout populations. ?? Copyright by the American Fisheries Society 2005.

  16. The sense and non-sense of plot-scale, catchment-scale, continental-scale and global-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Heistermann, Maik; Francke, Till

    2017-04-01

    Hydrological models aim at quantifying the hydrological cycle and its constituent processes for particular conditions, sites or periods in time. Such models have been developed for a large range of spatial and temporal scales. One must be aware that the question which is the appropriate scale to be applied depends on the overall question under study. Therefore, it is not advisable to give a general applicable guideline on what is "the best" scale for a model. This statement is even more relevant for coupled hydrological, ecological and atmospheric models. Although a general statement about the most appropriate modelling scale is not recommendable, it is worth to have a look on what are the advantages and the shortcomings of micro-, meso- and macro-scale approaches. Such an appraisal is of increasing importance, since increasingly (very) large / global scale approaches and models are under operation and therefore the question arises how far and for what purposes such methods may yield scientifically sound results. It is important to understand that in most hydrological (and ecological, atmospheric and other) studies process scale, measurement scale, and modelling scale differ from each other. In some cases, the differences between theses scales can be of different orders of magnitude (example: runoff formation, measurement and modelling). These differences are a major source of uncertainty in description and modelling of hydrological, ecological and atmospheric processes. Let us now summarize our viewpoint of the strengths (+) and weaknesses (-) of hydrological models of different scales: Micro scale (e.g. extent of a plot, field or hillslope): (+) enables process research, based on controlled experiments (e.g. infiltration; root water uptake; chemical matter transport); (+) data of state conditions (e.g. soil parameter, vegetation properties) and boundary fluxes (e.g. rainfall or evapotranspiration) are directly measurable and reproducible; (+) equations based on first principals, partly pde-type, are available for several processes (but not for all), because measurement and modelling scale are compatible (-) the spatial model domain are hardly representative for larger spatial entities, including regions for which water resources management decisions are to be taken; straightforward upsizing is also limited by data availability and computational requirements. Meso scale (e.g. extent of a small to large catchment or region): (+) the spatial extent of the model domain has approximately the same extent as the regions for which water resources management decisions are to be taken. I.e., such models enable water resources quantification at the scale of most water management decisions; (+) data of some state conditions (e.g. vegetation cover, topography, river network and cross sections) are available; (+) data of some boundary fluxes (in particular surface runoff / channel flow) are directly measurable with mostly sufficient certainty; (+) equations, partly based on simple water budgeting, partly variants of pde-type equations, are available for most hydrological processes. This enables the construction of meso-scale distributed models reflecting the spatial heterogeneity of regions/landscapes; (-) process scale, measurement scale, and modelling scale differ from each other for a number of processes, e.g., such as runoff generation; (-) the process formulation (usually derived from micro-scale studies) cannot directly be transferred to the modelling domain. Upscaling procedures for this purpose are not readily and generally available. Macro scale (e.g. extent of a continent up to global): (+) the spatial extent of the model may cover the whole Earth. This enables an attractive global display of model results; (+) model results might be technically interchangeable or at least comparable with results from other global models, such as global climate models; (-) process scale, measurement scale, and modelling scale differ heavily from each other for all hydrological and associated processes; (-) the model domain and its results are not representative regions for which water resources management decisions are to be taken. (-) both state condition and boundary flux data are hardly available for the whole model domain. Water management data and discharge data from remote regions are particular incomplete / unavailable for this scale. This undermines the model's verifiability; (-) since process formulation and resulting modelling reliability at this scale is very limited, such models can hardly show any explanatory skills or prognostic power; (-) since both the entire model domain and the spatial sub-units cover large areas, model results represent values averaged over at least the spatial sub-unit's extent. In many cases, the applied time scale implies a long-term averaging in time, too. We emphasize the importance to be aware of the above mentioned strengths and weaknesses of those scale-specific models. (Many of the) results of the current global model studies do not reflect such limitations. In particular, we consider the averaging over large model entities in space and/or time inadequate. Many hydrological processes are of a non-linear nature, including threshold-type behaviour. Such features cannot be reflected by such large scale entities. The model results therefore can be of little or no use for water resources decisions and/or even misleading for public debates or decision making. Some rather newly developed sustainability concepts, e.g. "Planetary Boundaries" in which humanity may "continue to develop and thrive for generations to come" are based on such global-scale approaches and models. However, many of the major problems regarding sustainability on Earth, e.g. water scarcity, do not exhibit on a global but on a regional scale. While on a global scale water might look like being available in sufficient quantity and quality, there are many regions where water problems already have very harmful or even devastating effects. Therefore, it is the challenge to derive models and observation programmes for regional scales. In case a global display is desired future efforts should be directed towards the development of a global picture based on a mosaic of regional sound assessments, rather than "zooming into" the results of large-scale simulations. Still, a key question remains to be discussed, i.e. for which purpose models at this (global) scale can be used.

  17. Population cycles are highly correlated over long time series and large spatial scales in two unrelated species: Greater sage-grouse and cottontail rabbits

    USGS Publications Warehouse

    Fedy, B.C.; Doherty, K.E.

    2011-01-01

    Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.

  18. A k-space method for acoustic propagation using coupled first-order equations in three dimensions.

    PubMed

    Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C

    2009-09-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.

  19. Photosynthesis in high definition

    NASA Astrophysics Data System (ADS)

    Hilton, Timothy W.

    2018-01-01

    Photosynthesis is the foundation for almost all known life, but quantifying it at scales above a single plant is difficult. A new satellite illuminates plants' molecular machinery at much-improved spatial resolution, taking us one step closer to combined `inside-outside' insights into large-scale photosynthesis.

  20. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  1. Conditional sampling technique to test the applicability of the Taylor hypothesis for the large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Hussain, A. K. M. F.

    1980-01-01

    Comparisons of the distributions of large scale structures in turbulent flow with distributions based on time dependent signals from stationary probes and the Taylor hypothesis are presented. The study investigated an area in the near field of a 7.62 cm circular air jet at a Re of 32,000, specifically having coherent structures through small-amplitude controlled excitation and stable vortex pairing in the jet column mode. Hot-wire and X-wire anemometry were employed to establish phase averaged spatial distributions of longitudinal and lateral velocities, coherent Reynolds stress and vorticity, background turbulent intensities, streamlines and pseudo-stream functions. The Taylor hypothesis was used to calculate spatial distributions of the phase-averaged properties, with results indicating that the usage of the local time-average velocity or streamwise velocity produces large distortions.

  2. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the, Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high-density clusters averaging 3m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  3. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    USGS Publications Warehouse

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m.2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected.3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture.4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  4. Soil moisture observations using L-, C-, and X-band microwave radiometers

    NASA Astrophysics Data System (ADS)

    Bolten, John Dennis

    The purpose of this thesis is to further the current understanding of soil moisture remote sensing under varying conditions using L-, C-, and X-band. Aircraft and satellite instruments are used to investigate the effects of frequency and spatial resolution on soil moisture sensitivity. The specific objectives of the research are to examine multi-scale observed and modeled microwave radiobrightness, evaluate new EOS Aqua Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature and soil moisture retrievals, and examine future satellite-based technologies for soil moisture sensing. The cycling of Earth's water, energy and carbon is vital to understanding global climate. Over land, these processes are largely dependent on the amount of moisture within the top few centimeters of the soil. However, there are currently no methods available that can accurately characterize Earth's soil moisture layer at the spatial scales or temporal resolutions appropriate for climate modeling. The current work uses ground truth, satellite and aircraft remote sensing data from three large-scale field experiments having different land surface, topographic and climate conditions. A physically-based radiative transfer model is used to simulate the observed aircraft and satellite measurements using spatially and temporally co-located surface parameters. A robust analysis of surface heterogeneity and scaling is possible due to the combination of multiple datasets from a range of microwave frequencies and field conditions. Accurate characterization of spatial and temporal variability of soil moisture during the three field experiments is achieved through sensor calibration and algorithm validation. Comparisons of satellite observations and resampled aircraft observations are made using soil moisture from a Numerical Weather Prediction (NWP) model in order to further demonstrate a soil moisture correlation where point data was unavailable. The influence of vegetation, spatial scaling, and surface heterogeneity on multi-scale soil moisture prediction is presented. This work demonstrates that derived soil moisture using remote sensing provides a better coverage of soil moisture spatial variability than traditional in-situ sensors. Effects of spatial scale were shown to be less significant than frequency on soil moisture sensitivity. Retrievals of soil moisture using the current methods proved inadequate under some conditions; however, this study demonstrates the need for concurrent spaceborne frequencies including L-, C, and X-band.

  5. A representation of place attachment: A study of spatial cognition in Latvia

    NASA Astrophysics Data System (ADS)

    Skilters, Jurgis; Zarina, Liga; Raita, Liva

    2017-04-01

    Perception of geographical space is reflected in place attachment, i.e., a multidimensional cognitive-affective link between humans and their spatial environment. Place attachment balances emotions, conception of proximity. It is both social and spatial cognitive structure. Place attachment has an impact on people's actions, which in turn reversibly affect the environment in which people live. Place attachment provides emotional regulation for humans linking local - neighborhood-scale and country and world-scale environments. In Latvia a large-scale spatial cognition study has been conducted within participatory research project „Telpas pavasaris" ("Spatial Spring") by foundation Viegli. In the study 1523 respondents reported their associations characterizing certain type of places (e.g., safe place, dangerous place, far place, close place, dear place). The answers were analyzed according to several cognitive-affective categories including modes of experience, emotional valence, geographical distance, and perceptual modality. The current results indicate that socio-cognitive and affective information are primary in respect to purely spatial information (referring to spatial objects or regions and their relations). However, different types of geographical places and spatial objects (natural or artefactual) have to be distinguished and are significant to a different degree. Our results are important for environmental and urban planning because they show the ways how socio-cognitive and affective knowledge shapes the spatial cognition of geographic environment.

  6. Statistical Analysis of Small-Scale Magnetic Flux Emergence Patterns: A Useful Subsurface Diagnostic?

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2016-10-01

    While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.

  7. Coexistence between wildlife and humans at fine spatial scales

    PubMed Central

    Carter, Neil H.; Shrestha, Binoj K.; Karki, Jhamak B.; Pradhan, Narendra Man Babu; Liu, Jianguo

    2012-01-01

    Many wildlife species face imminent extinction because of human impacts, and therefore, a prevailing belief is that some wildlife species, particularly large carnivores and ungulates, cannot coexist with people at fine spatial scales (i.e., cannot regularly use the exact same point locations). This belief provides rationale for various conservation programs, such as resettling human communities outside protected areas. However, quantitative information on the capacity and mechanisms for wildlife to coexist with humans at fine spatial scales is scarce. Such information is vital, because the world is becoming increasingly crowded. Here, we provide empirical information about the capacity and mechanisms for tigers (a globally endangered species) to coexist with humans at fine spatial scales inside and outside Nepal’s Chitwan National Park, a flagship protected area for imperiled wildlife. Information obtained from field cameras in 2010 and 2011 indicated that human presence (i.e., people on foot and vehicles) was ubiquitous and abundant throughout the study site; however, tiger density was also high. Surprisingly, even at a fine spatial scale (i.e., camera locations), tigers spatially overlapped with people on foot and vehicles in both years. However, in both years, tigers offset their temporal activity patterns to be much less active during the day when human activity peaked. In addition to temporal displacement, tiger–human coexistence was likely enhanced by abundant tiger prey and low levels of tiger poaching. Incorporating fine-scale spatial and temporal activity patterns into conservation plans can help address a major global challenge—meeting human needs while sustaining wildlife. PMID:22949642

  8. False Discovery Control in Large-Scale Spatial Multiple Testing

    PubMed Central

    Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin

    2014-01-01

    Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138

  9. Coronal hole evolution by sudden large scale changes

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.

    1978-01-01

    Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.

  10. Using Hybrid Techniques for Generating Watershed-scale Flood Models in an Integrated Modeling Framework

    NASA Astrophysics Data System (ADS)

    Saksena, S.; Merwade, V.; Singhofen, P.

    2017-12-01

    There is an increasing global trend towards developing large scale flood models that account for spatial heterogeneity at watershed scales to drive the future flood risk planning. Integrated surface water-groundwater modeling procedures can elucidate all the hydrologic processes taking part during a flood event to provide accurate flood outputs. Even though the advantages of using integrated modeling are widely acknowledged, the complexity of integrated process representation, computation time and number of input parameters required have deterred its application to flood inundation mapping, especially for large watersheds. This study presents a faster approach for creating watershed scale flood models using a hybrid design that breaks down the watershed into multiple regions of variable spatial resolution by prioritizing higher order streams. The methodology involves creating a hybrid model for the Upper Wabash River Basin in Indiana using Interconnected Channel and Pond Routing (ICPR) and comparing the performance with a fully-integrated 2D hydrodynamic model. The hybrid approach involves simplification procedures such as 1D channel-2D floodplain coupling; hydrologic basin (HUC-12) integration with 2D groundwater for rainfall-runoff routing; and varying spatial resolution of 2D overland flow based on stream order. The results for a 50-year return period storm event show that hybrid model (NSE=0.87) performance is similar to the 2D integrated model (NSE=0.88) but the computational time is reduced to half. The results suggest that significant computational efficiency can be obtained while maintaining model accuracy for large-scale flood models by using hybrid approaches for model creation.

  11. Field-aligned currents' scale analysis performed with the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Park, Jaeheung; Gjerloev, Jesper W.; Rauberg, Jan; Michaelis, Ingo; Merayo, Jose M. G.; Brauer, Peter

    2015-01-01

    We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfvén waves, and large-scale FACs with sizes of more than 150 km. For determining temporal variability we consider measurements at the same point, the orbital crossovers near the poles, but at different times. From correlation analysis we obtain a persistent period of small-scale FACs of order 10 s, while large-scale FACs can be regarded stationary for more than 60 s. For the first time we investigate the longitudinal scales. Large-scale FACs are different on dayside and nightside. On the nightside the longitudinal extension is on average 4 times the latitudinal width, while on the dayside, particularly in the cusp region, latitudinal and longitudinal scales are comparable.

  12. Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment.

    PubMed

    Engen, Steinar; Lee, Aline Magdalena; Sæther, Bernt-Erik

    2018-02-01

    We analyze a spatial age-structured model with density regulation, age specific dispersal, stochasticity in vital rates and proportional harvesting. We include two age classes, juveniles and adults, where juveniles are subject to logistic density dependence. There are environmental stochastic effects with arbitrary spatial scales on all birth and death rates, and individuals of both age classes are subject to density independent dispersal with given rates and specified distributions of dispersal distances. We show how to simulate the joint density fields of the age classes and derive results for the spatial scales of all spatial autocovariance functions for densities. A general result is that the squared scale has an additive term equal to the squared scale of the environmental noise, corresponding to the Moran effect, as well as additive terms proportional to the dispersal rate and variance of dispersal distance for the age classes and approximately inversely proportional to the strength of density regulation. We show that the optimal harvesting strategy in the deterministic case is to harvest only juveniles when their relative value (e.g. financial) is large, and otherwise only adults. With increasing environmental stochasticity there is an interval of increasing length of values of juveniles relative to adults where both age classes should be harvested. Harvesting generally tends to increase all spatial scales of the autocovariances of densities. Copyright © 2017. Published by Elsevier Inc.

  13. A spectral method for spatial downscaling | Science Inventory ...

    EPA Pesticide Factsheets

    Complex computer models play a crucial role in air quality research. These models are used to evaluate potential regulatory impacts of emission control strategies and to estimate air quality in areas without monitoring data. For both of these purposes, it is important to calibrate model output with monitoring data to adjust for model biases and improve spatial prediction. In this paper, we propose a new spectral method to study and exploit complex relationships between model output and monitoring data. Spectral methods allow us to estimate the relationship between model output and monitoring data separately at different spatial scales, and to use model output for prediction only at the appropriate scales. The proposed method is computationally efficient and can be implemented using standard software. We apply the method to compare Community Multiscale Air Quality (CMAQ) model output with ozone measurements in the United States in July, 2005. We find that CMAQ captures large-scale spatial trends, but has low correlation with the monitoring data at small spatial scales. The National Exposure Research Laboratory′s (NERL′s)Atmospheric Modeling Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing ch

  14. Spatial embedding of structural similarity in the cerebral cortex

    PubMed Central

    Song, H. Francis; Kennedy, Henry; Wang, Xiao-Jing

    2014-01-01

    Recent anatomical tracing studies have yielded substantial amounts of data on the areal connectivity underlying distributed processing in cortex, yet the fundamental principles that govern the large-scale organization of cortex remain unknown. Here we show that functional similarity between areas as defined by the pattern of shared inputs or outputs is a key to understanding the areal network of cortex. In particular, we report a systematic relation in the monkey, human, and mouse cortex between the occurrence of connections from one area to another and their similarity distance. This characteristic relation is rooted in the wiring distance dependence of connections in the brain. We introduce a weighted, spatially embedded random network model that robustly gives rise to this structure, as well as many other spatial and topological properties observed in cortex. These include features that were not accounted for in any previous model, such as the wide range of interareal connection weights. Connections in the model emerge from an underlying distribution of spatially embedded axons, thereby integrating the two scales of cortical connectivity—individual axons and interareal pathways—into a common geometric framework. These results provide insights into the origin of large-scale connectivity in cortex and have important implications for theories of cortical organization. PMID:25368200

  15. Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas

    NASA Astrophysics Data System (ADS)

    Ramsdale, Jason D.; Balme, Matthew R.; Conway, Susan J.; Gallagher, Colman; van Gasselt, Stephan A.; Hauber, Ernst; Orgel, Csilla; Séjourné, Antoine; Skinner, James A.; Costard, Francois; Johnsson, Andreas; Losiak, Anna; Reiss, Dennis; Swirad, Zuzanna M.; Kereszturi, Akos; Smith, Isaac B.; Platz, Thomas

    2017-06-01

    The increased volume, spatial resolution, and areal coverage of high-resolution images of Mars over the past 15 years have led to an increased quantity and variety of small-scale landform identifications. Though many such landforms are too small to represent individually on regional-scale maps, determining their presence or absence across large areas helps form the observational basis for developing hypotheses on the geological nature and environmental history of a study area. The combination of improved spatial resolution and near-continuous coverage significantly increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre and decametre-scale landforms. Here, we describe an approach for mapping small features (from decimetre to kilometre scale) across large areas, formulated for a project to study the northern plains of Mars, and provide context on how this method was developed and how it can be implemented. Rather than ;mapping; with points and polygons, grid-based mapping uses a ;tick box; approach to efficiently record the locations of specific landforms (we use an example suite of glacial landforms; including viscous flow features, the latitude dependant mantle and polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping area. Then the basemap data are systematically examined, grid-square by grid-square at full resolution, in order to identify the landforms while recording the presence or absence of selected landforms in each grid-square to determine spatial distributions. The result is a series of grids recording the distribution of all the mapped landforms across the study area. In some ways, these are equivalent to raster images, as they show a continuous distribution-field of the various landforms across a defined (rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital landform map. We find that grid-based mapping provides an efficient solution to the problems of mapping small landforms over large areas, by providing a consistent and standardised approach to spatial data collection. The simplicity of the grid-based mapping approach makes it extremely scalable and workable for group efforts, requiring minimal user experience and producing consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing large grid-based mapping areas could be applied.

  16. A theory of forest dynamics: Spatially explicit models and issues of scale

    NASA Technical Reports Server (NTRS)

    Pacala, S.

    1990-01-01

    Good progress has been made in the first year of DOE grant (number sign) FG02-90ER60933. The purpose of the project is to develop and investigate models of forest dynamics that apply across a range of spatial scales. The grant is one third of a three-part project. The second third was funded by the NSF this year and is intended to provide the empirical data necessary to calibrate and test small-scale (less than or equal to 1000 ha) models. The final third was also funded this year (NASA), and will provide data to calibrate and test the large-scale features of the models.

  17. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  18. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin

    2017-10-01

    Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.

  19. Species composition and morphologic variation of Porites in the Gulf of California

    NASA Astrophysics Data System (ADS)

    López-Pérez, R. A.

    2013-09-01

    Morphometric analysis of corallite calices confirmed that from the late Miocene to the Recent, four species of Porites have inhabited the Gulf of California: the extinct Porites carrizensis, the locally extirpated Porites lobata and the extant Porites sverdrupi and Porites panamensis. Furthermore, large-scale spatial and temporal phenotypic plasticity was observed in the dominant species P. panamensis. Canonical discriminant analysis and ANOVA demonstrated that the calice structures of P. panamensis experienced size reduction between the late Pleistocene and Recent. Similarly, PERMANOVA, regression and correlation analyses demonstrated that across the 800 km north to south in the gulf, P. panamensis populations displayed a similar reduction in calice structures. Based on correlation analysis with environmental data, these large spatial changes are likely related to changes in nutrient concentration and sea surface temperature. As such, the large-scale spatial and temporal phenotypic variation recorded in populations of P. panamensis in the Gulf of California is likely related to optimization of corallite performance (energy acquisition) within various environmental scenarios. These findings may have relevance to modern conservation efforts within this ecological dominant genus.

  20. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  1. Effects of land use pattern on soil water in revegetation watersheds in semi-arid Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Liding; Wei, Wei

    2017-04-01

    Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.

  2. Development of a spatially universal framework for classifying stream assemblages with application to conservation planning for Great Lakes lotic fish communities

    USGS Publications Warehouse

    McKenna, James E.; Schaeffer, Jeffrey S.; Stewart, Jana S.; Slattery, Michael T.

    2015-01-01

    Classifications are typically specific to particular issues or areas, leading to patchworks of subjectively defined spatial units. Stream conservation is hindered by the lack of a universal habitat classification system and would benefit from an independent hydrology-guided spatial framework of units encompassing all aquatic habitats at multiple spatial scales within large regions. We present a system that explicitly separates the spatial framework from any particular classification developed from the framework. The framework was constructed from landscape variables that are hydrologically and biologically relevant, covered all space within the study area, and was nested hierarchically and spatially related at scales ranging from the stream reach to the entire region; classifications may be developed from any subset of the 9 basins, 107 watersheds, 459 subwatersheds, or 10,000s of valley segments or stream reaches. To illustrate the advantages of this approach, we developed a fish-guided classification generated from a framework for the Great Lakes region that produced a mosaic of habitat units which, when aggregated, formed larger patches of more general conditions at progressively broader spatial scales. We identified greater than 1,200 distinct fish habitat types at the valley segment scale, most of which were rare. Comparisons of biodiversity and species assemblages are easily examined at any scale. This system can identify and quantify habitat types, evaluate habitat quality for conservation and/or restoration, and assist managers and policymakers with prioritization of protection and restoration efforts. Similar spatial frameworks and habitat classifications can be developed for any organism in any riverine ecosystem.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, M.J.; Bourke, W.; Browning, G.L.

    The convergence of spectral model numerical solutions of the global shallow-water equations is examined as a function of the time step and the spectral truncation. The contributions to the errors due to the spatial and temporal discretizations are separately identified and compared. Numerical convergence experiments are performed with the inviscid equations from smooth (Rossby-Haurwitz wave) and observed (R45 atmospheric analysis) initial conditions, and also with the diffusive shallow-water equations. Results are compared with the forced inviscid shallow-water equations case studied by Browning et al. Reduction of the time discretization error by the removal of fast waves from the solution usingmore » initialization is shown. The effects of forcing and diffusion on the convergence are discussed. Time truncation errors are found to dominate when a feature is large scale and well resolved; spatial truncation errors dominate for small-scale features and also for large scale after the small scales have affected them. Possible implications of these results for global atmospheric modeling are discussed. 31 refs., 14 figs., 4 tabs.« less

  4. Race and Space in the 1990s: Changes in the Geographic Scale of Racial Residential Segregation, 1990-2000

    PubMed Central

    Reardon, Sean F.; Farrell, Chad R.; Matthews, Stephen A.; O'Sullivan, David; Bischoff, Kendra; Firebaugh, Glenn

    2014-01-01

    We use newly developed methods of measuring spatial segregation across a range of spatial scales to assess changes in racial residential segregation patterns in the 100 largest U.S. metropolitan areas from 1990 to 2000. Our results point to three notable trends in segregation from 1990 to 2000: 1) Hispanic-white and Asian-white segregation levels increased at both micro- and macro-scales; 2) black-white segregation declined at a micro-scale, but was unchanged at a macro-scale; and 3) for all three racial groups and for almost all metropolitan areas, macro-scale segregation accounted for more of the total metropolitan area segregation in 2000 than in 1990. Our examination of the variation in these trends among the metropolitan areas suggests that Hispanic-white and Asian-white segregation changes have been driven largely by increases in macro-scale segregation resulting from the rapid growth of the Hispanic and Asian populations in central cities. The changes in black-white segregation, in contrast, appear to be driven by the continuation of a 30-year trend in declining micro-segregation, coupled with persistent and largely stable patterns of macro-segregation. PMID:19569292

  5. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    NASA Astrophysics Data System (ADS)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2011-08-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting at very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TRG only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3" (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  6. Large-scale runoff generation - parsimonious parameterisation using high-resolution topography

    NASA Astrophysics Data System (ADS)

    Gong, L.; Halldin, S.; Xu, C.-Y.

    2010-09-01

    World water resources have primarily been analysed by global-scale hydrological models in the last decades. Runoff generation in many of these models are based on process formulations developed at catchments scales. The division between slow runoff (baseflow) and fast runoff is primarily governed by slope and spatial distribution of effective water storage capacity, both acting a very small scales. Many hydrological models, e.g. VIC, account for the spatial storage variability in terms of statistical distributions; such models are generally proven to perform well. The statistical approaches, however, use the same runoff-generation parameters everywhere in a basin. The TOPMODEL concept, on the other hand, links the effective maximum storage capacity with real-world topography. Recent availability of global high-quality, high-resolution topographic data makes TOPMODEL attractive as a basis for a physically-based runoff-generation algorithm at large scales, even if its assumptions are not valid in flat terrain or for deep groundwater systems. We present a new runoff-generation algorithm for large-scale hydrology based on TOPMODEL concepts intended to overcome these problems. The TRG (topography-derived runoff generation) algorithm relaxes the TOPMODEL equilibrium assumption so baseflow generation is not tied to topography. TGR only uses the topographic index to distribute average storage to each topographic index class. The maximum storage capacity is proportional to the range of topographic index and is scaled by one parameter. The distribution of storage capacity within large-scale grid cells is obtained numerically through topographic analysis. The new topography-derived distribution function is then inserted into a runoff-generation framework similar VIC's. Different basin parts are parameterised by different storage capacities, and different shapes of the storage-distribution curves depend on their topographic characteristics. The TRG algorithm is driven by the HydroSHEDS dataset with a resolution of 3'' (around 90 m at the equator). The TRG algorithm was validated against the VIC algorithm in a common model framework in 3 river basins in different climates. The TRG algorithm performed equally well or marginally better than the VIC algorithm with one less parameter to be calibrated. The TRG algorithm also lacked equifinality problems and offered a realistic spatial pattern for runoff generation and evaporation.

  7. An Investigation on the Spatial Variability of Manning Roughness Coefficients in Continental-scale River Routing Simulations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Hong, Y.; Lei, X.; Leung, L. R.; Li, H. Y.; Getirana, A.

    2017-12-01

    As one essential component of the Earth system modeling, the continental-scale river routing computation plays an important role in applications of Earth system models, such as evaluating the impacts of the global change on water resources and flood hazards. The streamflow timing, which depends on the modeled flow velocities, can be an important aspect of the model results. River flow velocities have been estimated by using the Manning's equation where the Manning roughness coefficient is a key and sensitive parameter. In some early continental-scale studies, the Manning coefficient was determined with simplified methods, such as using a constant value for the entire basin. However, large spatial variability is expected in the Manning coefficients for the numerous channels composing the river network in distributed continental-scale hydrologic modeling. In the application of a continental-scale river routing model in the Amazon Basin, we use spatially varying Manning coefficients dependent on channel sizes and attempt to represent the dominant spatial variability of Manning coefficients. Based on the comparisons of simulation results with in situ streamflow records and remotely sensed river stages, we investigate the comparatively optimal Manning coefficients and explicitly demonstrate the advantages of using spatially varying Manning coefficients. The understanding obtained in this study could be helpful in the modeling of surface hydrology at regional to continental scales.

  8. Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6

    NASA Astrophysics Data System (ADS)

    Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.

    2017-01-01

    This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.

  9. The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities.

    PubMed

    Pedruski, Michael T; Arnott, Shelley E

    2011-05-01

    Habitat connectivity and regional heterogeneity represent two factors likely to affect biodiversity across different spatial scales. We performed a 3 × 2 factorial design experiment to investigate the effects of connectivity, heterogeneity, and their interaction on artificial pond communities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) scales. Despite expectations that the effects of connectivity would depend on levels of regional heterogeneity, no significant interactions were found for any diversity index investigated at any spatial scale. While observed responses of biodiversity to connectivity and heterogeneity depended to some extent on the diversity index and spatial partitioning formula used, the general pattern shows that these factors largely act at the β scale, as opposed to the α or γ scales. We conclude that the major role of connectivity in aquatic invertebrate communities is to act as a homogenizing force with relatively little effect on diversity at the α or γ levels. Conversely, heterogeneity acts as a force maintaining differences between communities.

  10. Community turnover of wood-inhabiting fungi across hierarchical spatial scales.

    PubMed

    Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel

    2014-01-01

    For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence.

  11. Community Turnover of Wood-Inhabiting Fungi across Hierarchical Spatial Scales

    PubMed Central

    Abrego, Nerea; García-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel

    2014-01-01

    For efficient use of conservation resources it is important to determine how species diversity changes across spatial scales. In many poorly known species groups little is known about at which spatial scales the conservation efforts should be focused. Here we examined how the community turnover of wood-inhabiting fungi is realised at three hierarchical levels, and how much of community variation is explained by variation in resource composition and spatial proximity. The hierarchical study design consisted of management type (fixed factor), forest site (random factor, nested within management type) and study plots (randomly placed plots within each study site). To examine how species richness varied across the three hierarchical scales, randomized species accumulation curves and additive partitioning of species richness were applied. To analyse variation in wood-inhabiting species and dead wood composition at each scale, linear and Permanova modelling approaches were used. Wood-inhabiting fungal communities were dominated by rare and infrequent species. The similarity of fungal communities was higher within sites and within management categories than among sites or between the two management categories, and it decreased with increasing distance among the sampling plots and with decreasing similarity of dead wood resources. However, only a small part of community variation could be explained by these factors. The species present in managed forests were in a large extent a subset of those species present in natural forests. Our results suggest that in particular the protection of rare species requires a large total area. As managed forests have only little additional value complementing the diversity of natural forests, the conservation of natural forests is the key to ecologically effective conservation. As the dissimilarity of fungal communities increases with distance, the conserved natural forest sites should be broadly distributed in space, yet the individual conserved areas should be large enough to ensure local persistence. PMID:25058128

  12. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.

    PubMed

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.

  13. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size

    PubMed Central

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745

  14. NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER. 2. SPATIAL MOMENTS AND THE ADVECTION AND DISPERSION OF NONREACTIVE TRACERS

    EPA Science Inventory

    The three-dimensional movement of a tracer plume containing bromide and chloride is investigated using the data base from a large-scale natural gradient field experiment on groundwater solute transport. The analysis focuses on the zeroth-, first-, and second-order spatial moments...

  15. Evaluation of Ku-Band Sensitivity To Soil Moisture: Soil Moisture Change Detection Over the NAFE06 Study Area

    USDA-ARS?s Scientific Manuscript database

    A very promising technique for spatial disaggregation of soil moisture is on the combination of radiometer and radar observations. Despite their demonstrated potential for long term large scale monitoring of soil moisture, passive and active have their disadvantages in terms of temporal and spatial ...

  16. Decentralized state estimation for a large-scale spatially interconnected system.

    PubMed

    Liu, Huabo; Yu, Haisheng

    2018-03-01

    A decentralized state estimator is derived for the spatially interconnected systems composed of many subsystems with arbitrary connection relations. An optimization problem on the basis of linear matrix inequality (LMI) is constructed for the computations of improved subsystem parameter matrices. Several computationally effective approaches are derived which efficiently utilize the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, this decentralized state estimator is proved to converge to a stable system and obtain a bounded covariance matrix of estimation errors under certain conditions. Numerical simulations show that the obtained decentralized state estimator is attractive in the synthesis of a large-scale networked system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient

    NASA Astrophysics Data System (ADS)

    Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.

    2008-02-01

    Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.

  18. SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales.

    PubMed

    Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W

    2017-01-01

    The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca 2+ -imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca 2+ imaging datasets, particularly when these have been acquired at different spatial scales.

  19. SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales

    PubMed Central

    Rueckl, Martin; Lenzi, Stephen C.; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W.

    2017-01-01

    The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales. PMID:28706482

  20. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  1. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  2. Disease spread across multiple scales in a spatial hierarchy: effect of host spatial structure and of inoculum quantity and distribution.

    PubMed

    Gosme, Marie; Lucas, Philippe

    2009-07-01

    Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.

  3. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  4. Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach

    NASA Astrophysics Data System (ADS)

    Law, Jane; Quick, Matthew

    2013-01-01

    This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective.

  5. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.

    PubMed

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E

    2016-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.

  6. Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets

    PubMed Central

    Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.

    2018-01-01

    Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777

  7. Hierarchical drivers of reef-fish metacommunity structure.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P

    2009-01-01

    Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.

  8. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    PubMed

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  9. On the large scale structure of X-ray background sources

    NASA Technical Reports Server (NTRS)

    Bi, H. G.; Meszaros, A.; Meszaros, P.

    1991-01-01

    The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.

  10. Spatial Structure of Large-Scale Plasma Density Perturbations HF-Induced in the Ionospheric F 2 Region

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Komrakov, G. P.; Glukhov, Ya. V.; Andreeva, E. S.; Kunitsyn, V. E.; Kurbatov, G. A.

    2016-07-01

    We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.

  11. The large-scale distribution of galaxies

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.

    1989-01-01

    The spatial distribution of galaxies in the universe is characterized on the basis of the six completed strips of the Harvard-Smithsonian Center for Astrophysics redshift-survey extension. The design of the survey is briefly reviewed, and the results are presented graphically. Vast low-density voids similar to the void in Bootes are found, almost completely surrounded by thin sheets of galaxies. Also discussed are the implications of the results for the survey sampling problem, the two-point correlation function of the galaxy distribution, the possibility of detecting large-scale coherent flows, theoretical models of large-scale structure, and the identification of groups and clusters of galaxies.

  12. Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann

    2018-07-01

    Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.

  13. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  14. Multilevel landscape utilization of the Siberian flying squirrel: Scale effects on species habitat use.

    PubMed

    Remm, Jaanus; Hanski, Ilpo K; Tuominen, Sakari; Selonen, Vesa

    2017-10-01

    Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal-scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans , in South- and Mid-Finland. We used presence-absence data ( n  = 10,032 plots of 9 ha) and novel approach to separate the effects on site-, landscape-, and regional-level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape-level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large-scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.

  15. Helicity patterns on the Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, A.

    Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.

  16. The contribution of spatial ability to mathematics achievement in middle childhood.

    PubMed

    Gilligan, Katie A; Flouri, Eirini; Farran, Emily K

    2017-11-01

    Strong spatial skills are associated with success in science, technology, engineering, and mathematics (STEM) domains. Although there is convincing evidence that spatial skills are a reliable predictor of mathematical achievement in preschool children and in university students, there is a lack of research exploring associations between spatial and mathematics achievement during the primary school years. To address this question, this study explored associations between mathematics and spatial skills in children aged 5 and 7years. The study sample included 12,099 children who participated in both Wave 3 (mean age=5; 02 [years; months]) and Wave 4 (mean age=7; 03) of the Millennium Cohort Study. Measures included a standardised assessment of mathematics and the Pattern Construction subscale of the British Ability Scales II to assess intrinsic-dynamic spatial skills. Spatial skills at 5 and 7years of age explained a significant 8.8% of the variation in mathematics achievement at 7years, above that explained by other predictors of mathematics, including gender, socioeconomic status, ethnicity, and language skills. This percentage increased to 22.6% without adjustment for language skills. This study expands previous findings by using a large-scale longitudinal sample of primary school children, a population that has been largely omitted from previous research exploring associations between spatial ability and mathematics achievement. The finding that early and concurrent spatial skills contribute to mathematics achievement at 7years of age highlights the potential of spatial skills as a novel target in the design of mathematics interventions for children in this age range. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Large Spatial Scale Variability in Bathyal Macrobenthos Abundance, Biomass, α- and β-Diversity along the Mediterranean Continental Margin

    PubMed Central

    Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena

    2014-01-01

    The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project (“Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna”), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas. PMID:25225909

  18. Large spatial scale variability in bathyal macrobenthos abundance, biomass, α- and β-diversity along the Mediterranean continental margin.

    PubMed

    Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena

    2014-01-01

    The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project ("Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna"), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas.

  19. Polymorphic mountain whitefish (Prosopium williamsoni) in a coastal riverscape: size class assemblages, distribution, and habitat associations

    USGS Publications Warehouse

    Starr, James C.; Torgersen, Christian E.

    2015-01-01

    We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.

  20. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    NASA Astrophysics Data System (ADS)

    Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio

    2016-12-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.

  1. A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas

    USGS Publications Warehouse

    White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.

    1992-01-01

    More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.

  2. Architectural Implications for Spatial Object Association Algorithms*

    PubMed Central

    Kumar, Vijay S.; Kurc, Tahsin; Saltz, Joel; Abdulla, Ghaleb; Kohn, Scott R.; Matarazzo, Celeste

    2013-01-01

    Spatial object association, also referred to as crossmatch of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server®, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation provides insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST). PMID:25692244

  3. Detecting changes in the spatial distribution of nitrate contamination in ground water

    USGS Publications Warehouse

    Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.

    1997-01-01

    Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.

  4. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant

    PubMed Central

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630

  5. Effects of Spatial Patch Arrangement and Scale of Covarying Resources on Growth and Intraspecific Competition of a Clonal Plant.

    PubMed

    Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai

    2016-01-01

    Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.

  6. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    NASA Astrophysics Data System (ADS)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  7. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  8. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  9. Scale dependence of the diversity–stability relationship in a temperate grassland

    PubMed Central

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-01-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139

  10. Cross-scale interactions affect tree growth and intrinsic water use efficiency and highlight the importance of spatial context in managing forests under global change

    EPA Science Inventory

    1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the...

  11. Improvement of distributed snowmelt energy balance modeling with MODIS-based NDSI-derived fractional snow-covered area data

    Treesearch

    Joel W. Homan; Charles H. Luce; James P. McNamara; Nancy F. Glenn

    2011-01-01

    Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain-front scale is important for improvements in large-scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snowcovered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale-up snowmelt models....

  12. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    PubMed

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  13. Future of applied watershed science at regional scales

    Treesearch

    Lee Benda; Daniel Miller; Steve Lanigan; Gordon Reeves

    2009-01-01

    Resource managers must deal increasingly with land use and conservation plans applied at large spatial scales (watersheds, landscapes, states, regions) involving multiple interacting federal agencies and stakeholders. Access to a geographically focused and application-oriented database would allow users in different locations and with different concerns to quickly...

  14. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  15. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    NASA Technical Reports Server (NTRS)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.

  16. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  17. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  18. Beta diversity at different spatial scales: plant communities in organic and conventional agriculture.

    PubMed

    Gabriel, Doreen; Roschewitz, Indra; Tscharntke, Teja; Thies, Carsten

    2006-10-01

    Biodiversity studies that guide agricultural subsidy policy have generally compared farming systems at a single spatial scale: the field. However, diversity patterns vary across spatial scales. Here, we examined the effects of farming system (organic vs. conventional) and position in the field (edge vs. center) on plant species richness in wheat fields at three spatial scales. We quantified alpha-, beta-, and gamma-diversity at the microscale in 800 plots, at the mesoscale in 40 fields, and at the macroscale in three regions using the additive partitioning approach, and evaluated the relative contribution of beta-diversity at each spatial scale to total observed species richness. We found that alpha-, beta-, and gamma-diversity were higher in organic than conventional fields and higher at the field edge than in the field center at all spatial scales. In both farming systems, beta-diversity at the meso- and macroscale explained most of the overall species richness (up to 37% and 25%, respectively), indicating considerable differences in community composition among fields and regions due to environmental heterogeneity. The spatial scale at which beta-diversity contributed the most to overall species richness differed between rare and common species. Total richness of rare species (present in < or = 5% of total samples) was mainly explained by differences in community composition at the meso- and macroscale (up to 27% and 48%, respectively), but only in organic fields. Total richness of common species (present in > or = 25% of total samples) was explained by differences in community composition at the micro- and mesoscale (up to 29% and 47%, respectively), i.e., among plots and fields, independent of farming system. Our results show that organic farming made the greatest contribution to total species richness at the meso (among fields) and macro (among regions) scale due to environmental heterogeneity. Hence, agri-environment schemes should exploit this large-scale contribution of beta-diversity by tailoring schemes at regional scales to maximize dissimilarity between conservation areas using geographic information systems rather than focusing entirely at the classical local-field scale, which is the current practice.

  19. Sleep Enhances a Spatially Mediated Generalization of Learned Values

    ERIC Educational Resources Information Center

    Javadi, Amir-Homayoun; Tolat, Anisha; Spiers, Hugo J.

    2015-01-01

    Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered…

  20. Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model

    NASA Astrophysics Data System (ADS)

    Kathuria, D.; Mohanty, B.; Katzfuss, M.

    2017-12-01

    Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.

  1. A space-time multiscale modelling of Earth's gravity field variations

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2017-04-01

    The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.

  2. A Mixed-dimensional Model for Determining the Impact of Permafrost Polygonal Ground Degradation on Arctic Hydrology.

    NASA Astrophysics Data System (ADS)

    Coon, E.; Jan, A.; Painter, S. L.; Moulton, J. D.; Wilson, C. J.

    2017-12-01

    Many permafrost-affected regions in the Arctic manifest a polygonal patterned ground, which contains large carbon stores and is vulnerability to climate change as warming temperatures drive melting ice wedges, polygon degradation, and thawing of the underlying carbon-rich soils. Understanding the fate of this carbon is difficult. The system is controlled by complex, nonlinear physics coupling biogeochemistry, thermal-hydrology, and geomorphology, and there is a strong spatial scale separation between microtopograpy (at the scale of an individual polygon) and the scale of landscape change (at the scale of many thousands of polygons). Physics-based models have come a long way, and are now capable of representing the diverse set of processes, but only on individual polygons or a few polygons. Empirical models have been used to upscale across land types, including ecotypes evolving from low-centered (pristine) polygons to high-centered (degraded) polygon, and do so over large spatial extent, but are limited in their ability to discern causal process mechanisms. Here we present a novel strategy that looks to use physics-based models across scales, bringing together multiple capabilities to capture polygon degradation under a warming climate and its impacts on thermal-hydrology. We use fine-scale simulations on individual polygons to motivate a mixed-dimensional strategy that couples one-dimensional columns representing each individual polygon through two-dimensional surface flow. A subgrid model is used to incorporate the effects of surface microtopography on surface flow; this model is described and calibrated to fine-scale simulations. And critically, a subsidence model that tracks volume loss in bulk ice wedges is used to alter the subsurface structure and subgrid parameters, enabling the inclusion of the feedbacks associated with polygon degradation. This combined strategy results in a model that is able to capture the key features of polygon permafrost degradation, but in a simulation across a large spatial extent of polygonal tundra.

  3. Vulnerability of ecosystems to climate change moderated by habitat intactness.

    PubMed

    Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse

    2015-01-01

    The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.

  4. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  5. High Performance Geostatistical Modeling of Biospheric Resources

    NASA Astrophysics Data System (ADS)

    Pedelty, J. A.; Morisette, J. T.; Smith, J. A.; Schnase, J. L.; Crosier, C. S.; Stohlgren, T. J.

    2004-12-01

    We are using parallel geostatistical codes to study spatial relationships among biospheric resources in several study areas. For example, spatial statistical models based on large- and small-scale variability have been used to predict species richness of both native and exotic plants (hot spots of diversity) and patterns of exotic plant invasion. However, broader use of geostastics in natural resource modeling, especially at regional and national scales, has been limited due to the large computing requirements of these applications. To address this problem, we implemented parallel versions of the kriging spatial interpolation algorithm. The first uses the Message Passing Interface (MPI) in a master/slave paradigm on an open source Linux Beowulf cluster, while the second is implemented with the new proprietary Xgrid distributed processing system on an Xserve G5 cluster from Apple Computer, Inc. These techniques are proving effective and provide the basis for a national decision support capability for invasive species management that is being jointly developed by NASA and the US Geological Survey.

  6. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    NASA Astrophysics Data System (ADS)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  7. Homogeneity of the coefficient of linear thermal expansion of ZERODUR: a review of a decade of evaluations

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Westerhoff, Thomas

    2017-09-01

    The coefficient of thermal expansion (CTE) and its spatial homogeneity from small to large formats is the most important property of ZERODUR. Since more than a decade SCHOTT has documented the excellent CTE homogeneity. It started with reviews of past astronomical telescope projects like the VLT, Keck and GTC mirror blanks and continued with dedicated evaluations of the production. In recent years, extensive CTE measurements on samples cut from randomly selected single ZERODUR parts in meter size and formats of arbitrary shape, large production boules and even 4 m sized blanks have demonstrated the excellent CTE homogeneity in production. The published homogeneity data shows single ppb/K peak to valley CTE variations on medium spatial scale of several cm down to small spatial scale of only a few mm mostly at the limit of the measurement reproducibility. This review paper summarizes the results also in respect to the increased CTE measurement accuracy over the last decade of ZERODUR production.

  8. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan.

    PubMed

    Badgley, Brian D; Ferguson, John; Vanden Heuvel, Amy; Kleinheinz, Gregory T; McDermott, Colleen M; Sandrin, Todd R; Kinzelman, Julie; Junion, Emily A; Byappanahalli, Muruleedhara N; Whitman, Richard L; Sadowsky, Michael J

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Multi-scale temporal and spatial variation in genotypic composition of Cladophora-borne Escherichia coli populations in Lake Michigan

    USGS Publications Warehouse

    Badgley, B.D.; Ferguson, J.; Heuvel, A.V.; Kleinheinz, G.T.; McDermott, C.M.; Sandrin, T.R.; Kinzelman, J.; Junion, E.A.; Byappanahalli, M.N.; Whitman, R.L.; Sadowsky, M.J.

    2011-01-01

    High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.

  10. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale.

    PubMed

    Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan

    2018-03-29

    Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.

  11. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    USGS Publications Warehouse

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Vrendenburg, Vance T.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  12. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors.

    PubMed

    Knapp, Roland A; Fellers, Gary M; Kleeman, Patrick M; Miller, David A W; Vredenburg, Vance T; Rosenblum, Erica Bree; Briggs, Cheryl J

    2016-10-18

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth's amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species' adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  13. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    PubMed Central

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale. PMID:27698128

  14. geoknife: Reproducible web-processing of large gridded datasets

    USGS Publications Warehouse

    Read, Jordan S.; Walker, Jordan I.; Appling, Alison P.; Blodgett, David L.; Read, Emily K.; Winslow, Luke A.

    2016-01-01

    Geoprocessing of large gridded data according to overlap with irregular landscape features is common to many large-scale ecological analyses. The geoknife R package was created to facilitate reproducible analyses of gridded datasets found on the U.S. Geological Survey Geo Data Portal web application or elsewhere, using a web-enabled workflow that eliminates the need to download and store large datasets that are reliably hosted on the Internet. The package provides access to several data subset and summarization algorithms that are available on remote web processing servers. Outputs from geoknife include spatial and temporal data subsets, spatially-averaged time series values filtered by user-specified areas of interest, and categorical coverage fractions for various land-use types.

  15. Estimating of Soil Texture Using Landsat Imagery: a Case Study in Thatta Tehsil, Sindh

    NASA Astrophysics Data System (ADS)

    Khalil, Zahid

    2016-07-01

    Soil texture is considered as an important environment factor for agricultural growth. It is the most essential part for soil classification in large scale. Today the precise soil information in large scale is of great demand from various stakeholders including soil scientists, environmental managers, land use planners and traditional agricultural users. With the increasing demand of soil properties in fine scale spatial resolution made the traditional laboratory methods inadequate. In addition the costs of soil analysis with precision agriculture systems are more expensive than traditional methods. In this regard, the application of geo-spatial techniques can be used as an alternative for examining soil analysis. This study aims to examine the ability of Geo-spatial techniques in identifying the spatial patterns of soil attributes in fine scale. Around 28 samples of soil were collected from the different areas of Thatta Tehsil, Sindh, Pakistan for analyzing soil texture. An Ordinary Least Square (OLS) regression analysis was used to relate the reflectance values of Landsat8 OLI imagery with the soil variables. The analysis showed there was a significant relationship (p<0.05) of band 2 and 5 with silt% (R2 = 0.52), and band 4 and 6 with clay% (R2 =0.40). The equation derived from OLS analysis was then used for the whole study area for deriving soil attributes. The USDA textural classification triangle was implementing for the derivation of soil texture map in GIS environment. The outcome revealed that the 'sandy loam' was in great quantity followed by loam, sandy clay loam and clay loam. The outcome shows that the Geo-spatial techniques could be used efficiently for mapping soil texture of a larger area in fine scale. This technology helped in decreasing cost, time and increase detailed information by reducing field work to a considerable level.

  16. Tensor perturbations during inflation in a spatially closed Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited tomore » the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.« less

  17. Unleashing spatially distributed ecohydrology modeling using Big Data tools

    NASA Astrophysics Data System (ADS)

    Miles, B.; Idaszak, R.

    2015-12-01

    Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.

  18. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    NASA Astrophysics Data System (ADS)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  19. Persistence of canine distemper virus in the Greater Yellowstone ecosystem's carnivore community.

    PubMed

    Almberg, Emily S; Cross, Paul C; Smith, Douglas W

    2010-10-01

    Canine distemper virus (CDV) is an acute, highly immunizing pathogen that should require high densities and large populations of hosts for long-term persistence, yet CDV persists among terrestrial carnivores with small, patchily distributed groups. We used CDV in the Greater Yellowstone ecosystem's (GYE) wolves (Canis lupus) and coyotes (Canis latrans) as a case study for exploring how metapopulation structure, host demographics, and multi-host transmission affect the critical community size and spatial scale required for CDV persistence. We illustrate how host spatial connectivity and demographic turnover interact to affect both local epidemic dynamics, such as the length and variation in inter-epidemic periods, and pathogen persistence using stochastic, spatially explicit susceptible-exposed-infectious-recovered simulation models. Given the apparent absence of other known persistence mechanisms (e.g., a carrier or environmental state, densely populated host, chronic infection, or a vector), we suggest that CDV requires either large spatial scales or multi-host transmission for persistence. Current GYE wolf populations are probably too small to support endemic CDV. Coyotes are a plausible reservoir host, but CDV would still require 50000-100000 individuals for moderate persistence (> 50% over 10 years), which would equate to an area of 1-3 times the size of the GYE (60000-200000 km2). Coyotes, and carnivores in general, are not uniformly distributed; therefore, this is probably a gross underestimate of the spatial scale of CDV persistence. However, the presence of a second competent host species can greatly increase the probability of long-term CDV persistence at much smaller spatial scales. Although no management of CDV is currently recommended for the GYE, wolf managers in the region should expect periodic but unpredictable CDV-related population declines as often as every 2-5 years. Awareness and monitoring of such outbreaks will allow corresponding adjustments in management activities such as regulated public harvest, creating a smooth transition to state wolf management and conservation after > 30 years of being protected by the Endangered Species Act.

  20. Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.

    2014-07-01

    A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.

  1. Alternative projections of the impacts of private investment on southern forests: a comparison of two large-scale forest sector models of the United States.

    Treesearch

    Ralph Alig; Darius Adams; John Mills; Richard Haynes; Peter Ince; Robert Moulton

    2001-01-01

    The TAMM/NAPAP/ATLAS/AREACHANGE(TNAA) system and the Forest and Agriculture Sector Optimization Model (FASOM) are two large-scale forestry sector modeling systems that have been employed to analyze the U.S. forest resource situation. The TNAA system of static, spatial equilibrium models has been applied to make SO-year projections of the U.S. forest sector for more...

  2. Visualization, documentation, analysis, and communication of large scale gene regulatory networks

    PubMed Central

    Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid

    2009-01-01

    Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046

  3. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  4. Compactified cosmological simulations of the infinite universe

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Szapudi, István; Csabai, István; Dobos, László

    2018-06-01

    We present a novel N-body simulation method that compactifies the infinite spatial extent of the Universe into a finite sphere with isotropic boundary conditions to follow the evolution of the large-scale structure. Our approach eliminates the need for periodic boundary conditions, a mere numerical convenience which is not supported by observation and which modifies the law of force on large scales in an unrealistic fashion. We demonstrate that our method outclasses standard simulations executed on workstation-scale hardware in dynamic range, it is balanced in following a comparable number of high and low k modes and, its fundamental geometry and topology match observations. Our approach is also capable of simulating an expanding, infinite universe in static coordinates with Newtonian dynamics. The price of these achievements is that most of the simulated volume has smoothly varying mass and spatial resolution, an approximation that carries different systematics than periodic simulations. Our initial implementation of the method is called StePS which stands for Stereographically projected cosmological simulations. It uses stereographic projection for space compactification and naive O(N^2) force calculation which is nevertheless faster to arrive at a correlation function of the same quality than any standard (tree or P3M) algorithm with similar spatial and mass resolution. The N2 force calculation is easy to adapt to modern graphics cards, hence our code can function as a high-speed prediction tool for modern large-scale surveys. To learn about the limits of the respective methods, we compare StePS with GADGET-2 running matching initial conditions.

  5. The scaling of contact rates with population density for the infectious disease models.

    PubMed

    Hu, Hao; Nigmatulina, Karima; Eckhoff, Philip

    2013-08-01

    Contact rates and patterns among individuals in a geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts for simulation of disease dynamics. Under the uniform mixing assumption, one of two mechanisms is typically used to describe the relation between contact rate and population density: density-dependent or frequency-dependent. Based on existing evidence of population threshold and human mobility patterns, we formulated a spatial contact model to describe the appropriate form of transmission with initial growth at low density and saturation at higher density. We show that the two mechanisms are extreme cases that do not capture real population movement across all scales. Empirical data of human and wildlife diseases indicate that a nonlinear function may work better when looking at the full spectrum of densities. This estimation can be applied to large areas with population mixing in general activities. For crowds with unusually large densities (e.g., transportation terminals, stadiums, or mass gatherings), the lack of organized social contact structure deviates the physical contacts towards a special case of the spatial contact model - the dynamics of kinetic gas molecule collision. In this case, an ideal gas model with van der Waals correction fits well; existing movement observation data and the contact rate between individuals is estimated using kinetic theory. A complete picture of contact rate scaling with population density may help clarify the definition of transmission rates in heterogeneous, large-scale spatial systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  7. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation.

    PubMed

    Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-07-29

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.

  8. Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

    PubMed Central

    Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen

    2008-01-01

    This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946

  9. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers.

    PubMed

    Dutech, Cyril; Labbé, Frédéric; Capdevielle, Xavier; Lung-Escarmant, Brigitte

    Armillaria ostoyae (sometimes named Armillaria solidipes) is a fungal species causing root diseases in numerous coniferous forests of the northern hemisphere. The importance of sexual spores for the establishment of new disease centres remains unclear, particularly in the large maritime pine plantations of southwestern France. An analysis of the genetic diversity of a local fungal population distributed over 500 ha in this French forest showed genetic recombination between genotypes to be frequent, consistent with regular sexual reproduction within the population. The estimated spatial genetic structure displayed a significant pattern of isolation by distance, consistent with the dispersal of sexual spores mostly at the spatial scale studied. Using these genetic data, we inferred an effective density of reproductive individuals of 0.1-0.3 individuals/ha, and a second moment of parent-progeny dispersal distance of 130-800 m, compatible with the main models of fungal spore dispersal. These results contrast with those obtained for studies of A. ostoyae over larger spatial scales, suggesting that inferences about mean spore dispersal may be best performed at fine spatial scales (i.e. a few kilometres) for most fungal species. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Soil moisture dynamics and dominant controls at different spatial scales over semiarid and semi-humid areas

    NASA Astrophysics Data System (ADS)

    Suo, Lizhu; Huang, Mingbin; Zhang, Yongkun; Duan, Liangxia; Shan, Yan

    2018-07-01

    Soil moisture dynamics plays an active role in ecological and hydrological processes, and it depends on a large number of environmental factors, such as topographic attributes, soil properties, land use types, and precipitation. However, studies must still clarify the relative significance of these environmental factors at different soil depths and at different spatial scales. This study aimed: (1) to characterize temporal and spatial variations in soil moisture content (SMC) at four soil layers (0-40, 40-100, 100-200, and 200-500 cm) and three spatial scales (plot, hillslope, and region); and (2) to determine their dominant controls in diverse soil layers at different spatial scales over semiarid and semi-humid areas of the Loess Plateau, China. Given the high co-dependence of environmental factors, partial least squares regression (PLSR) was used to detect relative significance among 15 selected environmental factors that affect SMC. Temporal variation in SMC decreased with increasing soil depth, and vertical changes in the 0-500 cm soil profile were divided into a fast-changing layer (0-40 cm), an active layer (40-100 cm), a sub-active layer (100-200 cm), and a relatively stable layer (200-500 cm). PLSR models simulated SMC accurately in diverse soil layers at different scales; almost all values for variation in response (R2) and goodness of prediction (Q2) were >0.5 and >0.0975, respectively. Upper and lower layer SMCs were the two most important factors that influenced diverse soil layers at three scales, and these SMC variables exhibited the highest importance in projection (VIP) values. The 7-day antecedent precipitation and 7-day antecedent potential evapotranspiration contributed significantly to SMC only at the 0-40 cm soil layer. VIP of soil properties, especially sand and silt content, which influenced SMC strongly, increased significantly after increasing the measured scale. Mean annual precipitation and potential evapotranspiration also influenced SMC at the regional scale significantly. Overall, this study indicated that dominant controls of SMC varied among three spatial scales on the Loess Plateau, and VIP was a function of spatial scale and soil depth.

  11. Variability in Soil Properties at Different Spatial Scales (1 m to 1 km) in a Deciduous Forest Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane

    2007-01-01

    The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50,more » 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.« less

  12. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  13. Domain-Adapted Convolutional Networks for Satellite Image Classification: A Large-Scale Interactive Learning Workflow

    DOE PAGES

    Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.; ...

    2018-02-06

    Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less

  14. Domain-Adapted Convolutional Networks for Satellite Image Classification: A Large-Scale Interactive Learning Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.

    Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less

  15. Architectural Implications for Spatial Object Association Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V S; Kurc, T; Saltz, J

    2009-01-29

    Spatial object association, also referred to as cross-match of spatial datasets, is the problem of identifying and comparing objects in two or more datasets based on their positions in a common spatial coordinate system. In this work, we evaluate two crossmatch algorithms that are used for astronomical sky surveys, on the following database system architecture configurations: (1) Netezza Performance Server R, a parallel database system with active disk style processing capabilities, (2) MySQL Cluster, a high-throughput network database system, and (3) a hybrid configuration consisting of a collection of independent database system instances with data replication support. Our evaluation providesmore » insights about how architectural characteristics of these systems affect the performance of the spatial crossmatch algorithms. We conducted our study using real use-case scenarios borrowed from a large-scale astronomy application known as the Large Synoptic Survey Telescope (LSST).« less

  16. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  17. Design rules for quasi-linear nonlinear optical structures

    NASA Astrophysics Data System (ADS)

    Lytel, Richard; Mossman, Sean M.; Kuzyk, Mark G.

    2015-09-01

    The maximization of the intrinsic optical nonlinearities of quantum structures for ultrafast applications requires a spectrum scaling as the square of the energy eigenstate number or faster. This is a necessary condition for an intrinsic response approaching the fundamental limits. A second condition is a design generating eigenstates whose ground and lowest excited state probability densities are spatially separated to produce large differences in dipole moments while maintaining a reasonable spatial overlap to produce large off-diagonal transition moments. A structure whose design meets both conditions will necessarily have large first or second hyperpolarizabilities. These two conditions are fundamental heuristics for the design of any nonlinear optical structure.

  18. Nonlinear Equatorial Spread F: Spatially Large Bubbles Resulting from Large Horizontal Scale Initial Perturbations.

    DTIC Science & Technology

    1980-02-06

    Hk~ NAT;ONAL BUR[AUJ (1 STANDARDS 1%3-, $LEVE1 NR L Memomduum Report 4154 ILII Nonlinear Equatorial Spread F: Spatially Large Bubbles Resulting from...Washington, DC 20375 and 67-0883-0-0 _DNA qubtask S99OAXHC 41 II. CONTROLLING OFFICE NAME AND ADDRESS 12 . REPORT DATE Defense Nuclear Agency, Washington...Perturbation A: n(yO) i-e 23 [CIDS ] 8 Ax <Jxj< 16Ax n(x,y,0) 1 1 x1 > 16 Ax n (y,O) ( 12 ) Perturbation B: n(%,y,0) 1 -e 3 cos ( (13) n 0 (y,) \\2xm 7

  19. One map policy (OMP) implementation strategy to accelerate mapping of regional spatial planing (RTRW) in Indonesia

    NASA Astrophysics Data System (ADS)

    Hasyim, Fuad; Subagio, Habib; Darmawan, Mulyanto

    2016-06-01

    A preparation of spatial planning documents require basic geospatial information and thematic accuracies. Recently these issues become important because spatial planning maps are impartial attachment of the regional act draft on spatial planning (PERDA). The needs of geospatial information in the preparation of spatial planning maps preparation can be divided into two major groups: (i). basic geospatial information (IGD), consist of of Indonesia Topographic maps (RBI), coastal and marine environmental maps (LPI), and geodetic control network and (ii). Thematic Geospatial Information (IGT). Currently, mostly local goverment in Indonesia have not finished their regulation draft on spatial planning due to some constrain including technical aspect. Some constrain in mapping of spatial planning are as follows: the availability of large scale ofbasic geospatial information, the availability of mapping guidelines, and human resources. Ideal conditions to be achieved for spatial planning maps are: (i) the availability of updated geospatial information in accordance with the scale needed for spatial planning maps, (ii) the guideline of mapping for spatial planning to support local government in completion their PERDA, and (iii) capacity building of local goverment human resources to completed spatial planning maps. The OMP strategies formulated to achieve these conditions are: (i) accelerating of IGD at scale of 1:50,000, 1: 25,000 and 1: 5,000, (ii) to accelerate mapping and integration of Thematic Geospatial Information (IGT) through stocktaking availability and mapping guidelines, (iii) the development of mapping guidelines and dissemination of spatial utilization and (iv) training of human resource on mapping technology.

  20. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  1. Novel patch modelling method for efficient simulation and prediction uncertainty analysis of multi-scale groundwater flow and transport processes

    NASA Astrophysics Data System (ADS)

    Sreekanth, J.; Moore, Catherine

    2018-04-01

    The application of global sensitivity and uncertainty analysis techniques to groundwater models of deep sedimentary basins are typically challenged by large computational burdens combined with associated numerical stability issues. The highly parameterized approaches required for exploring the predictive uncertainty associated with the heterogeneous hydraulic characteristics of multiple aquifers and aquitards in these sedimentary basins exacerbate these issues. A novel Patch Modelling Methodology is proposed for improving the computational feasibility of stochastic modelling analysis of large-scale and complex groundwater models. The method incorporates a nested groundwater modelling framework that enables efficient simulation of groundwater flow and transport across multiple spatial and temporal scales. The method also allows different processes to be simulated within different model scales. Existing nested model methodologies are extended by employing 'joining predictions' for extrapolating prediction-salient information from one model scale to the next. This establishes a feedback mechanism supporting the transfer of information from child models to parent models as well as parent models to child models in a computationally efficient manner. This feedback mechanism is simple and flexible and ensures that while the salient small scale features influencing larger scale prediction are transferred back to the larger scale, this does not require the live coupling of models. This method allows the modelling of multiple groundwater flow and transport processes using separate groundwater models that are built for the appropriate spatial and temporal scales, within a stochastic framework, while also removing the computational burden associated with live model coupling. The utility of the method is demonstrated by application to an actual large scale aquifer injection scheme in Australia.

  2. ASSESSING THE PREDICTIVE CAPABILITY OF LANDSCAPE SAMPLING UNITS OF VARYING SCALE IN THE ANALYSIS OF ESTUARINE CONDITION

    EPA Science Inventory

    Landscape structure metrics are often used to predict water and sediment quality of lakes, streams, and estuaries; however, the sampling units used to generate the landscape metrics are often at an irrelevant spatial scale. They are either too large (i.e., an entire watershed) or...

  3. California spotted owl habitat characteristics and use

    Treesearch

    Susan L. Roberts

    2017-01-01

    California spotted owls (Strix occidentalis occidentalis) establish large home ranges averaging about 1279 ha (3,160 ac) (table 3-1), and within these home ranges individual owls select habitat at different scales, depending on their activity. At the smallest spatial scale, the nest tree, it appears there is very limited flexibility in the...

  4. Large-scale phenomena, chapter 3, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.

  5. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry.

    PubMed

    Hortobágyi, Borbála; Corenblit, Dov; Vautier, Franck; Steiger, Johannes; Roussel, Erwan; Burkart, Andreas; Peiry, Jean-Luc

    2017-11-01

    Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  7. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  8. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey Pine Barrens

    Treesearch

    Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...

  9. Animal movement data: GPS telemetry, autocorrelation and the need for path-level analysis [chapter 7

    Treesearch

    Samuel A. Cushman

    2010-01-01

    In the previous chapter we presented the idea of a multi-layer, multi-scale, spatially referenced data-cube as the foundation for monitoring and for implementing flexible modeling of ecological pattern-process relationships in particulate, in context and to integrate these across large spatial extents at the grain of the strongest linkage between response and driving...

  10. The effects of seed dispersal on the simulation of long-term forest landscape change

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...

  11. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Treesearch

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  12. Spatial variation in spawning habitat of cutthroat trout in a sediment-rich basin

    Treesearch

    James P. Magee; Thomas E. McMahon; Russell F. Thurow

    1996-01-01

    We examined distribution and habitat characteristics of spawning sites of cutthroat trout Oncorhynchus clarki at various spatial scales to assess effects of sedimentation within a large basin in Montana. Redd density varied widely across the basin; nearly all (99%) of the 362 redds observed occurred in two high-elevation headwater tributaries. Redd density at the reach...

  13. Spatial distribution of GRBs and large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Tóth, L. Viktor; Horváth, István

    We studied the space distribution of the starburst galaxies from Millennium XXL database at z = 0.82. We examined the starburst distribution in the classical Millennium I (De Lucia et al. (2006)) using a semi-analytical model for the genesis of the galaxies. We simulated a starburst galaxies sample with Markov Chain Monte Carlo method. The connection between the large scale structures homogenous and starburst groups distribution (Kofman and Shandarin 1998), Suhhonenko et al. (2011), Liivamägi et al. (2012), Park et al. (2012), Horvath et al. (2014), Horvath et al. (2015)) on a defined scale were checked too.

  14. Teaching the blind to find their way by playing video games.

    PubMed

    Merabet, Lotfi B; Connors, Erin C; Halko, Mark A; Sánchez, Jaime

    2012-01-01

    Computer based video games are receiving great interest as a means to learn and acquire new skills. As a novel approach to teaching navigation skills in the blind, we have developed Audio-based Environment Simulator (AbES); a virtual reality environment set within the context of a video game metaphor. Despite the fact that participants were naïve to the overall purpose of the software, we found that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building using audio based cues alone. This was confirmed by a series of behavioral performance tests designed to assess the transfer of acquired spatial information to a large-scale, real-world indoor navigation task. Furthermore, learning the spatial layout through a goal directed gaming strategy allowed for the mental manipulation of spatial information as evidenced by enhanced navigation performance when compared to an explicit route learning strategy. We conclude that the immersive and highly interactive nature of the software greatly engages the blind user to actively explore the virtual environment. This in turn generates an accurate sense of a large-scale three-dimensional space and facilitates the learning and transfer of navigation skills to the physical world.

  15. Continental-scale patterns of canopy tree composition and function across Amazonia.

    PubMed

    ter Steege, Hans; Pitman, Nigel C A; Phillips, Oliver L; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-28

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  16. Continental-scale patterns of canopy tree composition and function across Amazonia

    NASA Astrophysics Data System (ADS)

    Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-01

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  17. Horvitz-Thompson survey sample methods for estimating large-scale animal abundance

    USGS Publications Warehouse

    Samuel, M.D.; Garton, E.O.

    1994-01-01

    Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.

  18. Identifying the Threshold of Dominant Controls on Fire Spread in a Boreal Forest Landscape of Northeast China

    PubMed Central

    Liu, Zhihua; Yang, Jian; He, Hong S.

    2013-01-01

    The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247

  19. On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas.

    PubMed

    Hogg, Oliver T; Huvenne, Veerle A I; Griffiths, Huw J; Linse, Katrin

    2018-06-01

    In recent years very large marine protected areas (VLMPAs) have become the dominant form of spatial protection in the marine environment. Whilst seen as a holistic and geopolitically achievable approach to conservation, there is currently a mismatch between the size of VLMPAs, and the data available to underpin their establishment and inform on their management. Habitat mapping has increasingly been adopted as a means of addressing paucity in biological data, through use of environmental proxies to estimate species and community distribution. Small-scale studies have demonstrated environmental-biological links in marine systems. Such links, however, are rarely demonstrated across larger spatial scales in the benthic environment. As such, the utility of habitat mapping as an effective approach to the ecosystem-based management of VLMPAs remains, thus far, largely undetermined. The aim of this study was to assess the ecological relevance of broadscale landscape mapping. Specifically we test the relationship between broad-scale marine landscapes and the structure of their benthic faunal communities. We focussed our work at the sub-Antarctic island of South Georgia, site of one of the largest MPAs in the world. We demonstrate a statistically significant relationship between environmentally derived landscape mapping clusters, and the composition of presence-only species data from the region. To demonstrate this relationship required specific re-sampling of historical species occurrence data to balance biological rarity, biological cosmopolitism, range-restricted sampling and fine-scale heterogeneity between sampling stations. The relationship reveals a distinct biological signature in the faunal composition of individual landscapes, attributing ecological relevance to South Georgia's environmentally derived marine landscape map. We argue therefore, that landscape mapping represents an effective framework for ensuring representative protection of habitats in management plans. Such scientific underpinning of marine spatial planning is critical in balancing the needs of multiple stakeholders whilst maximising conservation payoff. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological observations such as soil moisture and radar rainfall depth and by sharing the model and its codes in public domain, respectively.

  1. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  2. Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001

    PubMed Central

    Chaix, Basile; Leyland, Alastair H; Sabel, Clive E; Chauvin, Pierre; Råstam, Lennart; Kristersson, Håkan; Merlo, Juan

    2006-01-01

    Study objective Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects. Design Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders. Participants All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence. Main results The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale. Conclusions Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders. PMID:16614334

  3. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  4. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  5. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys

    USGS Publications Warehouse

    Karanth, Kota Ullas; Gopalaswamy, Arjun M.; Kumar, Narayanarao Samba; Vaidyanathan, Srinivas; Nichols, James D.; MacKenzie, Darryl I.

    2011-01-01

    1. Assessing spatial distributions of threatened large carnivores at landscape scales poses formidable challenges because of their rarity and elusiveness. As a consequence of logistical constraints, investigators typically rely on sign surveys. Most survey methods, however, do not explicitly address the central problem of imperfect detections of animal signs in the field, leading to underestimates of true habitat occupancy and distribution. 2. We assessed habitat occupancy for a tiger Panthera tigris metapopulation across a c. 38 000-km2 landscape in India, employing a spatially replicated survey to explicitly address imperfect detections. Ecological predictions about tiger presence were confronted with sign detection data generated from occupancy sampling of 205 sites, each of 188 km2. 3. A recent occupancy model that considers Markovian dependency among sign detections on spatial replicates performed better than the standard occupancy model (ΔAIC = 184·9). A formulation of this model that fitted the data best showed that density of ungulate prey and levels of human disturbance were key determinants of local tiger presence. Model averaging resulted in a replicate-level detection probability [inline image] = 0·17 (0·17) for signs and a tiger habitat occupancy estimate of [inline image] = 0·665 (0·0857) or 14 076 (1814) km2 of potential habitat of 21 167 km2. In contrast, a traditional presence-versus-absence approach underestimated occupancy by 47%. Maps of probabilities of local site occupancy clearly identified tiger source populations at higher densities and matched observed tiger density variations, suggesting their potential utility for population assessments at landscape scales. 4. Synthesis and applications. Landscape-scale sign surveys can efficiently assess large carnivore spatial distributions and elucidate the factors governing their local presence, provided ecological and observation processes are both explicitly modelled. Occupancy sampling using spatial replicates can be used to reliably and efficiently identify tiger population sources and help monitor metapopulations. Our results reinforce earlier findings that prey depletion and human disturbance are key drivers of local tiger extinctions and tigers can persist even in human-dominated landscapes through effective protection of source populations. Our approach facilitates efficient targeting of tiger conservation interventions and, more generally, provides a basis for the reliable integration of large carnivore monitoring data between local and landscape scales.

  6. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Todd, Peter; Thompson, Chris; Watson, Fiona; Denham, Robert; Khanal, Giri

    2013-02-01

    Advances in remote sensing and digital terrain processing now allow for a sophisticated analysis of spatial and temporal changes in erosion and deposition. Digital elevation models (DEMs) can now be constructed and differenced to produce DEMs of Difference (DoD), which are used to assess net landscape change for morphological budgeting. To date this has been most effectively achieved in gravel-bed rivers over relatively small spatial scales. If the full potential of the technology is to be realised, additional studies are required at larger scales and across a wider range of geomorphic features. This study presents an assessment of the basin-scale spatial patterns of erosion, deposition, and net morphological change that resulted from a catastrophic flood event in the Lockyer Creek catchment of SE Queensland (SEQ) in January 2011. Multitemporal Light Detection and Ranging (LiDAR) DEMs were used to construct a DoD that was then combined with a one-dimensional flow hydraulic model HEC-RAS to delineate five major geomorphic landforms, including inner-channel area, within-channel benches, macrochannel banks, and floodplain. The LiDAR uncertainties were quantified and applied together with a probabilistic representation of uncertainty thresholded at a conservative 95% confidence interval. The elevation change distribution (ECD) for the 100-km2 study area indicates a magnitude of elevation change spanning almost 10 m but the mean elevation change of 0.04 m confirms that a large part of the landscape was characterised by relatively low magnitude changes over a large spatial area. Mean elevation changes varied by geomorphic feature and only two, the within-channel benches and macrochannel banks, were net erosional with an estimated combined loss of 1,815,149 m3 of sediment. The floodplain was the zone of major net deposition but mean elevation changes approached the defined critical limit of uncertainty. Areal and volumetric ECDs for this extreme event provide a representative expression of the balance between erosion and deposition, and importantly sediment redistribution, which is extremely difficult to quantify using more traditional channel planform or cross-sectional surveys. The ability of LiDAR to make a rapid and accurate assessment of key geomorphic processes over large spatial scales contributes to our understanding of key processes and, as demonstrated here, to the assessment of major geomorphological hazards such as extreme flood events.

  7. Midlatitude sporadic-E episodes viewed by L-band split-spectrum InSAR

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Suzuki, Takato; Maeda, Jun; Heki, Kosuke

    2017-12-01

    Sporadic-E (Es) is a layer of ionization that irregularly appears within the E region of the ionosphere and is known to generate an unusual propagation of very high frequency waves over long distances. The detailed spatial structure of Es remains unclear due to the limited spatial resolution in the conventional ionosonde observations. We detect midlatitude Es by interferometric synthetic aperture radar (InSAR), which can clarify the spatial structure of Es with unprecedented resolution. Moreover, we use the range split-spectrum method (SSM) to separate dispersive and nondispersive components in the InSAR image. While InSAR SSM largely succeeds in decomposing into dispersive and nondispersive signals, our results indicate that small-scale dispersive signals due to the total electron content anomalies are accompanied by nondispersive signals with similar spatial scale at the same locations. We also examine the effects of higher-order terms in the refractive index for dispersive media. Both of these detected Es episodes indicate that smaller-scale dispersive effects originate from higher-order effects. We interpret that the smaller-scale nondispersive signals could indicate the emergence of nitric oxide (NO) generated by the reactions of metals, Mg and Fe, with nitric oxide ion (NO+) during the Es.

  8. The Effects of Fine-scale Soil Moisture and Canopy Heterogeneities on Energy and Soil Water Fluxes in a Temperate Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.

    2011-12-01

    Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.

  9. Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Tecklenburg, Christina; Blume, Theresa

    2017-10-01

    Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.

  10. A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics

    USGS Publications Warehouse

    Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.

    2013-01-01

    The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.

  11. Understanding the Spatial Scale of Genetic Connectivity at Sea: Unique Insights from a Land Fish and a Meta-Analysis.

    PubMed

    Cooke, Georgina M; Schlub, Timothy E; Sherwin, William B; Ord, Terry J

    2016-01-01

    Quantifying the spatial scale of population connectivity is important for understanding the evolutionary potential of ecologically divergent populations and for designing conservation strategies to preserve those populations. For marine organisms like fish, the spatial scale of connectivity is generally set by a pelagic larval phase. This has complicated past estimates of connectivity because detailed information on larval movements are difficult to obtain. Genetic approaches provide a tractable alternative and have the added benefit of estimating directly the reproductive isolation of populations. In this study, we leveraged empirical estimates of genetic differentiation among populations with simulations and a meta-analysis to provide a general estimate of the spatial scale of genetic connectivity in marine environments. We used neutral genetic markers to first quantify the genetic differentiation of ecologically-isolated adult populations of a land dwelling fish, the Pacific leaping blenny (Alticus arnoldorum), where marine larval dispersal is the only probable means of connectivity among populations. We then compared these estimates to simulations of a range of marine dispersal scenarios and to collated FST and distance data from the literature for marine fish across diverse spatial scales. We found genetic connectivity at sea was extensive among marine populations and in the case of A. arnoldorum, apparently little affected by the presence of ecological barriers. We estimated that ~5000 km (with broad confidence intervals ranging from 810-11,692 km) was the spatial scale at which evolutionarily meaningful barriers to gene flow start to occur at sea, although substantially shorter distances are also possible for some taxa. In general, however, such a large estimate of connectivity has important implications for the evolutionary and conservation potential of many marine fish communities.

  12. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  13. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.

  14. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    PubMed

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.

  15. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  16. Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over themore » $$\\mu$$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.« less

  17. The cosmological principle is not in the sky

    NASA Astrophysics Data System (ADS)

    Park, Chan-Gyung; Hyun, Hwasu; Noh, Hyerim; Hwang, Jai-chan

    2017-08-01

    The homogeneity of matter distribution at large scales, known as the cosmological principle, is a central assumption in the standard cosmological model. The case is testable though, thus no longer needs to be a principle. Here we perform a test for spatial homogeneity using the Sloan Digital Sky Survey Luminous Red Galaxies (LRG) sample by counting galaxies within a specified volume with the radius scale varying up to 300 h-1 Mpc. We directly confront the large-scale structure data with the definition of spatial homogeneity by comparing the averages and dispersions of galaxy number counts with allowed ranges of the random distribution with homogeneity. The LRG sample shows significantly larger dispersions of number counts than the random catalogues up to 300 h-1 Mpc scale, and even the average is located far outside the range allowed in the random distribution; the deviations are statistically impossible to be realized in the random distribution. This implies that the cosmological principle does not hold even at such large scales. The same analysis of mock galaxies derived from the N-body simulation, however, suggests that the LRG sample is consistent with the current paradigm of cosmology, thus the simulation is also not homogeneous in that scale. We conclude that the cosmological principle is neither in the observed sky nor demanded to be there by the standard cosmological world model. This reveals the nature of the cosmological principle adopted in the modern cosmology paradigm, and opens a new field of research in theoretical cosmology.

  18. Determinants of Spatial Distribution in a Bee Community: Nesting Resources, Flower Resources, and Body Size

    PubMed Central

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445

  19. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size.

    PubMed

    Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi

    2014-01-01

    Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.

  20. Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.

    PubMed

    Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin

    2018-01-01

    Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship. © 2017 by the Ecological Society of America.

  1. Evaluating the Impact of Spatial Resolution of Landsat Predictors on the Accuracy of Biomass Models for Large-area Estimation Across the Eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.

    2017-12-01

    Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.

  2. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    PubMed

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Space and time scales of shoreline change at Cape Cod National Seashore, MA, USA

    USGS Publications Warehouse

    Allen, J.R.; LaBash, C.L.; List, J.H.; Kraus, Nicholas C.; McDougal, William G.

    1999-01-01

    Different processes cause patterns of shoreline change which are exhibited at different magnitudes and nested into different spatial and time scale hierarchies. The 77-km outer beach at Cape Cod National Seashore offers one of the few U.S. federally owned portions of beach to study shoreline change within the full range of sediment source and sink relationships, and barely affected by human intervention. 'Mean trends' of shoreline changes are best observed at long time scales but contain much spatial variation thus many sites are not equal in response. Long-term, earlier-noted trends are confirmed but the added quantification and resolution improves greatly the understanding of appropriate spatial and time scales of those processes driving bluff retreat and barrier island changes in both north and south depocenters. Shorter timescales allow for comparison of trends and uncertainty in shoreline change at local scales but are dependent upon some measure of storm intensity and seasonal frequency. Single-event shoreline survey results for one storm at daily intervals after the erosional phase suggest a recovery time for the system of six days, identifies three sites with abnormally large change, and that responses at these sites are spatially coherent for now unknown reasons. Areas near inlets are the most variable at all time scales. Hierarchies in both process and form are suggested.

  4. Complex Spatial Structure in a Population of Didymopanax pittieri, A Tree of Wind-Exposed Lower Montane Rain Forest

    NASA Technical Reports Server (NTRS)

    Lawton, Robert M.; Lawton, Robert O.

    2010-01-01

    Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri (<5 cm dbh, 5-10 cm dbh, 10-20 cm dbh, and> 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.

  5. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME

    PubMed Central

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2017-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948

  6. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. epiDMS: Data Management and Analytics for Decision-Making From Epidemic Spread Simulation Ensembles.

    PubMed

    Liu, Sicong; Poccia, Silvestro; Candan, K Selçuk; Chowell, Gerardo; Sapino, Maria Luisa

    2016-12-01

    Carefully calibrated large-scale computational models of epidemic spread represent a powerful tool to support the decision-making process during epidemic emergencies. Epidemic models are being increasingly used for generating forecasts of the spatial-temporal progression of epidemics at different spatial scales and for assessing the likely impact of different intervention strategies. However, the management and analysis of simulation ensembles stemming from large-scale computational models pose challenges, particularly when dealing with multiple interdependent parameters, spanning multiple layers and geospatial frames, affected by complex dynamic processes operating at different resolutions. We describe and illustrate with examples a novel epidemic simulation data management system, epiDMS, that was developed to address the challenges that arise from the need to generate, search, visualize, and analyze, in a scalable manner, large volumes of epidemic simulation ensembles and observations during the progression of an epidemic. epiDMS is a publicly available system that facilitates management and analysis of large epidemic simulation ensembles. epiDMS aims to fill an important hole in decision-making during healthcare emergencies by enabling critical services with significant economic and health impact. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Conservation of reef manta rays (Manta alfredi) in a UNESCO World Heritage Site: Large-scale island development or sustainable tourism?

    PubMed Central

    Elamin, Nasreldin Alhasan; Yurkowski, David James; Chekchak, Tarik; Walter, Ryan Patrick; Klaus, Rebecca; Hill, Graham; Hussey, Nigel Edward

    2017-01-01

    A large reef manta ray (Manta alfredi) aggregation has been observed off the north Sudanese Red Sea coast since the 1950s. Sightings have been predominantly within the boundaries of a marine protected area (MPA), which was designated a UNESCO World Heritage Site in July 2016. Contrasting economic development trajectories have been proposed for the area (small-scale ecotourism and large-scale island development). To examine space-use, Wildlife Computers® SPOT 5 tags were secured to three manta rays. A two-state switching Bayesian state space model (BSSM), that allowed movement parameters to switch between resident and travelling, was fit to the recorded locations, and 50% and 95% kernel utilization distributions (KUD) home ranges calculated. A total of 682 BSSM locations were recorded between 30 October 2012 and 6 November 2013. Of these, 98.5% fell within the MPA boundaries; 99.5% for manta 1, 91.5% for manta 2, and 100% for manta 3. The BSSM identified that all three mantas were resident during 99% of transmissions, with 50% and 95% KUD home ranges falling mainly within the MPA boundaries. For all three mantas combined (88.4%), and all individuals (manta 1–92.4%, manta 2–64.9%, manta 3–91.9%), the majority of locations occurred within 15 km of the proposed large-scale island development. Results indicated that the MPA boundaries are spatially appropriate for manta rays in the region, however, a close association to the proposed large-scale development highlights the potential threat of disruption. Conversely, the focused nature of spatial use highlights the potential for reliable ecotourism opportunities. PMID:29069079

  9. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.

    PubMed

    Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.

  10. Conservation of reef manta rays (Manta alfredi) in a UNESCO World Heritage Site: Large-scale island development or sustainable tourism?

    PubMed

    Kessel, Steven Thomas; Elamin, Nasreldin Alhasan; Yurkowski, David James; Chekchak, Tarik; Walter, Ryan Patrick; Klaus, Rebecca; Hill, Graham; Hussey, Nigel Edward

    2017-01-01

    A large reef manta ray (Manta alfredi) aggregation has been observed off the north Sudanese Red Sea coast since the 1950s. Sightings have been predominantly within the boundaries of a marine protected area (MPA), which was designated a UNESCO World Heritage Site in July 2016. Contrasting economic development trajectories have been proposed for the area (small-scale ecotourism and large-scale island development). To examine space-use, Wildlife Computers® SPOT 5 tags were secured to three manta rays. A two-state switching Bayesian state space model (BSSM), that allowed movement parameters to switch between resident and travelling, was fit to the recorded locations, and 50% and 95% kernel utilization distributions (KUD) home ranges calculated. A total of 682 BSSM locations were recorded between 30 October 2012 and 6 November 2013. Of these, 98.5% fell within the MPA boundaries; 99.5% for manta 1, 91.5% for manta 2, and 100% for manta 3. The BSSM identified that all three mantas were resident during 99% of transmissions, with 50% and 95% KUD home ranges falling mainly within the MPA boundaries. For all three mantas combined (88.4%), and all individuals (manta 1-92.4%, manta 2-64.9%, manta 3-91.9%), the majority of locations occurred within 15 km of the proposed large-scale island development. Results indicated that the MPA boundaries are spatially appropriate for manta rays in the region, however, a close association to the proposed large-scale development highlights the potential threat of disruption. Conversely, the focused nature of spatial use highlights the potential for reliable ecotourism opportunities.

  11. Habitat and Scale Shape the Demographic Fate of the Keystone Sea Urchin Paracentrotus lividus in Mediterranean Macrophyte Communities

    PubMed Central

    Prado, Patricia; Tomas, Fiona; Pinna, Stefania; Farina, Simone; Roca, Guillem; Ceccherelli, Giulia; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Demographic processes exert different degrees of control as individuals grow, and in species that span several habitats and spatial scales, this can influence our ability to predict their population at a particular life-history stage given the previous life stage. In particular, when keystone species are involved, this relative coupling between demographic stages can have significant implications for the functioning of ecosystems. We examined benthic and pelagic abundances of the sea urchin Paracentrotus lividus in order to: 1) understand the main life-history bottlenecks by observing the degree of coupling between demographic stages; and 2) explore the processes driving these linkages. P. lividus is the dominant invertebrate herbivore in the Mediterranean Sea, and has been repeatedly observed to overgraze shallow beds of the seagrass Posidonia oceanica and rocky macroalgal communities. We used a hierarchical sampling design at different spatial scales (100 s, 10 s and <1 km) and habitats (seagrass and rocky macroalgae) to describe the spatial patterns in the abundance of different demographic stages (larvae, settlers, recruits and adults). Our results indicate that large-scale factors (potentially currents, nutrients, temperature, etc.) determine larval availability and settlement in the pelagic stages of urchin life history. In rocky macroalgal habitats, benthic processes (like predation) acting at large or medium scales drive adult abundances. In contrast, adult numbers in seagrass meadows are most likely influenced by factors like local migration (from adjoining rocky habitats) functioning at much smaller scales. The complexity of spatial and habitat-dependent processes shaping urchin populations demands a multiplicity of approaches when addressing habitat conservation actions, yet such actions are currently mostly aimed at managing predation processes and fish numbers. We argue that a more holistic ecosystem management also needs to incorporate the landscape and habitat-quality level processes (eutrophication, fragmentation, etc.) that together regulate the populations of this keystone herbivore. PMID:22536355

  12. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area

    NASA Astrophysics Data System (ADS)

    Molina, Armando; Govers, Gerard; Poesen, Jean; Van Hemelryck, Hendrik; De Bièvre, Bert; Vanacker, Veerle

    2008-06-01

    A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km - 2 year - 1 . Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × e- b C) which was found between vegetation cover and sediment yield at the catchment scale (10 3-10 9 m 2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1-10 3 m 2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.

  13. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  14. Sound production due to large-scale coherent structures

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The acoustic pressure fluctuations due to large-scale finite amplitude disturbances in a free turbulent shear flow are calculated. The flow is decomposed into three component scales; the mean motion, the large-scale wave-like disturbance, and the small-scale random turbulence. The effect of the large-scale structure on the flow is isolated by applying both a spatial and phase average on the governing differential equations and by initially taking the small-scale turbulence to be in energetic equilibrium with the mean flow. The subsequent temporal evolution of the flow is computed from global energetic rate equations for the different component scales. Lighthill's theory is then applied to the region with the flowfield as the source and an observer located outside the flowfield in a region of uniform velocity. Since the time history of all flow variables is known, a minimum of simplifying assumptions for the Lighthill stress tensor is required, including no far-field approximations. A phase average is used to isolate the pressure fluctuations due to the large-scale structure, and also to isolate the dynamic process responsible. Variation of mean square pressure with distance from the source is computed to determine the acoustic far-field location and decay rate, and, in addition, spectra at various acoustic field locations are computed and analyzed. Also included are the effects of varying the growth and decay of the large-scale disturbance on the sound produced.

  15. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  16. Conspecific and Heterospecific Plant Densities at Small-Scale Can Drive Plant-Pollinator Interactions

    PubMed Central

    Janovský, Zdeněk; Mikát, Michael; Hadrava, Jiří; Horčičková, Eva; Kmecová, Kateřina; Požárová, Doubravka; Smyčka, Jan; Herben, Tomáš

    2013-01-01

    Generalist pollinators are important in many habitats, but little research has been done on small-scale spatial variation in interactions between them and the plants that they visit. Here, using a spatially explicit approach, we examined whether multiple species of flowering plants occurring within a single meadow showed spatial structure in their generalist pollinator assemblages. We report the results for eight plant species for which at least 200 individual visits were recorded. We found that for all of these species, the proportions of their general pollinator assemblages accounted for by particular functional groups showed spatial heterogeneity at the scale of tens of metres. This heterogeneity was connected either with no or only subtle changes of vegetation and flowering species composition. In five of these species, differences in conspecific plant density influenced the pollinator communities (with greater dominance of main pollinators at low-conspecific plant densities). The density of heterospecific plant individuals influenced the pollinator spectrum in one case. Our results indicate that the picture of plant-pollinator interactions provided by averaging data within large plots may be misleading and that within-site spatial heterogeneity should be accounted for in terms of sampling effort allocation and analysis. Moreover, spatially structured plant-pollinator interactions may have important ecological and evolutionary consequences, especially for plant population biology. PMID:24204818

  17. ESRI applications of GIS technology: Mineral resource development

    NASA Technical Reports Server (NTRS)

    Derrenbacher, W.

    1981-01-01

    The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.

  18. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian Amazon region using a novel multi-pathogen geospatial model.

    PubMed

    Valle, Denis; Lima, Joanna M Tucker

    2014-11-20

    Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were contrasted with that of statistically significant disease clusters, highlighting the critical importance of uncertainty in determining disease hotspots. From an epidemiological perspective, forest cover and proximity to gold mining operations were important large-scale drivers of disease risk in the region. Finally, the hotspot in Western Acre was identified as the area that should receive highest priority from the Brazilian national malaria prevention and control programme.

  19. Grain-dependent responses of mammalian diversity to land use and the implications for conservation set-aside.

    PubMed

    Wearn, Oliver R; Carbone, Chris; Rowcliffe, J Marcus; Bernard, Henry; Ewers, Robert M

    2016-07-01

    Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains. © 2016 by the Ecological Society of America.

  20. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence

    PubMed Central

    2017-01-01

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167576

  1. Cross-scale interactions affect tree growth and intrinsic water use efficiency and highlight the importance of spatial context in managing forests under global change

    Treesearch

    Kenneth J. Ruzicka; Klaus J. Puettmann; J. Renée Brooks

    2017-01-01

    Summary1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment to better understand options for managing forests under climate change. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (δ...

  2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.

    PubMed

    Paciorek, Christopher J; Liu, Yang

    2012-05-01

    Research in scientific, public health, and policy disciplines relating to the environment increasingly makes use of high-dimensional remote sensing and the output of numerical models in conjunction with traditional observations. Given the public health and resultant public policy implications of the potential health effects of particulate matter (PM*) air pollution, specifically fine PM with an aerodynamic diameter < or = 2.5 pm (PM2.5), there has been substantial recent interest in the use of remote-sensing information, in particular aerosol optical depth (AOD) retrieved from satellites, to help characterize variability in ground-level PM2.5 concentrations in space and time. While the United States and some other developed countries have extensive PM monitoring networks, gaps in data across space and time necessarily occur; the hope is that remote sensing can help fill these gaps. In this report, we are particularly interested in using remote-sensing data to inform estimates of spatial patterns in ambient PM2.5 concentrations at monthly and longer time scales for use in epidemiologic analyses. However, we also analyzed daily data to better disentangle spatial and temporal relationships. For AOD to be helpful, it needs to add information beyond that available from the monitoring network. For analyses of chronic health effects, it needs to add information about the concentrations of long-term average PM2.5; therefore, filling the spatial gaps is key. Much recent evidence has shown that AOD is correlated with PM2.5 in the eastern United States, but the use of AOD in exposure analysis for epidemiologic work has been rare, in part because discrepancies necessarily exist between satellite-retrieved estimates of AOD, which is an atmospheric-column average, and ground-level PM2.5. In this report, we summarize the results of a number of empirical analyses and of the development of statistical models for the use of proxy information, in particular satellite AOD, in predicting PM2.5 concentrations in the eastern United States. We analyzed the spatiotemporal structure of the relationship between PM2.5 and AOD, first using simple correlations both before and after calibration based on meteorology, as well as large-scale spatial and temporal calibration to account for discrepancies between AOD and PM2.5. We then used both raw and calibrated AOD retrievals in statistical models to predict PM2.5 concentrations, accounting for AOD in two ways: primarily as a separate data source contributing a second likelihood to a Bayesian statistical model, as well as a data source on which we could directly regress. Previous consideration of satellite AOD has largely focused on the National Aeronautics and Space Administration (NASA) moderate resolution imaging spectroradiometer (MODIS) and multiangle imaging spectroradiometer (MISR) instruments. One contribution of our work is more extensive consideration of AOD derived from the Geostationary Operational Environmental Satellite East Aerosol/Smoke Product (GOES GASP) AOD and its relationship with PM2.5. In addition to empirically assessing the spatiotemporal relationship between GASP AOD and PM2.5, we considered new statistical techniques to screen anomalous GOES reflectance measurements and account for background surface reflectance. In our statistical work, we developed a new model structure that allowed for more flexible modeling of the proxy discrepancy than previous statistical efforts have had, with a computationally efficient implementation. We also suggested a diagnostic for assessing the scales of the spatial relationship between the proxy and the spatial process of interest (e.g., PM2.5). In brief, we had little success in improving predictions in our eastern-United States domain for use in epidemiologic applications. We found positive correlations of AOD with PM2.5 over time, but less correlation for long-term averages over space, unless we used calibration that adjusted for large-scale discrepancy between AOD and PM2.5 (see sections 3, 4, and 5). Statistical models that combined AOD, PM2.5 observations, and land-use and meteorologic variables were highly predictive of PM2.5 observations held out of the modeling, but AOD added little information beyond that provided by the other sources (see sections 5 and 6). When we used PM2.5 data estimates from the Community Multiscale Air Quality model (CMAQ) as the proxy instead of using AOD, we similarly found little improvement in predicting held-out observations of PM2.5, but when we regressed on CMAQ PM2.5 estimates, the predictions improved moderately in some cases. These results appeared to be caused in part by the fact that large-scale spatial patterns in PM2.5 could be predicted well by smoothing the monitor values, while small-scale spatial patterns in AOD appeared to weakly reflect the variation in PM2.5 inferred from the observations. Using a statistical model that allowed for potential proxy discrepancy at both large and small spatial scales was an important component of our modeling. In particular, when our models did not include a component to account for small-scale discrepancy, predictive performance decreased substantially. Even long-term averages of MISR AOD, considered the best, albeit most sparse, of the AOD products, were only weakly correlated with measured PM2.5 (see section 4). This might have been partly related to the fact that our analysis did not account for spatial variation in the vertical profile of the aerosol. Furthermore, we found evidence that some of the correlation between raw AOD and PM2.5 might have been a function of surface brightness related to land use, rather than having been driven by the detection of aerosol in the AOD retrieval algorithms (see sections 4 and 7). Difficulties in estimating the background surface reflectance in the retrieval algorithms likely explain this finding. With regard to GOES, we found moderate correlations of GASP AOD and PM2.5. The higher correlations of monthly and yearly averages after calibration reflected primarily the improved large-scale correlation, a necessary result of the calibration procedure (see section 3). While the results of this study's GOES reflectance screening and surface reflection correction appeared sensible, correlations of our proposed reflectance-based proxy with PM2.5 were no better than GASP AOD correlations with PM2.5 (see section 7). We had difficulty improving spatial prediction of monthly and yearly average PM2.5 using AOD in the eastern United States, which we attribute to the spatial discrepancy between AOD and measured PM2.5, particularly at smaller scales. This points to the importance of paying attention to the discrepancy structure of proxy information, both from remote-sensing and deterministic models. In particular, important statistical challenges arise in accounting for the discrepancy, given the difficulty in the face of sparse observations of distinguishing the discrepancy from the component of the proxy that is informative about the process of interest. Associations between adverse health outcomes and large-scale variation in PM2.5 (e.g., across regions) may be confounded by unmeasured spatial variation in factors such as diet. Therefore, one important goal was to use AOD to improve predictions of PM2.5 for use in epidemiologic analyses at small-to-moderate spatial scales (within urban areas and within regions). In addition, large-scale PM2.5 variation is well estimated from the monitoring data, at least in the United States. We found little evidence that current AOD products are helpful for improving prediction at small-to-moderate scales in the eastern United States and believe more evidence for the reliability of AOD as a proxy at such scales is needed before making use of AOD for PM2.5 prediction in epidemiologic contexts. While our results relied in part on relatively complicated statistical models, which may be sensitive to modeling assumptions, our exploratory correlation analyses (see sections 3 and 5) and relatively simple regression-style modeling of MISR AOD (see section 4) were consistent with the more complicated modeling results. When assessing the usefulness of AOD in the context of studying chronic health effects, we believe efforts need to focus on disentangling the temporal from the spatial correlations of AOD and PM2.5 and on understanding the spatial scale of correlation and of the discrepancy structure. While our results are discouraging, it is important to note that we attempted to make use of smaller-scale spatial variation in AOD to distinguish spatial variations of relatively small magnitude in long-term concentrations of ambient PM2.5. Our efforts pushed the limits of current technology in a spatial domain with relatively low PM2.5 levels and limited spatial variability. AOD may hold more promise in areas with higher aerosol levels, as the AOD signal would be stronger there relative to the background surface reflectance. Furthermore, for developing countries with high aerosol levels, it is difficult to build statistical models based on PM2.5 measurements and land-use covariates, so AOD may add more incremental information in those contexts. More generally, researchers in remote sensing are involved in ongoing efforts to improve AOD products and develop new approaches to using AOD, such as calibration with model-estimated vertical profiles and the use of speciation information in MISR AOD; these efforts warrant continued investigation of the usefulness of remotely sensed AOD for public health research.

  3. Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock.

    PubMed

    Bale, S D; Mozer, F S

    2007-05-18

    Large parallel (

  4. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    PubMed Central

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  5. Avian movements and wetland connectivity in landscape conservation

    USGS Publications Warehouse

    Haig, Susan M.; Mehlman, D.W.; Oring, L.W.

    1998-01-01

    The current conservation crisis calls for research and management to be carried out on a long-term, multi-species basis at large spatial scales. Unfortunately, scientists, managers, and agencies often are stymied in their effort to conduct these large-scale studies because of a lack of appropriate technology, methodology, and funding. This issue is of particular concern in wetland conservation, for which the standard landscape approach may include consideration of a large tract of land but fail to incorporate the suite of wetland sites frequently used by highly mobile organisms such as waterbirds (e.g., shorebirds, wading birds, waterfowl). Typically, these species have population dynamics that require use of multiple wetlands, but this aspect of their life history has often been ignored in planning for their conservation. We outline theoretical, empirical, modeling, and planning problems associated with this issue and suggest solutions to some current obstacles. These solutions represent a tradeoff between typical in-depth single-species studies and more generic multi-species studies. They include studying within- and among-season movements of waterbirds on a spatial scale appropriate to both widely dispersing and more stationary species; multi-species censuses at multiple sites; further development and use of technology such as satellite transmitters and population-specific molecular markers; development of spatially explicit population models that consider within-season movements of waterbirds; and recognition from funding agencies that landscape-level issues cannot adequately be addressed without support for these types of studies.

  6. Evaluation of an index of biotic integrity approach used to assess biological condition in western U.S. streams and rivers at varying spatial scales

    USGS Publications Warehouse

    Meador, M.R.; Whittier, T.R.; Goldstein, R.M.; Hughes, R.M.; Peck, D.V.

    2008-01-01

    Consistent assessments of biological condition are needed across multiple ecoregions to provide a greater understanding of the spatial extent of environmental degradation. However, consistent assessments at large geographic scales are often hampered by lack of uniformity in data collection, analyses, and interpretation. The index of biotic integrity (IBI) has been widely used in eastern and central North America, where fish assemblages are complex and largely composed of native species, but IBI development has been hindered in the western United States because of relatively low fish species richness and greater relative abundance of alien fishes. Approaches to developing IBIs rarely provide a consistent means of assessing biological condition across multiple ecoregions. We conducted an evaluation of IBIs recently proposed for three ecoregions of the western United States using an independent data set covering a large geographic scale. We standardized the regional IBIs and developed biological condition criteria, assessed the responsiveness of IBIs to basin-level land uses, and assessed their precision and concordance with basin-scale IBIs. Standardized IBI scores from 318 sites in the western United States comprising mountain, plains, and xeric ecoregions were significantly related to combined urban and agricultural land uses. Standard deviations and coefficients of variation revealed relatively low variation in IBI scores based on multiple sampling reaches at sites. A relatively high degree of corroboration with independent, locally developed IBIs indicates that the regional IBIs are robust across large geographic scales, providing precise and accurate assessments of biological condition for western U.S. streams. ?? Copyright by the American Fisheries Society 2008.

  7. Validating the BERMS in situ soil moisture network with a large scale temporary network

    USDA-ARS?s Scientific Manuscript database

    Calibration and validation of soil moisture satellite products requires data records of large spatial and temporal extent, but obtaining this data can be challenging. These challenges can include remote locations, and expense of equipment. One location with a long record of soil moisture data is th...

  8. Erosion, sedimentation, and cumulative effects in the Northern Rocky Mountains

    Treesearch

    Walter F. Megahan; John G. King

    2004-01-01

    Erosion and sedimentation are natural geomorphic processes characterized by large temporal and spatial variability. Recent radionuclide studies suggest that rare episodic events, such as large wildfires, produce massive sediment yields over time scales of thousands of years, thereby causing long-term average sediment production to exceed present-day average erosion...

  9. Large-area forest inventory regression modeling: spatial scale considerations

    Treesearch

    James A. Westfall

    2015-01-01

    In many forest inventories, statistical models are employed to predict values for attributes that are difficult and/or time-consuming to measure. In some applications, models are applied across a large geographic area, which assumes the relationship between the response variable and predictors is ubiquitously invariable within the area. The extent to which this...

  10. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors

    PubMed Central

    Wu, Yiming; Zhang, Xiujuan; Pan, Huanhuan; Deng, Wei; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng

    2013-01-01

    Single-crystalline organic nanowires (NWs) are important building blocks for future low-cost and efficient nano-optoelectronic devices due to their extraordinary properties. However, it remains a critical challenge to achieve large-scale organic NW array assembly and device integration. Herein, we demonstrate a feasible one-step method for large-area patterned growth of cross-aligned single-crystalline organic NW arrays and their in-situ device integration for optical image sensors. The integrated image sensor circuitry contained a 10 × 10 pixel array in an area of 1.3 × 1.3 mm2, showing high spatial resolution, excellent stability and reproducibility. More importantly, 100% of the pixels successfully operated at a high response speed and relatively small pixel-to-pixel variation. The high yield and high spatial resolution of the operational pixels, along with the high integration level of the device, clearly demonstrate the great potential of the one-step organic NW array growth and device construction approach for large-scale optoelectronic device integration. PMID:24287887

  11. Search for contact interactions and large extra dimensions in the dilepton channel using proton–proton collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.

    2014-12-11

    Research is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb –1 at √s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale Λ between 15.4 TeV and 26.3 TeV, at the 95% credibilitymore » level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.« less

  12. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  13. Negligible influence of spatial autocorrelation in the assessment of fire effects in a mixed conifer forest

    USGS Publications Warehouse

    van Mantgem, P.J.; Schwilk, D.W.

    2009-01-01

    Fire is an important feature of many forest ecosystems, although the quantification of its effects is compromised by the large scale at which fire occurs and its inherent unpredictability. A recurring problem is the use of subsamples collected within individual burns, potentially resulting in spatially autocorrelated data. Using subsamples from six different fires (and three unburned control areas) we show little evidence for strong spatial autocorrelation either before or after burning for eight measures of forest conditions (both fuels and vegetation). Additionally, including a term for spatially autocorrelated errors provided little improvement for simple linear models contrasting the effects of early versus late season burning. While the effects of spatial autocorrelation should always be examined, it may not always greatly influence assessments of fire effects. If high patch scale variability is common in Sierra Nevada mixed conifer forests, even following more than a century of fire exclusion, treatments designed to encourage further heterogeneity in forest conditions prior to the reintroduction of fire will likely be unnecessary.

  14. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  15. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  16. Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic - Size-based ecosystem model

    NASA Astrophysics Data System (ADS)

    Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.

    2015-11-01

    Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.

  17. Oligopolistic competition in wholesale electricity markets: Large-scale simulation and policy analysis using complementarity models

    NASA Astrophysics Data System (ADS)

    Helman, E. Udi

    This dissertation conducts research into the large-scale simulation of oligopolistic competition in wholesale electricity markets. The dissertation has two parts. Part I is an examination of the structure and properties of several spatial, or network, equilibrium models of oligopolistic electricity markets formulated as mixed linear complementarity problems (LCP). Part II is a large-scale application of such models to the electricity system that encompasses most of the United States east of the Rocky Mountains, the Eastern Interconnection. Part I consists of Chapters 1 to 6. The models developed in this part continue research into mixed LCP models of oligopolistic electricity markets initiated by Hobbs [67] and subsequently developed by Metzler [87] and Metzler, Hobbs and Pang [88]. Hobbs' central contribution is a network market model with Cournot competition in generation and a price-taking spatial arbitrage firm that eliminates spatial price discrimination by the Cournot firms. In one variant, the solution to this model is shown to be equivalent to the "no arbitrage" condition in a "pool" market, in which a Regional Transmission Operator optimizes spot sales such that the congestion price between two locations is exactly equivalent to the difference in the energy prices at those locations (commonly known as locational marginal pricing). Extensions to this model are presented in Chapters 5 and 6. One of these is a market model with a profit-maximizing arbitrage firm. This model is structured as a mathematical program with equilibrium constraints (MPEC), but due to the linearity of its constraints, can be solved as a mixed LCP. Part II consists of Chapters 7 to 12. The core of these chapters is a large-scale simulation of the U.S. Eastern Interconnection applying one of the Cournot competition with arbitrage models. This is the first oligopolistic equilibrium market model to encompass the full Eastern Interconnection with a realistic network representation (using a DC load flow approximation). Chapter 9 shows the price results. In contrast to prior market power simulations of these markets, much greater variability in price-cost margins is found when using a realistic model of hourly conditions on such a large network. Chapter 10 shows that the conventional concentration indices (HHIs) are poorly correlated with PCMs. Finally, Chapter 11 proposes that the simulation models are applied to merger analysis and provides two large-scale merger examples. (Abstract shortened by UMI.)

  18. [Spatial variability of soil nutrients based on geostatistics combined with GIS--a case study in Zunghua City of Hebei Province].

    PubMed

    Guo, X; Fu, B; Ma, K; Chen, L

    2000-08-01

    Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.

  19. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    NASA Astrophysics Data System (ADS)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  20. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  1. Fine resolution probabilistic land cover classification of landscapes in the southeastern United States

    Treesearch

    Joseph St. Peter; John Hogland; Nathaniel Anderson; Jason Drake; Paul Medley

    2018-01-01

    Land cover classification provides valuable information for prioritizing management and conservation operations across large landscapes. Current regional scale land cover geospatial products within the United States have a spatial resolution that is too coarse to provide the necessary information for operations at the local and project scales. This paper describes a...

  2. Large scale atmospheric waves in the Venus mesosphere as seen by the VeRa Radio Science instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2014-04-01

    Atmospheric waves on almost all spatial scales have been observed in the Venus atmosphere in various atmospheric regions. They play a crucial role in the redistribution of energy, momentum, and atmospheric constituent and are thought to be involved in the development and maintenance of the atmospheric superrotation.

  3. Regional gradient analysis and spatial pattern of woody plant communities in Oregon forests.

    Treesearch

    J.L. Ohmann; T.A. Spies

    1998-01-01

    Knowledge of regional-scale patterns of ecological community structure, and of factors that control them, is largely conceptual. Regional- and local-scale factors associated with regional variation in community composition have not been quantified. We analyzed data on woody plant species abundance from 2443 field plots across natural and seminatural forests and...

  4. Building spatially-explicit model predictions for ecological condition of streams in the Pacific Northwest: An assessment of landscape variables, models, endpoints and prediction scale

    EPA Science Inventory

    While large-scale, randomized surveys estimate the percentage of a region’s streams in poor ecological condition, identifying particular stream reaches or watersheds in poor condition is an equally important goal for monitoring and management. We built predictive models of strea...

  5. Native fish conservation areas: a vision for large-scale conservation of native fish communities

    Treesearch

    Jack E. Williams; Richard N. Williams; Russell F. Thurow; Leah Elwell; David P. Philipp; Fred A. Harris; Jeffrey L. Kershner; Patrick J. Martinez; Dirk Miller; Gordon H. Reeves; Christopher A. Frissell; James R. Sedell

    2011-01-01

    The status of freshwater fishes continues to decline despite substantial conservation efforts to reverse this trend and recover threatened and endangered aquatic species. Lack of success is partially due to working at smaller spatial scales and focusing on habitats and species that are already degraded. Protecting entire watersheds and aquatic communities, which we...

  6. Managing landscapes at multiple scales for sustainability of ecosystem functions (Preface)

    Treesearch

    R.A. Birdsey; R. Lucas; Y. Pan; G. Sun; E.J. Gustafson; A.H.  Perera

    2010-01-01

    The science of landscape ecology is a rapidly evolving academic field with an emphasis on studying large-scale spatial heterogeneity created by natural influences and human activities. These advances have important implications for managing and conserving natural resources. At a September 2008 IUFRO conference in Chengdu, Sichuan, P.R. China, we highlighted both the...

  7. Scale-invariant streamline equations and strings of singular vorticity for perturbed anisotropic solutions of the Navier-Stokes equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libin, A., E-mail: a_libin@netvision.net.il

    2012-12-15

    A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes (the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They also lead to the formation of large-scale curved prisms of streamlines with edges being the stringsmore » of singular vorticity.« less

  8. A Composite Network Approach for Assessing Multi-Species Connectivity: An Application to Road Defragmentation Prioritisation

    PubMed Central

    Saura, Santiago; Rondinini, Carlo

    2016-01-01

    One of the biggest challenges in large-scale conservation is quantifying connectivity at broad geographic scales and for a large set of species. Because connectivity analyses can be computationally intensive, and the planning process quite complex when multiple taxa are involved, assessing connectivity at large spatial extents for many species turns to be often intractable. Such limitation results in that conducted assessments are often partial by focusing on a few key species only, or are generic by considering a range of dispersal distances and a fixed set of areas to connect that are not directly linked to the actual spatial distribution or mobility of particular species. By using a graph theory framework, here we propose an approach to reduce computational effort and effectively consider large assemblages of species in obtaining multi-species connectivity priorities. We demonstrate the potential of the approach by identifying defragmentation priorities in the Italian road network focusing on medium and large terrestrial mammals. We show that by combining probabilistic species graphs prior to conducting the network analysis (i) it is possible to analyse connectivity once for all species simultaneously, obtaining conservation or restoration priorities that apply for the entire species assemblage; and that (ii) those priorities are well aligned with the ones that would be obtained by aggregating the results of separate connectivity analysis for each of the individual species. This approach offers great opportunities to extend connectivity assessments to large assemblages of species and broad geographic scales. PMID:27768718

  9. Cloud transitions: comparison of temporal variation in the southeastern Pacific with the spatial variation in the northeastern Pacific at low latitudes

    DOE PAGES

    Yu, Haiyang; Zhang, Minghua; Lin, Wuyin; ...

    2016-10-14

    The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less

  10. Cloud transitions: comparison of temporal variation in the southeastern Pacific with the spatial variation in the northeastern Pacific at low latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haiyang; Zhang, Minghua; Lin, Wuyin

    The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less

  11. Detecting natural occlusion boundaries using local cues

    PubMed Central

    DiMattina, Christopher; Fox, Sean A.; Lewicki, Michael S.

    2012-01-01

    Occlusion boundaries and junctions provide important cues for inferring three-dimensional scene organization from two-dimensional images. Although several investigators in machine vision have developed algorithms for detecting occlusions and other edges in natural images, relatively few psychophysics or neurophysiology studies have investigated what features are used by the visual system to detect natural occlusions. In this study, we addressed this question using a psychophysical experiment where subjects discriminated image patches containing occlusions from patches containing surfaces. Image patches were drawn from a novel occlusion database containing labeled occlusion boundaries and textured surfaces in a variety of natural scenes. Consistent with related previous work, we found that relatively large image patches were needed to attain reliable performance, suggesting that human subjects integrate complex information over a large spatial region to detect natural occlusions. By defining machine observers using a set of previously studied features measured from natural occlusions and surfaces, we demonstrate that simple features defined at the spatial scale of the image patch are insufficient to account for human performance in the task. To define machine observers using a more biologically plausible multiscale feature set, we trained standard linear and neural network classifiers on the rectified outputs of a Gabor filter bank applied to the image patches. We found that simple linear classifiers could not match human performance, while a neural network classifier combining filter information across location and spatial scale compared well. These results demonstrate the importance of combining a variety of cues defined at multiple spatial scales for detecting natural occlusions. PMID:23255731

  12. Scintillometer networks for calibration and validation of energy balance and soil moisture remote sensing algorithms

    NASA Astrophysics Data System (ADS)

    Hendrickx, Jan M. H.; Kleissl, Jan; Gómez Vélez, Jesús D.; Hong, Sung-ho; Fábrega Duque, José R.; Vega, David; Moreno Ramírez, Hernán A.; Ogden, Fred L.

    2007-04-01

    Accurate estimation of sensible and latent heat fluxes as well as soil moisture from remotely sensed satellite images poses a great challenge. Yet, it is critical to face this challenge since the estimation of spatial and temporal distributions of these parameters over large areas is impossible using only ground measurements. A major difficulty for the calibration and validation of operational remote sensing methods such as SEBAL, METRIC, and ALEXI is the ground measurement of sensible heat fluxes at a scale similar to the spatial resolution of the remote sensing image. While the spatial length scale of remote sensing images covers a range from 30 m (LandSat) to 1000 m (MODIS) direct methods to measure sensible heat fluxes such as eddy covariance (EC) only provide point measurements at a scale that may be considerably smaller than the estimate obtained from a remote sensing method. The Large Aperture scintillometer (LAS) flux footprint area is larger (up to 5000 m long) and its spatial extent better constraint than that of EC systems. Therefore, scintillometers offer the unique possibility of measuring the vertical flux of sensible heat averaged over areas comparable with several pixels of a satellite image (up to about 40 Landsat thermal pixels or about 5 MODIS thermal pixels). The objective of this paper is to present our experiences with an existing network of seven scintillometers in New Mexico and a planned network of three scintillometers in the humid tropics of Panama and Colombia.

  13. Health risks from large-scale water pollution: trends in Central Asia.

    PubMed

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Role of natural analogs in performance assessment of nuclear waste repositories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, B.; Wittmeyer, G.W.

    1995-09-01

    Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemicalmore » processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.« less

  15. Storm generated large scale TIDs (LSTIDs): local, regional and global observations during solar cycles 23-24

    NASA Astrophysics Data System (ADS)

    Katamzi, Zama; Bosco Habarulema, John

    2017-04-01

    Large scale traveling ionospheric disturbances (LSTIDs) are a key dynamic ionospheric process that transports energy and momentum vertically and horizontally during storms. These disturbances are observed as electron density irregularities in total electron content and other ionospheric parameters. This study reports on various explorations of LSTIDs characteristics, in particular horizontal and vertical propagation, during some major/severe storms of solar cycles 23-24. We have employed GNSS TEC to estimate horizontal propagation and radio occultation data from COSMIC/FORMOSAT-3 and SWARM satellites to estimate vertical motion. The work presented here reveals the evolution of the characterisation efficiency from using sparsely populated stations, resulting in limited spatial resolution through rudimentary analysis to more densely populated GNSS network leading to more accurate temporal and spatial determinations. For example, early observations of LSTIDs largely revealed unidirectional propagation whereas later studies have showed that one storm can induce multi-directional propagation, e.g. Halloween 2003 storm induced equatorward LSTIDs on a local scale whereas the 9 March 2012 storm induced simultaneous equatorward and poleward LSTIDs on a global scale. This later study, i.e. 9 March 2012 storm, revealed for the first time that ionospheric electrodynamics, specifically variations in ExB drift, is also an efficient generator of LSTIDs. Results from these studies also revealed constructive and destructive interference pattern of storm induced LSTIDs. Constellations of LEO satellites such as COSMIC/FORMOSAT-3 and SWARM have given sufficient spatial and temporal resolution to study vertical propagation of LSTIDs in addition to the meridional propagation given by GNSS TEC; the former (i.e. vertical velocities) were found to fall below 100 m/s.

  16. A 14 h-3 Gpc3 study of cosmic homogeneity using BOSS DR12 quasar sample

    NASA Astrophysics Data System (ADS)

    Laurent, Pierre; Le Goff, Jean-Marc; Burtin, Etienne; Hamilton, Jean-Christophe; Hogg, David W.; Myers, Adam; Ntelis, Pierros; Pâris, Isabelle; Rich, James; Aubourg, Eric; Bautista, Julian; Delubac, Timothée; du Mas des Bourboux, Hélion; Eftekharzadeh, Sarah; Palanque Delabrouille, Nathalie; Petitjean, Patrick; Rossi, Graziano; Schneider, Donald P.; Yeche, Christophe

    2016-11-01

    The BOSS quasar sample is used to study cosmic homogeneity with a 3D survey in the redshift range 2.2 < z < 2.8. We measure the count-in-sphere, N(< r), i.e. the average number of objects around a given object, and its logarithmic derivative, the fractal correlation dimension, D2(r). For a homogeneous distribution N(< r) propto r3 and D2(r) = 3. Due to the uncertainty on tracer density evolution, 3D surveys can only probe homogeneity up to a redshift dependence, i.e. they probe so-called ``spatial isotropy". Our data demonstrate spatial isotropy of the quasar distribution in the redshift range 2.2 < z < 2.8 in a model-independent way, independent of any FLRW fiducial cosmology, resulting in 3 - langleD2rangle < 1.7 × 10-3 (2 σ) over the range 250 < r < 1200 h-1 Mpc for the quasar distribution. If we assume that quasars do not have a bias much less than unity, this implies spatial isotropy of the matter distribution on large scales. Then, combining with the Copernican principle, we finally get homogeneity of the matter distribution on large scales. Alternatively, using a flat ΛCDM fiducial cosmology with CMB-derived parameters, and measuring the quasar bias relative to this ΛCDM model, our data provide a consistency check of the model, in terms of how homogeneous the Universe is on different scales. D2(r) is found to be compatible with our ΛCDM model on the whole 10 < r < 1200 h-1 Mpc range. For the matter distribution we obtain 3 - langleD2rangle < 5 × 10-5 (2 σ) over the range 250 < r < 1200 h-1 Mpc, consistent with homogeneity on large scales.

  17. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.

    2017-12-01

    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on developing fundamental understanding of the influences of HEFs on water quality, nutrient dynamics, and ecosystem health in dynamic river corridor systems.

  18. Landscape-level influences of terrestrial snake occupancy within the southeastern United States.

    PubMed

    Steen, David A; McClure, Christopher J W; Brock, Jean C; Rudolph, D Craig; Pierce, Josh B; Lee, James R; Humphries, W Jeffrey; Gregory, Beau B; Sutton, William B; Smith, Lora L; Baxley, Danna L; Stevenson, Dirk J; Guyer, Craig

    2012-06-01

    Habitat loss and degradation are thought to be the primary drivers of species extirpations, but for many species we have little information regarding specific habitats that influence occupancy. Snakes are of conservation concern throughout North America, but effective management and conservation are hindered by a lack of basic natural history information and the small number of large-scale studies designed to assess general population trends. To address this information gap, we compiled detection/nondetection data for 13 large terrestrial species from 449 traps located across the southeastern United States, and we characterized the land cover surrounding each trap at multiple spatial scales (250-, 500-, and 1000-m buffers). We used occupancy modeling, while accounting for heterogeneity in detection probability, to identify habitat variables that were influential in determining the presence of a particular species. We evaluated 12 competing models for each species, representing various hypotheses pertaining to important habitat features for terrestrial snakes. Overall, considerable interspecific variation existed in important habitat variables and relevant spatial scales. For example, kingsnakes (Lampropeltis getula) were negatively associated with evergreen forests, whereas Louisiana pinesnake (Pituophis ruthveni) occupancy increased with increasing coverage of this forest type. Some species were positively associated with grassland and scrub/shrub (e.g., Slowinski's cornsnake, Elaphe slowinskii) whereas others, (e.g., copperhead, Agkistrodon contortrix, and eastern diamond-backed rattlesnake, Crotalus adamanteus) were positively associated with forested habitats. Although the species that we studied may persist in varied landscapes other than those we identified as important, our data were collected in relatively undeveloped areas. Thus, our findings may be relevant when generating conservation plans or restoration goals. Maintaining or restoring landscapes that are most consistent with the ancestral habitat preferences of terrestrial snake assemblages will require a diverse habitat matrix over large spatial scales.

  19. Using ATM laser altimetry to constrain surface mass balance estimates and supraglacial hydrology of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Medley, B.; Manizade, S.; Linkswiler, M. A.

    2016-12-01

    Repeat airborne laser altimetry measurements can provide large-scale field observations to better quantify spatial and temporal variability of surface processes contributing to seasonal elevation change and therefore surface mass balance. As part of NASA's Operation IceBridge the Airborne Topographic Mapper (ATM) laser altimeter measured the surface elevation of the Greenland Ice Sheet during spring (March - May) and fall (September - October) of 2015. Comparison of the two surveys reveals a general trend of thinning for outlet glaciers and for the ice sheet in a manner related to elevation and latitude. In contrast, some thickening is observed on the west (but not on the east) side of the ice divide above 2200 m elevation in the southern half, below latitude 69°N.The observed magnitude and spatial patterns of the summer melt signal can be utilized as input into ice sheet models and for validating reanalysis of regional climate models such as RACMO and MAR. We use seasonal anomalies in MERRA-2 climate fields (temperature, precipitation) to understand the observed spatial signal in seasonal change. Aside from surface elevation change, runoff from meltwater pooling in supraglacial lakes and meltwater channels accounts for at least half of the total mass loss. The ability of the ATM laser altimeters to image glacial hydrological features in 3-D and determine the depth of supraglacial lakes could be used for process studies and for quantifying melt processes over large scales. The 1-meter footprint diameter of ATM laser on the surface, together with a high shot density, allows for the production of large-scale, high-resolution, geodetic quality DEMs (50 x 50 cm) suitable for fine-scale glacial hydrology research and as input to hydrological models quantifying runoff.

  20. Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.

    2010-12-01

    Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.

Top