Sample records for large size limit

  1. Time-limited environments affect the evolution of egg-body size allometry.

    PubMed

    Eckerström-Liedholm, Simon; Sowersby, Will; Gonzalez-Voyer, Alejandro; Rogell, Björn

    2017-07-01

    Initial offspring size is a fundamental component of absolute growth rate, where large offspring will reach a given adult body size faster than smaller offspring. Yet, our knowledge regarding the coevolution between offspring and adult size is limited. In time-constrained environments, organisms need to reproduce at a high rate and reach a reproductive size quickly. To rapidly attain a large adult body size, we hypothesize that, in seasonal habitats, large species are bound to having a large initial size, and consequently, the evolution of egg size will be tightly matched to that of body size, compared to less time-limited systems. We tested this hypothesis in killifishes, and found a significantly steeper allometric relationship between egg and body sizes in annual, compared to nonannual species. We also found higher rates of evolution of egg and body size in annual compared to nonannual species. Our results suggest that time-constrained environments impose strong selection on rapidly reaching a species-specific body size, and reproduce at a high rate, which in turn imposes constraints on the evolution of egg sizes. In combination, these distinct selection pressures result in different relationships between egg and body size among species in time-constrained versus permanent habitats. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  3. Small and large particle limits of single scattering albedo for homogeneous, spherical particles

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Sorensen, C. M.

    2018-01-01

    The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.

  4. Old age and underlying interstitial abnormalities are risk factors for development of ARDS after pleurodesis using limited amount of large particle size talc.

    PubMed

    Shinno, Yuki; Kage, Hidenori; Chino, Haruka; Inaba, Atsushi; Arakawa, Sayaka; Noguchi, Satoshi; Amano, Yosuke; Yamauchi, Yasuhiro; Tanaka, Goh; Nagase, Takahide

    2018-01-01

    Talc pleurodesis is commonly performed to manage refractory pleural effusion or pneumothorax. It is considered as a safe procedure as long as a limited amount of large particle size talc is used. However, acute respiratory distress syndrome (ARDS) is a rare but serious complication after talc pleurodesis. We sought to determine the risk factors for the development of ARDS after pleurodesis using a limited amount of large particle size talc. We retrospectively reviewed patients who underwent pleurodesis with talc or OK-432 at the University of Tokyo Hospital. Twenty-seven and 35 patients underwent chemical pleurodesis using large particle size talc (4 g or less) or OK-432, respectively. Four of 27 (15%) patients developed ARDS after talc pleurodesis. Patients who developed ARDS were significantly older than those who did not (median 80 vs 66 years, P = 0.02) and had a higher prevalence of underlying interstitial abnormalities on chest computed tomography (CT; 2/4 vs 1/23, P < 0.05). No patient developed ARDS after pleurodesis with OK-432. This is the first case series of ARDS after pleurodesis using a limited amount of large particle size talc. Older age and underlying interstitial abnormalities on chest CT seem to be risk factors for developing ARDS after talc pleurodesis. © 2017 Asian Pacific Society of Respirology.

  5. 40 CFR Table 1 to Subpart Hhh of... - Emission Limits for Small Rural, Small, Medium, and Large HMIWI

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...

  6. 40 CFR Table 1 to Subpart Hhh of... - Emission Limits for Small Rural, Small, Medium, and Large HMIWI

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...

  7. 40 CFR Table 1 to Subpart Hhh of... - Emission Limits for Small Rural, Small, Medium, and Large HMIWI

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI Pollutant Units (7 percent oxygen, dry basis at standard conditions) Emission limits HMIWI size Small rural Small Medium Large...

  8. 40 CFR Table 1 to Subpart Hhh of... - Emission Limits for Small Rural, Small, Medium, and Large HMIWI

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Medium, and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... Part 62—Emission Limits for Small Rural, Small, Medium, and Large HMIWI For the air pollutant You must meet this emissions limit HMIWI size Small rural Small Medium Large With these units(7 percent oxygen...

  9. 40 CFR Table 1 to Subpart Hhh of... - Emissions Limits for Small Rural, Small, Medium and Large HMIWI

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Medium and Large HMIWI 1 Table 1 to Subpart HHH of Part 62 Protection of Environment ENVIRONMENTAL... Part 62—Emissions Limits for Small Rural, Small, Medium and Large HMIWI For the air pollutant You must meet this emissions limit HMIWI size Small rural Small Medium Large With these units(7 percent oxygen...

  10. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    PubMed Central

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  11. Solutions of Smoluchowski's coagulation equation at large cluster sizes

    NASA Astrophysics Data System (ADS)

    Van Dongen, P. G. J.

    1987-09-01

    In this paper we determine the behavior of solutions ck( t) of Smoluchowski's coagulation equation for cluster sizes much larger than the mean cluster size s( t). We consider in general the homogeneous rate constants K( i, j), behaving as K( i, j) ∼ iμjv as j → ∞, where special attention is paid to models with an exponent v = 1. The behavior of ck( t) is studied in three different limits: (i) the short-time limit ( t ↓ 0), with k ≫ 1, (ii) the limit k → ∞, with t > 0 fixed, and (iii) the scaling limit, with k ≫ s( t). The two most important conclusions of this paper are, first, that the detailed behavior of ck( t) at large cluster sizes ( k ≫ s( t)) may be drastically different for different rate constants K( i, j) and, secondly, that the results for ck( t), obtained in the limits (i), (ii) and (iii), are closely related.

  12. Allocation of limited reserves to a clutch: A model explaining the lack of a relationship between clutch size and egg size

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Sedinger, James S.

    1996-01-01

    Lack (1967, 1968) proposed that clutch size in waterfowl is limited by the nutrients available to females when producing eggs. He suggested that if nutrients available for clutch formation are limited, then species producing small eggs would, on average, lay more eggs than species with large eggs. Rohwer (1988) argues that this model should also apply within species. Thus, the nutrition-limitation hypothesis predicts a tradeoff among females between clutch size and egg size (Rohwer 1988). Field studies of single species consistently have failed to detect a negative relationship between clutch size and egg size (Rohwer 1988, Lessells et al. 1992, Rohwer and Eisenhauer 1989, Flint and Sedinger 1992, Flint and Grand 1996). The absence of such a relationship within species has been regarded as evidence against the hypothesis that nutrient availability limits clutch size (Rohwer 1988, 1991, 1992; Rohwer and Eisenhauer 1989).

  13. Drought survival and reproduction impose contrasting selection pressures on maximum body size and sexual size dimorphism in a snake, Seminatrix pygaea.

    PubMed

    Winne, Christopher T; Willson, John D; Whitfield Gibbons, J

    2010-04-01

    The causes and consequences of body size and sexual size dimorphism (SSD) have been central questions in evolutionary ecology. Two, often opposing selective forces are suspected to act on body size in animals: survival selection and reproductive (fecundity and sexual) selection. We have recently identified a system where a small aquatic snake species (Seminatrix pygaea) is capable of surviving severe droughts by aestivating within dried, isolated wetlands. We tested the hypothesis that the lack of aquatic prey during severe droughts would impose significant survivorship pressures on S. pygaea, and that the largest individuals, particularly females, would be most adversely affected by resource limitation. Our findings suggest that both sexes experience selection against large body size during severe drought when prey resources are limited, as nearly all S. pygaea are absent from the largest size classes and maximum body size and SSD are dramatically reduced following drought. Conversely, strong positive correlations between maternal body size and reproductive success in S. pygaea suggest that females experience fecundity selection for large size during non-drought years. Collectively, our study emphasizes the dynamic interplay between selection pressures that act on body size and supports theoretical predictions about the relationship between body size and survivorship in ectotherms under conditions of resource limitation.

  14. Nucleation versus percolation: Scaling criterion for failure in disordered solids

    NASA Astrophysics Data System (ADS)

    Biswas, Soumyajyoti; Roy, Subhadeep; Ray, Purusattam

    2015-05-01

    One of the major factors governing the mode of failure in disordered solids is the effective range R over which the stress field is modified following a local rupture event. In a random fiber bundle model, considered as a prototype of disordered solids, we show that the failure mode is nucleation dominated in the large system size limit, as long as R scales slower than Lζ, with ζ =2 /3 . For a faster increase in R , the failure properties are dominated by the mean-field critical point, where the damages are uncorrelated in space. In that limit, the precursory avalanches of all sizes are obtained even in the large system size limit. We expect these results to be valid for systems with finite (normalizable) disorder.

  15. Large exon size does not limit splicing in vivo.

    PubMed

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  16. The limits of weak selection and large population size in evolutionary game theory.

    PubMed

    Sample, Christine; Allen, Benjamin

    2017-11-01

    Evolutionary game theory is a mathematical approach to studying how social behaviors evolve. In many recent works, evolutionary competition between strategies is modeled as a stochastic process in a finite population. In this context, two limits are both mathematically convenient and biologically relevant: weak selection and large population size. These limits can be combined in different ways, leading to potentially different results. We consider two orderings: the [Formula: see text] limit, in which weak selection is applied before the large population limit, and the [Formula: see text] limit, in which the order is reversed. Formal mathematical definitions of the [Formula: see text] and [Formula: see text] limits are provided. Applying these definitions to the Moran process of evolutionary game theory, we obtain asymptotic expressions for fixation probability and conditions for success in these limits. We find that the asymptotic expressions for fixation probability, and the conditions for a strategy to be favored over a neutral mutation, are different in the [Formula: see text] and [Formula: see text] limits. However, the ordering of limits does not affect the conditions for one strategy to be favored over another.

  17. Depletion force between two large spheres suspended in a bath of small spheres: onset of the Derjaguin limit.

    PubMed

    Oettel, M

    2004-04-01

    We analyze the depletion interaction between two hard colloids in a hard-sphere solvent and pay special attention to the limit of large size ratio between colloids and solvent particles which is governed by the well-known Derjaguin approximation. For separations between the colloids of less than the diameter of the solvent particles (defining the depletion region), the solvent structure between the colloids can be analyzed in terms of an effective two-dimensional gas. Thereby we find that the Derjaguin limit is approached more slowly than previously thought. This analysis is in good agreement with simulation data which are available for a moderate size ratio of 10. Small discrepancies in results from density functional theory (DFT) at this size ratio become amplified for larger size ratios. Therefore we have improved upon previous DFT techniques by imposing test-particle consistency which connects DFT to integral equations. However, the improved results show no convergence towards the Derjaguin limit and thus we conclude that this implementation of DFT together with previous ones which rely on test-particle insertion become unreliable in predicting the force in the depletion region for size ratios larger than 10.

  18. Maximum plant height and the biophysical factors that limit it.

    PubMed

    Niklas, Karl J

    2007-03-01

    Basic engineering theory and empirically determined allometric relationships for the biomass partitioning patterns of extant tree-sized plants show that the mechanical requirements for vertical growth do not impose intrinsic limits on the maximum heights that can be reached by species with woody, self-supporting stems. This implies that maximum tree height is constrained by other factors, among which hydraulic constraints are plausible. A review of the available information on scaling relationships observed for large tree-sized plants, nevertheless, indicates that mechanical and hydraulic requirements impose dual restraints on plant height and thus, may play equally (but differentially) important roles during the growth of arborescent, large-sized species. It may be the case that adaptations to mechanical and hydraulic phenomena have optimized growth, survival and reproductive success rather than longevity and mature size.

  19. Single and simultaneous binary mergers in Wright-Fisher genealogies.

    PubMed

    Melfi, Andrew; Viswanath, Divakar

    2018-05-01

    The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  1. Decadal climate prediction in the large ensemble limit

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.

    2017-12-01

    In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.

  2. Using Satellite Imagery to Assess Large-Scale Habitat Characteristics of Adirondack Park, New York, USA

    NASA Astrophysics Data System (ADS)

    McClain, Bobbi J.; Porter, William F.

    2000-11-01

    Satellite imagery is a useful tool for large-scale habitat analysis; however, its limitations need to be tested. We tested these limitations by varying the methods of a habitat evaluation for white-tailed deer ( Odocoileus virginianus) in the Adirondack Park, New York, USA, utilizing harvest data to create and validate the assessment models. We used two classified images, one with a large minimum mapping unit but high accuracy and one with no minimum mapping unit but slightly lower accuracy, to test the sensitivity of the evaluation to these differences. We tested the utility of two methods of assessment, habitat suitability index modeling, and pattern recognition modeling. We varied the scale at which the models were applied by using five separate sizes of analysis windows. Results showed that the presence of a large minimum mapping unit eliminates important details of the habitat. Window size is relatively unimportant if the data are averaged to a large resolution (i.e., township), but if the data are used at the smaller resolution, then the window size is an important consideration. In the Adirondacks, the proportion of hardwood and softwood in an area is most important to the spatial dynamics of deer populations. The low occurrence of open area in all parts of the park either limits the effect of this cover type on the population or limits our ability to detect the effect. The arrangement and interspersion of cover types were not significant to deer populations.

  3. Coagulation-Fragmentation Model for Animal Group-Size Statistics

    NASA Astrophysics Data System (ADS)

    Degond, Pierre; Liu, Jian-Guo; Pego, Robert L.

    2017-04-01

    We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theory for Bernstein and Pick functions. In the large-population continuum limit, a scaling-invariant regime is reached in which all equilibria are determined by a single scaling profile. This universal profile exhibits power-law behavior crossing over from exponent -2/3 for small size to -3/2 for large size, with an exponential cutoff.

  4. The Scherrer equation and the dynamical theory of X-ray diffraction.

    PubMed

    Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos

    2016-05-01

    The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.

  5. Stocking levels and underlying assumptions for uneven-aged Ponderosa Pine stands.

    Treesearch

    P.H. Cochran

    1992-01-01

    Potential Problems With Q-Values Many ponderosa pine stands have a limited number of size classes, and it may be desirable to carry very large trees through several cutting cycles. Large numbers of trees below commercial size are not needed to provide adequate numbers of future replacement trees. Under these conditions, application of stand density index (SDI) can have...

  6. Power Scaling Fiber Amplifiers Using Very-Large-Mode-Area Fibers

    DTIC Science & Technology

    2016-02-23

    fiber lasers are limited to below 1kW due to limited mode size and thermal issues, particularly thermal mode instability (TMI). Two comprehensive models...accurately modeling very- large-mode-area fiber amplifiers while simultaneously including thermal lensing and TMI. This model was applied to investigate...expected resilience to TMI. 15. SUBJECT TERMS Fiber amplifier, high power laser, thermal mode instability, large-mode-area fiber, ytterbium-doped

  7. Squamate hatchling size and the evolutionary causes of negative offspring size allometry.

    PubMed

    Meiri, S; Feldman, A; Kratochvíl, L

    2015-02-01

    Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring ('upper limit'), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring ('lower limit'). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. How Large Should a Statistical Sample Be?

    ERIC Educational Resources Information Center

    Menil, Violeta C.; Ye, Ruili

    2012-01-01

    This study serves as a teaching aid for teachers of introductory statistics. The aim of this study was limited to determining various sample sizes when estimating population proportion. Tables on sample sizes were generated using a C[superscript ++] program, which depends on population size, degree of precision or error level, and confidence…

  9. SIproc: an open-source biomedical data processing platform for large hyperspectral images.

    PubMed

    Berisha, Sebastian; Chang, Shengyuan; Saki, Sam; Daeinejad, Davar; He, Ziqi; Mankar, Rupali; Mayerich, David

    2017-04-10

    There has recently been significant interest within the vibrational spectroscopy community to apply quantitative spectroscopic imaging techniques to histology and clinical diagnosis. However, many of the proposed methods require collecting spectroscopic images that have a similar region size and resolution to the corresponding histological images. Since spectroscopic images contain significantly more spectral samples than traditional histology, the resulting data sets can approach hundreds of gigabytes to terabytes in size. This makes them difficult to store and process, and the tools available to researchers for handling large spectroscopic data sets are limited. Fundamental mathematical tools, such as MATLAB, Octave, and SciPy, are extremely powerful but require that the data be stored in fast memory. This memory limitation becomes impractical for even modestly sized histological images, which can be hundreds of gigabytes in size. In this paper, we propose an open-source toolkit designed to perform out-of-core processing of hyperspectral images. By taking advantage of graphical processing unit (GPU) computing combined with adaptive data streaming, our software alleviates common workstation memory limitations while achieving better performance than existing applications.

  10. The Renormalization Group and Its Applications to Generating Coarse-Grained Models of Large Biological Molecular Systems.

    PubMed

    Koehl, Patrice; Poitevin, Frédéric; Navaza, Rafael; Delarue, Marc

    2017-03-14

    Understanding the dynamics of biomolecules is the key to understanding their biological activities. Computational methods ranging from all-atom molecular dynamics simulations to coarse-grained normal-mode analyses based on simplified elastic networks provide a general framework to studying these dynamics. Despite recent successes in studying very large systems with up to a 100,000,000 atoms, those methods are currently limited to studying small- to medium-sized molecular systems due to computational limitations. One solution to circumvent these limitations is to reduce the size of the system under study. In this paper, we argue that coarse-graining, the standard approach to such size reduction, must define a hierarchy of models of decreasing sizes that are consistent with each other, i.e., that each model contains the information of the dynamics of its predecessor. We propose a new method, Decimate, for generating such a hierarchy within the context of elastic networks for normal-mode analysis. This method is based on the concept of the renormalization group developed in statistical physics. We highlight the details of its implementation, with a special focus on its scalability to large systems of up to millions of atoms. We illustrate its application on two large systems, the capsid of a virus and the ribosome translation complex. We show that highly decimated representations of those systems, containing down to 1% of their original number of atoms, still capture qualitatively and quantitatively their dynamics. Decimate is available as an OpenSource resource.

  11. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  12. Effects of geometric design features on truck crashes on limited-access highways.

    DOT National Transportation Integrated Search

    2012-06-01

    Freight can be transported between most points in the country quite efficiently using trucks. However, involvement of large : trucks in crashes can cause much damage and serious injuries, due to their large sizes and heavy weights. Large truck : cras...

  13. Drying step optimization to obtain large-size transparent magnesium-aluminate spinel samples

    NASA Astrophysics Data System (ADS)

    Petit, Johan; Lallemant, Lucile

    2017-05-01

    In the transparent ceramics processing, the green body elaboration step is probably the most critical one. Among the known techniques, wet shaping processes are particularly interesting because they enable the particles to find an optimum position on their own. Nevertheless, the presence of water molecules leads to drying issues. During the water removal, its concentration gradient induces cracks limiting the sample size: laboratory samples are generally less damaged because of their small size but upscaling the samples for industrial applications lead to an increasing cracking probability. Thanks to the drying step optimization, large size spinel samples were obtained.

  14. The impact of large terrestrial carnivores on Pleistocene ecosystems

    PubMed Central

    Van Valkenburgh, Blaire; Ripple, William J.; Meloro, Carlo; Roth, V. Louise

    2016-01-01

    Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator–prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224

  15. Predictive evaluation of size restrictions as management strategies for tennessee reservoir crappie fisheries

    USGS Publications Warehouse

    Isermann, D.A.; Sammons, S.M.; Bettoli, P.W.; Churchill, T.N.

    2002-01-01

    We evaluated the potential effect of minimum size restrictions on crappies Pomoxis spp. in 12 large Tennessee reservoirs. A Beverton-Holt equilibrium yield model was used to predict and compare the response of these fisheries to three minimum size restrictions: 178 mm (i.e., pragmatically, no size limit), 229 mm, and the current statewide limit of 254 mm. The responses of crappie fisheries to size limits differed among reservoirs and varied with rates of conditional natural mortality (CM). Based on model results, crappie fisheries fell into one of three response categories: (1) In some reservoirs (N = 5), 254-mm and 229-mm limits would benefit the fishery in terms of yield if CM were low (30%); the associated declines in the number of crappies harvested would be significant but modest when compared with those in other reservoirs. (2) In other reservoirs (N = 6), little difference in yield existed among size restrictions at low to intermediate rates of CM (30-40%). In these reservoirs, a 229-mm limit was predicted to be a more beneficial regulation than the current 254-mm limit. (3) In the remaining reservoir, Tellico, size limits negatively affected all three harvest statistics. Generally, yield was negatively affected by size limits in all populations at a CM of 50%. The number of crappies reaching 300 mm was increased by size limits in most model scenarios: however, associated declines in the total number of crappies harvested often outweighed the benefits to size structure when CM was 40% or higher. When crappie growth was fast (reaching 254 mm in less than 3 years) and CM was low (30%), size limits were most effective in balancing increases in yield and size structure against declines in the total number of crappies harvested. The variability in predicted size-limit responses observed among Tennessee reservoirs suggests that using a categorical approach to applying size limits to crappie fisheries within a state or region would likely be a more effective management strategy than implementing a single, areawide regulation.

  16. Large size space construction for space exploitation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  17. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    PubMed

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  18. Respiration in heterotrophic unicellular eukaryotic organisms.

    PubMed

    Fenchel, Tom

    2014-08-01

    Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. The Dynamical Imprint of Lost Protoplanets on the Trans-Neptunian Populations, and Limits on the Primordial Size Distribution of Trans-Neptunian Objects at Pluto and Larger Sizes.

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew Brian; Dawson, Rebekah

    2018-04-01

    Planet formation remains a poorly understood process, in part because of our limited access to the intermediate phases of planetesimal and protoplanet growth. Today, the vast majority of the accessible remaining planetesimals and protoplanets reside within the Hot Trans-Neptunian Object population. This population has been depleted by 99% - 99.9% over the course of the Solar system's history, and as such the present day size-number distribution may be incomplete at the large size end. We show that such lost protoplanets would have left signatures in the dynamics of the present-day Trans-Neptunian Populations, and their primordial number can thus be statistically limited by considering the survival of ultra-wide binary TNOs, the Cold Classical Kuiper belt, and the resonant populations. We compare those limits to the predicted size-number distribution of various planetesimal and proto-planet growth models.

  20. Constraints on large extra dimensions from the MINOS Experiment

    DOE PAGES

    Adamson, P.

    2016-12-16

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab’s Neutrinos at the Main Injector beam exposure of 10.56 ×10 20 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. Themore » ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μm at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Finally, stronger limits are obtained for nonvanishing masses.« less

  1. Constraints on large extra dimensions from the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2016-12-01

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab's Neutrinos at the Main Injector beam exposure of 10.56 ×1 020 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μ m at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for nonvanishing masses.

  2. The demographic consequences of growing older and bigger in oyster populations.

    PubMed

    Moore, Jacob L; Lipcius, Romuald N; Puckett, Brandon; Schreiber, Sebastian J

    2016-10-01

    Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions. © 2016 by the Ecological Society of America.

  3. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    PubMed

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  4. Male songbird indicates body size with low-pitched advertising songs.

    PubMed

    Hall, Michelle L; Kingma, Sjouke A; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis--that the pitch of vocalisations decreases with size among competing individuals--has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised.

  5. Male Songbird Indicates Body Size with Low-Pitched Advertising Songs

    PubMed Central

    Hall, Michelle L.; Kingma, Sjouke A.; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis – that the pitch of vocalisations decreases with size among competing individuals – has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised. PMID:23437221

  6. Population size effects in evolutionary dynamics on neutral networks and toy landscapes

    NASA Astrophysics Data System (ADS)

    Sumedha; Martin, Olivier C.; Peliti, Luca

    2007-05-01

    We study the dynamics of a population subject to selective pressures, evolving either on RNA neutral networks or on toy fitness landscapes. We discuss the spread and the neutrality of the population in the steady state. Different limits arise depending on whether selection or random drift is dominant. In the presence of strong drift we show that the observables depend mainly on Mμ, M being the population size and μ the mutation rate, while corrections to this scaling go as 1/M: such corrections can be quite large in the presence of selection if there are barriers in the fitness landscape. Also we find that the convergence to the large-Mμ limit is linear in 1/Mμ. Finally we introduce a protocol that minimizes drift; then observables scale like 1/M rather than 1/(Mμ), allowing one to determine the large-M limit more quickly when μ is small; furthermore the genotypic diversity increases from O(lnM) to O(M).

  7. Evergreen coniferous forests of the pacific northwest.

    PubMed

    Waring, R H; Franklin, J F

    1979-06-29

    The massive, evergreen coniferous forests in the Pacific Northwest are unique among temperate forest regions of the world. The region's forests escaped decimation during Pleistocene glaciation; they are now dominated by a few broadly distributed and well-adapted conifers that grow to large size and great age. Large trees with evergreen needle- or scale-like leaves have distinct advantages under the current climatic regime. Photosynthesis and nutrient uptake and storage are possible during the relatively warm, wet fall and winter months. High evaporative demand during the warm, dry summer reduces photosynthesis. Deciduous hardwoods are repeatedly at a disadvantage in competing with conifers in the regional climate. Their photosynthesis is predominantly limited to the growing season when evaporative demand is high and water is often limiting. Most nutrients needed are also less available at this time. The large size attained by conifers provides a buffer against environmental stress (especially for nutrients and moisture). The long duration between destructive fires and storms permits conifers to outgrow hardwoods with more limited stature and life spans.

  8. The Upper Limit of Energy Density of Nanoporous Materials Functionalized Liquid

    NASA Astrophysics Data System (ADS)

    Han, Aijie; Punyamurtula, Venkata K.; Kim, Taewan; Qiao, Yu

    2008-06-01

    In this article, we report the experimental result of energy dissipation of a mobil crystalline material (MCM) 41 in mercury. The MCM41 contains a large volume fraction of nanometer-sized pores. As the applied pressure is relatively high, the nanopore surfaces are exposed to mercury. Due to the large nanopore surface area and the large solid-liquid interfacial tension, the energy dissipation effectiveness of this system is ultrahigh, representing the upper limit that can be achieved by the pressure-induced infiltration technique.

  9. Classification of large-sized hyperspectral imagery using fast machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Junshi; Yokoya, Naoto; Iwasaki, Akira

    2017-07-01

    We present a framework of fast machine learning algorithms in the context of large-sized hyperspectral images classification from the theoretical to a practical viewpoint. In particular, we assess the performance of random forest (RF), rotation forest (RoF), and extreme learning machine (ELM) and the ensembles of RF and ELM. These classifiers are applied to two large-sized hyperspectral images and compared to the support vector machines. To give the quantitative analysis, we pay attention to comparing these methods when working with high input dimensions and a limited/sufficient training set. Moreover, other important issues such as the computational cost and robustness against the noise are also discussed.

  10. Nonrotating Convective Self-Aggregation in a Limited Area AGCM

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Putman, William M.

    2018-04-01

    We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.

  11. Large-roll growth of 25-inch hexagonal BN monolayer film for self-release buffer layer of free-standing GaN wafer

    NASA Astrophysics Data System (ADS)

    Wu, Chenping; Soomro, Abdul Majid; Sun, Feipeng; Wang, Huachun; Huang, Youyang; Wu, Jiejun; Liu, Chuan; Yang, Xiaodong; Gao, Na; Chen, Xiaohong; Kang, Junyong; Cai, Duanjun

    2016-10-01

    Hexagonal boron nitride (h-BN) is known as promising 2D material with a wide band-gap (~6 eV). However, the growth size of h-BN film is strongly limited by the size of reaction chamber. Here, we demonstrate the large-roll synthesis of monolayer and controllable sub-monolayer h-BN film on wound Cu foil by low pressure chemical vapor deposition (LPCVD) method. By winding the Cu foil substrate into mainspring shape supported by a multi-prong quartz fork, the reactor size limit could be overcome by extending the substrate area to a continuous 2D curl of plane inward. An extremely large-size monolayer h-BN film has been achieved over 25 inches in a 1.2” tube. The optical band gap of h-BN monolayer was determined to be 6.0 eV. The h-BN film was uniformly transferred onto 2” GaN or 4” Si wafer surfaces as a release buffer layer. By HVPE method, overgrowth of thick GaN wafer over 200 μm has been achieved free of residual strain, which could provide high quality homo-epitaxial substrate.

  12. When bigger is not better: intraspecific competition for pollination increases with population size in invasive milkweeds.

    PubMed

    Ward, Megan; Johnson, Steven D; Zalucki, Myron P

    2013-04-01

    One of the essential requirements for an introduced plant species to become invasive is an ability to reproduce outside the native range, particularly when initial populations are small. If a reproductive Allee effect is operating, plants in small populations will have reduced reproductive success relative to plants in larger populations. Alternatively, if plants in small populations experience less competition for pollination than those in large populations, they may actually have higher levels of reproductive success than plants in large populations. To resolve this uncertainty, we investigated how the per capita fecundity of plants was affected by population size in three invasive milkweed species. Field surveys of seed production in natural populations of different sizes but similar densities were conducted for three pollinator-dependent invasive species, namely Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus. Additionally, supplemental hand-pollinations were performed in small and large populations in order to determine whether reproductive output was limited by pollinator activity in these populations. Reproductive Allee effects were not detected in any of the study species. Instead, plants in small populations exhibited remarkably high levels of reproductive output compared to those in large populations. Increased fruit production following supplemental hand-pollinations suggested that the lower reproductive output of naturally pollinated plants in large populations is a consequence of pollen limitation rather than limitation due to abiotic resources. This is consistent with increased intraspecific competition for pollination amongst plants in large populations. It is likely that the invasion of these milkweed species in Australia has been enhanced because plants in small founding populations experience less intraspecific competition for pollinators than those in large populations, and thus have the ability to produce copious amounts of seeds.

  13. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    PubMed Central

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  14. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution.

    PubMed

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-11-06

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution.

  15. Sea, soil, sky - Testing solar's limits

    NASA Astrophysics Data System (ADS)

    Hopkinson, J.

    1981-12-01

    The potentials and actualities of large scale biomass, ocean thermal, and satellite solar power systems are discussed. Biomass is an energy already on-line in installations ranging from home-sized wood-burning stoves to utility sized generators fueled by sawdust and forest residue. Uses of wheat straw, fast-growing trees such as eucalyptus and alder, and euphorbia as biofuels are examined, noting restrictions imposed by land use limitations and the necessity for genetic engineering for more suitable plants. Pyrolysis and thermochemical gasification of biomass to form gaseous, solid, and liquid fuels are explored, and mention is made of utility refuse and sewage incineration for power generation. OTEC, satellite solar power systems, and tidal generator plants are considered as promising for further investigation and perhaps useful in limited applications, while solar pond power plants require extremely large areas to be effective.

  16. 40 CFR Table 1a to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits HMIWI size Small Medium Large Averaging time 1 Methodfor demonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...

  17. Determinants of immediate price impacts at the trade level in an emerging order-driven market

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing

    2012-02-01

    Common wisdom argues that, in general, large trades cause large price changes, whereas small trades cause small price changes. However, for extremely large price changes, the trade size and news play a minor role, while liquidity (especially price gaps on the limit order book) is a more influential factor. Hence, there might be other factors influencing the immediate price impacts of trades. In this paper, through mechanical analysis of price variations before and after a trade of arbitrary size, we identify that the trade size, the bid-ask spread, the price gaps and the outstanding volumes at the bid and ask sides of the limit order book have an impact on the changes in prices. We propose two regression models to investigate the influence of these microscopic factors on the price impact of buyer-initiated partially filled trades, seller-initiated partially filled trades, buyer-initiated filled trades and seller-initiated filled trades. We find that they have quantitatively similar explanatory powers and these factors can account for up to 44% of the price impacts. Large trade sizes, wide bid-ask spreads, high liquidity at the same side and low liquidity at the opposite side will cause a large price impact. We also find that the liquidity at the opposite side has a more influential impact than the liquidity at the same side. Our results shed new light on the determinants of immediate price impacts.

  18. Large Groups in the Boundary Waters Canoe Area - Their Numbers, Characteristics, and Impact

    Treesearch

    David W. Lime

    1972-01-01

    The impact of "large" parties in the BWCA is discussed in terms of their effect on the resource and on the experience of other visitors. The amount of use by large groups and the visitors most likely to be affected by a reduction in party size limit are described.

  19. Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions. Numerical Analysis in Continuous Time

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.

  20. Differential foraging preferences on seed size by rodents result in higher dispersal success of medium-sized seeds.

    PubMed

    Cao, Lin; Wang, Zhenyu; Yan, Chuan; Chen, Jin; Guo, Cong; Zhang, Zhibin

    2016-11-01

    Rodent preference for scatter-hoarding large seeds has been widely considered to favor the evolution of large seeds. Previous studies supporting this conclusion were primarily based on observations at earlier stages of seed dispersal, or on a limited sample of successfully established seedlings. Because seed dispersal comprises multiple dispersal stages, we hypothesized that differential foraging preference on seed size by animal dispersers at different dispersal stages would ultimately result in medium-sized seeds having the highest dispersal success rates. In this study, by tracking a large number of seeds for 5 yr, we investigated the effects of seed size on seed fates from seed removal to seedling establishment of a dominant plant Pittosporopsis kerrii (Icacinaceae) dispersed by scatter-hoarding rodents in tropical forest in southwest China. We found that small seeds had a lower survival rate at the early dispersal stage where more small seeds were predated at seed stations and after removal; large seeds had a lower survival rate at the late dispersal stage, more large seeds were recovered, predated after being cached, or larder-hoarded. Medium-sized seeds experienced the highest dispersal success. Our study suggests that differential foraging preferences by scatter-hoarding rodents at different stages of seed dispersal could result in conflicting selective pressures on seed size and higher dispersal success of medium-sized seeds. © 2016 by the Ecological Society of America.

  1. 40 CFR 62.14410 - Are there different emission limits for different locations and sizes of HMIWI?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious Waste... rural, small, medium, and large HMIWI. To determine the size category of your HMIWI, consult the...

  2. A large-sized bubbling appearance of the glomerular basement membrane in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis.

    PubMed

    Suga, Norihiro; Miura, Naoto; Uemura, Yuko; Nakamura, Toshinobu; Morita, Hiroyuki; Banno, Shogo; Imai, Hirokazu

    2011-12-01

    We report an unusual pathological finding, a large-sized bubbling appearance of the glomerular basement membrane (GBM), in a patient with pulmonary limited AL amyloidosis and a past history of lupus nephritis. The first renal biopsy specimen from 10 years ago, when systemic lupus erythematosus was diagnosed, demonstrated mild mesangial proliferation and subepithelial deposits (WHO classification: III + V). Light microscopy of the current biopsy using periodic acid methenamine silver (PAMS) stain demonstrated a large-sized bubbling appearance of the GBM; however, very weak immunoglobulin and complement deposition was observed in immunofluorescence studies. Routine electron microscopy demonstrated partial subendothelial expansion with electron-lucent materials, but no electron-dense deposits or amyloid fibrils. Electron microscopy with PAMS stain revealed electron-lucent endothelial scalloping, including some cellular components and microspheres in the GBM; however, it is not clear if these materials are derived from endothelial cells. One possibility is that these unique findings represent a recovery phase of lupus membranous nephritis; another is that these findings correspond to a new disease entity.

  3. Hysteretic transitions in the Kuramoto model with inertia.

    PubMed

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  4. Low-cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, large-aperture optical receivers are required to form an affordable optical ground receiver network for laser communications. Among the ground receiver station's multiple subsystems, here, we only discuss the ongoing research activities aimed at reducing the cost of the large-size optics on the receiver. Experimental results of two different approaches for fabricating low-cost mirrors of wavefront quality on the order of 100-200X the diffraction limit are described. Laboratory-level effort are underway to improve the surface figure to better than 20X the diffraction limit.

  5. The limited contribution of large trees to annual biomass production in an old-growth tropical forest.

    PubMed

    Ligot, Gauthier; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis-Yaoba; Morin, Xavier; Bauwens, Sébastien; Baya, Fidele; Brostaux, Yves; Doucet, Jean-Louis; Fayolle, Adeline

    2018-04-16

    Although the importance of large trees regarding biodiversity and carbon stock in old-growth forests is undeniable, their annual contribution to biomass production and carbon uptake remains poorly studied at the stand level. To clarify the role of large trees in biomass production, we used data of tree growth, mortality, and recruitment monitored during 20 yr in 10 4-ha plots in a species-rich tropical forest (Central African Republic). Using a random block design, three different silvicultural treatments, control, logged, and logged + thinned, were applied in the 10 plots. Annual biomass gains and losses were analyzed in relation to the relative biomass abundance of large trees and by tree size classes using a spatial bootstrap procedure. Although large trees had high individual growth rates and constituted a substantial amount of biomass, stand-level biomass production decreased with the abundance of large trees in all treatments and plots. The contribution of large trees to annual stand-level biomass production appeared limited in comparison to that of small trees. This pattern did not only originate from differences in abundance of small vs. large trees or differences in initial biomass stocks among tree size classes, but also from a reduced relative growth rate of large trees and a relatively constant mortality rate among tree size classes. In a context in which large trees are increasingly gaining attention as being a valuable and a key structural characteristic of natural forests, the present study brought key insights to better gauge the relatively limited role of large trees in annual stand-level biomass production. In terms of carbon uptake, these results suggest, as already demonstrated, a low net carbon uptake of old-growth forests in comparison to that of logged forests. Tropical forests that reach a successional stage with relatively high density of large trees progressively cease to be carbon sinks as large trees contribute sparsely or even negatively to the carbon uptake at the stand level. © 2018 by the Ecological Society of America.

  6. Coalescence computations for large samples drawn from populations of time-varying sizes

    PubMed Central

    Polanski, Andrzej; Szczesna, Agnieszka; Garbulowski, Mateusz; Kimmel, Marek

    2017-01-01

    We present new results concerning probability distributions of times in the coalescence tree and expected allele frequencies for coalescent with large sample size. The obtained results are based on computational methodologies, which involve combining coalescence time scale changes with techniques of integral transformations and using analytical formulae for infinite products. We show applications of the proposed methodologies for computing probability distributions of times in the coalescence tree and their limits, for evaluation of accuracy of approximate expressions for times in the coalescence tree and expected allele frequencies, and for analysis of large human mitochondrial DNA dataset. PMID:28170404

  7. On the shape of giant soap bubbles.

    PubMed

    Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe

    2017-03-07

    We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.

  8. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  9. Group Size Effect on Cooperation in One-Shot Social Dilemmas II: Curvilinear Effect.

    PubMed

    Capraro, Valerio; Barcelo, Hélène

    2015-01-01

    In a world in which many pressing global issues require large scale cooperation, understanding the group size effect on cooperative behavior is a topic of central importance. Yet, the nature of this effect remains largely unknown, with lab experiments insisting that it is either positive or negative or null, and field experiments suggesting that it is instead curvilinear. Here we shed light on this apparent contradiction by considering a novel class of public goods games inspired to the realistic scenario in which the natural output limits of the public good imply that the benefit of cooperation increases fast for early contributions and then decelerates. We report on a large lab experiment providing evidence that, in this case, group size has a curvilinear effect on cooperation, according to which intermediate-size groups cooperate more than smaller groups and more than larger groups. In doing so, our findings help fill the gap between lab experiments and field experiments and suggest concrete ways to promote large scale cooperation among people.

  10. The distance between Mars and Venus: measuring global sex differences in personality.

    PubMed

    Del Giudice, Marco; Booth, Tom; Irwing, Paul

    2012-01-01

    Sex differences in personality are believed to be comparatively small. However, research in this area has suffered from significant methodological limitations. We advance a set of guidelines for overcoming those limitations: (a) measure personality with a higher resolution than that afforded by the Big Five; (b) estimate sex differences on latent factors; and (c) assess global sex differences with multivariate effect sizes. We then apply these guidelines to a large, representative adult sample, and obtain what is presently the best estimate of global sex differences in personality. Personality measures were obtained from a large US sample (N = 10,261) with the 16PF Questionnaire. Multigroup latent variable modeling was used to estimate sex differences on individual personality dimensions, which were then aggregated to yield a multivariate effect size (Mahalanobis D). We found a global effect size D = 2.71, corresponding to an overlap of only 10% between the male and female distributions. Even excluding the factor showing the largest univariate ES, the global effect size was D = 1.71 (24% overlap). These are extremely large differences by psychological standards. The idea that there are only minor differences between the personality profiles of males and females should be rejected as based on inadequate methodology.

  11. The Distance Between Mars and Venus: Measuring Global Sex Differences in Personality

    PubMed Central

    Del Giudice, Marco; Booth, Tom; Irwing, Paul

    2012-01-01

    Background Sex differences in personality are believed to be comparatively small. However, research in this area has suffered from significant methodological limitations. We advance a set of guidelines for overcoming those limitations: (a) measure personality with a higher resolution than that afforded by the Big Five; (b) estimate sex differences on latent factors; and (c) assess global sex differences with multivariate effect sizes. We then apply these guidelines to a large, representative adult sample, and obtain what is presently the best estimate of global sex differences in personality. Methodology/Principal Findings Personality measures were obtained from a large US sample (N = 10,261) with the 16PF Questionnaire. Multigroup latent variable modeling was used to estimate sex differences on individual personality dimensions, which were then aggregated to yield a multivariate effect size (Mahalanobis D). We found a global effect size D = 2.71, corresponding to an overlap of only 10% between the male and female distributions. Even excluding the factor showing the largest univariate ES, the global effect size was D = 1.71 (24% overlap). These are extremely large differences by psychological standards. Significance The idea that there are only minor differences between the personality profiles of males and females should be rejected as based on inadequate methodology. PMID:22238596

  12. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.

    2011-09-01

    Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.

  13. The Effect of Viewing Eccentricity on Enumeration

    PubMed Central

    Palomares, Melanie; Smith, Paul R.; Pitts, Carole Holley; Carter, Breana M.

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities. PMID:21695212

  14. The effect of viewing eccentricity on enumeration.

    PubMed

    Palomares, Melanie; Smith, Paul R; Pitts, Carole Holley; Carter, Breana M

    2011-01-01

    Visual acuity and contrast sensitivity progressively diminish with increasing viewing eccentricity. Here we evaluated how visual enumeration is affected by visual eccentricity, and whether subitizing capacity, the accurate enumeration of a small number (∼3) of items, decreases with more eccentric viewing. Participants enumerated gratings whose (1) stimulus size was constant across eccentricity, and (2) whose stimulus size scaled by a cortical magnification factor across eccentricity. While we found that enumeration accuracy and precision decreased with increasing eccentricity, cortical magnification scaling of size neutralized the deleterious effects of increasing eccentricity. We found that size scaling did not affect subitizing capacities, which were nearly constant across all eccentricities. We also found that size scaling modulated the variation coefficients, a normalized metric of enumeration precision, defined as the standard deviation divided by the mean response. Our results show that the inaccuracy and imprecision associated with increasing viewing eccentricity is due to limitations in spatial resolution. Moreover, our results also support the notion that the precise number system is restricted to small numerosities (represented by the subitizing limit), while the approximate number system extends across both small and large numerosities (indexed by variation coefficients) at large eccentricities.

  15. Ciguatoxic Potential of Brown-Marbled Grouper in Relation to Fish Size and Geographical Origin

    PubMed Central

    Chan, Thomas Y. K.

    2015-01-01

    To determine the ciguatoxic potential of brown-marbled grouper (Epinephelus fuscoguttatus) in relation to fish size and geographical origin, this review systematically analyzed: 1) reports of large ciguatera outbreaks and outbreaks with description of the fish size; 2) Pacific ciguatoxin (P-CTX) profiles and levels and mouse bioassay results in fish samples from ciguatera incidents; 3) P-CTX profiles and levels and risk of toxicity in relation to fish size and origin; 4) regulatory measures restricting fish trade and fish size preference of the consumers. P-CTX levels in flesh and size dependency of toxicity indicate that the risk of ciguatera after eating E. fuscoguttatus varies with its geographical origin. For a large-sized grouper, it is necessary to establish legal size limits and control measures to protect public health and prevent overfishing. More risk assessment studies are required for E. fuscoguttatus to determine the size threshold above which the risk of ciguatera significantly increases. PMID:26324735

  16. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  17. Comparison of Fixed Diameter-Limit and Selection Cutting in Northern Conifers

    Treesearch

    Laura S. Kenefic; Paul E. Sendak; John C. Brissette

    2005-01-01

    Diameter-limit cutting is a common type of harvest in which all merchantable trees above specific size thresholds are removed. Despite a long history of application, controlled experiments of these harvests are rare and the cumulative effects of repeated diameter-limit cuts are largely unknown. The Penobscot Experimental Forest in Maine is the location of a long-term...

  18. Modification of the fault logic circuit of a high-energy linear accelerator to accommodate selectively coded, large-field wedges.

    PubMed

    Miller, R W; van de Geijn, J

    1987-01-01

    A modification to the fault logic circuit that controls the collimator (COLL) fault is described. This modification permits the use of large-field wedges by adding an additional input into the reference voltage that determines the fault condition. The resistor controlling the amount of additional voltage is carried on board each wedge, within the wedge plug. This allows each wedge to determine its own, individual field size limit. Additionally, if no coding resistor is provided, the factory-supplied reference voltage is used, which sets the maximum allowable field size to 15 cm. This permits the use of factory-supplied wedges in conjunction with selected, large-field wedges, allowing proper sensing of the field size maximum in all conditions.

  19. Globule-size distribution in injectable 20% lipid emulsions: Compliance with USP requirements.

    PubMed

    Driscoll, David F

    2007-10-01

    The compliance of injectable 20% lipid emulsions with the globule-size limits in chapter 729 of the U.S. Pharmacopeia (USP) was examined. As established in chapter 729, dynamic light scattering was applied to determine mean droplet diameter (MDD), with an upper limit of 500 nm. Light obscuration was used to determine the size of fat globules found in the large-diameter tail, expressed as the volume-weighted percent fat exceeding 5 microm (PFAT(5)), with an upper limit of 0.05%. Compliance of seven different emulsions, six of which were stored in plastic bags, with USP limits was assessed. To avoid reaching coincidence limits during the application of method II from overly concentrated emulsion samples, a variable dilution scheme was used to optimize the globule-size measurements for each emulsion. One-way analysis of variance of globule-size distribution (GSD) data was conducted if any results of method I or II exceeded the respective upper limits. Most injectable lipid emulsions complied with limits established by USP chapter 729, with the exception of those of one manufacturer, which failed limits as proposed for to meet the PFAT(5) three of the emulsions tested. In contrast, all others studied (one packaged in glass and three packaged in plastic) met both criteria. Among seven injectable lipid emulsions tested for GSD, all met USP chapter 729 MDD requirements and three, all from the same manufacturer and packaged in plastic, did not meet PFAT(5) requirements.

  20. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp ( Carassius carassius L.)

    NASA Astrophysics Data System (ADS)

    Vornanen, Matti; Asikainen, Juha; Haverinen, Jaakko

    2011-03-01

    Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp ( Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish ( p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish ( p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.

  1. Large-Scale High-Resolution Cylinder Wake Measurements in a Wind Tunnel using Tomographic PIV with sCMOS Cameras

    NASA Astrophysics Data System (ADS)

    Michaelis, Dirk; Schroeder, Andreas

    2012-11-01

    Tomographic PIV has triggered vivid activity, reflected in a large number of publications, covering both: development of the technique and a wide range of fluid dynamic experiments. Maturing of tomo PIV allows the application in medium to large scale wind tunnels. Limiting factor for wind tunnel application is the small size of the measurement volume, being typically about of 50 × 50 × 15 mm3. Aim of this study is the optimization towards large measurement volumes and high spatial resolution performing cylinder wake measurements in a 1 meter wind tunnel. Main limiting factors for the volume size are the laser power and the camera sensitivity. So, a high power laser with 800 mJ per pulse is used together with low noise sCMOS cameras, mounted in forward scattering direction to gain intensity due to the Mie scattering characteristics. A mirror is used to bounce the light back, to have all cameras in forward scattering. Achievable particle density is growing with number of cameras, so eight cameras are used for a high spatial resolution. Optimizations lead to volume size of 230 × 200 × 52 mm3 = 2392 cm3, more than 60 times larger than previously. 281 × 323 × 68 vectors are calculated with spacing of 0.76 mm. The achieved measurement volume size and spatial resolution is regarded as a major step forward in the application of tomo PIV in wind tunnels. Supported by EU-project: no. 265695.

  2. Large grain instruction and phonological awareness skill influence rime sensitivity, processing speed, and early decoding skill in adult L2 learners

    PubMed Central

    Brennan, Christine; Booth, James R.

    2016-01-01

    Linguistic knowledge, cognitive ability, and instruction influence how adults acquire a second orthography yet it remains unclear how different forms of instruction influence grain size sensitivity and subsequent decoding skill and speed. Thirty-seven monolingual, literate English-speaking adults were trained on a novel artificial orthography given initial instruction that directed attention to either large or small grain size units (i.e., words or letters). We examined how initial instruction influenced processing speed (i.e., reaction time (RT)) and sensitivity to different orthographic grain sizes (i.e., rimes and letters). Directing attention to large grain size units during initial instruction resulted in higher accuracy for rimes, whereas directing attention to smaller grain size units resulted in slower RTs across all measures. Additionally, phonological awareness skill modulated early learning effects, compensating for the limitations of the initial instruction provided. Collectively, these findings suggest that when adults are learning to read a second orthography, consideration should be given to how initial instruction directs attention to different grain sizes and inherent phonological awareness ability. PMID:27829705

  3. Reserve size and fragmentation alter community assembly, diversity, and dynamics.

    PubMed

    Lasky, Jesse R; Keitt, Timothy H

    2013-11-01

    Researchers have disputed whether a single large habitat reserve will support more species than many small reserves. However, relatively little is known from a theoretical perspective about how reserve size affects competitive communities structured by spatial abiotic gradients. We investigate how reserve size affects theoretical communities whose assembly is governed by dispersal limitation, abiotic niche differentiation, and source-sink dynamics. Simulations were conducted with varying scales of dispersal across landscapes with variable environmental spatial autocorrelation. Landscapes were inhabited by simulated trees with seedling and adult stages. For a fixed total area in reserves, we found that small reserve systems increased the distance between environments dominated by different species, diminishing the effects of source-sink dynamics. As reserve size decreased, environmental limitations to community assembly became stronger, α species richness decreased, and γ richness increased. When dispersal occurred across short distances, a large reserve strategy caused greater stochastic community variation, greater α richness, and lower γ richness than in small reserve systems. We found that reserve size variation trades off between preserving different aspects of natural communities, including α diversity versus γ diversity. Optimal reserve size will depend on the importance of source-sink dynamics and the value placed on different characteristics of natural communities. Anthropogenic changes to the size and separation of remnant habitats can have far-reaching effects on community structure and assembly.

  4. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  5. Effect of size of unfed fry at release on survival and growth of juvenile steelhead in streams and a hatchery (Study sites: Dworshak Hatchery, Silver Creek, and Twenty-Mile Creek; Stock: Dworshak hatchery; Year classes: 1996 and 1999): Chapter 7

    USGS Publications Warehouse

    Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Stenberg, Karl D.

    2012-01-01

    We tested whether differences in size of unfed fry at release affected survival and growth of juvenile steelhead Oncorhynchus mykiss in hatchery ponds and streams. Differences in fry size were produced by selecting and spawning females that differed in the mean size of their eggs. Experiments were initiated in 1996 and 1999 with hatchery steelhead returning to the Clearwater River, Idaho. Fry size groups were small (mean fork length=26.7 mm, mean weight=0.149 g) and large (28.1 mm, 0.197 g) in 1996 and small (27.5 mm, 0.159 g), medium (28.2 mm, 0.190 g), and large (28.9 mm, 0.201 g) in 1999. Survival in the hatchery to near the end of the standard one year rearing period and in streams to late summer, three months after release, was higher for the large than for the small group in 1996 but was similar among groups in 1999. Survival in streams to age - 1 appeared to show the same pattern (large>small in 1996; no difference in 1999), but differences among fry size groups in emigration as well as mortality may have been involved. The inconsistency between years may have resulted because some 1996 female parents of the small group had exceptionally small eggs and were a year younger than the other 1996 females and all 1999 females. Growth in the hatchery was similar among groups in both years whereas growth in streams was faster for the large than for the small group in both years and intermediate for the medium group in 1999. Growth in streams appeared to be limited by food availability. Initially large fry probably out - competed smaller fry for limited food; however, we found no evidence that dispersal from release sites or emigration from streams was caused by competitive displacement of small by larger fish. 

  6. Compact high-resolution spectrographs for large and extremely large telescopes: using the diffraction limit

    NASA Astrophysics Data System (ADS)

    Robertson, J. Gordon; Bland-Hawthorn, Joss

    2012-09-01

    As telescopes get larger, the size of a seeing-limited spectrograph for a given resolving power becomes larger also, and for ELTs the size will be so great that high resolution instruments of simple design will be infeasible. Solutions include adaptive optics (but not providing full correction for short wavelengths) or image slicers (which give feasible but still large instruments). Here we develop the solution proposed by Bland-Hawthorn and Horton: the use of diffraction-limited spectrographs which are compact even for high resolving power. Their use is made possible by the photonic lantern, which splits a multi-mode optical fiber into a number of single-mode fibers. We describe preliminary designs for such spectrographs, at a resolving power of R ~ 50,000. While they are small and use relatively simple optics, the challenges are to accommodate the longest possible fiber slit (hence maximum number of single-mode fibers in one spectrograph) and to accept the beam from each fiber at a focal ratio considerably faster than for most spectrograph collimators, while maintaining diffraction-limited imaging quality. It is possible to obtain excellent performance despite these challenges. We also briefly consider the number of such spectrographs required, which can be reduced by full or partial adaptive optics correction, and/or moving towards longer wavelengths.

  7. Convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks

    NASA Astrophysics Data System (ADS)

    Long, Yin; Zhang, Xiao-Jun; Wang, Kui

    2018-05-01

    In this paper, convergence and approximate calculation of average degree under different network sizes for decreasing random birth-and-death networks (RBDNs) are studied. First, we find and demonstrate that the average degree is convergent in the form of power law. Meanwhile, we discover that the ratios of the back items to front items of convergent reminder are independent of network link number for large network size, and we theoretically prove that the limit of the ratio is a constant. Moreover, since it is difficult to calculate the analytical solution of the average degree for large network sizes, we adopt numerical method to obtain approximate expression of the average degree to approximate its analytical solution. Finally, simulations are presented to verify our theoretical results.

  8. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  9. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates

    PubMed Central

    Codron, Daryl; Carbone, Chris; Müller, Dennis W. H.; Clauss, Marcus

    2012-01-01

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals—the other dominant vertebrate group since the Mesozoic—have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism—based on an understanding of different ecological and evolutionary constraints across vertebrate groups—that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous–Tertiary (K–T) boundary, and how post-K–T mammals were able to diversify into larger size categories. PMID:22513279

  10. Group Therapy with Multiple Therapists in A Large Group.

    ERIC Educational Resources Information Center

    Herschleman, Philip; Freundlich, David

    The utilization of multiple therapists in large group therapy meetings has been found to be a significant improvement over the traditional ward meeting or patient-staff conference. The initially limited goals of reducing ward tension and acting out by means of patients ventilation were surpassed. Despite the size of the meetings it was often…

  11. Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes

    NASA Astrophysics Data System (ADS)

    Szabó, Péter; Ispánovity, Péter Dusán; Groma, István

    2015-02-01

    The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.

  12. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  13. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  14. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    PubMed

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  15. Driver gene classification reveals a substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins.

    PubMed

    Waks, Zeev; Weissbrod, Omer; Carmeli, Boaz; Norel, Raquel; Utro, Filippo; Goldschmidt, Yaara

    2016-12-23

    Compiling a comprehensive list of cancer driver genes is imperative for oncology diagnostics and drug development. While driver genes are typically discovered by analysis of tumor genomes, infrequently mutated driver genes often evade detection due to limited sample sizes. Here, we address sample size limitations by integrating tumor genomics data with a wide spectrum of gene-specific properties to search for rare drivers, functionally classify them, and detect features characteristic of driver genes. We show that our approach, CAnceR geNe similarity-based Annotator and Finder (CARNAF), enables detection of potentially novel drivers that eluded over a dozen pan-cancer/multi-tumor type studies. In particular, feature analysis reveals a highly concentrated pool of known and putative tumor suppressors among the <1% of genes that encode very large, chromatin-regulating proteins. Thus, our study highlights the need for deeper characterization of very large, epigenetic regulators in the context of cancer causality.

  16. A Variable Step-Size Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response

    NASA Astrophysics Data System (ADS)

    Liu, Ligang; Fukumoto, Masahiro; Saiki, Sachio; Zhang, Shiyong

    2009-12-01

    Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA) is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.

  17. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; hide

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  18. Exploiting Glide Symmetry in Planar EBG Structures

    NASA Astrophysics Data System (ADS)

    Mouris, Boules A.; Quevedo-Teruel, Oscar; Thobaben, Ragnar

    2018-02-01

    Periodic structures such as electromagnetic band gap (EBG) structures can be used to prevent the propagation of electromagnetic waves within a certain frequency range known as the stop band. One of the main limitations of using EBG structures at low frequencies is their relatively large size. In this paper, we investigate the possibility of using glide symmetry in planar EBG structures to reduce their size. Simulated results demonstrate that exploiting glide symmetry in EBG structures can lead to size reduction.

  19. Electromagnetic Considerations for Planar Bolometer Arrays in the Single Mode Limit

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Chuss, David T.; Moseley, Samuel

    2006-01-01

    Filled arrays of planar bolometers are finding astronomical applications at wavelengths as long as several millimeters. In an effort to keep focal planes to a reasonable size while maintaining large numbers of detectors, a common strategy is to push these arrays to operate close to or at the single mode limit. Doing so introduces several new challenges that are not experienced in the multi-mode case of far-infrared detectors having similar pixel sizes. First, diffractive effects of the pixels themselves are no longer insignificant and will ultimately contribute to the resolution limit of the optical system in which they reside. We use the method of Withlngton et al. (2003) to model the polarized diffraction in this limit. Second, it is necessary to re-examine the coupling between the radiation and the absorbing element that is thermally connected to the bolometers. The small f-numbers that are often employed to make use of large focal planes makes backshort construction problematic. We introduce a new strategy to increase detector efficiency that uses an antireflective layer on the front side of the detector array. In addition, typical methods for stray light control that rely on multiple reflections in a lossy medium fail due to physical size constraints. For this application, we find that resonant absorbers are a more effective strategy that can be implemented in the space available.

  20. Small-size pedestrian detection in large scene based on fast R-CNN

    NASA Astrophysics Data System (ADS)

    Wang, Shengke; Yang, Na; Duan, Lianghua; Liu, Lu; Dong, Junyu

    2018-04-01

    Pedestrian detection is a canonical sub-problem of object detection with high demand during recent years. Although recent deep learning object detectors such as Fast/Faster R-CNN have shown excellent performance for general object detection, they have limited success for small size pedestrian detection in large-view scene. We study that the insufficient resolution of feature maps lead to the unsatisfactory accuracy when handling small instances. In this paper, we investigate issues involving Fast R-CNN for pedestrian detection. Driven by the observations, we propose a very simple but effective baseline for pedestrian detection based on Fast R-CNN, employing the DPM detector to generate proposals for accuracy, and training a fast R-CNN style network to jointly optimize small size pedestrian detection with skip connection concatenating feature from different layers to solving coarseness of feature maps. And the accuracy is improved in our research for small size pedestrian detection in the real large scene.

  1. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  2. Adopting a Blended Learning Approach: Challenges Encountered and Lessons Learned in an Action Research Study

    ERIC Educational Resources Information Center

    Kenney, Jane; Newcombe, Ellen

    2011-01-01

    Adopting a new teaching approach is often a daunting task especially if one is an early adopter in a limited-resource environment. This article describes the challenges encountered and the strategies used in pilot testing a blended instructional method in a large size class within the college of education at a medium-sized university. The main…

  3. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers.

    PubMed

    Ebbens, Stephen; Tu, Mei-Hsien; Howse, Jonathan R; Golestanian, Ramin

    2012-02-01

    The propulsion velocity of active colloids that asymmetrically catalyze a chemical reaction is probed experimentally as a function of their sizes. It is found that over the experimentally accessible range, the velocity decays as a function of size, with a rate that is compatible with an inverse size dependence. A diffusion-reaction model for the concentrations of the fuel and waste molecules that takes into account a two-step process for the asymmetric catalytic activity on the surface of the colloid is shown to predict a similar behavior for colloids at the large size limit, with a saturation for smaller sizes. © 2012 American Physical Society

  4. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    PubMed

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  5. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis.

    PubMed

    Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E

    2018-05-30

    Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.

  6. Size structuring and allometric scaling relationships in coral reef fishes.

    PubMed

    Dunic, Jillian C; Baum, Julia K

    2017-05-01

    Temperate marine fish communities are often size-structured, with predators consuming increasingly larger prey and feeding at higher trophic levels as they grow. Gape limitation and ontogenetic diet shifts are key mechanisms by which size structuring arises in these communities. Little is known, however, about size structuring in coral reef fishes. Here, we aimed to advance understanding of size structuring in coral reef food webs by examining the evidence for these mechanisms in two groups of reef predators. Given the diversity of feeding modes amongst coral reef fishes, we also compared gape size-body size allometric relationships across functional groups to determine whether they are reliable indicators of size structuring. We used gut content analysis and quantile regressions of predator size-prey size relationships to test for evidence of gape limitation and ontogenetic niche shifts in reef piscivores (n = 13 species) and benthic invertivores (n = 3 species). We then estimated gape size-body size allometric scaling coefficients for 21 different species from four functional groups, including herbivores/detritivores, which are not expected to be gape-limited. We found evidence of both mechanisms for size structuring in coral reef piscivores, with maximum prey size scaling positively with predator body size, and ontogenetic diet shifts including prey type and expansion of prey size. There was, however, little evidence of size structuring in benthic invertivores. Across species and functional groups, absolute and relative gape sizes were largest in piscivores as expected, but gape size-body size scaling relationships were not indicative of size structuring. Instead, relative gape sizes and mouth morphologies may be better indicators. Our results provide evidence that coral reef piscivores are size-structured and that gape limitation and ontogenetic niche shifts are the mechanisms from which this structure arises. Although gape allometry was not indicative of size structuring, it may have implications for ecosystem function: positively allometric gape size-body size scaling relationships in herbivores/detritivores suggests that loss of large-bodied individuals of these species will have a disproportionately negative impact on reef grazing pressure. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    PubMed

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  8. Body size and predatory performance in wolves: is bigger better?

    PubMed

    MacNulty, Daniel R; Smith, Douglas W; Mech, L David; Eberly, Lynn E

    2009-05-01

    1. Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle.

  9. Body size and predatory performance in wolves: Is bigger better?

    USGS Publications Warehouse

    MacNulty, D.R.; Smith, D.W.; Mech, L.D.; Eberly, L.E.

    2009-01-01

    Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle. ?? 2009 British Ecological Society.

  10. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  11. Conifer DBMagic: A database housing multiple de novo transcriptome assemblies for twelve diverse conifer species

    Treesearch

    W. Walter Lorenz; Savavanaraj Ayyampalayam; John M. Bordeaux; Glenn T. Howe; Kathleen D. Jermstad; David B. Neale; Deborah L. Rogers; Jeffrey F.D. Dean

    2012-01-01

    Conifers comprise an ancient and widespread plant lineage of enormous commercial and ecological value. However, compared to model woody angiosperms, such as Populus and Eucalyptus, our understanding of conifers remains quite limited at a genomic level. Large genome sizes (10,000-40,000 Mbp) and large amounts of repetitive DNA...

  12. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  13. Colony Size Affects the Efficacy of Bait Containing Chlorfluazuron Against the Fungus-Growing Termite Macrotermes gilvus (Blattodea: Termitidae).

    PubMed

    Lee, Ching-Chen; Neoh, Kok-Boon; Lee, Chow-Yang

    2014-12-01

    The efficacy of chitin synthesis inhibitors (CSIs) against fungus-growing termites is known to vary. In this study, 0.1% chlorfluazuron (CFZ) cellulose bait was tested against medium and large field colonies of Macrotermes gilvus (Hagen). The termite mounds were dissected to determine the health of the colony. Individual termites (i.e., workers and larvae) and fungus combs were subjected to gas chromatography-mass spectrometry (GC-MS) analysis to detect the presence of CFZ. In this study, 540.0 ± 25.8 g (or equivalent to 540.0 ± 25.8 mg active ingredient) and 680.0 ± 49.0 g (680.0 ± 49.0 mg active ingredient) of bait matrix were removed by the medium- and large-sized colonies, respectively, after baiting. All treated medium-sized colonies were moribund. The dead termites were scattered in the mound, larvae were absent, population size had decreased by 90%, and the queens appeared unhealthy. In contrast, no or limited effects were found in large-sized colonies. Only trace amounts of CFZ were detected in workers, larvae, and fungus combs, and the population of large-sized colonies had declined by only up to 40%. This might be owing to the presence of large amount of basidiomycete fungus and a drastic decrease of CFZ content per unit fungus comb (a main food source of larvae) in the large-sized colonies, and hence reduced the toxic effect and longer time is required to accumulate the lethal dose in larvae. Nevertheless, we do not deny the possibility of CSI bait eliminating or suppressing the higher termite if the test colonies could pick up adequate lethal dose by installing more bait stations and prolonging the baiting period. © 2014 Entomological Society of America.

  14. Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-01-01

    Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.

  15. Search for Large Presolar Silicate Grains in the QUE 99177 CR Chondrite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.

    2012-01-01

    Silicates are among the most abundant pre-solar grain type, and their diverse chemical and isotopic compos-tions preserve detailed constraints on their stellar origins, condensation conditions, and nucleosynthetic and interstellar processes. Yet, owing to their small sizes, relatively few grains have been measured for isotopic compositions besides O and Si, and their mineralogy is poorly characterized. The average grain size (approx 270 nm) limits the number of analyses that can be conducted on a given grain, and their identification among solar system silicates introduces contaminating signal. These difficulties can be overcome by identifying large presolar silicate grains. However, such grains are very rare and only two approx 1 micron grains have been discovered. We are conducting a dedicated search for large presolar silicates in size-separated QUE 99177 matrix material. This primitive meteorite has among the highest abundance of presolar silicates

  16. Crater size estimates for large-body terrestrial impact

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert M.; Housen, Kevin R.

    1988-01-01

    Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.

  17. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  18. Method of Lines Transpose an Implicit Vlasov Maxwell Solver for Plasmas

    DTIC Science & Technology

    2015-04-17

    boundary crossings should be rare. Numerical results for the Bennett pinch are given in Figure 9. In order to resolve large gradients near the center of the...contributing to the large error at the center of the beam due to large gradients there) and with the finite beam cut-off radius and the outflow boundary...usable time step size can be limited by the numerical accuracy of the method when there are large gradients (high-frequency content) in the solution. We

  19. The Physics of Protoplanetary Dust Agglomerates. X. High-velocity Collisions between Small and Large Dust Agglomerates as a Growth Barrier

    NASA Astrophysics Data System (ADS)

    Schräpler, Rainer; Blum, Jürgen; Krijt, Sebastiaan; Raabe, Jan-Hendrik

    2018-01-01

    In a protoplanetary disk, dust aggregates in the μm to mm size range possess mean collision velocities of 10–60 m s‑1 with respect to dm- to m-sized bodies. We performed laboratory collision experiments to explore this parameter regime and found a size- and velocity-dependent threshold between erosion and growth. By using a local Monte Carlo coagulation calculation and along with a simple semi-analytical timescale approach, we show that erosion considerably limits particle growth in protoplanetary disks and leads to a steady-state dust-size distribution from μm- to dm-sized particles.

  20. Raise cutting diameters for increased returns

    Treesearch

    H. Clay Smith; G. R., Jr. Trimble; Paul S. DeBald

    1979-01-01

    Diameter-limit cutting is widely used to harvest logs in eastern hardwoods. Studies show that cutting limits are often set so low that they sacrifice financial returns. The value of lumber cut from logs is largely dependent on the diameter, grade, and tree species. As tree size increases so does the proportion of higher grade lumber, and this is reflected in improved...

  1. Garment sizes in perception of body size.

    PubMed

    Fan, Jintu; Newton, Edward; Lau, Lilian; Liu, Fu

    2003-06-01

    This paper reports an experimental investigation of the effect of garment size on perceived body size. The perceived body sizes of three Chinese men (thin, medium, and obese build) wearing different sizes of white T-shirts were assessed using Thompson and Gray's 1995 Nine-figural Scale in 1 (thinnest) to 9 (obese) grade and a newly-proposed method. Within the limit of commercially available T-shirt sizes, for thin and medium persons, perceived body sizes are bigger when wearing T-shirts of larger sizes. For an obese person, however, wearing a large size T-shirt tends to make him look thinner. The study also showed that the newly proposed comparative method is more reliable in comparing body size perception but without measuring the magnitude of the change in body-size grade. The figural scale and the comparative method can be complementary.

  2. Larger aftershocks happen farther away: nonseparability of magnitude and spatial distributions of aftershocks

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Shaw, Bruce E.

    2015-01-01

    Aftershocks may be driven by stress concentrations left by the main shock rupture or by elastic stress transfer to adjacent fault sections or strands. Aftershocks that occur within the initial rupture may be limited in size, because the scale of the stress concentrations should be smaller than the primary rupture itself. On the other hand, aftershocks that occur on adjacent fault segments outside the primary rupture may have no such size limitation. Here we use high-precision double-difference relocated earthquake catalogs to demonstrate that larger aftershocks occur farther away than smaller aftershocks, when measured from the centroid of early aftershock activity—a proxy for the initial rupture. Aftershocks as large as or larger than the initiating event nucleate almost exclusively in the outer regions of the aftershock zone. This observation is interpreted as a signature of elastic rebound in the earthquake catalog and can be used to improve forecasting of large aftershocks.

  3. The effects of surface finish and grain size on the strength of sintered silicon carbide

    NASA Technical Reports Server (NTRS)

    You, Y. H.; Kim, Y. W.; Lee, J. G.; Kim, C. H.

    1985-01-01

    The effects of surface treatment and microstructure, especially abnormal grain growth, on the strength of sintered SiC were studied. The surfaces of sintered SiC were treated with 400, 800 and 1200 grit diamond wheels. Grain growth was induced by increasing the sintering times at 2050 C. The beta to alpha transformation occurred during the sintering of beta-phase starting materials and was often accompanied by abnormal grain growth. The overall strength distributions were established using Weibull statistics. The strength of the sintered SiC is limited by extrinsic surface flaws in normal-sintered specimens. The finer the surface finish and grain size, the higher the strength. But the strength of abnormal sintering specimens is limited by the abnormally grown large tabular grains. The Weibull modulus increases with decreasing grain size and decreasing grit size for grinding.

  4. Learned perceptual associations influence visuomotor programming under limited conditions: kinematic consistency.

    PubMed

    Haffenden, Angela M; Goodale, Melvyn A

    2002-12-01

    Previous findings have suggested that visuomotor programming can make use of learned size information in experimental paradigms where movement kinematics are quite consistent from trial to trial. The present experiment was designed to test whether or not this conclusion could be generalized to a different manipulation of kinematic variability. As in previous work, an association was established between the size and colour of square blocks (e.g. red = large; yellow = small, or vice versa). Associating size and colour in this fashion has been shown to reliably alter the perceived size of two test blocks halfway in size between the large and small blocks: estimations of the test block matched in colour to the group of large blocks are smaller than estimations of the test block matched to the group of small blocks. Subjects grasped the blocks, and on other trials estimated the size of the blocks. These changes in perceived block size were incorporated into grip scaling only when movement kinematics were highly consistent from trial to trial; that is, when the blocks were presented in the same location on each trial. When the blocks were presented in different locations grip scaling remained true to the metrics of the test blocks despite the changes in perceptual estimates of block size. These results support previous findings suggesting that kinematic consistency facilitates the incorporation of learned perceptual information into grip scaling.

  5. Cooperative capture of large prey solves scaling challenge faced by spider societies

    PubMed Central

    Yip, Eric C.; Powers, Kimberly S.; Avilés, Leticia

    2008-01-01

    A decrease in the surface area per unit volume is a well known constraint setting limits to the size of organisms at both the cellular and whole-organismal levels. Similar constraints may apply to social groups as they grow in size. The communal three-dimensional webs that social spiders build function ecologically as single units that intercept prey through their surface and should thus be subject to this constraint. Accordingly, we show that web prey capture area per spider, and thus number of insects captured per capita, decreases with colony size in a neotropical social spider. Prey biomass intake per capita, however, peaks at intermediate colony sizes because the spiders forage cooperatively and larger colonies capture increasingly large insects. A peaked prey biomass intake function would explain not only why these spiders live in groups and cooperate but also why they disperse only at large colony sizes, thus addressing both sociality and colony size range in this social spider. These findings may also explain the conspicuous absence of social spiders from higher latitudes and higher elevations, areas that we have previously shown to harbor considerably fewer insects of the largest size classes than the lowland tropical rainforests where social spiders thrive. Our findings thus illustrate the relevance of scaling laws to the size and functioning of levels of organization above the individual. PMID:18689677

  6. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.

  7. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    DOE PAGES

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less

  8. The Costs of Carnivory

    PubMed Central

    Carbone, Chris; Teacher, Amber; Rowcliffe, J. Marcus

    2007-01-01

    Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics. PMID:17227145

  9. Forecasted range shifts of arid-land fishes in response to climate change

    USGS Publications Warehouse

    Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.

    2017-01-01

    Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.

  10. Possible mechanism for explaining the origin and size distribution of Martian hematite spherules

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Acosta-Maeda, Tayro E.; Scott, Edward R. D.; Sharma, Shiv K.

    2014-03-01

    Mysterious hematite spherules, also known as “blueberries”, observed at Meridiani Planum on Mars have been widely accepted as concretions which are formed by precipitation of aqueous fluids. One of the biggest mysteries is that all observed Martian blueberries are limited in size with maximum diameter of 6.2 mm. In contrast, terrestrial concretions are not size limited. In this article, we discuss significant differences between Martian blueberries and Earth concretion analogs. Puzzling observations from Mars Exploration Rovers Opportunity and Spirit suggest that the spherules may not be concretions but are cosmic spherules formed by ablation of meteorites. The perfect spherical shape of spherules, their observed size limit, and all other physical properties are easily explained by a meteorite ablation model. Evidence that some of these spherules are only few years old strongly constrains concretion and other growth mechanisms related to aqueous processes that require the existence of water on Mars in its recent history. The large number of hematite spherules in Meridiani Planum may be due to a big rare iron meteorite impact event in this region sometime in the past.

  11. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    PubMed

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the response and multitrophic effects of dominant, mobile species may be critical when predicting changes in community structure along a habitat-size gradient.

  12. The largest Silurian vertebrate and its palaeoecological implications

    PubMed Central

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  13. Fast distributed large-pixel-count hologram computation using a GPU cluster.

    PubMed

    Pan, Yuechao; Xu, Xuewu; Liang, Xinan

    2013-09-10

    Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5 Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

  14. Sol-gel antireflective spin-coating process for large-size shielding windows

    NASA Astrophysics Data System (ADS)

    Belleville, Philippe F.; Prene, Philippe; Mennechez, Francoise; Bouigeon, Christian

    2002-10-01

    The interest of the antireflective coatings applied onto large-area glass components increases everyday for the potential application such as building or shop windows. Today, because of the use of large size components, sol-gel process is a competitive way for antireflective coating mass production. The dip-coating technique commonly used for liquid-deposition, implies a safety hazard due to coating solution handling and storage in the case of large amounts of highly flammable solvent use. On the other hand, spin-coating is a liquid low-consumption technique. Mainly devoted to coat circular small-size substrate, we have developed a spin-coating machine able to coat large-size rectangular windows (up to 1 x 1.7 m2). Both solutions and coating conditions have been optimized to deposit optical layers with accurate and uniform thickness and to highly limit the edge effects. Experimental single layer antireflective coating deposition process onto large-area shielding windows (1000 x 1700 x 20 mm3) is described. Results show that the as-developed process could produce low specular reflection value (down to 1% one side) onto white-glass windows over the visible range (460-750 nm). Low-temperature curing process (120°C) used after sol-gel deposition enables antireflective-coating to withstand abrasion-resistance properties in compliance to US-MIL-C-0675C moderate test.

  15. Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures.

    PubMed

    Chen, Feng; Zhu, Ying-Jie

    2016-12-27

    Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.

  16. Kinematic measurement from panned cinematography.

    PubMed

    Gervais, P; Bedingfield, E W; Wronko, C; Kollias, I; Marchiori, G; Kuntz, J; Way, N; Kuiper, D

    1989-06-01

    Traditional 2-D cinematography has used a stationary camera with its optical axis perpendicular to the plane of motion. This method has constrained the size of the object plane or has introduced potential errors from a small subject image size with large object field widths. The purpose of this study was to assess a panning technique that could overcome the inherent limitations of small object field widths, small object image sizes and limited movement samples. The proposed technique used a series of reference targets in the object field that provided the necessary scales and origin translations. A 102 m object field was panned. Comparisons between criterion distances and film measured distances for field widths of 46 m and 22 m resulted in absolute mean differences that were comparable to that of the traditional method.

  17. Application of cokriging techniques for the estimation of hail size

    NASA Astrophysics Data System (ADS)

    Farnell, Carme; Rigo, Tomeu; Martin-Vide, Javier

    2018-01-01

    There are primarily two ways of estimating hail size: the first is the direct interpolation of point observations, and the second is the transformation of remote sensing fields into measurements of hail properties. Both techniques have advantages and limitations as regards generating the resultant map of hail damage. This paper presents a new methodology that combines the above mentioned techniques in an attempt to minimise the limitations and take advantage of the benefits of interpolation and the use of remote sensing data. The methodology was tested for several episodes with good results being obtained for the estimation of hail size at practically all the points analysed. The study area presents a large database of hail episodes, and for this reason, it constitutes an optimal test bench.

  18. Does size matter? Statistical limits of paleomagnetic field reconstruction from small rock specimens

    NASA Astrophysics Data System (ADS)

    Berndt, Thomas; Muxworthy, Adrian R.; Fabian, Karl

    2016-01-01

    As samples of ever decreasing sizes are being studied paleomagnetically, care has to be taken that the underlying assumptions of statistical thermodynamics (Maxwell-Boltzmann statistics) are being met. Here we determine how many grains and how large a magnetic moment a sample needs to have to be able to accurately record an ambient field. It is found that for samples with a thermoremanent magnetic moment larger than 10-11Am2 the assumption of a sufficiently large number of grains is usually given. Standard 25 mm diameter paleomagnetic samples usually contain enough magnetic grains such that statistical errors are negligible, but "single silicate crystal" works on, for example, zircon, plagioclase, and olivine crystals are approaching the limits of what is physically possible, leading to statistic errors in both the angular deviation and paleointensity that are comparable to other sources of error. The reliability of nanopaleomagnetic imaging techniques capable of resolving individual grains (used, for example, to study the cloudy zone in meteorites), however, is questionable due to the limited area of the material covered.

  19. Challenges in Improving Cochlear Implant Performance and Accessibility.

    PubMed

    Zeng, Fan-Gang

    2017-08-01

    Here I identify two gaps in cochlear implants that have been limiting their performance and acceptance. First, cochlear implant performance has remained largely unchanged, despite the number of publications tripling per decade in the last 30 years. Little has been done so far to address a fundamental limitation in the electrode-to-neuron interface, with the electrode size being a thousand times larger than the neuron diameter while the number of electrodes being a thousand times less. Both the small number and the large size of electrodes produce broad spatial activation and poor frequency resolution that limit current cochlear implant performance. Second, a similarly rapid growth in cochlear implant volume has not produced an expected decrease in unit price in the same period. The high cost contributes to low market penetration rate, which is about 20% in developed countries and less than 1% in developing countries. I will discuss changes needed in both research strategy and business practice to close the gap between prosthetic and normal hearing as well as that between haves and have-nots.

  20. Metapopulation models for historical inference.

    PubMed

    Wakeley, John

    2004-04-01

    The genealogical process for a sample from a metapopulation, in which local populations are connected by migration and can undergo extinction and subsequent recolonization, is shown to have a relatively simple structure in the limit as the number of populations in the metapopulation approaches infinity. The result, which is an approximation to the ancestral behaviour of samples from a metapopulation with a large number of populations, is the same as that previously described for other metapopulation models, namely that the genealogical process is closely related to Kingman's unstructured coalescent. The present work considers a more general class of models that includes two kinds of extinction and recolonization, and the possibility that gamete production precedes extinction. In addition, following other recent work, this result for a metapopulation divided into many populations is shown to hold both for finite population sizes and in the usual diffusion limit, which assumes that population sizes are large. Examples illustrate when the usual diffusion limit is appropriate and when it is not. Some shortcomings and extensions of the model are considered, and the relevance of such models to understanding human history is discussed.

  1. Local-Field Distribution of Two Dielectric Inclusions at Small Separation

    NASA Astrophysics Data System (ADS)

    Siu, Yuet-Lun; Yu, Kin-Wah

    2001-03-01

    When two dielectric inclusions approach to each other in a composite medium, significant mutual polarization effects must occur. These effects are multipolar in nature and are difficult to treat from first principles(J. D. Jackson, Classical Electrodynamics), 2nd edition, (Wiley, New York, 1975).. In this work, we employ the discrete-dipole theory(B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11) 1491 (1994). to account for the mutual polarization effects by dividing the inclusions into many small subparts. We begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation, for which the mutual polarization effect becomes important. Then, we apply the theory to determine the dipole moment of each subpart self-consistently. In this way, each dipole moment yields the local electric field, which in turn polarizes the neighboring dipoles. We also begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation. Our resluts indicate that convergence is achieved with moderate computational effects. The results produce valuable information about the local electric field distribution, which is relevant to optical absorption due to surface phonon-polaritons of ionic microcrystals.

  2. Effect of inertia on sheared disordered solids: Critical scaling of avalanches in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Salerno, K. Michael; Robbins, Mark O.

    2013-12-01

    Molecular dynamics simulations with varying damping are used to examine the effects of inertia and spatial dimension on sheared disordered solids in the athermal quasistatic limit. In all cases the distribution of avalanche sizes follows a power law over at least three orders of magnitude in dissipated energy or stress drop. Scaling exponents are determined using finite-size scaling for systems with 103-106 particles. Three distinct universality classes are identified corresponding to overdamped and underdamped limits, as well as a crossover damping that separates the two regimes. For each universality class, the exponent describing the avalanche distributions is the same in two and three dimensions. The spatial extent of plastic deformation is proportional to the energy dissipated in an avalanche. Both rise much more rapidly with system size in the underdamped limit where inertia is important. Inertia also lowers the mean energy of configurations sampled by the system and leads to an excess of large events like that seen in earthquake distributions for individual faults. The distribution of stress values during shear narrows to zero with increasing system size and may provide useful information about the size of elemental events in experimental systems. For overdamped and crossover systems the stress variation scales inversely with the square root of the system size. For underdamped systems the variation is determined by the size of the largest events.

  3. Active space debris removal by using laser propulsion

    NASA Astrophysics Data System (ADS)

    Rezunkov, Yu. A.

    2013-03-01

    At present, a few projects on the space debris removal by using highpower lasers are developed. One of the established projects is the ORION proposed by Claude Phipps from Photonics Associates Company and supported by NASA (USA) [1]. But the technical feasibility of the concept is limited by sizes of the debris objects (from 1 to 10 cm) because of a small thrust impulse generated at the laser ablation of the debris materials. At the same time, the removal of rocket upper stages and satellites, which have reached the end of their lives, has been carried out only in a very small number of cases and most of them remain on the Low Earth Orbits (LEO). To reduce the amount of these large-size objects, designing of space systems allowing deorbiting upper rocket stages and removing large-size satellite remnants from economically and scientifically useful orbits to disposal ones is considered. The suggested system is based on high-power laser propulsion. Laser-Orbital Transfer Vehicle (LOTV) with the developed aerospace laser propulsion engine is considered as applied to the problem of mitigation of man-made large-size space debris in LEO.

  4. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  5. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    PubMed Central

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  6. An extension of fracture mechanics/technology to larger and smaller cracks/defects.

    PubMed

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper.

  7. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism.

    PubMed

    Kaiser, Alexander; Klok, C Jaco; Socha, John J; Lee, Wah-Keat; Quinlan, Michael C; Harrison, Jon F

    2007-08-07

    Recent studies have suggested that Paleozoic hyperoxia enabled animal gigantism, and the subsequent hypoxia drove a reduction in animal size. This evolutionary hypothesis depends on the argument that gas exchange in many invertebrates and skin-breathing vertebrates becomes compromised at large sizes because of distance effects on diffusion. In contrast to vertebrates, which use respiratory and circulatory systems in series, gas exchange in insects is almost exclusively determined by the tracheal system, providing a particularly suitable model to investigate possible limitations of oxygen delivery on size. In this study, we used synchrotron x-ray phase-contrast imaging to visualize the tracheal system and quantify its dimensions in four species of darkling beetles varying in mass by 3 orders of magnitude. We document that, in striking contrast to the pattern observed in vertebrates, larger insects devote a greater fraction of their body to the respiratory system, as tracheal volume scaled with mass1.29. The trend is greatest in the legs; the cross-sectional area of the trachea penetrating the leg orifice scaled with mass1.02, whereas the cross-sectional area of the leg orifice scaled with mass0.77. These trends suggest the space available for tracheae within the leg may ultimately limit the maximum size of extant beetles. Because the size of the tracheal system can be reduced when oxygen supply is increased, hyperoxia, as occurred during late Carboniferous and early Permian, may have facilitated the evolution of giant insects by allowing limbs to reach larger sizes before the tracheal system became limited by spatial constraints.

  8. Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism

    PubMed Central

    Kaiser, Alexander; Klok, C. Jaco; Socha, John J.; Lee, Wah-Keat; Quinlan, Michael C.; Harrison, Jon F.

    2007-01-01

    Recent studies have suggested that Paleozoic hyperoxia enabled animal gigantism, and the subsequent hypoxia drove a reduction in animal size. This evolutionary hypothesis depends on the argument that gas exchange in many invertebrates and skin-breathing vertebrates becomes compromised at large sizes because of distance effects on diffusion. In contrast to vertebrates, which use respiratory and circulatory systems in series, gas exchange in insects is almost exclusively determined by the tracheal system, providing a particularly suitable model to investigate possible limitations of oxygen delivery on size. In this study, we used synchrotron x-ray phase–contrast imaging to visualize the tracheal system and quantify its dimensions in four species of darkling beetles varying in mass by 3 orders of magnitude. We document that, in striking contrast to the pattern observed in vertebrates, larger insects devote a greater fraction of their body to the respiratory system, as tracheal volume scaled with mass1.29. The trend is greatest in the legs; the cross-sectional area of the trachea penetrating the leg orifice scaled with mass1.02, whereas the cross-sectional area of the leg orifice scaled with mass0.77. These trends suggest the space available for tracheae within the leg may ultimately limit the maximum size of extant beetles. Because the size of the tracheal system can be reduced when oxygen supply is increased, hyperoxia, as occurred during late Carboniferous and early Permian, may have facilitated the evolution of giant insects by allowing limbs to reach larger sizes before the tracheal system became limited by spatial constraints. PMID:17666530

  9. Detection limits for nanoparticles in solution with classical turbidity spectra

    NASA Astrophysics Data System (ADS)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  10. The spatial and metabolic basis of colony size variation.

    PubMed

    Chacón, Jeremy M; Möbius, Wolfram; Harcombe, William R

    2018-03-01

    Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is therefore important to quantitatively understand how spatial proximity affects interactions in different environments. We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit, genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative importance of different competitors changed through time. Further, the effect of location increased when colonies took up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the importance of location was smaller than expected for experiments with S. enterica growing on glucose. The accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size. Our work provides an experimentally and theoretically grounded understanding of how location interacts with metabolism and diffusion to influence microbial interactions.

  11. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  12. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  13. Big-brained birds survive better in nature

    PubMed Central

    Sol, Daniel; Székely, Tamás; Liker, András; Lefebvre, Louis

    2007-01-01

    Big brains are hypothesized to enhance survival of animals by facilitating flexible cognitive responses that buffer individuals against environmental stresses. Although this theory receives partial support from the finding that brain size limits the capacity of animals to behaviourally respond to environmental challenges, the hypothesis that large brains are associated with reduced mortality has never been empirically tested. Using extensive information on avian adult mortality from natural populations, we show here that species with larger brains, relative to their body size, experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains. PMID:17251112

  14. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    PubMed

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.

  15. Geometry, packing, and evolutionary paths to increased multicellular size

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Graba, Elyes C.; Brandys, Colin G.; Day, Thomas C.; Ratcliff, William C.; Yunker, Peter J.

    2018-05-01

    The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018), 10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ˜13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.

  16. Body size mediated coexistence of consumers competing for resources in space

    USGS Publications Warehouse

    Basset, A.; Angelis, D.L.

    2007-01-01

    Body size is a major phenotypic trait of individuals that commonly differentiates co-occurring species. We analyzed inter-specific competitive interactions between a large consumer and smaller competitors, whose energetics, selection and giving-up behaviour on identical resource patches scaled with individual body size. The aim was to investigate whether pure metabolic constraints on patch behaviour of vagile species can determine coexistence conditions consistent with existing theoretical and experimental evidence. We used an individual-based spatially explicit simulation model at a spatial scale defined by the home range of the large consumer, which was assumed to be parthenogenic and semelparous. Under exploitative conditions, competitive coexistence occurred in a range of body size ratios between 2 and 10. Asymmetrical competition and the mechanism underlying asymmetry, determined by the scaling of energetics and patch behaviour with consumer body size, were the proximate determinant of inter-specific coexistence. The small consumer exploited patches more efficiently, but searched for profitable patches less effectively than the larger competitor. Therefore, body-size related constraints induced niche partitioning, allowing competitive coexistence within a set of conditions where the large consumer maintained control over the small consumer and resource dynamics. The model summarises and extends the existing evidence of species coexistence on a limiting resource, and provides a mechanistic explanation for decoding the size-abundance distribution patterns commonly observed at guild and community levels. ?? Oikos.

  17. Tick size reduction and price clustering in a FX order book

    NASA Astrophysics Data System (ADS)

    Lallouache, Mehdi; Abergel, Frédéric

    2014-12-01

    We investigate the statistical properties of the EBS order book for the EUR/USD and USD/JPY currency pairs and the impact of a ten-fold tick size reduction on its dynamics. A large fraction of limit orders are still placed right at or halfway between the old allowed prices. This generates price barriers where the best quotes lie for much of the time, which causes the emergence of distinct peaks in the average shape of the book at round distances. Furthermore, we argue that this clustering is mainly due to manual traders who remained set to the old price resolution. Automatic traders easily take price priority by submitting limit orders one tick ahead of clusters, as shown by the prominence of buy (sell) limit orders posted with rightmost digit one (nine).

  18. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing

    NASA Astrophysics Data System (ADS)

    Jiwei, Qi; Yudong, Li; Ming, Yang; Qiang, Wu; Zongqiang, Chen; Wudeng, Wang; Wenqiang, Lu; Xuanyi, Yu; Jingjun, Xu; Qian, Sun

    2013-10-01

    Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing, we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have great advantage for chemical/biological sensing applications.

  19. Lost in transportation: Information measures and cognitive limits in multilayer navigation.

    PubMed

    Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc

    2016-02-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.

  20. Lost in transportation: Information measures and cognitive limits in multilayer navigation

    PubMed Central

    Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc

    2016-01-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769

  1. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures

    NASA Astrophysics Data System (ADS)

    Rosnitskiy, P. B.; Gavrilov, L. R.; Yuldashev, P. V.; Sapozhnikov, O. A.; Khokhlova, V. A.

    2017-09-01

    A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient's head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.

  2. Nonstandard convergence to jamming in random sequential adsorption: The case of patterned one-dimensional substrates

    NASA Astrophysics Data System (ADS)

    Verma, Arjun; Privman, Vladimir

    2018-02-01

    We study approach to the large-time jammed state of the deposited particles in the model of random sequential adsorption. The convergence laws are usually derived from the argument of Pomeau which includes the assumption of the dominance, at large enough times, of small landing regions into each of which only a single particle can be deposited without overlapping earlier deposited particles and which, after a certain time are no longer created by depositions in larger gaps. The second assumption has been that the size distribution of gaps open for particle-center landing in this large-time small-gaps regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a recently introduced model of random sequential adsorption on patterned one-dimensional substrates that suggest that the second assumption must be generalized. We argue that a region exists in the parameter space of the studied model in which the gap-size distribution in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another region, the distribution develops a threshold property, i.e., there are no small gaps below a certain gap size. We discuss the implications of these findings for new asymptotic power-law and exponential-modified-by-a-power-law convergences to jamming in irreversible one-dimensional deposition.

  3. Development and experimental study of large size composite plasma immersion ion implantation device

    NASA Astrophysics Data System (ADS)

    Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN

    2018-01-01

    Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.

  4. Allocation of attention during pursuit of large objects is no different than during fixation.

    PubMed

    Watamaniuk, Scott N J; Heinen, Stephen J

    2015-01-01

    Attention allocation during pursuit of a spot is usually characterized as asymmetric with more attention placed ahead of the target than behind it. However, attention is symmetrically allocated across larger pursuit stimuli. An unresolved issue is how tightly attention is constrained on large stimuli during pursuit. Although some work shows it is tightly locked to the fovea, other work shows it is allocated flexibly. To investigate this, we had observers perform a character identification task on large pursuit stimuli composed of arrays of five, nine, or 15 characters spaced between 0.6° and 4.0° apart. Initially, the characters were identical, but at a random time, they all changed briefly, rendering one of them unique. Observers identified the unique character. Consistent with previous literature, attention appeared narrow and symmetric around the pursuit target for tightly spaced (0.6°) characters. Increasing spacing dramatically expanded the attention scope, presumably by mitigating crowding. However, when we controlled for crowding, performance was limited by set size, suffering more for eccentric targets. Interestingly, the same limitations on attention allocation were observed with stationary and pursued stimuli-evidence that attention operates similarly during fixation and pursuit of a stimulus that extends into the periphery. The results suggest that attention is flexibly allocated during pursuit, but performance is limited by crowding and set size. In addition, performing the identification task did not hurt pursuit performance, further evidence that pursuit of large stimuli is relatively inattentive.

  5. Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Kotlyar, R.; Linton, T. D.; Rios, R.; Giles, M. D.; Cea, S. M.; Kuhn, K. J.; Povolotskyi, Michael; Kubis, Tillmann; Klimeck, Gerhard

    2012-06-01

    The hole surface roughness and phonon limited mobility in the silicon <100>, <110>, and <111> square nanowires under the technologically important conditions of applied gate bias and stress are studied with the self-consistent Poisson-sp3d5s*-SO tight-binding bandstructure method. Under an applied gate field, the hole carriers in a wire undergo a volume to surface inversion transition diminishing the positive effects of the high <110> and <111> valence band nonparabolicities, which are known to lead to the large gains of the phonon limited mobility at a zero field in narrow wires. Nonetheless, the hole mobility in the unstressed wires down to the 5 nm size remains competitive or shows an enhancement at high gate field over the large wire limit. Down to the studied 3 nm sizes, the hole mobility is degraded by strong surface roughness scattering in <100> and <110> wires. The <111> channels are shown to experience less surface scattering degradation. The physics of the surface roughness scattering dependence on wafer and channel orientations in a wire is discussed. The calculated uniaxial compressive channel stress gains of the hole mobility are found to reduce in the narrow wires and at the high field. This exacerbates the stressed mobility degradation with size. Nonetheless, stress gains of a factor of 2 are obtained for <110> wires down to 3 nm size at a 5×1012 cm-2 hole inversion density per gate area.

  6. Spectral sum rules for confining large-N theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherman, Aleksey; McGady, David A.; Yamazaki, Masahito

    2016-06-17

    We consider asymptotically-free four-dimensional large-$N$ gauge theories with massive fermionic and bosonic adjoint matter fields, compactified on squashed three-spheres, and examine their regularized large-$N$ confined-phase spectral sums. The analysis is done in the limit of vanishing ’t Hooft coupling, which is justified by taking the size of the compactification manifold to be small compared to the inverse strong scale Λ ₋1. We find our results motivate us to conjecture some universal spectral sum rules for these large $N$ gauge theories.

  7. Limited temperature response to the very large AD 1258 volcanic eruption

    NASA Astrophysics Data System (ADS)

    Timmreck, Claudia; Lorenz, Stephan J.; Crowley, Thomas J.; Kinne, Stefan; Raddatz, Thomas J.; Thomas, Manu A.; Jungclaus, Johann H.

    2009-11-01

    The large AD 1258 eruption had a stratospheric sulfate load approximately ten times greater than the 1991 Pinatubo eruption. Yet surface cooling was not substantially larger than for Pinatubo (˜0.4 K). We apply a comprehensive Earth System Model to demonstrate that the size of the aerosol particles needs to be included in simulations, especially to explain the climate response to large eruptions. The temperature response weakens because increased density of particles increases collision rate and therefore aerosol growth. Only aerosol particle sizes substantially larger than observed after the Pinatubo eruption yield temperature changes consistent with terrestrial Northern Hemisphere summer temperature reconstructions. These results challenge an oft-held assumption of volcanic impacts not only with respect to the immediate or longer-term temperature response, but also any ecosystem response, including extinctions.

  8. Efficient Bayesian mixed model analysis increases association power in large cohorts

    PubMed Central

    Loh, Po-Ru; Tucker, George; Bulik-Sullivan, Brendan K; Vilhjálmsson, Bjarni J; Finucane, Hilary K; Salem, Rany M; Chasman, Daniel I; Ridker, Paul M; Neale, Benjamin M; Berger, Bonnie; Patterson, Nick; Price, Alkes L

    2014-01-01

    Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = #samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here, we present a far more efficient mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in large cohorts. PMID:25642633

  9. Trophic Strategies of Unicellular Plankton.

    PubMed

    Chakraborty, Subhendu; Nielsen, Lasse Tor; Andersen, Ken H

    2017-04-01

    Unicellular plankton employ trophic strategies ranging from pure photoautotrophs over mixotrophy to obligate heterotrophs (phagotrophs), with cell sizes from 10 -8 to 1 μg C. A full understanding of how trophic strategy and cell size depend on resource environment and predation is lacking. To this end, we develop and calibrate a trait-based model for unicellular planktonic organisms characterized by four traits: cell size and investments in phototrophy, nutrient uptake, and phagotrophy. We use the model to predict how optimal trophic strategies depend on cell size under various environmental conditions, including seasonal succession. We identify two mixotrophic strategies: generalist mixotrophs investing in all three investment traits and obligate mixotrophs investing only in phototrophy and phagotrophy. We formulate two conjectures: (1) most cells are limited by organic carbon; however, small unicellulars are colimited by organic carbon and nutrients, and only large photoautotrophs and smaller mixotrophs are nutrient limited; (2) trophic strategy is bottom-up selected by the environment, while optimal size is top-down selected by predation. The focus on cell size and trophic strategies facilitates general insights into the strategies of a broad class of organisms in the size range from micrometers to millimeters that dominate the primary and secondary production of the world's oceans.

  10. Nonlinear flight dynamics and stability of hovering model insects

    PubMed Central

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  11. Concurrent access to a virtual microscope using a web service oriented architecture

    NASA Astrophysics Data System (ADS)

    Corredor, Germán.; Iregui, Marcela; Arias, Viviana; Romero, Eduardo

    2013-11-01

    Virtual microscopy (VM) facilitates visualization and deployment of histopathological virtual slides (VS), a useful tool for education, research and diagnosis. In recent years, it has become popular, yet its use is still limited basically because of the very large sizes of VS, typically of the order of gigabytes. Such volume of data requires efficacious and efficient strategies to access the VS content. In an educative or research scenario, several users may require to access and interact with VS at the same time, so, due to large data size, a very expensive and powerful infrastructure is usually required. This article introduces a novel JPEG2000-based service oriented architecture for streaming and visualizing very large images under scalable strategies, which in addition need not require very specialized infrastructure. Results suggest that the proposed architecture enables transmission and simultaneous visualization of large images, while it is efficient using resources and offering users proper response times.

  12. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery.

    PubMed

    Zattoni, Andrea; Roda, Barbara; Borghi, Francesco; Marassi, Valentina; Reschiglian, Pierluigi

    2014-01-01

    Structured nanoparticles (NPs) with controlled size distribution and novel physicochemical features present fundamental advantages as drug delivery systems with respect to bulk drugs. NPs can transport and release drugs to target sites with high efficiency and limited side effects. Regulatory institutions such as the US Food and Drug Administration (FDA) and the European Commission have pointed out that major limitations to the real application of current nanotechnology lie in the lack of homogeneous, pure and well-characterized NPs, also because of the lack of well-assessed, robust routine methods for their quality control and characterization. Many properties of NPs are size-dependent, thus the particle size distribution (PSD) plays a fundamental role in determining the NP properties. At present, scanning and transmission electron microscopy (SEM, TEM) are among the most used techniques to size characterize NPs. Size-exclusion chromatography (SEC) is also applied to the size separation of complex NP samples. SEC selectivity is, however, quite limited for very large molar mass analytes such as NPs, and interactions with the stationary phase can alter NP morphology. Flow field-flow fractionation (F4) is increasingly used as a mature separation method to size sort and characterize NPs in native conditions. Moreover, the hyphenation with light scattering (LS) methods can enhance the accuracy of size analysis of complex samples. In this paper, the applications of F4-LS to NP analysis used as drug delivery systems for their size analysis, and the study of stability and drug release effects are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  14. When is bigger better? The effects of group size on the evolution of helping behaviours.

    PubMed

    Powers, Simon T; Lehmann, Laurent

    2017-05-01

    Understanding the evolution of sociality in humans and other species requires understanding how selection on social behaviour varies with group size. However, the effects of group size are frequently obscured in the theoretical literature, which often makes assumptions that are at odds with empirical findings. In particular, mechanisms are suggested as supporting large-scale cooperation when they would in fact rapidly become ineffective with increasing group size. Here we review the literature on the evolution of helping behaviours (cooperation and altruism), and frame it using a simple synthetic model that allows us to delineate how the three main components of the selection pressure on helping must vary with increasing group size. The first component is the marginal benefit of helping to group members, which determines both direct fitness benefits to the actor and indirect fitness benefits to recipients. While this is often assumed to be independent of group size, marginal benefits are in practice likely to be maximal at intermediate group sizes for many types of collective action problems, and will eventually become very small in large groups due to the law of decreasing marginal returns. The second component is the response of social partners on the past play of an actor, which underlies conditional behaviour under repeated social interactions. We argue that under realistic conditions on the transmission of information in a population, this response on past play decreases rapidly with increasing group size so that reciprocity alone (whether direct, indirect, or generalised) cannot sustain cooperation in very large groups. The final component is the relatedness between actor and recipient, which, according to the rules of inheritance, again decreases rapidly with increasing group size. These results explain why helping behaviours in very large social groups are limited to cases where the number of reproducing individuals is small, as in social insects, or where there are social institutions that can promote (possibly through sanctioning) large-scale cooperation, as in human societies. Finally, we discuss how individually devised institutions can foster the transition from small-scale to large-scale cooperative groups in human evolution. © 2016 Cambridge Philosophical Society.

  15. A Numerical Combination of Extended Boundary Condition Method and Invariant Imbedding Method Applied to Light Scattering by Large Spheroids and Cylinders

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2013-01-01

    The extended boundary condition method (EBCM) and invariant imbedding method (IIM) are two fundamentally different T-matrix methods for the solution of light scattering by nonspherical particles. The standard EBCM is very efficient but encounters a loss of precision when the particle size is large, the maximum size being sensitive to the particle aspect ratio. The IIM can be applied to particles in a relatively large size parameter range but requires extensive computational time due to the number of spherical layers in the particle volume discretization. A numerical combination of the EBCM and the IIM (hereafter, the EBCM+IIM) is proposed to overcome the aforementioned disadvantages of each method. Even though the EBCM can fail to obtain the T-matrix of a considered particle, it is valuable for decreasing the computational domain (i.e., the number of spherical layers) of the IIM by providing the initial T-matrix associated with an iterative procedure in the IIM. The EBCM+IIM is demonstrated to be more efficient than the IIM in obtaining the optical properties of large size parameter particles beyond the convergence limit of the EBCM. The numerical performance of the EBCM+IIM is illustrated through representative calculations in spheroidal and cylindrical particle cases.

  16. Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster

    PubMed Central

    Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.

    2011-01-01

    Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274

  17. Ontogenetic prey size selection in snakes: predator size and functional limitations to handling minimum prey sizes.

    PubMed

    Hampton, Paul M

    2018-02-01

    As body size increases, some predators eliminate small prey from their diet exhibiting an ontogenetic shift toward larger prey. In contrast, some predators show a telescoping pattern of prey size in which both large and small prey are consumed with increasing predator size. To explore a functional explanation for the two feeding patterns, I examined feeding effort as both handling time and number of upper jaw movements during ingestion of fish of consistent size. I used a range of body sizes from two snake species that exhibit ontogenetic shifts in prey size (Nerodia fasciata and N. rhombifer) and a species that exhibits telescoping prey size with increased body size (Thamnophis proximus). For the two Nerodia species, individuals with small or large heads exhibited greater difficulty in feeding effort compared to snakes of intermediate size. However, for T. proximus measures of feeding effort were negatively correlated with head length and snout-vent length (SVL). These data indicate that ontogenetic shifters of prey size develop trophic morphology large enough that feeding effort increases for disproportionately small prey. I also compared changes in body size among the two diet strategies for active foraging snake species using data gleaned from the literature to determine if increased change in body size and thereby feeding morphology is observable in snakes regardless of prey type or foraging habitat. Of the 30 species sampled from literature, snakes that exhibit ontogenetic shifts in prey size have a greater magnitude of change in SVL than species that have telescoping prey size patterns. Based upon the results of the two data sets above, I conclude that ontogenetic shifts away from small prey occur in snakes due, in part, to growth of body size and feeding structures beyond what is efficient for handling small prey. Copyright © 2017. Published by Elsevier GmbH.

  18. A study of spectrum fatigue crack propagation in two aluminum alloys. 2: Influence of microstructures

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The important metallurgical factors that influence both constant amplitude and spectrum crack growth behavior in aluminum alloys were investigated. The effect of microstructural features such as grain size, inclusions, and dispersoids was evaluated. It was shown that a lower stress intensities, the I/M 7050 alloy showed better fatigue crack propagation (FCP) resistance than P/M 7091 alloy for both constant amplitude and spectrum testing. It was suggested that the most important microstructural variable accounting for superior FCP resistance of 7050 alloy is its large grain size. It was further postulated that the inhomogenous planar slip and large grain size of 7050 limit dislocation interactions and thus increase slip reversibility which improves FCP performance. The hypothesis was supported by establishing that the cyclic strain hardening exponent for the 7091 alloy is higher than that of 7050.

  19. Spectral function of a hole in the t - J model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Manousakis, E.

    1991-08-01

    We give numerical solutions, on finite but large-size square lattices, of the equation for the single-hole Green's function obtained by the self-consistent approach of Schmitt-Rink {ital et} {ital al}. and Kane {ital et} {ital al}. The spectral function of the hole in a quantum antiferromagnet shows that most features describing the hole motion are in close agreement with the results of the exact diagonalization on the 4{sup 2} lattice in the region of {ital J}/{ital t}{le}0.2. Our results obtained on sufficiently large-size lattices suggest that certain important features of the spectral function survive in the thermodynamic limit while others changemore » due to finite-size effects. We find that the leading nonzero vertex correction is given by a two-loop diagram, which has a small contribution.« less

  20. NEOs in the mid-infrared: from Spitzer to JWST

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Thomas, Cristina A.

    2016-10-01

    Near-Earth Objects (NEOs) account for a surprisingly large fraction of the Spitzer observing time devoted to Solar System science. As a community, we should think of ways to repeat that success with JWST. JWST is planning an open Early Release Science Program, with the expected deadline for letters of intent in early 2017. We can't wait for next year's DPS to develop ideas. The time is now!In order to stir up the discussion, we will present ideas for NEO observing programs that are well adapted to JWST's capabilities and limitations, based on our recent PASP paper (Thomas et al., 2016). Obvious measurement objectives would include* size and albedo from thermal continuum (MIRI photometry)* thermal inertia for objects with well-known shape and spin state (MIRI)* taxonomy through reflection spectroscopy and emission spectroscopy in the NIR and MIR; NIR colors for faint objects.In all cases, JWST's sensitivity will allow us to go deeper than currently possible by at least an order of magnitude. Meter-sized NEOs similar to 2009 BD or 2011 MD are easy targets for MIRI spectrophotometry!The following limitations must be kept in mind, however: JWST's large size makes it slow to move. Most problematic for NEOs is probably the resulting 'speed limit': non-sidereal tracking is supported up to a rate of 30 mas/s, NEOs can easily move faster than that (ways to relax this constraint are under discussion). The average slew to a new target is budgeted to take 30 min, effectively ruling out programs many-target programs like ExploreNEOs or NEOSurvey (see D. Trilling's paper). Additionally, JWST will only observe close to quadrature, translating to large solar phase angles for NEO observations; this is familiar from other space-based IR facilities.

  1. 40 CFR Table 1b to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HMIWI size Small Medium Large Averaging time 1 Method fordemonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 66 (0.029) 22 (0.0095) 18 (0.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...

  2. The Private Market for Long-Term Care Insurance in the U.S.: A Review of the Evidence

    PubMed Central

    Brown, Jeffrey R.; Finkelstein, Amy

    2009-01-01

    This paper reviews the growing literature on the market for private long-term care insurance, a market notable for its small size despite the fact that long-term care expenses are potentially large and highly uncertain. After summarizing long-term care utilization and insurance coverage in the United States, the paper reviews research on the supply of and the demand for private long-term care insurance. It concludes that demand-side factors impose important limits on the size of the private market and that we currently have a limited understanding of how public policies could be designed to encourage the growth of this market. PMID:20046809

  3. Nest-site competition between invasive and native cavity nesting birds and its implication for conservation.

    PubMed

    Charter, Motti; Izhaki, Ido; Ben Mocha, Yitzchak; Kark, Salit

    2016-10-01

    Nesting cavities are often a limited resource that multiple species use. There is an ongoing discussion on whether invasive cavity nesting birds restrict the availability of this key limited resource. While the answer to this question has important conservation implications, little experimental work has been done to examine it. Here, we aimed to experimentally test whether alien cavity nesting birds affect the occupancy of cavities and the resulting breeding success of native cavity breeders in a large urban park located in Tel Aviv, Israel. Over three breeding seasons, we manipulated the entry size of nest boxes and compared the occupancy and breeding success of birds in nest boxes of two treatments. These included nest boxes with large-entrance and small-entrance holes. The large-entrance holes allowed access for both the native and invasive birds (the two main aliens in the park are the common mynas and rose-ringed parakeets). The smaller-entrance boxes, on the other hand, allowed only the smaller sized native cavity breeders (great tits and house sparrows) to enter the boxes but prevented the alien species from entering. We found that the large-entrance nest boxes were occupied by five different bird species, comprising three natives (great tit, house sparrow, Scops owl) and two invasive species (common myna, rose-ringed parakeet) while the small-entrance boxes were only occupied by the two native species. The alien common mynas and rose-ringed parakeets occupied 77.5% of the large-entrance nest boxes whereas native species, mainly great tits, occupied less than 9% of the large-entrance boxes and 36.5% of the small-entrance boxes. When examining the occupancy of those cavities that were not occupied by the aliens, natives occupied both the small and large-entrance nest boxes equally. Three quarters (78%) of the great tits breeding in the large-entrance boxes were usurped by common mynas during the breeding season and as a result breeding success was significantly lower for great tits breeding in the large-entrance boxes compared with the small-entrance boxes. The results of this study suggests that the invasive alien species can reduce the breeding potential of native cavity breeders both by exploiting the limited breeding resource (nest cavities) and by directly usurping cavities already occupied by the native species. Since the majority of large-entrance nest boxes were occupied by the larger alien birds, less native species bred in the limited number of unoccupied large-entrance nest boxes because of exploitation competition. We propose that for management purposes, nest-box programs that alter the entrance size of available natural cavities may be a practical approach, reducing the competition between native cavity breeders and alien invasive birds, and especially benefiting the smaller native cavity breeders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Usability-driven pruning of large ontologies: the case of SNOMED CT.

    PubMed

    López-García, Pablo; Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan

    2012-06-01

    To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Graph-traversal heuristics provided high coverage (71-96% of terms in the test sets of discharge summaries) at the expense of subset size (17-51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24-55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available.

  5. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav

    2016-12-01

    Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.

  6. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution

    PubMed Central

    Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J.; Meyer, Jannik C.; Kromka, Alexander; Rezek, Bohuslav

    2016-01-01

    Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous. PMID:27910924

  7. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution.

    PubMed

    Stehlik, Stepan; Varga, Marian; Ledinsky, Martin; Miliaieva, Daria; Kozak, Halyna; Skakalova, Viera; Mangler, Clemens; Pennycook, Timothy J; Meyer, Jannik C; Kromka, Alexander; Rezek, Bohuslav

    2016-12-02

    Detonation nanodiamonds (DNDs) with a typical size of 5 nm have attracted broad interest in science and technology. Further size reduction of DNDs would bring these nanoparticles to the molecular-size level and open new prospects for research and applications in various fields, ranging from quantum physics to biomedicine. Here we show a controllable size reduction of the DND mean size down to 1.4 nm without significant particle loss and with additional disintegration of DND core agglutinates by air annealing, leading to a significantly narrowed size distribution (±0.7 nm). This process is scalable to large quantities. Such molecular-sized DNDs keep their diamond structure and characteristic DND features as shown by Raman spectroscopy, infrared spectroscopy, STEM and EELS. The size of 1 nm is identified as a limit, below which the DNDs become amorphous.

  8. Modified dough preparation for Alveograph analysis with limited flour sample size

    USDA-ARS?s Scientific Manuscript database

    Dough rheological characteristics, such as resistance-to-extension and extensibility, obtained by alveograph testing are important traits for determination of wheat and flour quality. A challenging issue that faces wheat breeding programs and some wheat-research projects is the relatively large flou...

  9. More Bucks for Your Bang: Selective Fund Raising Pays Off.

    ERIC Educational Resources Information Center

    Buchanan, J. Scott

    1981-01-01

    Austin College's approach to raising large amounts of capital funds with severe limits on number of staff, size of budget, and available time is presented. Some suggestions on locating prospects, cultivating donors, involving the president and trustees and thanking donors are provided. (MLW)

  10. Species and structure of a virgin northern hardwood stand in New Hampshire

    Treesearch

    W. B. Leak

    1973-01-01

    Virgin northern hardwoods in the Bowl, a natural area in the White Mountain National Forest in New Hampshire, exhibit a limited number of species, large sizes in all key species except beech, a full understory, and a well-developed diameter distribution.

  11. Fabrication of Large-area Free-standing Ultrathin Polymer Films

    PubMed Central

    Stadermann, Michael; Baxamusa, Salmaan H.; Aracne-Ruddle, Chantel; Chea, Maverick; Li, Shuaili; Youngblood, Kelly; Suratwala, Tayyab

    2015-01-01

    This procedure describes a method for the fabrication of large-area and ultrathin free-standing polymer films. Typically, ultrathin films are prepared using either sacrificial layers, which may damage the film or affect its mechanical properties, or they are made on freshly cleaved mica, a substrate that is difficult to scale. Further, the size of ultrathin film is typically limited to a few square millimeters. In this method, we modify a surface with a polyelectrolyte that alters the strength of adhesion between polymer and deposition substrate. The polyelectrolyte can be shown to remain on the wafer using spectroscopy, and a treated wafer can be used to produce multiple films, indicating that at best minimal amounts of the polyelectrolyte are added to the film. The process has thus far been shown to be limited in scalability only by the size of the coating equipment, and is expected to be readily scalable to industrial processes. In this study, the protocol for making the solutions, preparing the deposition surface, and producing the films is described. PMID:26066738

  12. Multitasking the Davidson algorithm for the large, sparse eigenvalue problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, V.M.; Fischer, C.F.

    1989-01-01

    The authors report how the Davidson algorithm, developed for handling the eigenvalue problem for large and sparse matrices arising in quantum chemistry, was modified for use in atomic structure calculations. To date these calculations have used traditional eigenvalue methods, which limit the range of feasible calculations because of their excessive memory requirements and unsatisfactory performance attributed to time-consuming and costly processing of zero valued elements. The replacement of a traditional matrix eigenvalue method by the Davidson algorithm reduced these limitations. Significant speedup was found, which varied with the size of the underlying problem and its sparsity. Furthermore, the range ofmore » matrix sizes that can be manipulated efficiently was expended by more than one order or magnitude. On the CRAY X-MP the code was vectorized and the importance of gather/scatter analyzed. A parallelized version of the algorithm obtained an additional 35% reduction in execution time. Speedup due to vectorization and concurrency was also measured on the Alliant FX/8.« less

  13. Highly multireferenced arynes studied with large active spaces using two-electron reduced density matrices.

    PubMed

    Greenman, Loren; Mazziotti, David A

    2009-05-14

    Using the active-space two-electron reduced density matrix (2-RDM) method, which scales polynomially with the size of the active space [G. Gidofalvi and D. A. Mazziotti, J. Chem. Phys. 129, 134108 (2008)], we were able to use active spaces as large as 24 electrons in 24 orbitals in computing the ground-state energies and properties of highly multireferenced arynes. Because the conventional complete-active-space self-consistent-field (CASSCF) method scales exponentially with the size of the active space, its application to arynes was mainly limited to active spaces of 12 electrons in 12 orbitals. For these smaller active spaces the active-space 2-RDM method accurately reproduces the results of CASSCF. However, we show that the larger active spaces are necessary for describing changes in energies and properties with aryne chain length such as the emergence of polyradical character. Furthermore, the addition of further electron correlation by multireference perturbation theory is demonstrated to be inadequate for removing the limitations of the smaller active spaces.

  14. Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring. Supplemental Movies

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Cooke, William; Suggs, Ron; McNamara, Heather; Swift, Wesley; Moser, Danielle; Diekmann, Anne

    2008-01-01

    These videos, and audio accompany the slide presentation "Flux of Kilogram-sized Meteoroids from Lunar Impact Monitoring." The slide presentation reviews the routine lunar impact monitoring that has harvested over 110 impacts in 2 years of observations using telescopes and low-light level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy.

  15. Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells.

    PubMed

    Thorek, Daniel L J; Tsourkas, Andrew

    2008-09-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33nm to nearly 1.5microm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose-dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however, micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50nm).

  16. Size, Charge and Concentration Dependent Uptake of Iron Oxide Particles by Non-Phagocytic Cells

    PubMed Central

    Thorek, Daniel L.J.; Tsourkas, Andrew

    2008-01-01

    A promising new direction for contrast-enhanced magnetic resonance (MR) imaging involves tracking the migration and biodistribution of superparamagnetic iron oxide (SPIO)-labeled cells in vivo. Despite the large number of cell labeling studies that have been performed with SPIO particles of differing size and surface charge, it remains unclear which SPIO configuration provides optimal contrast in non-phagocytic cells. This is largely because contradictory findings have stemmed from the variability and imprecise control over surface charge, the general need and complexity of transfection and/or targeting agents, and the limited number of particle configurations examined in any given study. In the present study, we systematically evaluated the cellular uptake of SPIO in non-phagocytic T cells over a continuum of particle sizes ranging from 33 nm to nearly 1.5 μm, with precisely controlled surface properties, and without the need for transfection agents. SPIO labeling of T cells was analyzed by flow cytometry and contrast enhancement was determined by relaxometry. SPIO uptake was dose dependent and exhibited sigmoidal charge dependence, which was shown to saturate at different levels of functionalization. Efficient labeling of cells was observed for particles up to 300nm, however micron-sized particle uptake was limited. Our results show that an unconventional highly cationic particle configuration at 107 nm maximized MR contrast of T cells, outperforming the widely utilized USPIO (<50 nm). PMID:18533252

  17. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers

    PubMed Central

    Groh, Claudia; Kelber, Christina; Grübel, Kornelia; Rössler, Wolfgang

    2014-01-01

    Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization. PMID:24807257

  18. What role do local grocery stores play in urban food environments? A case study of Hartford-Connecticut.

    PubMed

    Martin, Katie S; Ghosh, Debarchana; Page, Martha; Wolff, Michele; McMinimee, Kate; Zhang, Mengyao

    2014-01-01

    Research on urban food environments emphasizes limited access to healthy food, with fewer large supermarkets and higher food prices. Many residents of Hartford, Connecticut, which is often considered a food desert, buy most of their food from small and medium-sized grocery stores. We examined the food environment in greater Hartford, comparing stores in Hartford to those in the surrounding suburbs, and by store size (small, medium, and large). We surveyed all small (over 1,000 ft2), medium, and large-sized supermarkets within a 2-mile radius of Hartford (36 total stores). We measured the distance to stores, availability, price and quality of a market basket of 25 items, and rated each store on internal and external appearance. Geographic Information System (GIS) was used for mapping distance to the stores and variation of food availability, quality, and appearance. Contrary to common literature, no significant differences were found in food availability and price between Hartford and suburban stores. However, produce quality, internal, and external store appearance were significantly lower in Hartford compared to suburban stores (all p<0.05). Medium-sized stores had significantly lower prices than small or large supermarkets (p<0.05). Large stores had better scores for internal (p<0.05), external, and produce quality (p<0.01). Most Hartford residents live within 0.5 to 1 mile distance to a grocery store. Classifying urban areas with few large supermarkets as 'food deserts' may overlook the availability of healthy foods and low prices that exist within small and medium-sized groceries common in inner cities. Improving produce quality and store appearance can potentially impact the food purchasing decisions of low-income residents in Hartford.

  19. What Role Do Local Grocery Stores Play in Urban Food Environments? A Case Study of Hartford-Connecticut

    PubMed Central

    Martin, Katie S.; Ghosh, Debarchana; Page, Martha; Wolff, Michele; McMinimee, Kate; Zhang, Mengyao

    2014-01-01

    Introduction Research on urban food environments emphasizes limited access to healthy food, with fewer large supermarkets and higher food prices. Many residents of Hartford, Connecticut, which is often considered a food desert, buy most of their food from small and medium-sized grocery stores. We examined the food environment in greater Hartford, comparing stores in Hartford to those in the surrounding suburbs, and by store size (small, medium, and large). Methods We surveyed all small (over 1,000 ft2), medium, and large-sized supermarkets within a 2-mile radius of Hartford (36 total stores). We measured the distance to stores, availability, price and quality of a market basket of 25 items, and rated each store on internal and external appearance. Geographic Information System (GIS) was used for mapping distance to the stores and variation of food availability, quality, and appearance. Results Contrary to common literature, no significant differences were found in food availability and price between Hartford and suburban stores. However, produce quality, internal, and external store appearance were significantly lower in Hartford compared to suburban stores (all p<0.05). Medium-sized stores had significantly lower prices than small or large supermarkets (p<0.05). Large stores had better scores for internal (p<0.05), external, and produce quality (p<0.01). Most Hartford residents live within 0.5 to 1 mile distance to a grocery store. Discussion Classifying urban areas with few large supermarkets as ‘food deserts’ may overlook the availability of healthy foods and low prices that exist within small and medium-sized groceries common in inner cities. Improving produce quality and store appearance can potentially impact the food purchasing decisions of low-income residents in Hartford. PMID:24718579

  20. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  1. Method of making metal oxide ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  2. Hard-sphere fluid adsorbed in an annular wedge: The depletion force of hard-body colloidal physics

    NASA Astrophysics Data System (ADS)

    Herring, A. R.; Henderson, J. R.

    2007-01-01

    Many important issues of colloidal physics can be expressed in the context of inhomogeneous fluid phenomena. When two large colloids approach one another in solvent, they interact at least partly by the response of the solvent to finding itself adsorbed in the annular wedge formed between the two colloids. At shortest range, this fluid mediated interaction is known as the depletion force/interaction because solvent is squeezed out of the wedge when the colloids approach closer than the diameter of a solvent molecule. An equivalent situation arises when a single colloid approaches a substrate/wall. Accurate treatment of this interaction is essential for any theory developed to model the phase diagrams of homogeneous and inhomogeneous colloidal systems. The aim of our paper is a test of whether or not we possess sufficient knowledge of statistical mechanics that can be trusted when applied to systems of large size asymmetry and the depletion force in particular. When the colloid particles are much larger than a solvent diameter, the depletion force is dominated by the effective two-body interaction experienced by a pair of solvated colloids. This low concentration limit of the depletion force has therefore received considerable attention. One route, which can be rigorously based on statistical mechanical sum rules, leads to an analytic result for the depletion force when evaluated by a key theoretical tool of colloidal science known as the Derjaguin approximation. A rival approach has been based on the assumption that modern density functional theories (DFT) can be trusted for systems of large size asymmetry. Unfortunately, these two theoretical predictions differ qualitatively for hard sphere models, as soon as the solvent density is higher than about 2/3 that at freezing. Recent theoretical attempts to understand this dramatic disagreement have led to the proposal that the Derjaguin and DFT routes represent opposite limiting behavior, for very large size asymmetry and molecular sized mixtures, respectively. This proposal implies that nanocolloidal systems lie in between the two limits, so that the depletion force no longer scales linearly with the colloid radius. That is, by decreasing the size ratio from mesoscopic to molecular sized solutes, one moves smoothly between the Derjaguin and the DFT predictions for the depletion force scaled by the colloid radius. We describe the results of a simulation study designed specifically as a test of compatibility with this complex scenario. Grand canonical simulation procedures applied to hard-sphere fluid adsorbed in a series of annular wedges, representing the depletion regime of hard-body colloidal physics, confirm that neither the Derjaguin approximation, nor advanced formulations of DFT, apply at moderate to high solvent density when the geometry is appropriate to nanosized colloids. Our simulations also allow us to report structural characteristics of hard-body solvent adsorbed in hard annular wedges. Both these aspects are key ingredients in the proposal that unifies the disparate predictions, via the introduction of new physics. Our data are consistent with this proposed physics, although as yet limited to a single colloidal size asymmetry.

  3. Basic features of slime mould motility

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro

    2015-03-01

    The plasmodium of Physarum polycephalum is a unicellular and multi-nuclear giant amoeba that is formed by fusions of myriads of uninucleate microscopic amoebae at a point in the life cycle of the organism. The very large unicellular form of the plasmodium is very uncommon in nature; on the contrary, almost all of the other higher organisms have multi-cellular bodies. Therefore, the plasmodium has an exceptional property: although the plasmodium is a unicellular organism, the size of the amoeba is variable. The smallest plasmodium consists of the fusion of two amoebae, so the smallest size is twice that of a usual amoeba. There is no upper limit to the largest size of the plasmodium, in principle. There is a record of very large plasmodium of more than a few metres. A more interesting point is that despite the variety in the size, the plasmodium can move, feed and form complex structures and adapt itself to the environment in an intelligent manner...

  4. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  5. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Yue, Ruoyu; Nie, Yifan; Walsh, Lee A.; Addou, Rafik; Liang, Chaoping; Lu, Ning; Barton, Adam T.; Zhu, Hui; Che, Zifan; Barrera, Diego; Cheng, Lanxia; Cha, Pil-Ryung; Chabal, Yves J.; Hsu, Julia W. P.; Kim, Jiyoung; Kim, Moon J.; Colombo, Luigi; Wallace, Robert M.; Cho, Kyeongjae; Hinkle, Christopher L.

    2017-12-01

    The limited grain size (<200 nm) for transition metal dichalcogenides (TMDs) grown by molecular beam epitaxy (MBE) reported in the literature thus far is unsuitable for high-performance device applications. In this work, the fundamental nucleation and growth behavior of WSe2 is investigated through a detailed experimental design combined with on-lattice, diffusion-based first principles kinetic modeling to enable large area TMD growth. A three-stage adsorption-diffusion-attachment mechanism is identified and the adatom stage is revealed to play a significant role in the nucleation behavior. To limit the nucleation density and promote 2D layered growth, it is necessary to have a low metal flux in conjunction with an elevated substrate temperature. At the same time, providing a Se-rich environment further limits the formation of W-rich nuclei which suppresses vertical growth and promotes 2D growth. The fundamental understanding gained through this investigation has enabled an increase of over one order of magnitude in grain size for WSe2 thus far, and provides valuable insight into improving the growth of other TMD compounds by MBE and other growth techniques such as chemical vapor deposition (CVD).

  6. Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish.

    PubMed

    Schmitt, Russell J; Holbrook, Sally J

    1984-07-01

    Patterns of prey size selectivity were quantified in the field for two species of marine microcarnivorous fish, Embiotoca jacksoni and Embiotoca lateralis (Embiotocidae) to test Scott and Murdoch's (1983) size spectrum hypothesis. Two mechanisms accounted for observed selectivity: the relative size of a fish in relation to its prey, and the type of foraging behavior used. Juvenile E. jacksoni were gape limited and newborn individuals achieved highest selectivity for the smallest prey size by using a visual picking foraging strategy. As young E. jacksoni grew, highest preference shifted to the next larger prey sizes. When E. jacksoni reached adulthood, the principal mode of foraging changed from visual picking to relatively indiscriminant winnowing behavior. The shift in foraging behavior by adults was accompanied by a decline in overall preference for prey size; sizes were taken nearly in proportion to their relative abundance. Adult E. lateralis retained a visual picking strategy and achieved highest selectivity for the largest class of prey. These differences in selectivity patterns by adult fish were not explained by gape-limination since adults of both species could ingest the largest prey items available to them. These results support Scott and Murdoch's (1983) hypothesis that the qualitative pattern of size selectivity depends largely on the range of available prey sizes relative to that a predator can effectively harvest.

  7. Dramatic increase in the relative abundance of large male dungeness crabs Cancer magister following closure of commercial fishing in Glacier Bay, Alaska

    USGS Publications Warehouse

    Taggart, S. James; Shirley, Thomas C.; O'Clair, Charles E.; Mondragon, Jennifer

    2004-01-01

    The size structure of the population of the Dungeness crab Cancer magister was studied at six sites in or near Glacier Bay, Alaska, before and after the closure of commercial fishing. Seven years of preclosure and 4 years of postclosure data are presented. After the closure of Glacier Bay to commercial fishing, the number and size of legal-sized male Dungeness crabs increased dramatically at the experimental sites. Female and sublegal-sized male crabs, the portions of the population not directly targeted by commercial fishing, did not increase in size or abundance following the closure. There was not a large shift in the size-abundance distribution of male crabs at the control site that is still open to commercial fishing. Marine protected areas are being widely promoted as effective tools for managing fisheries while simultaneously meeting marine conservation goals and maintaining marine biodiversity. Our data demonstrate that the size of male Dungeness crabs can markedly increase in a marine reserve, which supports the concept that marine reserves could help maintain genetic diversity in Dungeness crabs and other crab species subjected to size-limit fisheries and possibly increase the fertility of females. ?? 2004 by the American Fisheries Society.

  8. Routine health insurance data for scientific research: potential and limitations of the Agis Health Database.

    PubMed

    Smeets, Hugo M; de Wit, Niek J; Hoes, Arno W

    2011-04-01

    Observational studies performed within routine health care databases have the advantage of their large size and, when the aim is to assess the effect of interventions, can offer a completion to randomized controlled trials with usually small samples from experimental situations. Institutional Health Insurance Databases (HIDs) are attractive for research because of their large size, their longitudinal perspective, and their practice-based information. As they are based on financial reimbursement, the information is generally reliable. The database of one of the major insurance companies in the Netherlands, the Agis Health Database (AHD), is described in detail. Whether the AHD data sets meet the specific requirements to conduct several types of clinical studies is discussed according to the classification of the four different types of clinical research; that is, diagnostic, etiologic, prognostic, and intervention research. The potential of the AHD for these various types of research is illustrated using examples of studies recently conducted in the AHD. HIDs such as the AHD offer large potential for several types of clinical research, in particular etiologic and intervention studies, but at present the lack of detailed clinical information is an important limitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cluster randomised crossover trials with binary data and unbalanced cluster sizes: application to studies of near-universal interventions in intensive care.

    PubMed

    Forbes, Andrew B; Akram, Muhammad; Pilcher, David; Cooper, Jamie; Bellomo, Rinaldo

    2015-02-01

    Cluster randomised crossover trials have been utilised in recent years in the health and social sciences. Methods for analysis have been proposed; however, for binary outcomes, these have received little assessment of their appropriateness. In addition, methods for determination of sample size are currently limited to balanced cluster sizes both between clusters and between periods within clusters. This article aims to extend this work to unbalanced situations and to evaluate the properties of a variety of methods for analysis of binary data, with a particular focus on the setting of potential trials of near-universal interventions in intensive care to reduce in-hospital mortality. We derive a formula for sample size estimation for unbalanced cluster sizes, and apply it to the intensive care setting to demonstrate the utility of the cluster crossover design. We conduct a numerical simulation of the design in the intensive care setting and for more general configurations, and we assess the performance of three cluster summary estimators and an individual-data estimator based on binomial-identity-link regression. For settings similar to the intensive care scenario involving large cluster sizes and small intra-cluster correlations, the sample size formulae developed and analysis methods investigated are found to be appropriate, with the unweighted cluster summary method performing well relative to the more optimal but more complex inverse-variance weighted method. More generally, we find that the unweighted and cluster-size-weighted summary methods perform well, with the relative efficiency of each largely determined systematically from the study design parameters. Performance of individual-data regression is adequate with small cluster sizes but becomes inefficient for large, unbalanced cluster sizes. When outcome prevalences are 6% or less and the within-cluster-within-period correlation is 0.05 or larger, all methods display sub-nominal confidence interval coverage, with the less prevalent the outcome the worse the coverage. As with all simulation studies, conclusions are limited to the configurations studied. We confined attention to detecting intervention effects on an absolute risk scale using marginal models and did not explore properties of binary random effects models. Cluster crossover designs with binary outcomes can be analysed using simple cluster summary methods, and sample size in unbalanced cluster size settings can be determined using relatively straightforward formulae. However, caution needs to be applied in situations with low prevalence outcomes and moderate to high intra-cluster correlations. © The Author(s) 2014.

  10. Comparing two books and establishing probably efficacious treatment for low sexual desire.

    PubMed

    Balzer, Alexandra M; Mintz, Laurie B

    2015-04-01

    Using a sample of 45 women, this study compared the effectiveness of a previously studied (Mintz, Balzer, Zhao, & Bush, 2012) bibliotherapy intervention (Mintz, 2009), a similar self-help book (Hall, 2004), and a wait-list control (WLC) group. To examine intervention effectiveness, between and within group standardized effect sizes (interpreted with Cohen's, 1988 benchmarks .20 = small, .50 = medium, .80+ = large) and their confidence limits are used. In comparison to the WLC group, both interventions yielded large between-group posttest effect sizes on a measure of sexual desire. Additionally, large between-group posttest effect sizes were found for sexual satisfaction and lubrication among those reading the Mintz book. When examining within-group pretest to posttest effect sizes, medium to large effects were found for desire, lubrication, and orgasm for both books and for satisfaction and arousal for those reading the Mintz book. When directly comparing the books, all between-group posttest effect sizes were likely obtained by chance. It is concluded that both books are equally effective in terms of the outcome of desire, but whether or not there is differential efficacy in terms of other domains of sexual functioning is equivocal. Tentative evidence is provided for the longer term effectiveness of both books in enhancing desire. Arguing for applying criteria for empirically supported treatments to self-help, results are purported to establish the Mintz book as probably efficacious and to comprise a first step in this designation for the Hall book. (c) 2015 APA, all rights reserved).

  11. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata

    PubMed Central

    Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier

    2013-01-01

    Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084

  12. Bridge analysis and evaluation of effects under overload vehicles : phase 2.

    DOT National Transportation Integrated Search

    2012-09-01

    The use of special purpose highway vehicles, over the legal limit in size and in weight, is increasing as industry grows and large items must be shipped over highways. Overload vehicle crossing of a bridge, even if it is a single crossing, may affect...

  13. Trait contributions to fish community assembly emerge from trophicinteractions in an individual-based model

    USGS Publications Warehouse

    Giacomini, Henrique C.; DeAngelis, Donald; Trexler, Joel C.; Petrere, Miguel

    2013-01-01

    Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.

  14. Intraportal islet oxygenation.

    PubMed

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  15. Intraportal Islet Oxygenation

    PubMed Central

    Suszynski, Thomas M.; Avgoustiniatos, Efstathios S.

    2014-01-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO2), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. PMID:24876622

  16. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.; Hammond, Glenn E.; Lu, Chuan

    PFLOTRAN solves a system of generally nonlinear partial differential equations describing multi-phase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Parallelization is achieved through domain decomposition using the PETSc (Portable Extensible Toolkit for Scientific Computation) libraries for the parallelization framework (Balay et al., 1997). PFLOTRAN has been developed from the ground up for parallel scalability and has been run on up to 218 processor cores with problem sizes up to 2 billion degrees of freedom. Writtenmore » in object oriented Fortran 90, the code requires the latest compilers compatible with Fortran 2003. At the time of this writing this requires gcc 4.7.x, Intel 12.1.x and PGC compilers. As a requirement of running problems with a large number of degrees of freedom, PFLOTRAN allows reading input data that is too large to fit into memory allotted to a single processor core. The current limitation to the problem size PFLOTRAN can handle is the limitation of the HDF5 file format used for parallel IO to 32 bit integers. Noting that 2 32 = 4; 294; 967; 296, this gives an estimate of the maximum problem size that can be currently run with PFLOTRAN. Hopefully this limitation will be remedied in the near future.« less

  17. Theoretical size controls of the giant Phaeocystis globosa colonies

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Smith, Walker O.; Tang, Kam W.; Doan, Nhu Hai; Nguyen, Ngoc Lam

    2015-06-01

    An unusual characteristic of the cosmopolitan haptophyte Phaeocystis globosa is its ability to form colonies of strikingly large size-up to 3 cm in diameter. The large size and the presence of a mucoid envelope are believed to contribute to the formation of dense blooms in Southeast Asia. We collected colonies of different sizes in shallow coastal waters of Viet Nam and conducted a series of measurements and experiments on individual colonies. Using these empirical data, we developed a simple carbon-based model to predict the growth and maximal size of P. globosa colonies. Our model suggests that growth of a colony from 0.2 cm to 1.4 cm (the maximal size in our samples) would take 16 days. This number, however, is strongly influenced by the maximal photosynthetic rate and other physiological parameters used in the model. The model also returns a specific growth rate of 0.30 d-1 for colonial cells, comparable to satellite estimates, but lower than have been measured for unicellular P. globosa in batch culture at similar temperatures. We attribute this low growth rate to not only the model uncertainties, but factors such as self-shading and diffusive limitation of nutrient uptake.

  18. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars.

    PubMed

    Li, Tao; Heuvelink, Ep; Marcelis, Leo F M

    2015-01-01

    Supplementary lighting is frequently applied in the winter season for crop production in greenhouses. The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeet (large size), Capricia (medium size), and Sunstream (small size, cherry tomato) were grown from 16 August to 21 November, at similar crop management as in commercial practice. Supplementary lighting (High Pressure Sodium lamps, photosynthetic active radiation at 1 m below lamps was 162 μmol photons m(-2) s(-1); maximum 10 h per day depending on solar irradiance level) was applied from 19 September onward. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, 'Komeet' and 'Capricia' showed sink limitation and 'Sunstream' was close to sink limitation. During this stage reproductive organs had hardly formed or were still small and natural irradiance was high (early September) compared to winter months. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onward was 0.17, 0.22, and 0.33 for 'Komeet,' 'Capricia,' and 'Sunstream,' respectively). This was further confirmed by the fact that pruning half of the fruits hardly influenced net leaf photosynthesis rates. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that during the early growth stage under high irradiance, tomato plants are sink-limited and that the level of sink limitation differs between cultivars but it is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.

  19. System design of an optical interferometer based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Wen, De-Sheng; Song, Zong-Xi

    2018-07-01

    In this paper, we develop a new optical interferometric telescope architecture based on compressive sensing (CS) theory. Traditional optical telescopes with large apertures must be large in size, heavy and have high-power consumption, which limits the development of space-based telescopes. A turning point has occurred in the advent of imaging technology that utilizes Fourier-domain interferometry. This technology can reduce the system size, weight and power consumption by an order of magnitude compared to traditional optical telescopes at the same resolution. CS theory demonstrates that incomplete and noisy Fourier measurements may suffice for the exact reconstruction of sparse or compressible signals. Our proposed architecture combines advantages from the two frameworks, and the performance is evaluated through simulations. The results indicate the ability to efficiently sample spatial frequencies, while being lightweight and compact in size. Another attractive property of our architecture is the strong denoising ability for Gaussian noise.

  20. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    PubMed

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  1. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    NASA Astrophysics Data System (ADS)

    Rekker, A.; Lumi, N.; Mankin, R.

    2014-11-01

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species.

  2. Exchange-driven growth.

    PubMed

    Ben-Naim, E; Krapivsky, P L

    2003-09-01

    We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.

  3. Second look at the spread of epidemics on networks

    NASA Astrophysics Data System (ADS)

    Kenah, Eben; Robins, James M.

    2007-09-01

    In an important paper, Newman [Phys. Rev. E66, 016128 (2002)] claimed that a general network-based stochastic Susceptible-Infectious-Removed (SIR) epidemic model is isomorphic to a bond percolation model, where the bonds are the edges of the contact network and the bond occupation probability is equal to the marginal probability of transmission from an infected node to a susceptible neighbor. In this paper, we show that this isomorphism is incorrect and define a semidirected random network we call the epidemic percolation network that is exactly isomorphic to the SIR epidemic model in any finite population. In the limit of a large population, (i) the distribution of (self-limited) outbreak sizes is identical to the size distribution of (small) out-components, (ii) the epidemic threshold corresponds to the phase transition where a giant strongly connected component appears, (iii) the probability of a large epidemic is equal to the probability that an initial infection occurs in the giant in-component, and (iv) the relative final size of an epidemic is equal to the proportion of the network contained in the giant out-component. For the SIR model considered by Newman, we show that the epidemic percolation network predicts the same mean outbreak size below the epidemic threshold, the same epidemic threshold, and the same final size of an epidemic as the bond percolation model. However, the bond percolation model fails to predict the correct outbreak size distribution and probability of an epidemic when there is a nondegenerate infectious period distribution. We confirm our findings by comparing predictions from percolation networks and bond percolation models to the results of simulations. In the Appendix, we show that an isomorphism to an epidemic percolation network can be defined for any time-homogeneous stochastic SIR model.

  4. Strategies for high-throughput focused-beam ptychography

    DOE PAGES

    Jacobsen, Chris; Deng, Junjing; Nashed, Youssef

    2017-08-08

    X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.

  5. Strategies for high-throughput focused-beam ptychography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Chris; Deng, Junjing; Nashed, Youssef

    X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.

  6. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    PubMed Central

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-01-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays. PMID:26450174

  7. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Scargle, J. D.; Troja, E.

    2012-01-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  8. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Baldini, L.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to {gamma}{gamma} should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  9. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; Bechtol, K.; Berenji, B.

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  10. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    DOE PAGES

    Ajello, M.

    2012-02-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Consideringmore » 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.« less

  11. Newborns' Discrimination among Mid- and Long-Wavelength Stimuli.

    ERIC Educational Resources Information Center

    Adams, Russell J.

    1989-01-01

    Data suggest that human newborns are capable of making a chromatic discrimination within the spectral region above 540 nm (the Rayleigh region), but their ability is limited to chromatic stimuli of very wide spectral separation and of very large size. Possible neurological bases underlying this immaturity are discussed. (RH)

  12. Genome to phenome mapping in apple using historical data

    USDA-ARS?s Scientific Manuscript database

    Apple (Malus domestica) is one of the world’s most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS). However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficien...

  13. Soft lithography microlens fabrication and array for enhanced light extraction from organic light emitting diodes (OLEDs)

    DOEpatents

    Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming

    2014-06-03

    Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.

  14. Flux of Kilogram-Sized Meteoroids from Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Suggs, Robert; Suggs, Ron; Cooke, William; McNamara, Heather; Diekmann, Anne; Moser, Danielle; Swift, Wesley

    2008-01-01

    Routine lunar impact monitoring has harvested over 110 impacts in 2 years of observations using 0.25, 0.36 and 0.5 m telescopes and low-light-level video cameras. The night side of the lunar surface provides a large collecting area for detecting these impacts and allows estimation of the flux of meteoroids down to a limiting luminous energy. In order to determine the limiting mass for these observations, models of the sporadic meteoroid environment were used to determine the velocity distribution and new measurements of luminous efficiency were made at the Ames Vertical Gun Range. The flux of meteoroids in this size range has implications for Near Earth Object populations as well as for estimating impact ejecta risk for future lunar missions.

  15. Does Graft Particle Type and Size Affect Ridge Dimensional Changes After Alveolar Ridge Split Procedure?

    PubMed

    Kheur, Mohit G; Kheur, Supriya; Lakha, Tabrez; Jambhekar, Shantanu; Le, Bach; Jain, Vinay

    2018-04-01

    The absence of an adequate volume of bone at implant sites requires augmentation procedures before the placement of implants. The aim of the present study was to assess the ridge width gain with the use of allografts and biphasic β-tricalcium phosphate with hydroxyapatite (alloplast) in ridge split procedures, when each were used in small (0.25 to 1 mm) and large (1 to 2 mm) particle sizes. A randomized controlled trial of 23 subjects with severe atrophy of the mandible in the horizontal dimension was conducted in a private institute. The patients underwent placement of 49 dental implants after a staged ridge split procedure. The patients were randomly allocated to alloplast and allograft groups (predictor variable). In each group, the patients were randomly assigned to either small graft particle or large graft particle size (predictor variable). The gain in ridge width (outcome variable) was assessed before implant placement. A 2-way analysis of variance test and the Student unpaired t test were used for evaluation of the ridge width gain between the allograft and alloplast groups (predictor variable). Differences were considered significant if P values were < .05. The sample included 23 patients (14 men and 9 women). The patients were randomly allocated to the alloplast (n = 11) or allograft (n = 12) group before the ridge split procedure. In each group, they were assigned to a small graft particle or large graft particle size (alloplast group, small particle in 5 and large particle size in 6 patients; allograft group, small particle in 6 and large particle size in 6). A statistically significant difference was observed between the 2 graft types. The average ridge width gain was significantly greater in the alloplast group (large, 4.40 ± 0.24 mm; small, 3.52 ± 0.59 mm) than in the allograft group (large, 3.82 ± 0.19 mm; small, 2.57 ± 0.16 mm). For both graft types (alloplast and allograft), the large particle size graft resulted in a greater ridge width gain compared with the small particle size graft (P < .05). Within the limitations of the present study, we suggest the use of large particle alloplast as the graft material of choice for staged ridge split procedures in the posterior mandible. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Demands of eicosapentaenoic acid (EPA) in Daphnia: are they dependent on body size?

    PubMed

    Sikora, Anna B; Petzoldt, Thomas; Dawidowicz, Piotr; von Elert, Eric

    2016-10-01

    Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)--eicosapentaenoic acid (EPA)--has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet. Here, we hypothesize that the demand for EPA in Daphnia is size-dependent and that bigger species have a higher EPA demand. To elucidate this, a growth experiment was conducted in which at 20 °C three Daphnia taxa (small-sized D. longispina complex, medium-sized D. pulicaria, and large-bodied D. magna) were fed Synechococcus elongatus supplemented with cholesterol and increasing concentrations of EPA. In addition, fatty acid analyses of Daphnia were performed. Our results show that the saturation threshold for EPA-dependent growth increased with increasing body size. This increase in thresholds with body size may provide another mechanism contributing to the prevalence of small-bodied cladocera in warm habitats and to the midsummer decline of large cladocera in eutrophic water bodies.

  17. Unit bias. A new heuristic that helps explain the effect of portion size on food intake.

    PubMed

    Geier, Andrew B; Rozin, Paul; Doros, Gheorghe

    2006-06-01

    People seem to think that a unit of some entity (with certain constraints) is the appropriate and optimal amount. We refer to this heuristic as unit bias. We illustrate unit bias by demonstrating large effects of unit segmentation, a form of portion control, on food intake. Thus, people choose, and presumably eat, much greater weights of Tootsie Rolls and pretzels when offered a large as opposed to a small unit size (and given the option of taking as many units as they choose at no monetary cost). Additionally, they consume substantially more M&M's when the candies are offered with a large as opposed to a small spoon (again with no limits as to the number of spoonfuls to be taken). We propose that unit bias explains why small portion sizes are effective in controlling consumption; in some cases, people served small portions would simply eat additional portions if it were not for unit bias. We argue that unit bias is a general feature in human choice and discuss possible origins of this bias, including consumption norms.

  18. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  19. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.

  20. Single-axis four-mirror system: large spherical primary and small fields

    NASA Astrophysics Data System (ADS)

    Baranne, Andre

    1998-08-01

    A catoptric corrector of modest size can be used for large spherical primaries, easily integrated at the prime focus, this corrector gives back to the system, aspect and properties of 2-mirrors classical telescopes. In the last few years, progress in active and adaptative optics makes possible a lot of things, progress in measuring distances, new ideas on optical coatings, new materials and so on in a near future, all that makes the instrumentalist dreamy It is said that nobody knows today if the size of 3rd millennium telescopes will be limited or not by a theoretical, physical or technical phenomenon, thus let us imagine but with thoughtfulness because our projects will be surely restricted by financial considerations

  1. Divergent estimation error in portfolio optimization and in linear regression

    NASA Astrophysics Data System (ADS)

    Kondor, I.; Varga-Haszonits, I.

    2008-08-01

    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.

  2. Monte-Carlo simulation of a stochastic differential equation

    NASA Astrophysics Data System (ADS)

    Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG

    2017-12-01

    For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.

  3. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    NASA Technical Reports Server (NTRS)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  4. Small studies may overestimate the effect sizes in critical care meta-analyses: a meta-epidemiological study

    PubMed Central

    2013-01-01

    Introduction Small-study effects refer to the fact that trials with limited sample sizes are more likely to report larger beneficial effects than large trials. However, this has never been investigated in critical care medicine. Thus, the present study aimed to examine the presence and extent of small-study effects in critical care medicine. Methods Critical care meta-analyses involving randomized controlled trials and reported mortality as an outcome measure were considered eligible for the study. Component trials were classified as large (≥100 patients per arm) and small (<100 patients per arm) according to their sample sizes. Ratio of odds ratio (ROR) was calculated for each meta-analysis and then RORs were combined using a meta-analytic approach. ROR<1 indicated larger beneficial effect in small trials. Small and large trials were compared in methodological qualities including sequence generating, blinding, allocation concealment, intention to treat and sample size calculation. Results A total of 27 critical care meta-analyses involving 317 trials were included. Of them, five meta-analyses showed statistically significant RORs <1, and other meta-analyses did not reach a statistical significance. Overall, the pooled ROR was 0.60 (95% CI: 0.53 to 0.68); the heterogeneity was moderate with an I2 of 50.3% (chi-squared = 52.30; P = 0.002). Large trials showed significantly better reporting quality than small trials in terms of sequence generating, allocation concealment, blinding, intention to treat, sample size calculation and incomplete follow-up data. Conclusions Small trials are more likely to report larger beneficial effects than large trials in critical care medicine, which could be partly explained by the lower methodological quality in small trials. Caution should be practiced in the interpretation of meta-analyses involving small trials. PMID:23302257

  5. OPTIMOS-EVE optical design of a very efficient, high-multiplex, large spectral coverage, fiber-fed spectrograph at EELT

    NASA Astrophysics Data System (ADS)

    Spanò, P.; Tosh, I.; Chemla, F.

    2010-07-01

    OPTIMOS-EVE is a fiber-fed, high-multiplex, high-efficiency, large spectral coverage spectrograph for EELT covering visible and near-infrared simultaneously. More than 200 seeing-limited objects will be observed at the same time over the full 7 arcmin field of view of the telescope, feeding the spectrograph, asking for very large multiplexing at the spectrograph side. The spectrograph consists of two identical units. Each unit will have two optimized channels to observe both visible and near-infrared wavelengths at the same time, covering from 0.37 to 1.7 micron. To maximize the scientific return, a large simultaneous spectral coverage per exposure was required, up to 1/3 of the central wavelength. Moreover, different spectral resolution modes, spanning from 5'000 to 30'000, were defined to match very different sky targets. Many different optical solutions were generated during the initial study phase in order to select that one that will maximize performances within given constraints (mass, space, cost). Here we present the results of this study, with special attention to the baseline design. Efforts were done to keep size of the optical components well within present state-of-the-art technologies. For example, large glass blank sizes were limited to ~35 cm maximum diameter. VPH gratings were selected as dispersers, to improve efficiency, following their superblaze curve. This led to scanning gratings and cameras. Optical design will be described, together with expected performances.

  6. Household demographic determinants of Ebola epidemic risk.

    PubMed

    Adams, Ben

    2016-03-07

    A salient characteristic of Ebola, and some other infectious diseases such as Tuberculosis, is intense transmission among small groups of cohabitants and relatively limited indiscriminate transmission in the wider population. Here we consider a mathematical model for an Ebola epidemic in a population structured into households of equal size. We show that household size, a fundamental demographic unit, is a critical factor that determines the vulnerability of a community to epidemics, and the effort required to control them. Our analysis is based on the household reproduction number, but we also consider the basic reproduction number, intrinsic growth rate and final epidemic size. We show that, when other epidemiological parameters are kept the same, all of these quantifications of epidemic growth and size are increased by larger households and more intense within-household transmission. We go on to model epidemic control by case detection and isolation followed by household quarantine. We show that, if household quarantine is ineffective, the critical probability with which cases must be detected to halt an epidemic increases significantly with each increment in household size and may be a very challenging target for communities composed of large households. Effective quarantine may, however, mitigate the detrimental impact of large household sizes. We conclude that communities composed of large households are fundamentally more vulnerable to epidemics of infectious diseases primarily transmitted by close contact, and any assessment of control strategies for these epidemics should take into account the demographic structure of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  8. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, David W.

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  9. Usability-driven pruning of large ontologies: the case of SNOMED CT

    PubMed Central

    Boeker, Martin; Illarramendi, Arantza; Schulz, Stefan

    2012-01-01

    Objectives To study ontology modularization techniques when applied to SNOMED CT in a scenario in which no previous corpus of information exists and to examine if frequency-based filtering using MEDLINE can reduce subset size without discarding relevant concepts. Materials and Methods Subsets were first extracted using four graph-traversal heuristics and one logic-based technique, and were subsequently filtered with frequency information from MEDLINE. Twenty manually coded discharge summaries from cardiology patients were used as signatures and test sets. The coverage, size, and precision of extracted subsets were measured. Results Graph-traversal heuristics provided high coverage (71–96% of terms in the test sets of discharge summaries) at the expense of subset size (17–51% of the size of SNOMED CT). Pre-computed subsets and logic-based techniques extracted small subsets (1%), but coverage was limited (24–55%). Filtering reduced the size of large subsets to 10% while still providing 80% coverage. Discussion Extracting subsets to annotate discharge summaries is challenging when no previous corpus exists. Ontology modularization provides valuable techniques, but the resulting modules grow as signatures spread across subhierarchies, yielding a very low precision. Conclusion Graph-traversal strategies and frequency data from an authoritative source can prune large biomedical ontologies and produce useful subsets that still exhibit acceptable coverage. However, a clinical corpus closer to the specific use case is preferred when available. PMID:22268217

  10. Supporting large scale applications on networks of workstations

    NASA Technical Reports Server (NTRS)

    Cooper, Robert; Birman, Kenneth P.

    1989-01-01

    Distributed applications on networks of workstations are an increasingly common way to satisfy computing needs. However, existing mechanisms for distributed programming exhibit poor performance and reliability as application size increases. Extension of the ISIS distributed programming system to support large scale distributed applications by providing hierarchical process groups is discussed. Incorporation of hierarchy in the program structure and exploitation of this to limit the communication and storage required in any one component of the distributed system is examined.

  11. INJECTION OPTICS FOR THE JLEIC ION COLLIDER RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Vasiliy; Derbenev, Yaroslav; Lin, Fanglei

    2016-05-01

    The Jefferson Lab Electron-Ion Collider (JLEIC) will accelerate protons and ions from 8 GeV to 100 GeV. A very low beta function at the Interaction Point (IP) is needed to achieve the required luminosity. One consequence of the low beta optics is that the beta function in the final focusing (FF) quadrupoles is extremely high. This leads to a large beam size in these magnets as well as strong sensitivity to errors which limits the dynamic aperture. These effects are stronger at injection energy where the beam size is maximum, and therefore very large aperture FF magnets are required tomore » allow a large dynamic aperture. A standard solution is a relaxed injection optics with IP beta function large enough to provide a reasonable FF aperture. This also reduces the effects of FF errors resulting in a larger dynamic aperture at injection. We describe the ion ring injection optics design as well as a beta-squeeze transition from the injection to collision optics.« less

  12. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  13. Population genetics and the evolution of geographic range limits in an annual plant.

    PubMed

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  14. The role of sexual selection and conflict in mediating among-population variation in mating strategies and sexually dimorphic traits in Sepsis punctum.

    PubMed

    Dmitriew, Caitlin; Blanckenhorn, Wolf U

    2012-01-01

    The black scavenger fly Sepsis punctum exhibits striking among-population variation in the direction and magnitude of sexual size dimorphism, modification to the male forelimb and pre-copulatory behaviour. In some populations, male-biased sexual size dimorphism is observed; in other, less dimorphic, populations males court prior to mating. Such variation in reproductive traits is of interest to evolutionary biologists because it has the potential to limit gene flow among populations, contributing to speciation. Here, we investigate whether large male body size and modified forefemur are associated with higher male mating success within populations, whether these traits are associated with higher mating success among populations, and if these traits carry viability costs that could constrain their response to sexual selection. Flies from five distinct populations were reared at high or low food, generating high and low quality males. The expression of body size, forelimb morphology and courtship rate were each greater at high food, but high food males experienced higher mating success or reduced latency to first copulation in only one of the populations. Among populations, overall mating success increased with the degree of male-bias in overall body size and forelimb modification, suggesting that these traits have evolved as a means of increasing male mating rate. The increased mating success observed in large-male populations raises the question of why variation in magnitude of dimorphism persists among populations. One reason may be that costs of producing a large size constrain the evolution of ever-larger males. We found no evidence that juvenile mortality under food stress was greater for large-male populations, but development time was considerably longer and may represent an important constraint in an ephemeral and competitive growth environment.

  15. Population characteristics and assessment of overfishing for an exploited paddlefish population in the lower Tennessee River

    USGS Publications Warehouse

    Scholten, G.D.; Bettoli, P.W.

    2005-01-01

    Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (<10%) for paddlefish; therefore, exploitation in recent years is high. Estimates of total annual mortality were negatively related to river discharge in the years preceding each estimate. The number of paddlefish harvested since 1999 was also negatively related to river discharge because gill nets cannot be easily deployed when discharge exceeds approximately 850 m3/s. Large females spawn annually because all females longer than 1,034 mm eye-fork length (EFL) were gravid. No mature females were protected by the current 864-mm minimum EFL limit. At a low natural mortality rate, higher size limits when exploitation was high (40-70%) increased simulated flesh yields by 10-20%. Even at low levels of exploitation (21%), spawning potential ratios (SPRs) under the current 864-mm minimum EFL size limit fell below 20%. If the size limit was raised to 1,016 mm EFL, the population could withstand up to 62% exploitation before the SPR falls below 20%. An analysis of annual mortality caps indicated that the best way to increase the average size of harvested fish is to increase the minimum size limit. Recruitment overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.

  16. The effects of snowpack grain size on satellite passive microwave observations from the Upper Colorado River Basin

    USGS Publications Warehouse

    Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.

    1996-01-01

    Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.

  17. Granulation of snow: From tumbler experiments to discrete element simulations

    NASA Astrophysics Data System (ADS)

    Steinkogler, Walter; Gaume, Johan; Löwe, Henning; Sovilla, Betty; Lehning, Michael

    2015-06-01

    It is well known that snow avalanches exhibit granulation phenomena, i.e., the formation of large and apparently stable snow granules during the flow. The size distribution of the granules has an influence on flow behavior which, in turn, affects runout distances and avalanche velocities. The underlying mechanisms of granule formation are notoriously difficult to investigate within large-scale field experiments, due to limitations in the scope for measuring temperatures, velocities, and size distributions. To address this issue we present experiments with a concrete tumbler, which provide an appropriate means to investigate granule formation of snow. In a set of experiments at constant rotation velocity with varying temperatures and water content, we demonstrate that temperature has a major impact on the formation of granules. The experiments showed that granules only formed when the snow temperature exceeded -1∘C. No evolution in the granule size was observed at colder temperatures. Depending on the conditions, different granulation regimes are obtained, which are qualitatively classified according to their persistence and size distribution. The potential of granulation of snow in a tumbler is further demonstrated by showing that generic features of the experiments can be reproduced by cohesive discrete element simulations. The proposed discrete element model mimics the competition between cohesive forces, which promote aggregation, and impact forces, which induce fragmentation, and supports the interpretation of the granule regime classification obtained from the tumbler experiments. Generalizations, implications for flow dynamics, and experimental and model limitations as well as suggestions for future work are discussed.

  18. A hybrid spectral representation of phytoplankton growth and zooplankton response: The ''control rod'' model of plankton interaction

    NASA Astrophysics Data System (ADS)

    Armstrong, Robert A.

    2003-11-01

    Phytoplankton species interact through competition for light and nutrients; they also interact through grazers they hold in common. Both interactions are expected to be size-dependent: smaller phytoplankton species will be at an advantage when nutrients are scarce due to surface/volume considerations, while species that are similar in size are more likely to be consumed by grazers held in common than are species that differ greatly in size. While phytoplankton competition for nutrients and light has been extensively characterized, size-based interaction through shared grazers has not been represented systematically. The latter situation is particularly unfortunate because small changes in community structure can give rise to large changes in ecosystem dynamics and, in inverse modeling, to large changes in estimated parameter values. A simple, systematic way to represent phytoplankton interaction through shared grazers, one resistant to unintended idiosyncrasy of model construction yet capable of representing scientifically justifiable idiosyncrasy, would aid greatly in the modeling process. Here I develop a model structure that allows systematic representation of plankton interaction. In this model, the zooplankton community is represented as a continuous size spectrum, while phytoplankton species can be represented individually. The mechanistic basis of the model is a shift in the zooplankton community from carnivory to omnivory to herbivory as phytoplankton density increases. I discuss two limiting approximations in some detail, and fit both to data from the IronEx II experiment. The first limiting case represents a community with no grazer-based interaction among phytoplankton species; this approximation illuminates the general structure of the model. In particular, the zooplankton spectrum can be viewed as the analog of a control rod in a nuclear reactor, which prevents (or fails to prevent) an exponential bloom of phytoplankton. A second, more complex limiting case allows more general interaction of phytoplankton species along a size axis. This latter case would be suitable for describing competition among species with distinct biogeochemical roles, or between species that cause harmful algal blooms and those that do not. The model structure as a whole is therefore simple enough to guide thinking, yet detailed enough to allow quantitative prediction.

  19. Revisiting sample size: are big trials the answer?

    PubMed

    Lurati Buse, Giovanna A L; Botto, Fernando; Devereaux, P J

    2012-07-18

    The superiority of the evidence generated in randomized controlled trials over observational data is not only conditional to randomization. Randomized controlled trials require proper design and implementation to provide a reliable effect estimate. Adequate random sequence generation, allocation implementation, analyses based on the intention-to-treat principle, and sufficient power are crucial to the quality of a randomized controlled trial. Power, or the probability of the trial to detect a difference when a real difference between treatments exists, strongly depends on sample size. The quality of orthopaedic randomized controlled trials is frequently threatened by a limited sample size. This paper reviews basic concepts and pitfalls in sample-size estimation and focuses on the importance of large trials in the generation of valid evidence.

  20. Lipid globule size in total nutrient admixtures prepared in three-chamber plastic bags.

    PubMed

    Driscoll, David F; Thoma, Andrea; Franke, Rolf; Klütsch, Karsten; Nehne, Jörg; Bistrian, Bruce R

    2009-04-01

    The stability of injectable lipid emulsions in three-chamber plastic (3CP) bags, applying the globule-size limits established by United States Pharmacopeia ( USP ) chapter 729, was studied. A total of five premixed total nutrient admixture (TNA) products packaged in 3CP bags from two different lipid manufacturers containing either 20% soybean oil or a mixture of soybean oil and medium-chain-triglyceride oil as injectable lipid emulsions were tested. Two low-osmolarity 3CP bags and three high-osmolarity 3CP bags were studied. All products were tested with the addition of trace elements and multivitamins. All additive conditions (with and without electrolytes) were tested in triplicate at time 0 (immediately after mixing) and at 6, 24, 30, and 48 hours after mixing; the bags were stored at 24-26 degrees C. All additives were equally distributed in each bag for comparative testing, applying both globule sizing methods outlined in USP chapter 729. Of the bags tested, all bags from one manufacturer were coarse emulsions, showing signs of significant growth in the large-diameter tail when mixed as a TNA formulation and failing the limits set by method II of USP chapter 729 from the outset and throughout the study, while the bags from the other manufacturer were fine emulsions and met these limits. Of the bags that failed, significant instability was noted in one series containing additional electrolytes. Injectable lipid emulsions provided in 3CP bags that did not meet the globule-size limits of USP chapter 729 produced coarser TNA formulations than emulsions that met the USP limits.

  1. Co-variation of metabolic rates and cell-size in coccolithophores

    NASA Astrophysics Data System (ADS)

    Aloisi, G.

    2015-04-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis, and to a lesser extent calcification, co-vary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature produces the opposite effect. The magnitude of the coccosphere size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the co-variation of growth rate and cell size observed in the laboratory when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.

  2. A Simulation Study of Paced TCP

    NASA Technical Reports Server (NTRS)

    Kulik, Joanna; Coulter, Robert; Rockwell, Dennis; Partridge, Craig

    2000-01-01

    In this paper, we study the performance of paced TCP, a modified version of TCP designed especially for high delay- bandwidth networks. In typical networks, TCP optimizes its send-rate by transmitting increasingly large bursts, or windows, of packets, one burst per round-trip time, until it reaches a maximum window-size, which corresponds to the full capacity of the network. In a network with a high delay-bandwidth product, however, Transmission Control Protocol's (TCPs) maximum window-size may be larger than the queue size of the intermediate routers, and routers will begin to drop packets as soon as the windows become too large for the router queues. The TCP sender then concludes that the bottleneck capacity of the network has been reached, and it limits its send-rate accordingly. Partridge proposed paced TCP as a means of solving the problem of queueing bottlenecks. A sender using paced TCP would release packets in multiple, small bursts during a round-trip time in which ordinary TCP would release a single, large burst of packets. This approach allows the sender to increase its send-rate to the maximum window size without encountering queueing bottlenecks. This paper describes the performance of paced TCP in a simulated network and discusses implementation details that can affect the performance of paced TCP.

  3. Suppression of vacancy cluster growth in concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...

    2016-12-13

    Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less

  4. Synthesis of Large-area Crystalline MoTe2 Atomic layer from Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Zubair, Ahmad; Xu, Kai; Kong, Jing; Dresselhaus, Mildred

    The controlled synthesis of highly crystalline large-area molybdenum ditelluride MoTe2 atomic layers is crucial for the practical applications of this emerging material. Here we develop a novel approach for the growth of large-area, uniform and highly crystalline few-layer MoTe2 film via chemical vapour deposition (CVD). Large-area atomically thin MoTe2 film has been successfully synthesized by tellurization of a MoO3 film. The as-grown MoTe2 film is uniform, stoichiometric, and highly crystalline. As a result of the high crystallinity, the electronic properties of MoTe2 film are comparable with that of mechanically exfoliated MoTe2 flakes. Moreover, we found that two different phases of MoTe2 (2H and 1T') can be grown depending on the choice of Mo precursor. Since the MoTe2 film is highly homogenous, and the size of the film is only limited by the substrate and CVD system size, our growth method paves the way for large-scale application of MoTe2 in high performance nanoelectronics and optoelectronics.

  5. Laboratory investigations of the effects of predator sex and size on prey selection by the Asian crab, Hemigrapsus sanguineus.

    PubMed

    Brousseau, D J.; Filipowicz, A; Baglivo, J A.

    2001-07-30

    Laboratory studies have shown that the nonindigenous Asian shore crab, Hemigrapsus sanguineus, readily consumes three species of commercial bivalves: blue mussels, Mytilus edulis, soft-shell clams, Mya arenaria, and oysters, Crassostrea virginica. Although crabs can eat bivalves of a wide size range, they preferred the smaller prey (

  6. Increasing the Cryogenic Toughness of Steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1986-01-01

    Grain-refining heat treatments increase toughness without substantial strength loss. Five alloys selected for study, all at or near technological limit. Results showed clearly grain sizes of these alloys refined by such heat treatments and grain refinement results in large improvement in toughness without substantial loss in strength. Best improvements seen in HP-9-4-20 Steel, at low-strength end of technological limit, and in Maraging 200, at high-strength end. These alloys, in grain refined condition, considered for model applications in high-Reynolds-number cryogenic wind tunnels.

  7. Estimating Children’s Soil/Dust Ingestion Rates through Retrospective Analyses of Blood Lead Biomonitoring from the Bunker Hill Superfund Site in Idaho

    EPA Science Inventory

    Background: Soil/dust ingestion rates are important variables in assessing children’s health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study du...

  8. Waves of Hope: The U.S. Navy’s Response to the Tsunami in Northern Indonesia

    DTIC Science & Technology

    2007-02-01

    mountain of rice, instant noodles , and crackers sat waiting on the airfield, their delivery hampered by the small size of the airport and limited...Miscommunication and rumor were still rampant. One incident that exemplifies this problem involved a large box of dried noodles that accidentally fell

  9. Characterizing dispersal patterns in a threatened seabird with limited genetic structure

    Treesearch

    Laurie A. Hall; Per J. Palsboll; Steven R. Beissinger; James T. Harvey; Martine Berube; Martin G. Raphael; Kim Nelson; Richard T. Golightly; Laura McFarlane-Tranquilla; Scott H. Newman; M. Zachariah Peery

    2009-01-01

    Genetic assignment methods provide an appealing approach for characterizing dispersal patterns on ecological time scales, but require sufficient genetic differentiation to accurately identify migrants and a large enough sample size of migrants to, for example, compare dispersal between sexes or age classes. We demonstrate that assignment methods can be rigorously used...

  10. A Trillion-Dollar Question: What Predicts Student Loan Delinquencies?

    ERIC Educational Resources Information Center

    Mezza, Alvaro; Sommer, Kamila

    2016-01-01

    The recent significant increase in student loan delinquencies has generated interest in understanding the key factors predicting the non-performance of these loans. However, despite the large size of the student loan market, existing analyses have been limited by lack of data. This paper studies predictors of student loan delinquencies using a…

  11. The application of nirvana to silvicultural studies

    Treesearch

    Chi-Leung So; Thomas Elder; Leslie Groom; John S. Kush; Jennifer Myszewski; Todd Shupe

    2006-01-01

    Previous results from this laboratory have shown that near infrared (NIR) spectroscopy, coupled with multivariate analysis, can be a powerful tool for the prediction of wood quality. While wood quality measurements are of utility, their determination can be both time and labor intensive, thus limiting their use where large sample sizes are concerned. This paper will...

  12. Can flexibility help you float?

    NASA Astrophysics Data System (ADS)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  13. Large sample area and size are needed for forest soil seed bank studies to ensure low discrepancy with standing vegetation.

    PubMed

    Shen, You-xin; Liu, Wei-li; Li, Yu-hui; Guan, Hui-lin

    2014-01-01

    A large number of small-sized samples invariably shows that woody species are absent from forest soil seed banks, leading to a large discrepancy with the seedling bank on the forest floor. We ask: 1) Does this conventional sampling strategy limit the detection of seeds of woody species? 2) Are large sample areas and sample sizes needed for higher recovery of seeds of woody species? We collected 100 samples that were 10 cm (length) × 10 cm (width) × 10 cm (depth), referred to as larger number of small-sized samples (LNSS) in a 1 ha forest plot, and placed them to germinate in a greenhouse, and collected 30 samples that were 1 m × 1 m × 10 cm, referred to as small number of large-sized samples (SNLS) and placed them (10 each) in a nearby secondary forest, shrub land and grass land. Only 15.7% of woody plant species of the forest stand were detected by the 100 LNSS, contrasting with 22.9%, 37.3% and 20.5% woody plant species being detected by SNLS in the secondary forest, shrub land and grassland, respectively. The increased number of species vs. sampled areas confirmed power-law relationships for forest stand, the LNSS and SNLS at all three recipient sites. Our results, although based on one forest, indicate that conventional LNSS did not yield a high percentage of detection for woody species, but SNLS strategy yielded a higher percentage of detection for woody species in the seed bank if samples were exposed to a better field germination environment. A 4 m2 minimum sample area derived from power equations is larger than the sampled area in most studies in the literature. Increased sample size also is needed to obtain an increased sample area if the number of samples is to remain relatively low.

  14. Internet survey of home storage of paracetamol by individuals in the UK.

    PubMed

    Shah, A D; Wood, D M; Dargan, P I

    2013-03-01

    Paracetamol (acetaminophen) is a common cause of liver failure due to overdose. Legislation introduced in the UK in 1998 to limit pack sizes of paracetamol has had limited impact on the overall number and severity of paracetamol overdoses. This may be because people have large amounts of paracetamol stored at home, but no previous studies have explored this question. Individuals who regularly take part in market research surveys were invited to take part in an Internet survey. They were asked to supply demographic details, the frequency with which they use paracetamol and ibuprofen, and details of the amount and location of these drugs that they possessed. The mean age of respondents was 43.3 years (standard deviation 14.5 years), and 49.9% were female. People with both ibuprofen and paracetamol tended to have more packs and tablets of paracetamol (P < 0.001) and over a third had 32 or more paracetamol tablets. The most common pack size was 16 tablet packs (44.8% of all packs), which accounted for 39.4% of tablets. The most common site of paracetamol storage in the home was the kitchen (63.8% of people, 95% confidence interval 60.7, 66.7). This study suggests that pack size legislation in the UK has had limited effect on the amount of paracetamol that individuals have access to in the home. This may explain, at least in part, the limited impact of the pack size legislation on paracetamol overdoses in the UK.

  15. Mechanisms Limiting Body Growth in Mammals

    PubMed Central

    Lui, Julian C.

    2011-01-01

    Recent studies have begun to provide insight into a long-standing mystery in biology—why body growth in animals is rapid in early life but then progressively slows, thus imposing a limit on adult body size. This growth deceleration in mammals is caused by potent suppression of cell proliferation in multiple tissues and is driven primarily by local, rather than systemic, mechanisms. Recent evidence suggests that this progressive decline in proliferation results from a genetic program that occurs in multiple organs and involves the down-regulation of a large set of growth-promoting genes. This program does not appear to be driven simply by time, but rather depends on growth itself, suggesting that the limit on adult body size is imposed by a negative feedback loop. Different organs appear to use different types of information to precisely target their adult size. For example, skeletal and cardiac muscle growth are negatively regulated by myostatin, the concentration of which depends on muscle mass itself. Liver growth appears to be modulated by bile acid flux, a parameter that reflects organ function. In pancreas, organ size appears to be limited by the initial number of progenitor cells, suggesting a mechanism based on cell-cycle counting. Further elucidation of the fundamental mechanisms suppressing juvenile growth is likely to yield important insights into the pathophysiology of childhood growth disorders and of the unrestrained growth of cancer. In addition, improved understanding of these growth-suppressing mechanisms may someday allow their therapeutic suspension in adult tissues to facilitate tissue regeneration. PMID:21441345

  16. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor

    PubMed Central

    2016-01-01

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H2O and CO2. The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kWth lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O2 for smaller particles. PMID:27853339

  17. Experimental Demonstration of the Thermochemical Reduction of Ceria in a Solar Aerosol Reactor.

    PubMed

    Welte, Michael; Barhoumi, Rafik; Zbinden, Adrian; Scheffe, Jonathan R; Steinfeld, Aldo

    2016-10-12

    We report on the experimental demonstration of an aerosol solar reactor for the thermal reduction of ceria, as part of a thermochemical redox cycle for splitting H 2 O and CO 2 . The concept utilizes a cavity-receiver enclosing an array of alumina tubes, each containing a downward gravity-driven aerosol flow of ceria particles countercurrent to an inert sweep gas flow for intrinsic separation of reduced ceria and oxygen. A 2 kW th lab-scale prototype with a single tube was tested under radiative fluxes approaching 4000 suns, yielding reaction extents of up to 53% of the thermodynamic equilibrium at 1919 K within residence times below 1 s. Upon thermal redox cycling, fresh primary particles of 2.44 μm mean size initially formed large agglomerates of 1000 μm mean size, then sintered into stable particles of 150 μm mean size. The reaction extent was primarily limited by heat transfer for large particles/agglomerates (mean size > 200 μm) and by the gas phase advection of product O 2 for smaller particles.

  18. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  19. Large-Scale Modeling of Epileptic Seizures: Scaling Properties of Two Parallel Neuronal Network Simulation Algorithms

    DOE PAGES

    Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; ...

    2013-01-01

    Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less

  20. RETINA EXPANSION TECHNIQUE FOR MACULAR HOLE APPOSITION REPORT 2: Efficacy, Closure Rate, and Risks of a Macular Detachment Technique to Close Large Full-Thickness Macular Holes.

    PubMed

    Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana

    2018-04-01

    To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.

  1. Statistical process control charts for attribute data involving very large sample sizes: a review of problems and solutions.

    PubMed

    Mohammed, Mohammed A; Panesar, Jagdeep S; Laney, David B; Wilson, Richard

    2013-04-01

    The use of statistical process control (SPC) charts in healthcare is increasing. The primary purpose of SPC is to distinguish between common-cause variation which is attributable to the underlying process, and special-cause variation which is extrinsic to the underlying process. This is important because improvement under common-cause variation requires action on the process, whereas special-cause variation merits an investigation to first find the cause. Nonetheless, when dealing with attribute or count data (eg, number of emergency admissions) involving very large sample sizes, traditional SPC charts often produce tight control limits with most of the data points appearing outside the control limits. This can give a false impression of common and special-cause variation, and potentially misguide the user into taking the wrong actions. Given the growing availability of large datasets from routinely collected databases in healthcare, there is a need to present a review of this problem (which arises because traditional attribute charts only consider within-subgroup variation) and its solutions (which consider within and between-subgroup variation), which involve the use of the well-established measurements chart and the more recently developed attribute charts based on Laney's innovative approach. We close by making some suggestions for practice.

  2. Mean Field Analysis of Large-Scale Interacting Populations of Stochastic Conductance-Based Spiking Neurons Using the Klimontovich Method

    NASA Astrophysics Data System (ADS)

    Gandolfo, Daniel; Rodriguez, Roger; Tuckwell, Henry C.

    2017-03-01

    We investigate the dynamics of large-scale interacting neural populations, composed of conductance based, spiking model neurons with modifiable synaptic connection strengths, which are possibly also subjected to external noisy currents. The network dynamics is controlled by a set of neural population probability distributions (PPD) which are constructed along the same lines as in the Klimontovich approach to the kinetic theory of plasmas. An exact non-closed, nonlinear, system of integro-partial differential equations is derived for the PPDs. As is customary, a closing procedure leads to a mean field limit. The equations we have obtained are of the same type as those which have been recently derived using rigorous techniques of probability theory. The numerical solutions of these so called McKean-Vlasov-Fokker-Planck equations, which are only valid in the limit of infinite size networks, actually shows that the statistical measures as obtained from PPDs are in good agreement with those obtained through direct integration of the stochastic dynamical system for large but finite size networks. Although numerical solutions have been obtained for networks of Fitzhugh-Nagumo model neurons, which are often used to approximate Hodgkin-Huxley model neurons, the theory can be readily applied to networks of general conductance-based model neurons of arbitrary dimension.

  3. Stability and compatibility assessment techniques for total parenteral nutrition admixtures: setting the bar according to pharmacopeial standards.

    PubMed

    Driscoll, David F

    2005-05-01

    The stability and compatibility of total parenteral nutrition mixtures compounded for patients requiring nutritional support is paramount to their safety on intravenous infusion. The most significant pharmaceutical issues associated with mixing total parenteral nutrition formulations affecting their safety involve the stability of lipid-injectable emulsions and the compatibility of calcium and phosphate salts. Methods of analysis for stability and compatibility have varied, and the assessments have mostly been largely qualitative. Although pharmacopeial standards have been primarily applicable to pharmaceutical manufacturers, recent efforts by the United States Pharmacopeia have been directed at standardizing pharmacy practices involved in the safe mixing of compounded sterile preparations. The adoption of chapter 797 entitled 'Pharmaceutical compounding - sterile preparations' on 1 January 2004 has had a dramatic impact on pharmacy practice in the United States. More recently, the United States Pharmacopeia has also proposed a new chapter 729 entitled 'Globule size distribution in lipid-injectable emulsions', setting specific limits on the sizes and concentrations of lipid droplets in the formulation, which may have implications for all-in-one mixtures. Finally, new efforts are under way to establish limits on the level of acceptable amounts of particulates intrinsically introduced by the manufacturer, and thus may have ramifications for particulates extrinsically introduced or initiated during compounding by the pharmacist. With careful monitoring and the development of appropriate pharmacopeial-based specifications that limit the size and concentration of large-diameter fat globules and eliminate the possibility of dibasic calcium phosphate precipitates, improved patient outcomes may be achieved.

  4. On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Mani, Ali

    2016-02-01

    Superhydrophobic surfaces can significantly reduce hydrodynamic skin drag by accommodating large slip velocity near the surface due to entrapment of air bubbles within their micro-scale roughness elements. While there are many Stokes flow solutions for flows near superhydrophobic surfaces that describe the relation between effective slip length and surface geometry, such relations are not fully known in the turbulent flow limit. In this work, we present a phenomenological model for the kinematics of flow near a superhydrophobic surface with periodic post-patterns at high Reynolds numbers. The model predicts an inverse square root scaling with solid fraction, and a cube root scaling of the slip length with pattern size, which is different from the reported scaling in the Stokes flow limit. A mixed model is then proposed that recovers both Stokes flow solution and the presented scaling, respectively, in the small and large texture size limits. This model is validated using direct numerical simulations of turbulent flows over superhydrophobic posts over a wide range of texture sizes from L+ ≈ 6 to 310 and solid fractions from ϕs = 1/9 to 1/64. Our report also embarks on the extension of friction laws of turbulent wall-bounded flows to superhydrophobic surfaces. To this end, we present a review of a simplified model for the mean velocity profile, which we call the shifted-turbulent boundary layer model, and address two previous shortcomings regarding the closure and accuracy of this model. Furthermore, we address the process of homogenization of the texture effect to an effective slip length by investigating correlations between slip velocity and shear over pattern-averaged data for streamwise and spanwise directions. For L+ of up to O(10), shear stress and slip velocity are perfectly correlated and well described by a homogenized slip length consistent with Stokes flow solutions. In contrast, in the limit of large L+, the pattern-averaged shear stress and slip velocity become uncorrelated and thus the homogenized boundary condition is unable to capture the bulk behavior of the patterned surface.

  5. Bigger is not always better for overwintering young-of-year steelhead

    USGS Publications Warehouse

    Connolly, P.J.; Petersen, J.H.

    2003-01-01

    Many fishes occur across broad ranges of latitude and elevation, where winter temperatures can vary from mild to harsh. We conducted a laboratory experiment with three sizes of age-0 steelhead Oncorhynchus mykiss to examine growth, condition, and energy reserves under low rations at three levels of water temperature typical of this species' distribution during winter. At the end of the 111-d experiment, all three starting sizes of age-0 steelhead (small, 2-3 g; medium, 3-4 g; large, 4-5 g) held in 3??C water had lower total lipid weight than those held in 6??C and 9??C water. Large fish had higher total lipid weight than small fish at the onset of the experiment and retained higher amounts at the end. However, large fish had either the lowest percentage increases or the highest percentage decreases in fork length, biomass, condition factor, total lipid weight, and percent lipids within all thermal treatments. The magnitude of the differences between small and large fish was highest in the warmest (9??C) water. We used bioenergetics simulations of juvenile steelhead growth to examine fish response to initial size, winter temperature, and food availability. Relatively warm water temperatures in winter, coupled with limited food availability, may present more of a physiological challenge to larger age-0 steelhead than to smaller fish. Our results suggest that achievement of large size before the start of a steelhead's first winter can have a cost under episodic conditions found across the wide ranges of latitude and elevation within this species' distribution.

  6. Bose-Fermi degeneracies in large N adjoint QCD

    DOE PAGES

    Basar, Gokce; Cherman, Aleksey; McGady, David

    2015-07-06

    Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less

  7. The Nature and Origin of UCDs in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Chiboucas, Kristin; Tully, R. Brent; Madrid, Juan; Phillipps, Steven; Carter, David; Peng, Eric

    2018-01-01

    UCDs are super massive star clusters found largely in dense regions but have also been found around individual galaxies and in smaller groups. Their origin is still under debate but currently favored scenarios include formation as giant star clusters, either as the brightest globular clusters or through mergers of super star clusters, themselves formed during major galaxy mergers, or as remnant nuclei from tidal stripping of nucleated dwarf ellipticals. Establishing the nature of these enigmatic objects has important implications for our understanding of star formation, star cluster formation, the missing satellite problem, and galaxy evolution. We are attempting to disentangle these competing formation scenarios with a large survey of UCDs in the Coma cluster. Using ACS two-passband imaging from the HST/ACS Coma Cluster Treasury Survey, we are using colors and sizes to identify the UCD cluster members. With a large size limited sample of the UCD population within the core region of the Coma cluster, we are investigating the population size, properties, and spatial distribution, and comparing that with the Coma globular cluster and nuclear star cluster populations to discriminate between the threshing and globular cluster scenarios. In previous work, we had found a possible correlation of UCD colors with host galaxy and a possible excess of UCDs around a non-central giant galaxy with an unusually large globular cluster population, both suggestive of a globular cluster origin. With a larger sample size and additional imaging fields that encompass the regions around these giant galaxies, we have found that the color correlation with host persists and the giant galaxy with unusually large globular cluster population does appear to host a large UCD population as well. We present the current status of the survey.

  8. Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community

    PubMed Central

    Martínez-Ortega, Cristina; Santos, Eduardo SA; Gil, Diego

    2014-01-01

    Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low-light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes. PMID:25614788

  9. Large scale 20mm photography for range resources analysis in the Western United States. [Casa Grande, Arizona, Mercury, Nevada, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Tueller, P. T.

    1977-01-01

    Large scale 70mm aerial photography is a valuable supplementary tool for rangeland studies. A wide assortment of applications were developed varying from vegetation mapping to assessing environmental impact on rangelands. Color and color infrared stereo pairs are useful for effectively sampling sites limited by ground accessibility. They allow an increased sample size at similar or lower cost than ground sampling techniques and provide a permanent record.

  10. Micrometeoroid and Lunar Secondary Ejecta Flux Measurements: Comparison of Three Acoustic Systems

    NASA Technical Reports Server (NTRS)

    Corsaro, R. D.; Giovane, F.; Liou, Jer-Chyi; Burtchell, M.; Pisacane, V.; Lagakos, N.; Williams, E.; Stansbery, E.

    2010-01-01

    This report examines the inherent capability of three large-area acoustic sensor systems and their applicability for micrometeoroids (MM) and lunar secondary ejecta (SE) detection and characterization for future lunar exploration activities. Discussion is limited to instruments that can be fabricated and deployed with low resource requirements. Previously deployed impact detection probes typically have instrumented capture areas less than 0.2 square meters. Since the particle flux decreases rapidly with increased particle size, such small-area sensors rarely encounter particles in the size range above 50 microns, and even their sampling the population above 10 microns is typically limited. Characterizing the sparse dust population in the size range above 50 microns requires a very large-area capture instrument. However it is also important that such an instrument simultaneously measures the population of the smaller particles, so as to provide a complete instantaneous snapshot of the population. For lunar or planetary surface studies, the system constraints are significant. The instrument must be as large as possible to sample the population of the largest MM. This is needed to reliably assess the particle impact risks and to develop cost-effective shielding designs for habitats, astronauts, and critical instrument. The instrument should also have very high sensitivity to measure the flux of small and slow SE particles. is the SE environment is currently poorly characterized, and possess a contamination risk to machinery and personnel involved in exploration. Deployment also requires that the instrument add very little additional mass to the spacecraft. Three acoustic systems are being explored for this application.

  11. Ice Shape Scaling for Aircraft in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2008-01-01

    This paper has summarized recent NASA research into scaling of SLD conditions with data from both SLD and Appendix C tests. Scaling results obtained by applying existing scaling methods for size and test-condition scaling will be reviewed. Large feather growth issues, including scaling approaches, will be discussed briefly. The material included applies only to unprotected, unswept geometries. Within the limits of the conditions tested to date, the results show that the similarity parameters needed for Appendix C scaling also can be used for SLD scaling, and no additional parameters are required. These results were based on visual comparisons of reference and scale ice shapes. Nearly all of the experimental results presented have been obtained in sea-level tunnels. The currently recommended methods to scale model size, icing limit and test conditions are described.

  12. On size and geometry effects on the brittle fracture of ferritic and tempered martensitic steels

    NASA Astrophysics Data System (ADS)

    Odette, G. R.; Chao, B. L.; Lucas, G. E.

    1992-09-01

    A finite element computation of nonsingular crack tip fields was combined with a weakest link statistics model of cleavage fracture. Model predictions for three point bend specimens with various widths and crack depth to width ratios are qualitatively consistent with a number of trends observed in a 12 Cr martensitic stainless steel. The toughness “benefits” of small sizes and shallow cracks are primarily reflected in strain limits rather than net section stress capacities, which is significant to fusion structures subject to large secondary stresses.

  13. Studies of the Effects of Control Bandwidth and Dark-Hole Size on the HCIT Contrast Performance

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatha; Cady, Eric

    2015-01-01

    We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2% -wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark -hole area including large dark holes formed at the Nyquist limit of the DM.

  14. Studies of the effects of control bandwidth and dark-hole size on the HCIT contrast performance

    NASA Astrophysics Data System (ADS)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric

    2015-09-01

    We have carried out both theoretical and experimental studies of the sensitivity of dark hole contrast to the control bandwidth and dark-hole dimensions in high-contrast broadband stellar coronagraphy. We have evaluated the performance of DM actuator solutions in the presence of occulting mask defects using one to five 2%-wide bands spanning a 10% bandpass. We have also investigated the dependence of the HCIT contrast performance on the size of dark-hole area including large dark holes formed at the Nyquist limit of the DM.

  15. Is bigger better? The relationship between size and reproduction in female Asian elephants.

    PubMed

    Crawley, J A H; Mumby, H S; Chapman, S N; Lahdenperä, M; Mar, K U; Htut, W; Thura Soe, A; Aung, H H; Lummaa, V

    2017-10-01

    The limited availability of resources is predicted to impose trade-offs between growth, reproduction and self-maintenance in animals. However, although some studies have shown that early reproduction suppresses growth, reproduction positively correlates with size in others. We use detailed records from a large population of semi-captive elephants in Myanmar to assess the relationships between size (height and weight), reproduction and survival in female Asian elephants, a species characterized by slow, costly life history. Although female height gain during the growth period overlapped little with reproductive onset in the population, there was large variation in age at first reproduction and only 81% of final weight had been reached by peak age of reproduction at the population level (19 years). Those females beginning reproduction early tended to be taller and lighter later in life, although these trends were not significant. We found that taller females were more likely to have reproduced by a given age, but such effects diminished with age, suggesting there may be a size threshold to reproduction which is especially important in young females. Because size was not linked with female survival during reproductive ages, the diminishing effect of height on reproduction with age is unlikely to be due to biased survival of larger females. We conclude that although reproduction may not always impose significant costs on growth, height may be a limiting factor to reproduction in young female Asian elephants, which could have important implications considering their birth rates are low and peak reproduction is young - 19 years in this population. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Community-based efforts to prevent obesity: Australia-wide survey of projects.

    PubMed

    Nichols, Melanie S; Reynolds, Rebecca C; Waters, Elizabeth; Gill, Timothy; King, Lesley; Swinburn, Boyd A; Allender, Steven

    2013-08-01

    Community-based programs that affect healthy environments and policies have emerged as an effective response to high obesity levels in populations. Apart from limited individual reports, little is currently known about these programs, limiting the potential to provide effective support, to promote effective practice, prevent adverse outcomes and disseminate intervention results and experience. The aim of the present study was to identify the size and reach of current community-based obesity prevention projects in Australia and to examine their characteristics, program features (e.g. intervention setting), capacity and approach to obesity prevention. Detailed survey completed by representatives from community-based obesity prevention initiatives in Australia. There was wide variation in funding, capacity and approach to obesity prevention among the 78 participating projects. Median annual funding was Au$94900 (range Au$2500-$4.46 million). The most common intervention settings were schools (39%). Forty per cent of programs focused on a population group of ≥50000 people. A large proportion of respondents felt that they did not have sufficient resources or staff training to achieve project objectives. Community-based projects currently represent a very large investment by both government and non-government sectors for the prevention of obesity. Existing projects are diverse in size and scope, and reach large segments of the population. Further work is needed to identify the full extent of existing community actions and to monitor their reach and future 'scale up' to ensure that future activities aim for effective integration into systems, policies and environments. SO WHAT? Community-based programs make a substantial contribution to the prevention of obesity and promotion of healthy lifestyles in Australia. A risk of the current intervention landscape is that effective approaches may go unrecognised due to lack of effective evaluations or limitations in program design, duration or size. Policy makers and researchers must recognise the potential contribution of these initiatives, to both public health and knowledge generation, and provide support for strong evaluation and sustainable intervention designs.

  17. Effect of oxygen supply on the size of implantable islet-containing encapsulation devices.

    PubMed

    Papas, Klearchos K; Avgoustiniatos, Efstathios S; Suszynski, Thomas M

    2016-03-01

    Beta-cell replacement therapy is a promising approach for the treatment of diabetes but is currently limited by the human islet availability and by the need for systemic immunosuppression. Tissue engineering approaches that will enable the utilization of islets or β-cells from alternative sources (such as porcine islets or human stem cell derived beta cells) and minimize or eliminate the need for immunosuppression have the potential to address these critical limitations. However, tissue engineering approaches are critically hindered by the device size (similar to the size of a large flat screen television) required for efficacy in humans. The primary factor dictating the device size is the oxygen availability to islets to support their viability and function (glucose-stimulated insulin secretion [GSIS]). GSIS is affected (inhibited) at a much higher oxygen partial pressure [pO2] than that of viability (e.g. 10 mmHg as opposed to 0.1 mmHg). Enhanced oxygen supply (higher pO2) than what is available in vivo at transplant sites can have a profound effect on the required device size (potentially reduce it to the size of a postage stamp). This paper summarizes key information on the effect of oxygen on islet viability and function within immunoisolation devices and describes the potential impact of enhanced oxygen supply to devices in vivo on device size reduction.

  18. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we?

    PubMed

    Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.

  19. An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We?

    PubMed Central

    Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363

  20. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    PubMed

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  1. GPU-accelerated iterative reconstruction for limited-data tomography in CBCT systems.

    PubMed

    de Molina, Claudia; Serrano, Estefania; Garcia-Blas, Javier; Carretero, Jesus; Desco, Manuel; Abella, Monica

    2018-05-15

    Standard cone-beam computed tomography (CBCT) involves the acquisition of at least 360 projections rotating through 360 degrees. Nevertheless, there are cases in which only a few projections can be taken in a limited angular span, such as during surgery, where rotation of the source-detector pair is limited to less than 180 degrees. Reconstruction of limited data with the conventional method proposed by Feldkamp, Davis and Kress (FDK) results in severe artifacts. Iterative methods may compensate for the lack of data by including additional prior information, although they imply a high computational burden and memory consumption. We present an accelerated implementation of an iterative method for CBCT following the Split Bregman formulation, which reduces computational time through GPU-accelerated kernels. The implementation enables the reconstruction of large volumes (>1024 3 pixels) using partitioning strategies in forward- and back-projection operations. We evaluated the algorithm on small-animal data for different scenarios with different numbers of projections, angular span, and projection size. Reconstruction time varied linearly with the number of projections and quadratically with projection size but remained almost unchanged with angular span. Forward- and back-projection operations represent 60% of the total computational burden. Efficient implementation using parallel processing and large-memory management strategies together with GPU kernels enables the use of advanced reconstruction approaches which are needed in limited-data scenarios. Our GPU implementation showed a significant time reduction (up to 48 ×) compared to a CPU-only implementation, resulting in a total reconstruction time from several hours to few minutes.

  2. Fast camera imaging of dust in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.

    2009-06-01

    Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.

  3. Effects of grinding processes on enzymatic degradation of wheat straw.

    PubMed

    Silva, Gabriela Ghizzi D; Couturier, Marie; Berrin, Jean-Guy; Buléon, Alain; Rouau, Xavier

    2012-01-01

    The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Light-scattering flow cytometry for identification and characterization of blood microparticles

    NASA Astrophysics Data System (ADS)

    Konokhova, Anastasiya I.; Yurkin, Maxim A.; Moskalensky, Alexander E.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2012-05-01

    We describe a novel approach to study blood microparticles using the scanning flow cytometer, which measures light scattering patterns (LSPs) of individual particles. Starting from platelet-rich plasma, we separated spherical microparticles from non-spherical plasma constituents, such as platelets and cell debris, based on similarity of their LSP to that of sphere. This provides a label-free method for identification (detection) of microparticles, including those larger than 1 μm. Next, we rigorously characterized each measured particle, determining its size and refractive index including errors of these estimates. Finally, we employed a deconvolution algorithm to determine size and refractive index distributions of the whole population of microparticles, accounting for largely different reliability of individual measurements. Developed methods were tested on a blood sample of a healthy donor, resulting in good agreement with literature data. The only limitation of this approach is size detection limit, which is currently about 0.5 μm due to used laser wavelength of 0.66 μm.

  5. Minimum principles in electromagnetic scattering by small aspherical particles

    NASA Astrophysics Data System (ADS)

    Kostinski, Alex B.; Mongkolsittisilp, Ajaree

    2013-12-01

    We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.

  6. Atomic-scale epitaxial aluminum film on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di

    2017-07-01

    Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  7. Exact one-sided confidence bounds for the risk ratio in 2 x 2 tables with structural zero.

    PubMed

    Lloyd, Chris J; Moldovan, Max V

    2007-12-01

    This paper examines exact one-sided confidence limits for the risk ratio in a 2 x 2 table with structural zero. Starting with four approximate lower and upper limits, we adjust each using the algorithm of Buehler (1957) to arrive at lower (upper) limits that have exact coverage properties and are as large (small) as possible subject to coverage, as well as an ordering, constraint. Different Buehler limits are compared by their mean size, since all are exact in their coverage. Buehler limits based on the signed root likelihood ratio statistic are found to have the best performance and recommended for practical use. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  8. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus onmore » a system for Titan Moon as alternative to Pu-238 for NASA.« less

  9. Plankton copper requirements and uptake in the subarctic Northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Semeniuk, David M.; Cullen, Jay T.; Johnson, W. Keith; Gagnon, Katie; Ruth, Thomas J.; Maldonado, Maria T.

    2009-07-01

    We undertook the first measurements of metabolic Cu requirements (net Cu:C assimilation ratios) and steady-state Cu uptake rates (ρCu ss) of natural plankton assemblages in the northeast subarctic Pacific using the short-lived radioisotope 67Cu. Size-fractionated net Cu:C assimilation ratios varied ˜3 fold (1.35-4.21 μmol Cu mol C -1) among the stations along Line P, from high Fe coastal waters to the Fe-limited open ocean. The variability in Cu:C was comparable to biogenic Fe:C ratios in this region. As previously observed for Fe uptake, the bacterial size class accounted for half of the total particulate ρCu ss. Interestingly, carbon biomass-normalized rates of Fe uptake from the siderophore desferrioxamine B (DFB) (ρFe DFB; a physiological proxy for Fe-limitation) by the >20 μm size class were positively correlated with the intracellular net Cu:C assimilation ratios in this size class, suggesting that intracellular Cu requirements for large phytoplankton respond to increased Fe-limitation. At Fe-limited Ocean Station Papa (OSP), we performed short-term Cu uptake (ρCu L) assays to determine the relative bioavailability of Cu bound to natural and synthetic ligands. Like the volumetric ρCu ss measured along Line P, the bacterial size class was responsible for at least 50% of the total ρCu L. Uptake rates of Cu from the various organic complexes suggest that Cu uptake was controlled by the oxidation state of the metal and by the metal:ligand concentration ratio, rather than the concentration of inorganic species of Cu in solution. Collectively, these data suggest that Cu likely plays an important role in the physiology of natural plankton communities beyond the toxicological effects studied previously.

  10. The Thermodynamic Limit in Mean Field Spin Glass Models

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Toninelli, Fabio Lucio

    We present a simple strategy in order to show the existence and uniqueness of the infinite volume limit of thermodynamic quantities, for a large class of mean field disordered models, as for example the Sherrington-Kirkpatrick model, and the Derrida p-spin model. The main argument is based on a smooth interpolation between a large system, made of N spin sites, and two similar but independent subsystems, made of N1 and N2 sites, respectively, with N1+N2=N. The quenched average of the free energy turns out to be subadditive with respect to the size of the system. This gives immediately convergence of the free energy per site, in the infinite volume limit. Moreover, a simple argument, based on concentration of measure, gives the almost sure convergence, with respect to the external noise. Similar results hold also for the ground state energy per site.

  11. The sociocultural context of family size preference, ideal sex composition, and induced abortion in India: findings from India's National Family Health surveys.

    PubMed

    Agrawal, Sutapa

    2012-01-01

    In this study, the author examined the effect of family size preference and sex composition of living children as determinants of induced abortion among women in India by analyzing 90,303 ever-married women aged 15-49, included in India's second National Family Health Survey, conducted in 1998-99. Multivariate logistic regression methods were used to examine the association between induced abortion and possible determinants. The results indicated that a woman's desire to limit family size with preferred sex composition of children, coupled with her autonomy and the sociocultural context, largely determines her experience of induced abortion in India.

  12. Cellular packing, mechanical stress and the evolution of multicellularity

    NASA Astrophysics Data System (ADS)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  13. Cooperativity in self-limiting equilibrium self-associating systems

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.

    2012-11-01

    A wide variety of highly cooperative self-assembly processes in biological and synthetic systems involve the assembly of a large number (m) of units into clusters, with m narrowly peaked about a large size m0 ≫ 1 and with a second peak centered about the m = 1 unassembled monomers. While very specific models have been proposed for the assembly of, for example, viral capsids and core-shell micelles of ß-casein, no available theory describes a thermodynamically general mechanism for this double peaked, highly cooperative equilibrium assembly process. This study provides a general mechanism for these cooperative processes by developing a minimal Flory-Huggins type theory. Beginning from the simplest non-cooperative, free association model in which the equilibrium constant for addition of a monomer to a cluster is independent of cluster size, the new model merely allows more favorable growth for clusters of intermediate sizes. The theory is illustrated by computing the phase diagram for cases of self-assembly on cooling or heating and for the mass distribution of the two phases.

  14. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    PubMed Central

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  15. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  16. Nanostructural control of the release of macromolecules from silica sol–gels

    PubMed Central

    Radin, Shula; Bhattacharyya, Sanjib; Ducheyne, Paul

    2013-01-01

    The therapeutic use of biological molecules such as growth factors and monoclonal antibodies is challenging in view of their limited half-life in vivo. This has elicited the interest in delivery materials that can protect these molecules until released over extended periods of time. Although previous studies have shown controlled release of biologically functional BMP-2 and TGF-β from silica sol–gels, more versatile release conditions are desirable. This study focuses on the relationship between room temperature processed silica sol–gel synthesis conditions and the nanopore size and size distribution of the sol–gels. Furthermore, the effect on release of large molecules with a size up to 70 kDa is determined. Dextran, a hydrophilic polysaccharide, was selected as a large model molecule at molecular sizes of 10, 40 and 70 kDa, as it enabled us to determine a size effect uniquely without possible confounding chemical effects arising from the various molecules used. Previously, acid catalysis was performed at a pH value of 1.8 below the isoelectric point of silica. Herein the silica synthesis was pursued using acid catalysis at either pH 1.8 or 3.05 first, followed by catalysis at higher values by adding base. This results in a mesoporous structure with an abundance of pores around 3.5 nm. The data show that all molecular sizes can be released in a controlled manner. The data also reveal a unique in vivo approach to enable release of large biological molecules: the use more labile sol–gel structures by acid catalyzing above the pH value of the isoelectric point of silica; upon immersion in a physiological fluid the pores expand to reach an average size of 3.5 nm, thereby facilitating molecular out-diffusion. PMID:23643607

  17. Effects of long-term changes in the benthic community on yellow perch in Saginaw Bay, Lake Huron

    USGS Publications Warehouse

    Schaeffer, Jeffrey S.; Diana, James S.; Haas, Robert C.

    2000-01-01

    Abundance, mortality, age and growth, food habits, and energetics of a yellow perch Perca flavescens population were investigated in eutrophic Saginaw Bay, Lake Huron during May to October, 1986 to 1988, and compared population characteristics with historical data from times when eutrophic conditions were less severe. During 1986 to 1988, yellow perch were abundant, but grew slowly and experienced high natural mortality. A size threshold was present at 150 to 180 mm beyond which few individuals survived, and sex ratios became biased toward males. An energetic model suggested that yellow perch were food limited; as they increased in size they spent a greater proportion of the growing season near maintenance ration. Low feeding rates were a consequence of subsistence on small chironomid larvae. Piscivory provided little energetic relief. Historical data suggested that availability of large benthic prey such as nymphs of the burrowing mayfly Hexagenia was important to yellow perch. Yellow perch formerly consumed Hexagenia, but mayflies were extirpated from Saginaw Bay during 1953 to 1965, and never recovered. When Hexagenia was present, yellow perch growth was moderate to fast depending on population size, size thresholds were not present, and yellow perch reached large size and older age despite moderate to high fishing mortality. Decreases in yellow perch growth rates during 1952 to 1955 coincided with extirpation of Hexagenia. Fast growth of yellow perch did occur after Hexagenia became extirpated, but only when fishing mortality was high, population size was small, and some large benthic invertebrates remained. Eutrophication of Saginaw Bay appeared to affect yellow perch by changing species composition and reducing size structure of the benthic community.

  18. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  19. Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaut, Annette S.; Wurstbauer, Ulrich; Wang, Sheng

    We demonstrate growth of single-layer graphene (SLG) on hexagonal boron nitride (h-BN) by molecular beam epitaxy (MBE), only limited in area by the finite size of the h-BN flakes. Using atomic force microscopy and micro-Raman spectroscopy, we show that for growth over a wide range of temperatures (500 °C – 1000 °C) the deposited carbon atoms spill off the edge of the h-BN flakes. We attribute this spillage to the very high mobility of the carbon atoms on the BN basal plane, consistent with van der Waals MBE. The h-BN flakes vary in size from 30 μm to 100 μm,more » thus demonstrating that the migration length of carbon atoms on h-BN is greater than 100 μm. When sufficient carbon is supplied to compensate for this loss, which is largely due to this fast migration of the carbon atoms to and off the edges of the h-BN flake, we find that the best growth temperature for MBE SLG on h-BN is ~950 °C. Self-limiting graphene growth appears to be facilitated by topographic h-BN surface features: We have thereby grown MBE self-limited SLG on an h-BN ridge. This opens up future avenues for precisely tailored fabrication of nano- and hetero-structures on pre-patterned h-BN surfaces for device applications.« less

  20. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O -Methyltransferase

    DOE PAGES

    Kulik, Heather J.; Zhang, Jianyu; Klinman, Judith P.; ...

    2016-10-05

    Hybrid quantum mechanical–molecular mechanical (QM/MM) simulations are widely used in studies of enzymatic catalysis. Until recently, it has been cost prohibitive to determine the asymptotic limit of key energetic and structural properties with respect to increasingly large QM regions. Here, leveraging recent advances in electronic structure efficiency and accuracy, we investigate catalytic properties in catechol O-methyltransferase, a prototypical methyltransferase critical to human health. Using QM regions ranging in size from reactants-only (64 atoms) to nearly one-third of the entire protein (940 atoms), we show that properties such as the activation energy approach within chemical accuracy of the large-QM asymptotic limitsmore » rather slowly, requiring approximately 500–600 atoms if the QM residues are chosen simply by distance from the substrate. This slow approach to asymptotic limit is due to charge transfer from protein residues to the reacting substrates. Our large QM/MM calculations enable identification of charge separation for fragments in the transition state as a key component of enzymatic methyl transfer rate enhancement. We introduce charge shift analysis that reveals the minimum number of protein residues (approximately 11–16 residues or 200–300 atoms for COMT) needed for quantitative agreement with large-QM simulations. The identified residues are not those that would be typically selected using criteria such as chemical intuition or proximity. These results provide a recipe for a more careful determination of QM region sizes in future QM/MM studies of enzymes.« less

  1. Rethinking police training policies: large class sizes increase risk of police sexual misconduct.

    PubMed

    Reingle Gonzalez, Jennifer M; Bishopp, Stephen A; Jetelina, Katelyn K

    2016-09-01

    The limited research on police sexual misconduct (PSM), a common form of police misconduct, suggests that no evidence-based strategies for prevention are available for use by police departments. To identify new avenues for prevention, we critically evaluated 'front-end' police recruiting, screening, hiring and training procedures. Internal Affairs records were linked with administrative reports and police academy graduation data for officers accused of sexual assault or misconduct between 1994 and 2014. Logistic and proportional hazards regression methods were used to identify predictors of discharge for sustained allegations of PSM and time to discharge, respectively. Officer's graduating class size was positively associated with odds of discharge for PSM. For every one-officer increase in class size, the rate of discharge for PSM increased by 9% [hazard ratio (HR) = 1.09, P < 0.01]. For particularly large classes (>35 graduates), discharge rates were at least four times greater than smaller classes (HR = 4.43, P < 0.05). Large class sizes and more annual graduates increase rates of PSM. Officer recruitment strategies or training quality may be compromised during periods of intensive hiring. Trainee to instructor ratios or maximum class sizes may be instituted by academies to ensure that all police trainees receive the required supervision, one-on-one training, feedback and attention necessary to maximize public safety. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Eating less from bigger packs: Preventing the pack size effect with diet primes.

    PubMed

    Versluis, Iris; Papies, Esther K

    2016-05-01

    An increase in the package size of food has been shown to lead to an increase in energy intake from this food, the so-called pack size effect. Previous research has shown that providing diet-concerned individuals with a reminder, or prime, of their dieting goal can help them control their consumption. Here, we investigated if providing such a prime is also effective for reducing the magnitude of the pack size effect. We conducted two experiments in which the cover of a dieting magazine (Experiment 1) and diet-related commercials (Experiment 2) served as diet goal primes. Both experiments had a 2 (pack size: small vs. large) × 2 (prime: diet vs. control) × 2 (dietary restraint: high vs. low) between participants design. We measured expected consumption of four snack foods in Experiment 1 (N = 477), and actual consumption of M&M's in Experiment 2 (N = 224). Results showed that the diet prime reduced the pack size effect for both restrained and unrestrained eaters in Experiment 1 and for restrained eaters only in Experiment 2. Although effect sizes were small, these findings suggest that a diet prime motivates restrained eaters to limit their consumption, and as a result the pack size has less influence on the amount consumed. We discuss limitations of this research as well as potential avenues for further research and theoretical and practical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Visual working memory capacity and the medial temporal lobe.

    PubMed

    Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R

    2012-03-07

    Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.

  4. 50 CFR 635.23 - Retention limits for BFT.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atlantic Tunas permit may possess, retain, land, or sell a BFT in the school, large school, or small medium... Tunas permit may fish for, possess, retain, land, or sell a BFT of any size class, and catch-and-release... or giant BFT may be possessed or retained aboard a vessel that has a General category Atlantic Tunas...

  5. 50 CFR 635.23 - Retention limits for BFT.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atlantic Tunas permit may possess, retain, land, or sell a BFT in the school, large school, or small medium... Tunas permit may fish for, possess, retain, land, or sell a BFT of any size class, and catch-and-release... or giant BFT may be possessed or retained aboard a vessel that has a General category Atlantic Tunas...

  6. 50 CFR 635.23 - Retention limits for BFT.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic Tunas permit may possess, retain, land, or sell a BFT in the school, large school, or small medium... Tunas permit may fish for, possess, retain, land, or sell a BFT of any size class, and catch-and-release... or giant BFT may be possessed or retained aboard a vessel that has a General category Atlantic Tunas...

  7. 50 CFR 635.23 - Retention limits for BFT.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Tunas permit may possess, retain, land, or sell a BFT in the school, large school, or small medium... Tunas permit may fish for, possess, retain, land, or sell a BFT of any size class, and catch-and-release... or giant BFT may be possessed or retained aboard a vessel that has a General category Atlantic Tunas...

  8. Engaging Students in Physical Education: Key Challenges and Opportunities for Physical Educators in Urban Settings

    ERIC Educational Resources Information Center

    Sliwa, Sarah; Nihiser, Allison; Lee, Sarah; McCaughtry, Nathan; Culp, Brian; Michael, Shannon

    2017-01-01

    In October 2009, "JOPERD" published a special issue about "Engaging Urban Youths in Physical Education and Physical Activity." Seven years later, many of the considerations mentioned remain relevant, such as large class sizes, limited access to equipment, and the lack of a dedicated gymnasium or outdoor space. These structural…

  9. Routing and Addressing Problems in Large Metropolitan-Scale Internetworks. ISI Research Report.

    ERIC Educational Resources Information Center

    Finn, Gregory G.

    This report discusses some of the problems and limitations in existing internetwork design for the connection of packet-switching networks of different technologies and presents an algorithm that has been shown to be suitable for internetworks of unbounded size. Using a new form of address and a flat routing mechanism called Cartesian routing,…

  10. Intellectual Abilities in a Large Sample of Children with Velo-Cardio-Facial Syndrome: An Update

    ERIC Educational Resources Information Center

    De Smedt, Bert; Devriendt, K.; Fryns, J. -P.; Vogels, A.; Gewillig, M.; Swillen, A.

    2007-01-01

    Background: Learning disabilities are one of the most consistently reported features in Velo-Cardio-Facial Syndrome (VCFS). Earlier reports on IQ in children with VCFS were, however, limited by small sample sizes and ascertainment biases. The aim of the present study was therefore to replicate these earlier findings and to investigate intellectual…

  11. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.

    PubMed

    Li, Wenyuan; Gong, Ke; Li, Qingjiao; Alber, Frank; Zhou, Xianghong Jasmine

    2015-03-15

    Genome-wide proximity ligation assays, e.g. Hi-C and its variant TCC, have recently become important tools to study spatial genome organization. Removing biases from chromatin contact matrices generated by such techniques is a critical preprocessing step of subsequent analyses. The continuing decline of sequencing costs has led to an ever-improving resolution of the Hi-C data, resulting in very large matrices of chromatin contacts. Such large-size matrices, however, pose a great challenge on the memory usage and speed of its normalization. Therefore, there is an urgent need for fast and memory-efficient methods for normalization of Hi-C data. We developed Hi-Corrector, an easy-to-use, open source implementation of the Hi-C data normalization algorithm. Its salient features are (i) scalability-the software is capable of normalizing Hi-C data of any size in reasonable times; (ii) memory efficiency-the sequential version can run on any single computer with very limited memory, no matter how little; (iii) fast speed-the parallel version can run very fast on multiple computing nodes with limited local memory. The sequential version is implemented in ANSI C and can be easily compiled on any system; the parallel version is implemented in ANSI C with the MPI library (a standardized and portable parallel environment designed for solving large-scale scientific problems). The package is freely available at http://zhoulab.usc.edu/Hi-Corrector/. © The Author 2014. Published by Oxford University Press.

  12. Evidence for Decreased Brain Parenchymal Volume After Large Intracerebral Hemorrhages: a Potential Mechanism Limiting Intracranial Pressure Rises.

    PubMed

    Williamson, Michael R; Colbourne, Frederick

    2017-08-01

    Potentially fatal intracranial pressure (ICP) rises commonly occur after large intracerebral hemorrhages (ICH). We monitored ICP after infusing 100-160 μL of autologous blood (vs. 0 μL control) into the striatum of rats in order to test the validity of this common model with regard to ICP elevations. Other endpoints included body temperature, behavioral impairment, lesion volume, and edema. Also, we evaluated hippocampal CA1 sector and somatosensory cortical neuron morphology to assess whether global ischemic injury occurred. Despite massive blood infusions, ICP only modestly increased (160 μL 10.8 ± 2.1 mmHg for <36 h vs. control 3.4 ± 0.5 mmHg), with little peri-hematoma edema at 3 days. Body temperature was not affected. Behavioral deficits and tissue loss were infusion volume-dependent. There was no histological evidence of hippocampal or cortical injury, indicating that cell death was confined to the hematoma and closely surrounding tissue. Surprisingly, the most severe hemorrhages significantly increased cell density (~15-20%) and reduced cell body size (~30%) in regions outside the injury site. Additionally, decreased cell size and increased density were observed after collagenase-induced ICH. Parenchymal volume is seemingly reduced after large ICH. Thus, in addition to well-known compliance mechanisms (e.g., displacement of cerebrospinal fluid and cerebral blood), reduced brain parenchymal volume appears to limit ICP rises in rodents with very large mass lesions.

  13. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  14. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  15. Investigation on the Size Effect in Large-Scale Beta-Processed Ti-17 Disks Based on Quantitative Metallography

    NASA Astrophysics Data System (ADS)

    Zhang, Saifei; Zeng, Weidong; Gao, Xiongxiong; Zhao, Xingdong; Li, Siqing

    2017-10-01

    The present study investigates the mechanical properties of large-scale beta-processed Ti-17 forgings because of the increasing interest in beta thermal-mechanical processing method for fabricating compressor disks or blisks in aero-engines due to its advantage in damage tolerance performance. Three Ti-17 disks with different weights of 57, 250 and 400 kg were prepared by beta processing techniques firstly for comparative study. The results reveal a significant `size effect' in beta-processed Ti-17 disks, i.e., dependences of high cycle fatigue, tensile properties and fracture toughness of beta-processed Ti-17 disks on disk size (or weight). With increasing disk weight from 57 to 400 kg, the fatigue limit (fatigue strength at 107 cycles, R = -1) was reduced from 583 to 495 MPa, tensile yield strength dropped from 1073 to 1030 MPa, while fracture toughness ( K IC) rose from 70.9 to 95.5 MPaṡm1/2. Quantitative metallography analysis shows that the `size effect' of mechanical properties can be attributed to evident differences between microstructures of the three disk forgings. With increasing disk size, nearly all microstructural components in the basket-weave microstructure, including prior β grain, α layers at β grain boundaries (GB- α) and α lamellas at the interior of the grains, get coarsened to different degrees. Further, the microstructural difference between the beta-processed disks is proved to be the consequence of longer pre-forging soaking time and lower post-forging cooling rate for large disks than small ones. Finally, suggestions are made from the perspective of microstructural control on how to improve mechanical properties of large-scale beta-processed Ti-17 forgings.

  16. Long-term clinical evaluation of a 800-nm long-pulsed diode laser with a large spot size and vacuum-assisted suction for hair removal.

    PubMed

    Ibrahimi, Omar A; Kilmer, Suzanne L

    2012-06-01

    The long-pulsed diode (800-810-nm) laser is one of the most commonly used and effective lasers for hair removal. Limitations of currently available devices include a small treatment spot size, treatment-associated pain, and the need for skin cooling. To evaluate the long-term hair reduction capabilities of a long-pulsed diode laser with a large spot size and vacuum assisted suction. Thirty-five subjects were enrolled in a prospective, self-controlled, single-center study of axillary hair removal. The study consisted of three treatments using a long-pulsed diode laser with a large spot size and vacuum-assisted suction at 4- to 6-week intervals with follow-up visits 6 and 15 months after the last treatment. Hair clearance was quantified using macro hair-count photographs taken at baseline and at 6- and 15-month follow-up visits. Changes in hair thickness and color, levels of treatment-associated pain, and adverse events were additional study endpoints. There was statistically significant hair clearance at the 6 (54%) and 15-month (42%) follow-up visits. Remaining hairs were thinner and lighter at the 15-month follow-up visit, and the majority of subjects reported feeling up to mild to moderate pain during treatment without the use of pretreatment anesthesia or skin cooling. A long-pulsed diode laser with a large spot size and vacuum-assisted suction is safe and effective for long-term hair removal. This is the largest prospective study to evaluate long-term hair removal and the first to quantify decreases in hair thickness and darkness with treatment. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  17. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.

    PubMed

    Parzefall, M; Bharadwaj, P; Jain, A; Taniguchi, T; Watanabe, K; Novotny, L

    2015-12-01

    The ultrafast conversion of electrical signals to optical signals at the nanoscale is of fundamental interest for data processing, telecommunication and optical interconnects. However, the modulation bandwidths of semiconductor light-emitting diodes are limited by the spontaneous recombination rate of electron-hole pairs, and the footprint of electrically driven ultrafast lasers is too large for practical on-chip integration. A metal-insulator-metal tunnel junction approaches the ultimate size limit of electronic devices and its operating speed is fundamentally limited only by the tunnelling time. Here, we study the conversion of electrons (localized in vertical gold-hexagonal boron nitride-gold tunnel junctions) to free-space photons, mediated by resonant slot antennas. Optical antennas efficiently bridge the size mismatch between nanoscale volumes and far-field radiation and strongly enhance the electron-photon conversion efficiency. We achieve polarized, directional and resonantly enhanced light emission from inelastic electron tunnelling and establish a novel platform for studying the interaction of electrons with strongly localized electromagnetic fields.

  18. A test of reproductive power in snakes.

    PubMed

    Boback, Scott M; Guyer, Craig

    2008-05-01

    Reproductive power is a contentious concept among ecologists, and the model has been criticized on theoretical and empirical grounds. Despite these criticisms, the model has successfully predicted the modal (optimal) size in three large taxonomic groups and the shape of the body size distribution in two of these groups. We tested the reproductive power model on snakes, a group that differs markedly in physiology, foraging ecology, and body shape from the endothermic groups upon which the model was derived. Using detailed field data from the published literature, snake-specific constants associated with reproductive power were determined using allometric relationships of energy invested annually in egg production and population productivity. The resultant model accurately predicted the mode and left side of the size distribution for snakes but failed to predict the right side of that distribution. If the model correctly describes what is possible in snakes, observed size diversity is limited, especially in the largest size classes.

  19. TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images

    PubMed Central

    2012-01-01

    Background Further advances in modern microscopy are leading to teravoxel-sized tiled 3D images at high resolution, thus increasing the dimension of the stitching problem of at least two orders of magnitude. The existing software solutions do not seem adequate to address the additional requirements arising from these datasets, such as the minimization of memory usage and the need to process just a small portion of data. Results We propose a free and fully automated 3D Stitching tool designed to match the special requirements coming out of teravoxel-sized tiled microscopy images that is able to stitch them in a reasonable time even on workstations with limited resources. The tool was tested on teravoxel-sized whole mouse brain images with micrometer resolution and it was also compared with the state-of-the-art stitching tools on megavoxel-sized publicy available datasets. This comparison confirmed that the solutions we adopted are suited for stitching very large images and also perform well on datasets with different characteristics. Indeed, some of the algorithms embedded in other stitching tools could be easily integrated in our framework if they turned out to be more effective on other classes of images. To this purpose, we designed a software architecture which separates the strategies that use efficiently memory resources from the algorithms which may depend on the characteristics of the acquired images. Conclusions TeraStitcher is a free tool that enables the stitching of Teravoxel-sized tiled microscopy images even on workstations with relatively limited resources of memory (<8 GB) and processing power. It exploits the knowledge of approximate tile positions and uses ad-hoc strategies and algorithms designed for such very large datasets. The produced images can be saved into a multiresolution representation to be efficiently retrieved and processed. We provide TeraStitcher both as standalone application and as plugin of the free software Vaa3D. PMID:23181553

  20. Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm

    PubMed Central

    Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed

    2008-01-01

    Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581

  1. Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.

    PubMed

    Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed

    2004-01-01

    Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.

  2. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  3. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.

  4. Covariation of metabolic rates and cell size in coccolithophores

    NASA Astrophysics Data System (ADS)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.

  5. Modeling the viscosity of polydisperse suspensions: Improvements in prediction of limiting behavior

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2016-06-01

    The present study develops a fully consistent extension of the approach pioneered by Farris ["Prediction of the viscosity of multimodal suspensions from unimodal viscosity data," Trans. Soc. Rheol. 12, 281-301 (1968)] to describe the viscosity of polydisperse suspensions significantly improving upon our previous model [P. M. Mwasame, N. J. Wagner, and A. N. Beris, "Modeling the effects of polydispersity on the viscosity of noncolloidal hard sphere suspensions," J. Rheol. 60, 225-240 (2016)]. The new model captures the Farris limit of large size differences between consecutive particle size classes in a suspension. Moreover, the new model includes a further generalization that enables its application to real, complex suspensions that deviate from ideal non-colloidal suspension behavior. The capability of the new model to predict the viscosity of complex suspensions is illustrated by comparison against experimental data.

  6. Pore diffusion limits removal of monochloramine in treatment of swimming pool water using granular activated carbon.

    PubMed

    Skibinski, Bertram; Götze, Christoph; Worch, Eckhard; Uhl, Wolfgang

    2018-04-01

    Overall apparent reaction rates for the removal of monochloramine (MCA) in granular activated carbon (GAC) beds were determined using a fixed-bed reactor system and under conditions typical for swimming pool water treatment. Reaction rates dropped and quasi-stationary conditions were reached quickly. Diffusional mass transport in the pores was shown to be limiting the overall reaction rate. This was reflected consistently in the Thiele modulus, in the effect of temperature, pore size distribution and of grain size on the reaction rates. Pores <2.5 times the diameter of the monochloramine molecule were shown to be barely accessible for the monochloramine conversion reaction. GACs with a significant proportion of large mesopores were found to have the highest overall reactivity for monochloramine removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Habitat fragmentation influences nestling growth in Mediterranean blue and great tits

    NASA Astrophysics Data System (ADS)

    Bueno-Enciso, Javier; Ferrer, Esperanza S.; Barrientos, Rafael; Serrano-Davies, Eva; Sanz, Juan José

    2016-01-01

    In patchy forest areas, the size of the forest patch where birds breed has a strong influence on their breeding success. However, the proximate effects contributing to lowering the breeding success in small forest patches remain unclear; and a shortage of crucial resources in those forest patches has been suggested to account in some degree for this failure. With the aim to further investigate this issue, we have monitored the breeding cycle of blue and great tits in three 'large' forest patches (ranging between 26.5 and 29.6 ha) and twelve 'small' forest patches (ranging between 1.1 and 2.1 ha) in a Mediterranean area in central Spain, during three years (2011-2013). We also recorded the nestling diet inside the nest-boxes with the aid of handy-cams. Only males significantly differed between forest patch size categories; being on average younger and with better body condition in small patches for great and blue tits respectively. Reproductive traits did not vary between forest patch size categories, but the body condition of blue tit nestlings and the size of great tit nestlings did, being significantly better and larger respectively in large forest patches. The recruitment rate of blue tit nestlings was also higher in large patches. Regarding nestling diet, blue tits did not differ but great tits did, delivering a larger amount of caterpillars in large forest patches. Most variation in the reproductive traits occurred between years, probably due to annual differences in environmental conditions. This study suggests that food supply could be limiting the breeding success of birds above all in small patches, but also in large patches under particular environmental conditions.

  8. Regional climate model sensitivity to domain size

    NASA Astrophysics Data System (ADS)

    Leduc, Martin; Laprise, René

    2009-05-01

    Regional climate models are increasingly used to add small-scale features that are not present in their lateral boundary conditions (LBC). It is well known that the limited area over which a model is integrated must be large enough to allow the full development of small-scale features. On the other hand, integrations on very large domains have shown important departures from the driving data, unless large scale nudging is applied. The issue of domain size is studied here by using the “perfect model” approach. This method consists first of generating a high-resolution climatic simulation, nicknamed big brother (BB), over a large domain of integration. The next step is to degrade this dataset with a low-pass filter emulating the usual coarse-resolution LBC. The filtered nesting data (FBB) are hence used to drive a set of four simulations (LBs for Little Brothers), with the same model, but on progressively smaller domain sizes. The LB statistics for a climate sample of four winter months are compared with BB over a common region. The time average (stationary) and transient-eddy standard deviation patterns of the LB atmospheric fields generally improve in terms of spatial correlation with the reference (BB) when domain gets smaller. The extraction of the small-scale features by using a spectral filter allows detecting important underestimations of the transient-eddy variability in the vicinity of the inflow boundary, which can penalize the use of small domains (less than 100 × 100 grid points). The permanent “spatial spin-up” corresponds to the characteristic distance that the large-scale flow needs to travel before developing small-scale features. The spin-up distance tends to grow in size at higher levels in the atmosphere.

  9. Two-stage, low noise advanced technology fan. 5: Acoustic final report

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1975-01-01

    The NASA Q2S(quiet two-stage) fan is a 0.836m (32.9 in.) diameter model of the STF 433 engine fan, selected in a 1972 study for an Advanced Technology Transport (ATT) airplane. Noise-control features include: low tip speed, moderate stage pressure rise, large blade-vane spacings, no inlet guide vanes, and optimum blade and vane numbers. Tests were run on the baseline Q2S fan with standard inlet and discharge ducts. Further tests were made of a translating centerbody sonic inlet device and treated discharge ducts. Results were scaled to JT8D and JT3D engine fan size for comparison with current two-stage fans, and were also scaled to STF 433 fan size to compare calculated ATT flyover noise with FAR 36 limits. Baseline Q2S results scaled to JT8D and JT3D engine fan sizes showed substantial noise reductions. Calculated unsuppressed baseline ATT flyovers averaged about 2.5 EPNdB below FAR 36 limits. Using measured sonic inlet results, scaled baseline Q2S fan results, and calculated attenuations for a 1975 technology duct liner, projected flyover noise calculations for the ATT averaged about FAR 36 limits minus 10 EPNdB. Advances in suppression technology required to meet the 1985 goal of FAR 36 limits minus 20 EPNdB are discussed.

  10. Entry Descent and Landing Workshop Proceedings. Volume 1; Inflatable Reentry Vehicle Experiment-3 (IRVE-3) Project Overview & Instrumentation

    NASA Technical Reports Server (NTRS)

    Dillman, Robert

    2015-01-01

    Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).

  11. Many-body localization in disorder-free systems: The importance of finite-size constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca; Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5; Stoudenmire, E. Miles

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that variousmore » bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.« less

  12. Feasibility of an in situ measurement device for bubble size and distribution.

    PubMed

    Junker, Beth; Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-09-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles.

  13. On the large scale structure of X-ray background sources

    NASA Technical Reports Server (NTRS)

    Bi, H. G.; Meszaros, A.; Meszaros, P.

    1991-01-01

    The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.

  14. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.

    Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less

  15. Exit probability of the one-dimensional q-voter model: Analytical results and simulations for large networks

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2014-05-01

    We discuss the exit probability of the one-dimensional q-voter model and present tools to obtain estimates about this probability, both through simulations in large networks (around 107 sites) and analytically in the limit where the network is infinitely large. We argue that the result E(ρ )=ρq/ρq+(1-ρ)q, that was found in three previous works [F. Slanina, K. Sznajd-Weron, and P. Przybyła, Europhys. Lett. 82, 18006 (2008), 10.1209/0295-5075/82/18006; R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008), 10.1209/0295-5075/82/18007, for the case q =2; and P. Przybyła, K. Sznajd-Weron, and M. Tabiszewski, Phys. Rev. E 84, 031117 (2011), 10.1103/PhysRevE.84.031117, for q >2] using small networks (around 103 sites), is a good approximation, but there are noticeable deviations that appear even for small systems and that do not disappear when the system size is increased (with the notable exception of the case q =2). We also show that, under some simple and intuitive hypotheses, the exit probability must obey the inequality ρq/ρq+(1-ρ)≤E(ρ)≤ρ/ρ +(1-ρ)q in the infinite size limit. We believe this settles in the negative the suggestion made [S. Galam and A. C. R. Martins, Europhys. Lett. 95, 48005 (2001), 10.1209/0295-5075/95/48005] that this result would be a finite size effect, with the exit probability actually being a step function. We also show how the result that the exit probability cannot be a step function can be reconciled with the Galam unified frame, which was also a source of controversy.

  16. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    PubMed

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  17. Multiple tolerances dilute the second order cooperative dilemma

    NASA Astrophysics Data System (ADS)

    Sui, Xiukai; Wu, Bin; Wang, Long

    2017-12-01

    A peer punisher directly imposes fines upon defectors at a cost to himself. It is one of the mechanisms promoting cooperation, which is ubiquitous in nature. Typically, it is assumed that a peer punisher punishes provided that there is one defector in the group. The threshold that triggers punishment, however, is not necessarily one. The larger the threshold is, the more tolerant the peer punisher is. We study the evolutionary dynamics of those diverse tolerant peer punishment strategies in public goods game. We find that, i) less tolerant punishers prevail over tolerant ones; ii) large group size could enhance punishment, in contrast with the case in the first-order cooperative dilemma. Our analytical results are based on weak selection limit and large population size, which are verified by simulations. Our work sheds light on how punishment of diverse tolerance evolves.

  18. Variation in pollen limitation and floral parasitism across a mating system transition in a Pacific coastal dune plant: evolutionary causes or ecological consequences?

    PubMed

    Dart, Sara; Eckert, Christopher G

    2015-02-01

    Evolutionary transitions from outcrossing to self-fertilization are thought to occur because selfing provides reproductive assurance when pollinators or mates are scarce, but they could also occur via selection to reduce floral vulnerability to herbivores. This study investigated geographic covariation between floral morphology, fruit set, pollen limitation and florivory across the geographic range of Camissoniopsis cheiranthifolia, a Pacific coastal dune endemic that varies strikingly in flower size and mating system. Fruit set was quantified in 75 populations, and in 41 of these floral herbivory by larvae of a specialized moth (Mompha sp.) that consumes anthers in developing buds was also quantified. Experimental pollen supplementation was performed to quantify pollen limitation in three large-flowered, outcrossing and two small-flowered, selfing populations. These parameters were also compared between large- and small-flowered phenotypes within three mixed populations. Fruit set was much lower in large-flowered populations, and also much lower among large- than small-flowered plants within populations. Pollen supplementation increased per flower seed production in large-flowered but not small-flowered populations, but fruit set was not pollen limited. Hence inadequate pollination cannot account for the low fruit set of large-flowered plants. Floral herbivory was much more frequent in large-flowered populations and correlated negatively with fruit set. However, florivores did not preferentially attack large-flowered plants in three large-flowered populations or in two of three mixed populations. Selfing alleviated pollen limitation of seeds per fruit, but florivory better explains the marked variation in fruit set. Although florivory was more frequent in large-flowered populations, large-flowered individuals were not generally more vulnerable within populations. Rather than a causative selective factor, reduced florivory in small-flowered, selfing populations is probably an ecological consequence of mating system differentiation, with potentially significant effects on population demography and biotic interactions. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Impact Protection Assessment of the Redesigned Oregon Aero ZetaLiner Fitting System in the HGU-56/P Aircrew Integrated Helmet System

    DTIC Science & Technology

    2008-02-01

    with atypical head anthropometry . A limited number of current users have anecdotally cited the TPL® as causing hot spots. Hot spots are defined as...6) is available in sizes: extra-extra-small (XXS), extra- small (XS), small(S), medium (M), large (L), and extra-large ( XL ). Each helmet is made up...head anthropometries than the small HGU-56/P. This is accomplished by 6 thickening the polystyrene energy-absorbing liners (EALs) in the XS and XXS

  20. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  1. Introducing the MCHF/OVRP/SDMP: Multicapacitated/Heterogeneous Fleet/Open Vehicle Routing Problems with Split Deliveries and Multiproducts

    PubMed Central

    Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk

    2014-01-01

    In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735

  2. 16 CFR 1120.3 - Products deemed to be substantial product hazards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equivalent to sizes 2T to 16: (i) Garments in girls' size Large (L) and boys' size Large (L) are equivalent to girls' or boys' size 12, respectively. Garments in girls' and boys' sizes smaller than Large (L... range of 2T to 12. (ii) Garments in girls' size Extra-Large (XL) and boys' size Extra-Large (XL) are...

  3. 16 CFR § 1120.3 - Products deemed to be substantial product hazards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equivalent to sizes 2T to 16: (i) Garments in girls' size Large (L) and boys' size Large (L) are equivalent to girls' or boys' size 12, respectively. Garments in girls' and boys' sizes smaller than Large (L... range of 2T to 12. (ii) Garments in girls' size Extra-Large (XL) and boys' size Extra-Large (XL) are...

  4. 16 CFR 1120.3 - Products deemed to be substantial product hazards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equivalent to sizes 2T to 16: (i) Garments in girls' size Large (L) and boys' size Large (L) are equivalent to girls' or boys' size 12, respectively. Garments in girls' and boys' sizes smaller than Large (L... range of 2T to 12. (ii) Garments in girls' size Extra-Large (XL) and boys' size Extra-Large (XL) are...

  5. Very high-resolution spectroscopy for extremely large telescopes using pupil slicing and adaptive optics.

    PubMed

    Beckers, Jacques M; Andersen, Torben E; Owner-Petersen, Mette

    2007-03-05

    Under seeing limited conditions very high resolution spectroscopy becomes very difficult for extremely large telescopes (ELTs). Using adaptive optics (AO) the stellar image size decreases proportional with the telescope diameter. This makes the spectrograph optics and hence its resolution independent of the telescope diameter. However AO for use with ELTs at visible wavelengths require deformable mirrors with many elements. Those are not likely to be available for quite some time. We propose to use the pupil slicing technique to create a number of sub-pupils each of which having its own deformable mirror. The images from all sub-pupils are combined incoherently with a diameter corresponding to the diffraction limit of the sub-pupil. The technique is referred to as "Pupil Slicing Adaptive Optics" or PSAO.

  6. Photonics and microarray technology

    NASA Astrophysics Data System (ADS)

    Skovsen, E.; Duroux, M.; Neves-Petersen, M. T.; Duroux, L.; Petersen, S. B.

    2007-05-01

    Photonic induced immobilization of biosensor molecules is a novel technology that results in spatially oriented and spatially localized covalent coupling of a large variety of biomolecules onto thiol reactive surfaces, e.g. thiolated glass, quartz, gold or silicon. The reaction mechanism behind the reported new technology involves light-induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids resulting in the formation of reactive molecules that will form covalent bonds with thiol reactive surfaces. This new technology has the potential of replacing present micro dispensing arraying technologies, where the size of the individual sensor spots are limited by the size of the dispensed droplets. Using light-induced immobilization the spatial resolution is defined by the area of the sensor surface that is illuminated by UV light and not by the physical size of the dispensed droplets of sensor molecules. This new technology allows for dense packing of different biomolecules on a surface, allowing the creation of multi-potent functionalized materials, such as biosensors with micrometer sized individual sensor spots. Thus, we have developed the necessary technology for preparing large protein arrays of enzymes and fragments of antibodies, with micrometer resolution, without the need for liquid micro dispensing.

  7. The Florida Harvester Ant, Pogonomyrmex badius, Relies on Germination to Consume Large Seeds

    PubMed Central

    Kwapich, Christina L.

    2016-01-01

    The Florida harvester ant, Pogonomyrmex badius, is one of many ant species and genera that stores large numbers of seeds in damp, underground chambers for later consumption. A comparison of the sizes of seeds recovered from storage chambers with those of seed husks discarded following consumption revealed that the used seeds are far smaller than stored seeds. This difference in use-rate was confirmed in field and laboratory colonies by offering marked seeds of various sizes and monitoring the appearance of size-specific chaff. Because foragers collect a range of seed sizes but only open small seeds, large seeds accumulate, forming 70% or more of the weight of seed stores. Major workers increase the rates at which small and medium seeds are opened, but do not increase the size range of opened seeds. Experiments limiting ant access to portions of natural seed chambers showed that seeds germinate during storage, but that the ants rapidly remove them. When offered alongside non germinating seeds, germinating seeds were preferentially fed to larvae. The rate of germination during the annual cycle was determined by both burial in artificial chambers at various depths and under four laboratory temperatures. The germination rate depends upon the species of seed, the soil/laboratory temperature and/or the elapsed time. The seasonal soil temperature cycle generated germination patterns that vary with the mix of locally-available seeds. Taken together, exploitation of germination greatly increases the resources available to the ants in space and time. While the largest seeds may have the nutritional value of 15 small seeds, the inability of workers to open large seeds at will precludes them from rapid use during catastrophic events. The harvester ant’s approach to seed harvesting is therefore two-pronged, with both immediate and delayed payoffs arising from the tendency to forage for a wide variety of seeds sizes. PMID:27893844

  8. The Florida Harvester Ant, Pogonomyrmex badius, Relies on Germination to Consume Large Seeds.

    PubMed

    Tschinkel, Walter R; Kwapich, Christina L

    2016-01-01

    The Florida harvester ant, Pogonomyrmex badius, is one of many ant species and genera that stores large numbers of seeds in damp, underground chambers for later consumption. A comparison of the sizes of seeds recovered from storage chambers with those of seed husks discarded following consumption revealed that the used seeds are far smaller than stored seeds. This difference in use-rate was confirmed in field and laboratory colonies by offering marked seeds of various sizes and monitoring the appearance of size-specific chaff. Because foragers collect a range of seed sizes but only open small seeds, large seeds accumulate, forming 70% or more of the weight of seed stores. Major workers increase the rates at which small and medium seeds are opened, but do not increase the size range of opened seeds. Experiments limiting ant access to portions of natural seed chambers showed that seeds germinate during storage, but that the ants rapidly remove them. When offered alongside non germinating seeds, germinating seeds were preferentially fed to larvae. The rate of germination during the annual cycle was determined by both burial in artificial chambers at various depths and under four laboratory temperatures. The germination rate depends upon the species of seed, the soil/laboratory temperature and/or the elapsed time. The seasonal soil temperature cycle generated germination patterns that vary with the mix of locally-available seeds. Taken together, exploitation of germination greatly increases the resources available to the ants in space and time. While the largest seeds may have the nutritional value of 15 small seeds, the inability of workers to open large seeds at will precludes them from rapid use during catastrophic events. The harvester ant's approach to seed harvesting is therefore two-pronged, with both immediate and delayed payoffs arising from the tendency to forage for a wide variety of seeds sizes.

  9. The Sociocultural Context of Family Size Preference, Ideal Sex Composition, and Induced Abortion in India: Findings From India’s National Family Health Surveys

    PubMed Central

    Agrawal, Sutapa

    2017-01-01

    In this study, the author examined the effect of family size preference and sex composition of living children as determinants of induced abortion among women in India by analyzing 90,303 ever-married women aged 15–49, included in India’s second National Family Health Survey, conducted in 1998–99. Multivariate logistic regression methods were used to examine the association between induced abortion and possible determinants. The results indicated that a woman’s desire to limit family size with preferred sex composition of children, coupled with her autonomy and the sociocultural context, largely determines her experience of induced abortion in India. PMID:23066963

  10. Exactly solvable random graph ensemble with extensively many short cycles

    NASA Astrophysics Data System (ADS)

    Aguirre López, Fabián; Barucca, Paolo; Fekom, Mathilde; Coolen, Anthony C. C.

    2018-02-01

    We introduce and analyse ensembles of 2-regular random graphs with a tuneable distribution of short cycles. The phenomenology of these graphs depends critically on the scaling of the ensembles’ control parameters relative to the number of nodes. A phase diagram is presented, showing a second order phase transition from a connected to a disconnected phase. We study both the canonical formulation, where the size is large but fixed, and the grand canonical formulation, where the size is sampled from a discrete distribution, and show their equivalence in the thermodynamical limit. We also compute analytically the spectral density, which consists of a discrete set of isolated eigenvalues, representing short cycles, and a continuous part, representing cycles of diverging size.

  11. Herbivores limit the population size of big-leaf mahogany trees in an Amazonian forest

    Treesearch

    Julian M. Norghauer; Christopher M. Free; R. Matthew Landis; James Grogan; Jay R. Malcolm; Sean C. Thomas

    2015-01-01

    The Janzen -- Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-...

  12. VizieR Online Data Catalog: Veritas family members Yarkovsky drift rates (Carruba+, 2017)

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Vokrouhlicky, D.; Nesvorny, D.

    2017-05-01

    Data about 274 identified Veritas members, their absolute magnitude, proper a, e, sin(i), g, and s, Lyapunov exponent (multiplied by a factor 10+6), and estimated mean Yarkovsky drift speed, in AU/Myr (no such value is available for (1086) Nata itself, that because of its relative large size has very limited Yarkovsky mobility). (1 data file).

  13. Historical changes in pool habitats in the Columbia River basin

    Treesearch

    Bruce A. McIntosh; James R. Sedell; Russell F. Thurow; Sharon E. Clarke; Gwynn L. Chandler

    1995-01-01

    Knowledge of how stream habitats change over time in natural and human-influenced ecosystems at large, regional scales is currently limited. A historical stream survey (1934-1945) was compared to current surveys to assess changes in pool habitats in the Columbia River basin. Streams from across the basin, representing a wide range of geologies, stream sizes and land-...

  14. Non-perturbative theory of dispersion interactions

    NASA Astrophysics Data System (ADS)

    Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.

    2015-03-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  15. Is Some Data Better than No Data at All? Evaluating the Utility of Secondary Needs Assessment Data

    ERIC Educational Resources Information Center

    Shamblen, Stephen R.; Dwivedi, Pramod

    2010-01-01

    Needs assessments in substance abuse prevention often rely on secondary data measures of consumption and consequences to determine what population subgroup and geographic areas should receive a portion of limited resources. Although these secondary data measures have some benefits (e.g. large sample sizes, lack of survey response biases and cost),…

  16. Testing for post-copulatory selection for major histocompatibility complex genotype in a semi-free-ranging primate population.

    PubMed

    Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A

    2013-10-01

    A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.

  17. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    NASA Astrophysics Data System (ADS)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  18. Ni foam assisted synthesis of high quality hexagonal boron nitride with large domain size and controllable thickness

    NASA Astrophysics Data System (ADS)

    Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan

    2018-04-01

    The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.

  19. An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs).

    PubMed

    Marsalek, J; Krishnappan, B G; Exall, K; Rochfort, Q; Stephens, R P

    2006-01-01

    An elutriation apparatus was proposed for testing the settleability of combined sewer outflows (CSOs) and applied to 12 CSO samples. In this apparatus, solids settling is measured under dynamic conditions created by flow through a series of settling chambers of varying diameters and upward flow velocities. Such a procedure reproduces better turbulent settling in CSO tanks than the conventional settling columns, and facilitates testing coagulant additions under dynamic conditions. Among the limitations, one could name the relatively large size of the apparatus and samples (60 L), and inadequate handling of floatables. Settleability results obtained for the elutriation apparatus and a conventional settling column indicate large inter-event variation in CSO settleability. Under such circumstances, settling tanks need to be designed for "average" conditions and, within some limits, the differences in test results produced by various settleability testing apparatuses and procedures may be acceptable. Further development of the elutriation apparatus is under way, focusing on reducing flow velocities in the tubing connecting settling chambers and reducing the number of settling chambers employed. The first measure would reduce the risk of floc breakage in the connecting tubing and the second one would reduce the required sample size.

  20. Sex- and Size-Related Patterns of Carrion Visitation in Necrodes littoralis (Coleoptera: Silphidae) and Creophilus maxillosus (Coleoptera: Staphylinidae).

    PubMed

    Mądra-Bielewicz, Anna; Frątczak-Łagiewska, Katarzyna; Matuszewski, Szymon

    2017-09-01

    The estimation of postmortem interval (PMI) based on successional patterns of adult insects is largely limited, due to the lack of potential PMI markers. Sex and size of adult insects could be easily used for such estimation. In this study, sex- and size-related patterns of carrion attendance by adult insects were analyzed in Necrodes littoralis (Coleoptera: Silphidae) and Creophilus maxillosus (Coleoptera: Staphylinidae). For both species, abundance of males and females changed similarly during decomposition. A slightly female-biased sex ratio was recorded in N. littoralis. Females of N. littoralis started visiting carcasses, on average, one day earlier than males. There was a rise in size of males of N. littoralis at the end of decomposition, whereas for females of both species and males of C. maxillosus, no size-related patterns of carrion visitation were found. Current results demonstrate that size and sex of adult carrion beetles are poor indicators of PMI. © 2016 American Academy of Forensic Sciences.

  1. Implications of extreme sexual size dimorphism for thermoregulation in a freshwater turtle.

    PubMed

    Bulté, Grégory; Blouin-Demers, Gabriel

    2010-02-01

    Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T (b)) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is realized by differences in growth rate and because growth rate is strongly temperature dependent in ectotherms, a conflict between male reproductive behaviour and thermoregulation may affect the expression of SSD. In this study, we investigated the thermal implications of SSD in a reptile exhibiting spectacular female-biased SSD: the northern map turtle (Graptemys geographica). Over three seasons, we collected >150,000 measurements of T (b) in free-ranging adult and juvenile northern map turtles using surgically implanted miniature temperature loggers. Northern map turtles exhibited seasonal patterns of thermoregulation typical of reptiles in northern latitudes, but we found that large adult females experienced a lower daily maximum T (b) and a narrower daily range of T (b) than adult males and small juvenile females. In addition, despite more time spent basking, large adult females were not able to thermoregulate as accurately as small turtles. Our findings strongly suggest that body size limits the ability to thermoregulate accurately in large females. By comparing thermoregulatory patterns between adult males and juvenile females of similar body size, we found no evidence that male reproductive behaviours are an impediment to thermoregulation. We also quantified the thermal significance of basking behaviour. We found, contrary to previous findings, that aerial basking allows northern map turtles to raise their T (b) substantially above water temperature, indicating that basking behaviour likely plays an important role in thermoregulation.

  2. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses.

    PubMed

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-12-24

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call "soft bound." Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly.

  3. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    PubMed Central

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  4. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes.

    PubMed

    Calvo, F; Yurtsever, E

    2016-08-28

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  5. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2016-08-01

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C 60+ and C 70+ are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  6. Evaluating small-body landing hazards due to blocks

    NASA Astrophysics Data System (ADS)

    Ernst, C.; Rodgers, D.; Barnouin, O.; Murchie, S.; Chabot, N.

    2014-07-01

    Introduction: Landed missions represent a vital stage of spacecraft exploration of planetary bodies. Landed science allows for a wide variety of measurements essential to unraveling the origin and evolution of a body that are not possible remotely, including but not limited to compositional measurements, microscopic grain characterization, and the physical properties of the regolith. To date, two spacecraft have performed soft landings on the surface of a small body. In 2001, the Near Earth Asteroid Rendezvous (NEAR) mission performed a controlled descent and landing on (433) Eros following the completion of its mission [1]; in 2005, the Hayabusa spacecraft performed two touch-and-go maneuvers at (25143) Itokawa [2]. Both landings were preceded by rendezvous spacecraft reconnaissance, which enabled selection of a safe landing site. Three current missions have plans to land on small bodies (Rosetta, Hayabusa 2, and OSIRIS-REx); several other mission concepts also include small-body landings. Small-body landers need to land at sites having slopes and block abundances within spacecraft design limits. Due to the small scale of the potential hazards, it can be difficult or impossible to fully characterize a landing surface before the arrival of the spacecraft at the body. Although a rendezvous mission phase can provide global reconnaissance from which a landing site can be chosen, reasonable a priori assurance that a safe landing site exists is needed to validate the design approach for the spacecraft. Method: Many robotic spacecraft have landed safely on the Moon and Mars. Images of these landing sites, as well as more recent, extremely high-resolution orbital datasets, have enabled the comparison of orbital block observations to the smaller blocks that pose hazards to landers. Analyses of the Surveyor [3], Viking 1 and 2, Mars Pathfinder, Phoenix, Spirit, Opportunity, and Curiosity landing sites [4--8] have indicated that for a reasonable difference in size (a factor of several to ten), the size-frequency distribution of blocks can be modeled, allowing extrapolation from large block distributions to estimate small block densities. From that estimate, the probability of a lander encountering hazardous blocks can be calculated for a given lander design. Such calculations are used routinely to vet candidate sites for Mars landers [5--8]. Application to Small Bodies: To determine whether a similar approach will work for small bodies, we must determine if the large and small block populations can be linked. To do so, we analyze the comprehensive block datasets for the intermediate-sized Eros [9,10] and the small Itokawa [11,12]. Global and local block size-frequency distributions for Eros and Itokawa have power-law slopes on the order of -3 and match reasonably well between larger block sizes (from lower-resolution images) and smaller block sizes (from higher-resolution images). Although absolute block densities differ regionally on each asteroid, the slopes match reasonably well between Itokawa and Eros, with the geologic implications of this result discussed in [10]. For Eros and Itokawa, the approach of extending the size-frequency distribution from large, tens-of-meter-sized blocks down to small, tens-of-centimeter-sized blocks using a power-law fit to the large population yields reasonable estimates of small block populations. It is important to note that geologic context matters for the absolute block density --- if the global counts include multiple geologic settings, they will not directly extend to local areas containing only one setting [10]. A small number of high-resolution images of Phobos are sufficient for measuring blocks. These images are concentrated in the area outside of Stickney crater, which is thought to be the source of most of the observed blocks [13]. Block counts by Thomas et al. [13] suggest a power-law slope similar to those of Eros [9] and Itokawa global counts, with the absolute density of blocks similar to that of global Eros. Because blocks tend to be more numerous proximal to large, young craters (e.g., Stickney on Phobos, Shoemaker on Eros), the block density across most of Phobos is likely to be lower than that observed in the available high-resolution images. We suggest that a power-law extrapolation of Eros or Phobos large-block distributions provides upper limits for assessing the block landing hazards faced by a Phobos lander.

  7. Relationships among Egg Size, Composition, and Energy: A Comparative Study of Geminate Sea Urchins

    PubMed Central

    McAlister, Justin S.; Moran, Amy L.

    2012-01-01

    Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics. PMID:22911821

  8. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias.more » Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.« less

  9. Video Browsing on Handheld Devices

    NASA Astrophysics Data System (ADS)

    Hürst, Wolfgang

    Recent improvements in processing power, storage space, and video codec development enable users now to playback video on their handheld devices in a reasonable quality. However, given the form factor restrictions of such a mobile device, screen size still remains a natural limit and - as the term "handheld" implies - always will be a critical resource. This is not only true for video but any data that is processed on such devices. For this reason, developers have come up with new and innovative ways to deal with large documents in such limited scenarios. For example, if you look at the iPhone, innovative techniques such as flicking have been introduced to skim large lists of text (e.g. hundreds of entries in your music collection). Automatically adapting the zoom level to, for example, the width of table cells when double tapping on the screen enables reasonable browsing of web pages that have originally been designed for large, desktop PC sized screens. A multi touch interface allows you to easily zoom in and out of large text documents and images using two fingers. In the next section, we will illustrate that advanced techniques to browse large video files have been developed in the past years, as well. However, if you look at state-of-the-art video players on mobile devices, normally just simple, VCR like controls are supported (at least at the time of this writing) that only allow users to just start, stop, and pause video playback. If supported at all, browsing and navigation functionality is often restricted to simple skipping of chapters via two single buttons for backward and forward navigation and a small and thus not very sensitive timeline slider.

  10. Adults Who Order Sugar-Sweetened Beverages: Sociodemographics and Meal Patterns at Fast Food Chains.

    PubMed

    Taksler, Glen B; Kiszko, Kamila; Abrams, Courtney; Elbel, Brian

    2016-12-01

    Approximately 30% of adults consume sugar-sweetened beverages (SSBs) daily, many at fast food restaurants. Researchers examined fast food purchases to better understand which consumers order SSBs, particularly large SSBs. Fast food customers in New York City and New Jersey provided receipts and participated in a survey during 2013-2014 (N=11,614). Logistic regression analyses predicted three outcomes: ordering no beverage or a non-SSB, a small/medium SSB, or a large SSB. Among respondents who ordered a beverage (n=3,775), additional analyses predicted number of beverage calories and odds of ordering an SSB. Covariates included demographic and behavioral factors. Respondents aged 18-29 years were 88% more likely to order a large SSB than a non-SSB or no beverage, as compared with respondents aged ≥50 years (p<0.001). Among respondents who purchased a beverage, respondents ordered more beverage calories with a large combination meal (+85.13 kcal, p=0.001) or if the restaurant had a large cup size >30 ounces (+36.07 kcal, p=0.001). Hispanic and Asian respondents were less likely to order a large SSB (AOR=0.49 and 0.52, respectively, both p≤0.026) than non-Hispanic white respondents. Odds of ordering a large SSB were higher for respondents who ate in the restaurant (AOR=1.66, p<0.001) or stated that they chose beverage based on price (AOR=2.02, p<0.001). Young adults and customers of restaurants with a larger cup size were more likely to purchase SSBs, and their beverage calories increased with meal size. Increased understanding of these factors is an important step toward limiting unhealthy SSB consumption. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Adults Who Order Sugar-Sweetened Beverages

    PubMed Central

    Taksler, Glen B.; Kiszko, Kamila; Abrams, Courtney; Elbel, Brian

    2016-01-01

    Introduction Approximately 30% of adults consume sugar-sweetened beverages (SSBs) daily, many at fast food restaurants. Researchers examined fast food purchases to better understand which consumers order SSBs, particularly large SSBs. Methods Fast food customers in New York City and New Jersey provided receipts and participated in a survey during 2013–2014 (N=11,614). Logistic regression analyses predicted three outcomes: ordering no beverage or a non-SSB, a small/medium SSB, or a large SSB. Among respondents who ordered a beverage (n=3,775), additional analyses predicted number of beverage calories and odds of ordering an SSB. Covariates included demographic and behavioral factors. Results Respondents aged 18–29 years were 88% more likely to order a large SSB than a non-SSB or no beverage, as compared with respondents aged ≥50 years (p<0.001). Among respondents who purchased a beverage, respondents ordered more beverage calories with a large combination meal (+85.13 kcal, p=0.001) or if the restaurant had a large cup size >30 ounces (+36.07 kcal, p=0.001). Hispanic and Asian respondents were less likely to order a large SSB (AOR=0.49 and 0.52, respectively, both p≤0.026) than non-Hispanic white respondents. Odds of ordering a large SSB were higher for respondents who ate in the restaurant (AOR=1.66, p<0.001) or stated that they chose beverage based on price (AOR=2.02, p<0.001). Conclusions Young adults and customers of restaurants with a larger cup size were more likely to purchase SSBs, and their beverage calories increased with meal size. Increased understanding of these factors is an important step toward limiting unhealthy SSB consumption. PMID:27662697

  12. Individual-based modelling of population growth and diffusion in discrete time.

    PubMed

    Tkachenko, Natalie; Weissmann, John D; Petersen, Wesley P; Lake, George; Zollikofer, Christoph P E; Callegari, Simone

    2017-01-01

    Individual-based models (IBMs) of human populations capture spatio-temporal dynamics using rules that govern the birth, behavior, and death of individuals. We explore a stochastic IBM of logistic growth-diffusion with constant time steps and independent, simultaneous actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the continuum limit. This model is well-suited to parallelization on high-performance computers. We explore its emergent properties with analytical approximations and numerical simulations in parameter ranges relevant to human population dynamics and ecology, and reproduce continuous-time results in the limit of small transition probabilities. Our model prediction indicates that the population density and dispersal speed are affected by fluctuations in the number of individuals. The discrete-time model displays novel properties owing to the binomial character of the fluctuations: in certain regimes of the growth model, a decrease in time step size drives the system away from the continuum limit. These effects are especially important at local population sizes of <50 individuals, which largely correspond to group sizes of hunter-gatherers. As an application scenario, we model the late Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of model-based estimates of first-arrival dates with archaeological dates in dependence of IBM model parameter settings.

  13. The pharmacopeial evolution of intralipid injectable emulsion in plastic containers: from a coarse to a fine dispersion.

    PubMed

    Driscoll, David F

    2009-02-23

    On December 1, 2007, the United States Pharmacopeia (USP) adopted Chapter 729 entitled Globule Size Distribution in Lipid Injectable Emulsions that contains two globule sizing methods and criteria to measure the mean droplet diameter (MDD) and the large-diameter tail of the globule size distribution to meet pharmacopeial specifications. The first of these measures, as the intensity-weighted MDD expressed in nanometers, must be less than 500 nm. The second measure, as the volume-weighted percentage of fat greater than 5 microm or PFAT(5), must be less than 0.05%. These limits were first suggested in 2001 based on an analysis of 16 lipid injectable emulsions available worldwide. In 2004, the packaging of the innovator lipid emulsion product Intralipid was changed from conventional glass bottles to plastic containers in the U.S. A subsequent analysis of the emulsion in its new container showed it to be more coarse than its previous glass counterpart and now failed the PFAT(5) limit. In 2007, it was announced that Intralipid in plastic containers was reformulated to meet the pharmacopeial limits. To track the time course of its transition from a coarse to a fine dispersion, 31 lots of Intralipid with expiration dates spanning five years were investigated.

  14. 3D granulometry: grain-scale shape and size distribution from point cloud dataset of river environments

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain

    2016-04-01

    The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and along the Laonong river in Taiwan, which point clouds were obtained using both terrestrial lidar scanning and structure from motion photogrammetry.

  15. Design of a Telescopic Linear Actuator Based on Hollow Shape Memory Springs

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Spinella, Igor; Dragoni, Eugenio

    2011-07-01

    Shape memory alloys (SMAs) are smart materials exploited in many applications to build actuators with high power to mass ratio. Typical SMA drawbacks are: wires show poor stroke and excessive length, helical springs have limited mechanical bandwidth and high power consumption. This study is focused on the design of a large-scale linear SMA actuator conceived to maximize the stroke while limiting the overall size and the electric consumption. This result is achieved by adopting for the actuator a telescopic multi-stage architecture and using SMA helical springs with hollow cross section to power the stages. The hollow geometry leads to reduced axial size and mass of the actuator and to enhanced working frequency while the telescopic design confers to the actuator an indexable motion, with a number of different displacements being achieved through simple on-off control strategies. An analytical thermo-electro-mechanical model is developed to optimize the device. Output stroke and force are maximized while total size and power consumption are simultaneously minimized. Finally, the optimized actuator, showing good performance from all these points of view, is designed in detail.

  16. Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Mongkolsittisilp, A.

    2013-12-01

    We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.

  17. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

    PubMed

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-08-01

    The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Passive Rocket Diffuser Theory: A Re-Examination of Minimum Second Throat Size

    NASA Technical Reports Server (NTRS)

    Jones, Daniel R.

    2016-01-01

    Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure during testing without using active control systems. Among the most critical design parameters is the relative area of the diffuser throat to that of the nozzle throat. A smaller second throat is generally desirable because it decreases the stagnation-to-ambient pressure ratio the diffuser requires for nominal operation. There is a limit, however. Below a certain size, the second throat can cause pressure buildup within the diffuser and prevent it from reaching the start condition that protects the nozzle from side-load damage. This paper presents a method for improved estimation of the minimum second throat area which enables diffuser start. The new 3-zone model uses traditional quasi-one-dimensional compressible flow theory to approximate the structure of two distinct diffuser flow fields observed in Computational Fluid Dynamics (CFD) simulations and combines them to provide a less-conservative estimate of the second throat size limit. It is unique among second throat sizing methods in that it accounts for all major conical nozzle and second throat diffuser design parameters within its limits of application. The performance of the 3-zone method is compared to the historical normal shock and force balance methods, and verified against a large number of CFD simulations at specific heat ratios of 1.4 and 1.25. Validation is left as future work, and the model is currently intended to function only as a first-order design tool.

  19. A simple model of global cascades on random networks

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  20. 36 CFR § 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... designate more restrictive limits when appropriate for traffic safety or protection of the road surface. The... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Load, weight and size limits... TRAFFIC SAFETY § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits...

  1. Avalanche dynamics for active matter in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichhardt, C. J. O.; Reichhardt, C.

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  2. Avalanche dynamics for active matter in heterogeneous media

    DOE PAGES

    Reichhardt, C. J. O.; Reichhardt, C.

    2017-12-21

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent ofmore » $$\\beta =1.46$$. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.« less

  3. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  4. Avalanche dynamics for active matter in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. O.; Reichhardt, C.

    2018-02-01

    Using numerical simulations, we examine the dynamics of run-and-tumble disks moving in a disordered array of fixed obstacles. As a function of increasing active disk density and activity, we find a transition from a completely clogged state to a continuous flowing phase, and in the large activity limit, we observe an intermittent state where the motion occurs in avalanches that are power law distributed in size with an exponent of β =1.46. In contrast, in the thermal or low activity limit we find bursts of motion that are not broadly distributed in size. We argue that in the highly active regime, the system reaches a self-jamming state due to the activity-induced self-clustering, and that the intermittent dynamics is similar to that found in the yielding of amorphous solids. Our results show that activity is another route by which particulate systems can be tuned to a nonequilibrium critical state.

  5. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.

  6. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    NASA Astrophysics Data System (ADS)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  7. Neoadjuvant chemotherapy for atypical teratoid rhabdoid tumors: case report.

    PubMed

    Thatikunta, Meena; Mutchnick, Ian; Elster, Jennifer; Thompson, Matthew P; Huang, Michael A; Spalding, Aaron C; Moriarty, Thomas

    2017-05-01

    Atypical teratoid rhabdoid tumors (ATRTs) are a rare pediatric brain tumor with high mortality rate. Several large series have reported achieving gross-total resection (GTR) in less than 50% of patients due to the lesions' large size, vascularity, and limited blood volume in young patients. While neoadjuvant chemotherapy for choroid plexus carcinomas in pediatric patients has become widely accepted, it has not been used as widely for other pediatric brain tumors. To the best of the authors' knowledge, there are only 3 published cases of neoadjuvant chemotherapy for ATRTs. In the present report, the authors present a fourth case of neoadjuvant chemotherapy for ATRT and review the available literature on this strategy. A 17-month-old child presented with a left ventricular ATRT for which imaging raised concern for a highly vascularized tumor. The authors undertook neoadjuvant chemotherapy with 2 cycles of Head Start II therapy, which reduced the size of the ventricular tumor by 35% and decreased the vascularity of the lesion on imaging. The estimated blood loss during resection was 425 ml and GTR was achieved. The patient continued with postoperative chemotherapy but suffered an on-therapy recurrence. While higher-quality data are necessary, available evidence suggests that neoadjuvant chemotherapy can reduce the size and vascularity of ATRTs and facilitate a surgical avenue for large or "inoperable" tumors.

  8. Biology of the sauropod dinosaurs: the evolution of gigantism

    PubMed Central

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-01-01

    The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals. PMID:21251189

  9. Biology of the sauropod dinosaurs: the evolution of gigantism.

    PubMed

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-02-01

    The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The extensive pneumatization of the axial skeleton resulted from the evolution of an avian-style respiratory system, presumably at the base of Saurischia. An avian-style respiratory system would also have lowered the cost of breathing, reduced specific gravity, and may have been important in removing excess body heat. Another crucial innovation inherited from basal dinosaurs was a high BMR. This is required for fueling the high growth rate necessary for a multi-tonne animal to survive to reproductive maturity. The retention of the plesiomorphic oviparous mode of reproduction appears to have been critical as well, allowing much faster population recovery than in megaherbivore mammals. Sauropods produced numerous but small offspring each season while land mammals show a negative correlation of reproductive output to body size. This permitted lower population densities in sauropods than in megaherbivore mammals but larger individuals. Our work on sauropod dinosaurs thus informs us about evolutionary limits to body size in other groups of herbivorous terrestrial tetrapods. Ectothermic reptiles are strongly limited by their low BMR, remaining small. Mammals are limited by their extensive mastication and their vivipary, while ornithsichian dinosaurs were only limited by their extensive mastication, having greater average body sizes than mammals. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  10. Achieving optimal growth: lessons from simple metabolic modules

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Chen, Thomas; Wingreen, Ned

    2009-03-01

    Metabolism is a universal property of living organisms. While the metabolic network itself has been well characterized, the logic of its regulation remains largely mysterious. Recent work has shown that growth rates of microorganisms, including the bacterium Escherichia coli, correlate well with optimal growth rates predicted by flux-balance analysis (FBA), a constraint-based computational method. How difficult is it for cells to achieve optimal growth? Our analysis of representative metabolic modules drawn from real metabolism shows that, in all cases, simple feedback inhibition allows nearly optimal growth. Indeed, product-feedback inhibition is found in every biosynthetic pathway and constitutes about 80% of metabolic regulation. However, we find that product-feedback systems designed to approach optimal growth necessarily produce large pool sizes of metabolites, with potentially detrimental effects on cells via toxicity and osmotic imbalance. Interestingly, the sizes of metabolite pools can be strongly restricted if the feedback inhibition is ultrasensitive (i.e. with high Hill coefficient). The need for ultrasensitive mechanisms to limit pool sizes may therefore explain some of the ubiquitous, puzzling complexity found in metabolic feedback regulation at both the transcriptional and post-transcriptional levels.

  11. Thriving at the limit: Differential reproductive performance in range-edge populations of a Mediterranean sclerophyll (Olea europaea)

    NASA Astrophysics Data System (ADS)

    Granado-Yela, Carlos; Balaguer, Luis; García-Verdugo, Carlos; Carrillo, Katty; Méndez, Marcos

    2013-10-01

    Peripheral populations are often lumped together on the assumption of thriving in marginal habitats where reproductive performance is compromised. We have tested this hypothesis in peripheral populations of wild olive tree (Olea europaea L.) presumably limited by different factors at the westernmost limit of the species range. Additionally, we hypothesized that differences in reproductive outcome among populations are better explained by site-specific environmental conditions (PAR, soil water, soil nutrients, air humidity and air temperature) than by differences in phenotypic traits (tree size and leaf traits). To test these hypotheses, we assessed the number of flowering trees, the flowering intensity, fruit set and seed viability in eight populations for three consecutive years. Our findings provided sufficient evidence to reject the first hypothesis. Peripheral populations that occur under oceanic conditions, resembling the Tertiary subtropical climate, consistently presented higher values for all components of reproductive performance than those at the thermal and rainfall tolerance limits. In support of our second hypothesis, the variation in reproductive performance among populations was primarily accounted for by local environmental conditions. Leaf traits, however, also explained reproductive variation but to a lesser extent. Finally, we found that small changes in tree size may cause large differences in reproductive performance. This close relationship between tree size and reproductive performance suggests that any impact on population size structure would likely jeopardize persistence and expansion at the range edge. Our results suggest that reproductive performance of wild olive trees was not shaped by the population geographic position within the species range, but by the interaction between local environment, as the main driver, and individual phenotypic traits.

  12. Optimal control of Atlantic population Canada geese

    USGS Publications Warehouse

    Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.

    2007-01-01

    Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.

  13. A survey of interventional radiology for the management of obstetric haemorrhage in the United Kingdom.

    PubMed

    Webster, V J; Stewart, R; Stewart, P

    2010-07-01

    Massive haemorrhage remains a leading cause of maternal death worldwide. Interventional radiology can be used to prevent or treat life-threatening haemorrhage, but evidence for its efficacy is limited to case series predominantly from large tertiary centres. The current availability of interventional radiology for management of obstetric haemorrhage in the UK is unknown. A postal questionnaire on the use of interventional radiology was sent to the lead clinician for obstetric anaesthesia in 226 UK maternity units. The response rate was 72%; 74 respondents (46%) had considered and 51 (31%) used interventional radiology for control of obstetric haemorrhage. Its use was primarily confined to large tertiary obstetric units and limited by availability of equipment and staff. Interventional radiology to assist in the management of obstetric haemorrhage is not uniformly available in the UK and experience remains limited. Access to this resource is subject to striking local variability and influenced by the size and nature of the hospital supporting the delivery unit. 2010 Elsevier Ltd. All rights reserved.

  14. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  15. Environmental sensitivity of gas exchange in different-sized trees.

    PubMed

    McDowell, Nate G; Licata, Julian; Bond, Barbara J

    2005-08-01

    The carbon isotope signature (delta13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in delta13C of the very foliage used for the gas exchange measurements. Since delta13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring. If gas exchange differs with tree size during wet but not dry conditions, then this further implies that environmental sensitivity of leaf gas exchange varies as a function of tree size. These implications are consistent with theoretical relationships among height, hydraulic conductance and gas exchange. We investigated the environmental sensitivity of gas exchange in different-sized Douglas-fir (Pseudotsuga menziesii) via a detailed process model that specifically incorporates size-related hydraulic conductance [soil-plant-atmosphere (SPA)], and empirical measurements from both wet and dry periods. SPA predicted, and the empirical measurements verified, that differences in gas exchange associated with tree size are greatest in wet and mild environmental conditions and minimal during drought. The results support the hypothesis that annual net carbon assimilation and transpiration of trees are limited by hydraulic capacity as tree size increases, even though at particular points in time there may be no difference in gas exchange between different-sized trees. Maximum net ecosystem exchange occurs in spring in Pacific Northwest forests; therefore, the presence of hydraulic limitations during this period may play a large role in carbon uptake differences with stand-age. The results also imply that the impacts of climate change on the growth and physiology of forest trees will vary depending on the age and size of the forest.

  16. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  17. Wide field fluorescence epi-microscopy behind a scattering medium enabled by speckle correlations

    NASA Astrophysics Data System (ADS)

    Hofer, Matthias; Soeller, Christian; Brasselet, Sophie; Bertolotti, Jacopo

    2018-04-01

    Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the optical memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.

  18. Recent collisional jet from a primitive asteroid

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Dell'Oro, Aldo; Cellino, Alberto; Knežević, Zoran

    2012-09-01

    In this paper we show an example of a young asteroid cluster located in a dynamically stable region, which was produced by partial disruption of a primitive body about 30 km in size. We estimate its age to be only 1.9 ± 0.3 Myr; thus, its post-impact evolution should have been very limited. The large difference in size between the largest object and the other cluster members means that this was a cratering event. The parent body had a large orbital inclination and was subject to collisions with typical impact speeds higher by a factor of 2 than in the most common situations encountered in the main belt. For the first time, we have at our disposal the observable outcome of a very recent event to study high-speed collisions involving primitive asteroids, providing very useful constraints to numerical simulations of these events and to laboratory experiments.

  19. Low-temperature thermoelectric power factor enhancement by controlling nanoparticle size distribution.

    PubMed

    Zebarjadi, Mona; Esfarjani, Keivan; Bian, Zhixi; Shakouri, Ali

    2011-01-12

    Coherent potential approximation is used to study the effect of adding doped spherical nanoparticles inside a host matrix on the thermoelectric properties. This takes into account electron multiple scatterings that are important in samples with relatively high volume fraction of nanoparticles (>1%). We show that with large fraction of uniform small size nanoparticles (∼1 nm), the power factor can be enhanced significantly. The improvement could be large (up to 450% for GaAs) especially at low temperatures when the mobility is limited by impurity or nanoparticle scattering. The advantage of doping via embedded nanoparticles compared to the conventional shallow impurities is quantified. At the optimum thermoelectric power factor, the electrical conductivity of the nanoparticle-doped material is larger than that of impurity-doped one at the studied temperature range (50-500 K) whereas the Seebeck coefficient of the nanoparticle doped material is enhanced only at low temperatures (∼50 K).

  20. Simulation of the main physical processes in remote laser penetration with large laser spot size

    DOE PAGES

    Khairallah, S. A.; Anderson, A.; Rubenchik, A. M.; ...

    2015-04-10

    A 3D model is developed to simulate remote laser penetration of a 1mm Aluminum metal sheet with large laser spot size (~3x3cm²), using the ALE3D multi-physics code. The model deals with the laser-induced melting of the plate and the mechanical interaction between the solid and the melted part through plate elastic-plastic response. The effect of plate oscillations and other forces on plate rupture, the droplet formation mechanism and the influence of gravity and high laser power in further breaking the single melt droplet into many more fragments are analyzed. In the limit of low laser power, the numerical results matchmore » the available experiments. The numerical approach couples mechanical and thermal diffusion to hydrodynamics melt flow and accounts for temperature dependent material properties, surface tension, gravity and vapor recoil pressure.« less

  1. Innovative Double Bypass Engine for Increased Performance

    NASA Astrophysics Data System (ADS)

    Manoharan, Sanjivan

    Engines continue to grow in size to meet the current thrust requirements of the civil aerospace industry. Large engines pose significant transportation problems and require them to be split in order to be shipped. Thus, large amounts of time have been spent in researching methods to increase thrust capabilities while maintaining a reasonable engine size. Unfortunately, much of this research has been focused on increasing the performance and efficiencies of individual components while limited research has been done on innovative engine configurations. This thesis focuses on an innovative engine configuration, the High Double Bypass Engine, aimed at increasing fuel efficiency and thrust while maintaining a competitive fan diameter and engine length. The 1-D analysis was done in Excel and then compared to the results from Numerical Propulsion Simulation System (NPSS) software and were found to be within 4% error. Flow performance characteristics were also determined and validated against their criteria.

  2. Reduced oxygen at high altitude limits maximum size.

    PubMed

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  3. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  4. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  5. 36 CFR 1004.11 - Load, weight and size limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits when appropriate for traffic safety or protection of the road surface. The Board may require a... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Load, weight and size limits... § 1004.11 Load, weight and size limits. (a) Vehicle load, weight and size limits established by State law...

  6. Diameter-limit Cutting and Silviculture in Northeastern Forests: a Primer for Landowners, Practitioners,and Policymakers

    Treesearch

    Laura Kenefic; Ralph Nyland

    2005-01-01

    Whether we leave them alone or use them wisely, the forests of northeastern North America are renewable. Trees regenerate naturally, grow and develop to large sizes, and eventually die. They provide critical habitats for plants and animals, clear water and air, recreational opportunities, and an array of other benefits to the people who live in and visit the...

  7. On the development of efficient algorithms for three dimensional fluid flow

    NASA Technical Reports Server (NTRS)

    Maccormack, R. W.

    1988-01-01

    The difficulties of constructing efficient algorithms for three-dimensional flow are discussed. Reasonable candidates are analyzed and tested, and most are found to have obvious shortcomings. Yet, there is promise that an efficient class of algorithms exist between the severely time-step sized-limited explicit or approximately factored algorithms and the computationally intensive direct inversion of large sparse matrices by Gaussian elimination.

  8. Depression in Parents of Children Diagnosed with Autism Spectrum Disorder: A Claims-Based Analysis

    ERIC Educational Resources Information Center

    Cohrs, Austin C.; Leslie, Douglas L.

    2017-01-01

    Previous studies showing that Autism Spectrum Disorder (ASD) in children can have secondary effects on the child's parents are limited by small sample sizes and parent self-report. We examined the odds of depression in parents of children with ASD compared to parents of children without ASD using a large national claims database. Mothers (OR 2.95,…

  9. EVALUATION OF A NON-LETHAL SAMPLING TECHNIQUE FOR THE MEASUREMENT OF MERCURY (HG) CONCENTRATIONS AND STABLE-NITROGEN (15N/14N) ISOTOPE RATIOS IN LARGE MOUTH BASS (MICROPTERUS SALMOIDES)

    EPA Science Inventory

    Contaminant bioaccumulation studies often rely on fish muscle filets as the tissue of choice for the measurement of nitrogen stable isotope ratios ( 15N) and mercury (Hg). Lethal sampling techniques may not be suitable for studies on limited populations from smaller sized aquati...

  10. Variation in egg size of the northern pintail

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.

    1996-01-01

    Egg size is an important determinant of reproductive investment by birds. For many species, total investment in a clutch is limited by the size of stored reserves (Ankney and MacInnes 1978, Esler and Grand 1994a). Egg size determines the unit by which these stored reserves are partitioned. Individual females in most species of waterfowl show a high repeatability for egg size, implying that individual either cannot, or do not, alter their egg size in response to varying environmental conditions (batt and Prince 1979, Duncan 1987, Laurila and Hario 1988, Lessells et al 1989, Flint and Sedinger 1992). Thus differences in egg size appear to represent different reproductive strategies among individuals.Fitness can be measured by the number of offspring an individual contributes to a population. Egg size may be related to fitness in some species fo waterfowl as young from larger eggs are better able to survive extreme conditions (Ankney 1980, Thomas and Brown 1988). Birds laying larger clutches are almost always more fit as they fledge more young (Lessells 1986, Rockwell et al 1987, Flint 1993). These fitness patterns create the potential for a trade-off between clutch size and egg size where females laying large clutches of small eggs have the same fitness as females laying smaller clutches of large eggs. The fact that Northern Pintails (Anas acuta) utilize stored reserves (Mann and Sedinger 1993, esler and Grand 1994a) and have a high repeatability for egg size (i.e. egg size is fixed) (Duncan 1987), makes them candidates to engage in clutch size=egg size trade-offs (Rowher 1988, Rowher and Eisenhauer 1989). An inverse relationship between egg size and clutch size would be indicative of a phenotypic trade-off among these fitness components. Our goal in this study was to describe egg size variation in Northern Pintails (hereafter pintails) with regard to female age, body size, clutch size, year, initiation date, and nesting attempt. We compare our results to those from other populations of nesting pintails and discuss whether phenotypic clutch size-egg size tradeoffs exist for pintails.

  11. Comparing food limitation among three stages of nesting: supplementation experiments with the burrowing owl

    PubMed Central

    Wellicome, Troy I; Danielle Todd, L; Poulin, Ray G; Holroyd, Geoffrey L; Fisher, Ryan J

    2013-01-01

    Abstract Food availability is an important limiting factor for avian reproduction. In altricial birds, food limitation is assumed to be more severe during the nestling stage than during laying or incubation, but this has yet to be adequately tested. Using food-supplementation experiments over a 5-year period, we determined the degree and timing of food limitation for burrowing owls (Athene cunicularia) breeding in Canada. Burrowing owls are an endangered species and food limitation during the nestling stage could influence reproductive performance of this species at the northern extent of their range. Supplemented pairs fledged on average 47% more owlets than unfed pairs, except during a year when natural food was not limiting (i.e., a prey irruption year). The difference in fledgling production resulted from high nestling mortality in unfed broods, with 96% of all nestling deaths being attributed to food shortage. Supplemental feeding during the nestling period also increased fledgling structural size. Pairs fed from the start of laying produced the same number of hatchlings as pairs that received no supplemental food before hatch. Furthermore, pairs supplemented from egg laying to fledging and pairs supplemented during the nestling period alone had the same patterns of nestling survival, equal numbers of fledglings, and similar fledgling mass and structural size. Our results provide empirical support for the hypothesis that the nestling period is the most food-limited phase of the breeding cycle. The experimental design we introduce here could be used with other altricial species to examine how the timing of food limitation differs among birds with a variety of life-history strategies. For burrowing owls, and other species with similar life histories, long-term, large-scale, and appropriately timed habitat management increasing prey abundance or availability is critical for conservation. Our results provide empirical support for the hypothesis that the nestling period is the most food-limited phase of the breeding cycle. For burrowing owls, and other species with similar life histories, long-term, large-scale, and appropriately timed habitat management increasing prey abundance or availability is critical for conservation. PMID:24567832

  12. Large-viewing-angle electroholography by space projection

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko

    2004-06-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  13. Engineering cartilage substitute with a specific size and shape using porous high-density polyethylene (HDPE) as internal support.

    PubMed

    Wu, Yujia; Zhu, Lie; Jiang, Hua; Liu, Wei; Liu, Yu; Cao, Yilin; Zhou, Guangdong

    2010-04-01

    Despite the great advances in cartilage engineering, constructing cartilage of large sizes and appropriate shapes remains a great challenge, owing to limits in thickness of regenerated cartilage and to inferior mechanical properties of scaffolds. This study introduces a pre-shaped polyglycolic acid (PGA)-coated porous high-density polyethylene (HDPE) scaffold to overcome these challenges. HDPE was carved into cylindrical rods and wrapped around by PGA fibres to form PGA-HDPE scaffolds. Porcine chondrocytes were seeded into the scaffolds and the constructs were cultured in vitro for 2 weeks before subcutaneous implantation into nude mice. Scaffolds made purely of PGA with the same size and shape were used as a control. After 8 weeks of implantation, the construct formed cartilage-like tissue and retained its pre-designed shape and size. In addition, the regenerated cartilage grew and completely surrounded the HDPE core, which made the entire cartilage substitute biocompatible to its implanted environment as native cartilage similarly does. By contrast, the shape and size of the constructs in the control group seriously deformed and obvious hollow cavity and necrotic tissue were observed in the inner region. These results demonstrate that the use of HDPE as the internal support of a biodegradable scaffold has the potential to circumvent the problems of limitations in size and shape, with promising implications for the development of engineered cartilage appropriate for clinical applications. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Size limits for rounding of volcanic ash particles heated by lightning

    PubMed Central

    Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-01-01

    Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929

  15. Size limits for rounding of volcanic ash particles heated by lightning.

    PubMed

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  16. Size limits for rounding of volcanic ash particles heated by lightning

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  17. Templated Solid-State Dewetting of Thin Silicon Films.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco

    2016-11-01

    Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles.

    PubMed

    Zhang, Jixi; Li, Xu; Rosenholm, Jessica M; Gu, Hong-chen

    2011-09-01

    Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Large but uneven reduction in fish size across species in relation to changing sea temperatures.

    PubMed

    van Rijn, Itai; Buba, Yehezkel; DeLong, John; Kiflawi, Moshe; Belmaker, Jonathan

    2017-09-01

    Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass. © 2017 John Wiley & Sons Ltd.

  20. Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device.

    PubMed

    Juskova, Petra; Ollitrault, Alexis; Serra, Marco; Viovy, Jean-Louis; Malaquin, Laurent

    2018-02-13

    The vast majority of current microfluidic devices are produced using soft lithography, a technique with strong limitations regarding the fabrication of three-dimensional architectures. Additive manufacturing holds great promises to overcome these limitations, but conventional machines still lack the resolution required by most microfluidic applications. 3D printing machines based on two-photon lasers, in contrast, have the needed resolution but are too limited in speed and size of the global device. Here we demonstrate how the resolution of conventional stereolithographic machines can be improved by a direct programming of the laser path and can contribute to bridge the gap between the two above technologies, allowing the direct printing of features between 10 and 100 μm, corresponding to a large fraction of microfluidic applications. This strategy allows to achieve resolutions limited only by the physical size of the laser beam, decreasing by a factor at least 2× the size of the smallest features printable, and increasing their reproducibility by a factor 5. The approach was applied to produce an open microfluidic device with the reversible seal, integrating periodical patterns using the simple motifs, and validated by the fabrication of a deterministic lateral displacement particles sorting device. The sorting of polystyrene beads (diameter: 20 μm and 45 μm) was achieved with a specificity >95%, comparable with that achieved with arrays prepared by microlithography. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  2. Miniature in vivo robotics and novel robotic surgical platforms.

    PubMed

    Shah, Bhavin C; Buettner, Shelby L; Lehman, Amy C; Farritor, Shane M; Oleynikov, Dmitry

    2009-05-01

    Robotic surgical systems, such as the da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, California), have revolutionized laparoscopic surgery but are limited by large size, increased costs, and limitations in imaging. Miniature in vivo robots are being developed that are inserted entirely into the peritoneal cavity for laparoscopic and natural orifice transluminal endoscopic surgical (NOTES) procedures. In the future, miniature camera robots and microrobots should be able to provide a mobile viewing platform. This article discusses the current state of miniature robotics and novel robotic surgical platforms and the development of future robotic technology for general surgery and urology.

  3. 50 CFR 622.275 - Size limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Dolphin and Wahoo Fishery Off the Atlantic States § 622.275 Size limits. All size limits in this section are minimum size...

  4. 50 CFR 622.275 - Size limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Dolphin and Wahoo Fishery Off the Atlantic States § 622.275 Size limits. All size limits in this section are minimum size...

  5. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    PubMed

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be more resilient to climate change than large ones. © 2014 John Wiley & Sons Ltd.

  6. Automated in-line mixing system for large scale production of chitosan-based polyplexes.

    PubMed

    Tavakoli Naeini, Ashkan; Soliman, Ousamah Younoss; Alameh, Mohamad Gabriel; Lavertu, Marc; Buschmann, Michael D

    2017-08-15

    Chitosan (CS)-based polyplexes are efficient non-viral gene delivery systems that are most commonly prepared by manual mixing. However, manual mixing is not only poorly controlled but also restricted to relatively small preparation volumes, limiting clinical applications. In order to overcome these drawbacks and to produce clinical quantities of CS-based polyplexes, a fully automated in-line mixing platform was developed for production of large batches of small-size and homogeneous CS-based polyplexes. Operational conditions to produce small-sized homogeneous polyplexes were identified. Increasing mixing concentrations of CS and nucleic acid was directly associated with an increase in size and polydispersity of both CS/pDNA and CS/siRNA polyplexes. We also found that although the speed of mixing has a negligible impact on the properties of CS/pDNA polyplexes, the size and polydispersity of CS/siRNA polyplexes are strongly influenced by the mixing speed: the higher the speed, the smaller the size and polydispersity. While in-line and manual CS/pDNA polyplexes had similar size and PDI, CS/siRNA polyplexes were smaller and more homogenous when prepared in-line in the non-laminar flow regime compared to manual method. Finally, we found that in-line mixed CS/siRNA polyplexes have equivalent or higher silencing efficiency of ApoB in HepG2 cells, compared to manually prepared polyplexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 50 CFR 622.56 - Size limits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Shrimp Fishery of the Gulf of Mexico § 622.56 Size limits. Shrimp not in compliance with the applicable size limit as... shrimp harvested in the Gulf EEZ are subject to the minimum-size landing and possession limits of...

  8. 50 CFR 622.56 - Size limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Shrimp Fishery of the Gulf of Mexico § 622.56 Size limits. Shrimp not in compliance with the applicable size limit as... shrimp harvested in the Gulf EEZ are subject to the minimum-size landing and possession limits of...

  9. Coarse-coded higher-order neural networks for PSRI object recognition. [position, scale, and rotation invariant

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1993-01-01

    A higher-order neural network (HONN) can be designed to be invariant to changes in scale, translation, and inplane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Consequently, fewer training passes and a smaller training set are required to learn to distinguish between objects. The size of the input field is limited, however, because of the memory required for the large number of interconnections in a fully connected HONN. By coarse coding the input image, the input field size can be increased to allow the larger input scenes required for practical object recognition problems. We describe a coarse coding technique and present simulation results illustrating its usefulness and its limitations. Our simulations show that a third-order neural network can be trained to distinguish between two objects in a 4096 x 4096 pixel input field independent of transformations in translation, in-plane rotation, and scale in less than ten passes through the training set. Furthermore, we empirically determine the limits of the coarse coding technique in the object recognition domain.

  10. Permeability and compressibility of resedimented Gulf of Mexico mudrock

    NASA Astrophysics Data System (ADS)

    Betts, W. S.; Flemings, P. B.; Schneider, J.

    2011-12-01

    We use a constant-rate-of strain consolidation test on resedimented Gulf of Mexico mudrock to determine the compression index (Cc) to be 0.618 and the expansion index (Ce) to be 0.083. We used crushed, homogenized Pliocene and Pleistocene mudrock extracted from cored wells in the Eugene Island block 330 oil field. This powdered material has a liquid limit (LL) of 87, a plastic limit (PL) of 24, and a plasticity index (PI) of 63. The particle size distribution from hydrometer analyses is approximately 65% clay-sized particles (<2 μm) with the remainder being less than 70 microns in diameter. Resedimented specimens have been used to characterize the geotechnical and geophysical behavior of soils and mudstones independent of the variability of natural samples and without the effects of sampling disturbance. Previous investigations of resedimented offshore Gulf of Mexico sediments (e.g. Mazzei, 2008) have been limited in scope. This is the first test of the homogenized Eugene Island core material. These results will be compared to in situ measurements to determine the controls on consolidation over large stress ranges.

  11. Implementing large projects in software engineering courses

    NASA Astrophysics Data System (ADS)

    Coppit, David

    2006-03-01

    In software engineering education, large projects are widely recognized as a useful way of exposing students to the real-world difficulties of team software development. But large projects are difficult to put into practice. First, educators rarely have additional time to manage software projects. Second, classrooms have inherent limitations that threaten the realism of large projects. Third, quantitative evaluation of individuals who work in groups is notoriously difficult. As a result, many software engineering courses compromise the project experience by reducing the team sizes, project scope, and risk. In this paper, we present an approach to teaching a one-semester software engineering course in which 20 to 30 students work together to construct a moderately sized (15KLOC) software system. The approach combines carefully coordinated lectures and homeworks, a hierarchical project management structure, modern communication technologies, and a web-based project tracking and individual assessment system. Our approach provides a more realistic project experience for the students, without incurring significant additional overhead for the instructor. We present our experiences using the approach the last 2 years for the software engineering course at The College of William and Mary. Although the approach has some weaknesses, we believe that they are strongly outweighed by the pedagogical benefits.

  12. The development of a fiber optics communication network for controlling a Multidegree-Of-Freedom Serpentine Truss

    NASA Astrophysics Data System (ADS)

    Andrawis, Alfred S.

    1994-10-01

    The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.

  13. The development of a fiber optics communication network for controlling a Multidegree-Of-Freedom Serpentine Truss

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    1994-01-01

    The problem addressed by this report is the large size and heavy weight of the cable bundle, used for controlling a Multidegree-Of-Freedom Serpentine Truss Manipulator arm, which imposes limitations on the manipulator arm maneuverability. This report covers a design of an optical fiber network to replace the existing copper wire network of the Serpentine Truss Manipulator. This report proposes a fiber network design which significantly reduces the bundle size into two phases. The first phase does not require any modifications for the manipulator architecture, while the other requires major modifications. Design philosophy, hardware details and schematic diagrams are presented.

  14. Emittance Growth in the DARHT-II Linear Induction Accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.

    2017-11-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  15. Finite-size effects and switching times for Moran process with mutation.

    PubMed

    DeVille, Lee; Galiardi, Meghan

    2017-04-01

    We consider the Moran process with two populations competing under an iterated Prisoner's Dilemma in the presence of mutation, and concentrate on the case where there are multiple evolutionarily stable strategies. We perform a complete bifurcation analysis of the deterministic system which arises in the infinite population size. We also study the Master equation and obtain asymptotics for the invariant distribution and metastable switching times for the stochastic process in the case of large but finite population. We also show that the stochastic system has asymmetries in the form of a skew for parameter values where the deterministic limit is symmetric.

  16. Error and bias in size estimates of whale sharks: implications for understanding demography.

    PubMed

    Sequeira, Ana M M; Thums, Michele; Brooks, Kim; Meekan, Mark G

    2016-03-01

    Body size and age at maturity are indicative of the vulnerability of a species to extinction. However, they are both difficult to estimate for large animals that cannot be restrained for measurement. For very large species such as whale sharks, body size is commonly estimated visually, potentially resulting in the addition of errors and bias. Here, we investigate the errors and bias associated with total lengths of whale sharks estimated visually by comparing them with measurements collected using a stereo-video camera system at Ningaloo Reef, Western Australia. Using linear mixed-effects models, we found that visual lengths were biased towards underestimation with increasing size of the shark. When using the stereo-video camera, the number of larger individuals that were possibly mature (or close to maturity) that were detected increased by approximately 10%. Mean lengths calculated by each method were, however, comparable (5.002 ± 1.194 and 6.128 ± 1.609 m, s.d.), confirming that the population at Ningaloo is mostly composed of immature sharks based on published lengths at maturity. We then collated data sets of total lengths sampled from aggregations of whale sharks worldwide between 1995 and 2013. Except for locations in the East Pacific where large females have been reported, these aggregations also largely consisted of juveniles (mean lengths less than 7 m). Sightings of the largest individuals were limited and occurred mostly prior to 2006. This result highlights the urgent need to locate and quantify the numbers of mature male and female whale sharks in order to ascertain the conservation status and ensure persistence of the species.

  17. A single test for rejecting the null hypothesis in subgroups and in the overall sample.

    PubMed

    Lin, Yunzhi; Zhou, Kefei; Ganju, Jitendra

    2017-01-01

    In clinical trials, some patient subgroups are likely to demonstrate larger effect sizes than other subgroups. For example, the effect size, or informally the benefit with treatment, is often greater in patients with a moderate condition of a disease than in those with a mild condition. A limitation of the usual method of analysis is that it does not incorporate this ordering of effect size by patient subgroup. We propose a test statistic which supplements the conventional test by including this information and simultaneously tests the null hypothesis in pre-specified subgroups and in the overall sample. It results in more power than the conventional test when the differences in effect sizes across subgroups are at least moderately large; otherwise it loses power. The method involves combining p-values from models fit to pre-specified subgroups and the overall sample in a manner that assigns greater weight to subgroups in which a larger effect size is expected. Results are presented for randomized trials with two and three subgroups.

  18. Herbivorous fishes, ecosystem function and mobile links on coral reefs

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bellwood, D. R.

    2014-06-01

    Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range-body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.

  19. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages.

    PubMed

    Morard, Raphaël; Garet-Delmas, Marie-José; Mahé, Frédéric; Romac, Sarah; Poulain, Julie; Kucera, Michal; de Vargas, Colomban

    2018-02-07

    Since the advent of DNA metabarcoding surveys, the planktonic realm is considered a treasure trove of diversity, inhabited by a small number of abundant taxa, and a hugely diverse and taxonomically uncharacterized consortium of rare species. Here we assess if the apparent underestimation of plankton diversity applies universally. We target planktonic foraminifera, a group of protists whose known morphological diversity is limited, taxonomically resolved and linked to ribosomal DNA barcodes. We generated a pyrosequencing dataset of ~100,000 partial 18S rRNA foraminiferal sequences from 32 size fractioned photic-zone plankton samples collected at 8 stations in the Indian and Atlantic Oceans during the Tara Oceans expedition (2009-2012). We identified 69 genetic types belonging to 41 morphotaxa in our metabarcoding dataset. The diversity saturated at local and regional scale as well as in the three size fractions and the two depths sampled indicating that the diversity of foraminifera is modest and finite. The large majority of the newly discovered lineages occur in the small size fraction, neglected by classical taxonomy. These unknown lineages dominate the bulk [>0.8 µm] size fraction, implying that a considerable part of the planktonic foraminifera community biomass has its origin in unknown lineages.

  20. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red.

    PubMed

    Sutter, Marc; Oliveira, Sabrina; Sanders, Niek N; Lucas, Bart; van Hoek, Arie; Hink, Mark A; Visser, Antonie J W G; De Smedt, Stefaan C; Hennink, Wim E; Jiskoot, Wim

    2007-03-01

    The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein beta-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of beta-galactosidase below and above the protein's unfolding temperature of 57.4 degrees C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with beta-galactosidase aggregates led to a shift of the emission maximum (lambda (max)) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated beta-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native beta-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with beta-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages.

  2. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses

    PubMed Central

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-01-01

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call “soft bound.” Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly. PMID:24324175

  3. Elastic collapse in disordered isostatic networks

    NASA Astrophysics Data System (ADS)

    Moukarzel, C. F.

    2012-02-01

    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.

  4. Inferring Population Size History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian Computation Approach

    PubMed Central

    Boitard, Simon; Rodríguez, Willy; Jay, Flora; Mona, Stefano; Austerlitz, Frédéric

    2016-01-01

    Inferring the ancestral dynamics of effective population size is a long-standing question in population genetics, which can now be tackled much more accurately thanks to the massive genomic data available in many species. Several promising methods that take advantage of whole-genome sequences have been recently developed in this context. However, they can only be applied to rather small samples, which limits their ability to estimate recent population size history. Besides, they can be very sensitive to sequencing or phasing errors. Here we introduce a new approximate Bayesian computation approach named PopSizeABC that allows estimating the evolution of the effective population size through time, using a large sample of complete genomes. This sample is summarized using the folded allele frequency spectrum and the average zygotic linkage disequilibrium at different bins of physical distance, two classes of statistics that are widely used in population genetics and can be easily computed from unphased and unpolarized SNP data. Our approach provides accurate estimations of past population sizes, from the very first generations before present back to the expected time to the most recent common ancestor of the sample, as shown by simulations under a wide range of demographic scenarios. When applied to samples of 15 or 25 complete genomes in four cattle breeds (Angus, Fleckvieh, Holstein and Jersey), PopSizeABC revealed a series of population declines, related to historical events such as domestication or modern breed creation. We further highlight that our approach is robust to sequencing errors, provided summary statistics are computed from SNPs with common alleles. PMID:26943927

  5. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  6. Determination of Moulting Events in Rock Lobsters from Pleopod Clipping

    PubMed Central

    Gardner, Caleb; Mills, David J.

    2013-01-01

    Rock lobster growth is routinely measured for research to optimise management measures such as size limits and quotas. The process of estimating growth is complicated in crustaceans as growth only occurs when the animal moults. As data are typically collected by tag-recapture methods, the timing of moulting events can bias results. For example, if annual moulting events take place within a very short time-at-large after tagging, or if time-at-large is long and no moulting occurs. Classifying data into cases where moulting has / has not occurred during time-at-large can be required and can generally be determined by change in size between release and recapture. However, in old or slow growth individuals the moult increment can be too small to provide surety that moulting has occurred. A method that has been used since the 1970’s to determine moulting in rock lobsters involves clipping the distal portion of a pleopod so that any regeneration observed at recapture can be used as evidence of a moult. We examined the use of this method in both tank and long-duration field trials within a marine protected area, which provided access to large animals with smaller growth increments. Our results emphasised that determination of moulting by change in size was unreliable with larger lobsters and that pleopod clipping can assist in identifying moulting events. However, regeneration was an unreliable measure of moulting if clipping occurred less than three months before the moult. PMID:24009769

  7. Determination of moulting events in rock lobsters from pleopod clipping.

    PubMed

    Gardner, Caleb; Mills, David J

    2013-01-01

    Rock lobster growth is routinely measured for research to optimise management measures such as size limits and quotas. The process of estimating growth is complicated in crustaceans as growth only occurs when the animal moults. As data are typically collected by tag-recapture methods, the timing of moulting events can bias results. For example, if annual moulting events take place within a very short time-at-large after tagging, or if time-at-large is long and no moulting occurs. Classifying data into cases where moulting has / has not occurred during time-at-large can be required and can generally be determined by change in size between release and recapture. However, in old or slow growth individuals the moult increment can be too small to provide surety that moulting has occurred. A method that has been used since the 1970's to determine moulting in rock lobsters involves clipping the distal portion of a pleopod so that any regeneration observed at recapture can be used as evidence of a moult. We examined the use of this method in both tank and long-duration field trials within a marine protected area, which provided access to large animals with smaller growth increments. Our results emphasised that determination of moulting by change in size was unreliable with larger lobsters and that pleopod clipping can assist in identifying moulting events. However, regeneration was an unreliable measure of moulting if clipping occurred less than three months before the moult.

  8. Limits to Forecasting Precision for Outbreaks of Directly Transmitted Diseases

    PubMed Central

    Drake, John M

    2006-01-01

    Background Early warning systems for outbreaks of infectious diseases are an important application of the ecological theory of epidemics. A key variable predicted by early warning systems is the final outbreak size. However, for directly transmitted diseases, the stochastic contact process by which outbreaks develop entails fundamental limits to the precision with which the final size can be predicted. Methods and Findings I studied how the expected final outbreak size and the coefficient of variation in the final size of outbreaks scale with control effectiveness and the rate of infectious contacts in the simple stochastic epidemic. As examples, I parameterized this model with data on observed ranges for the basic reproductive ratio (R 0) of nine directly transmitted diseases. I also present results from a new model, the simple stochastic epidemic with delayed-onset intervention, in which an initially supercritical outbreak (R 0 > 1) is brought under control after a delay. Conclusion The coefficient of variation of final outbreak size in the subcritical case (R 0 < 1) will be greater than one for any outbreak in which the removal rate is less than approximately 2.41 times the rate of infectious contacts, implying that for many transmissible diseases precise forecasts of the final outbreak size will be unattainable. In the delayed-onset model, the coefficient of variation (CV) was generally large (CV > 1) and increased with the delay between the start of the epidemic and intervention, and with the average outbreak size. These results suggest that early warning systems for infectious diseases should not focus exclusively on predicting outbreak size but should consider other characteristics of outbreaks such as the timing of disease emergence. PMID:16435887

  9. Constraints on the adult-offspring size relationship in protists.

    PubMed

    Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M

    2013-12-01

    The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. Total centromere size and genome size are strongly correlated in ten grass species.

    PubMed

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  11. Scale up of large ALON® and spinel windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Kashalikar, Uday; Ramisetty, Mohan; Jha, Santosh; Sastri, Suri

    2017-05-01

    Aluminum Oxynitride (ALON® Transparent Ceramic) and Magnesia Aluminate Spinel (Spinel) combine broadband transparency with excellent mechanical properties. Their cubic structure means that they are transparent in their polycrystalline form, allowing them to be manufactured by conventional powder processing techniques. Surmet has scaled up its ALON® production capability to produce and deliver windows as large as 4.4 sq ft. We have also produced our first 6 sq ft window. We are in the process of producing 7 sq ft ALON® window blanks for armor applications; and scale up to even larger, high optical quality blanks for Recce window applications is underway. Surmet also produces spinel for customers that require superior transmission at the longer wavelengths in the mid wave infra-red (MWIR). Spinel windows have been limited to smaller sizes than have been achieved with ALON. To date the largest spinel window produced is 11x18-in, and windows 14x20-in size are currently in process. Surmet is now scaling up its spinel processing capability to produce high quality window blanks as large as 19x27-in for sensor applications.

  12. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  13. Development of micromachine tool prototypes for microfactories

    NASA Astrophysics Data System (ADS)

    Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.

    2002-11-01

    At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.

  14. Covariance Based Pre-Filters and Screening Criteria for Conjunction Analysis

    NASA Astrophysics Data System (ADS)

    George, E., Chan, K.

    2012-09-01

    Several relationships are developed relating object size, initial covariance and range at closest approach to probability of collision. These relationships address the following questions: - Given the objects' initial covariance and combined hard body size, what is the maximum possible value of the probability of collision (Pc)? - Given the objects' initial covariance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the combined hard body radius, what is the minimum miss distance for which the probability of collision does not exceed the tolerance limit? - Given the objects' initial covariance and the miss distance, what is the maximum combined hard body radius for which the probability of collision does not exceed the tolerance limit? The first relationship above allows the elimination of object pairs from conjunction analysis (CA) on the basis of the initial covariance and hard-body sizes of the objects. The application of this pre-filter to present day catalogs with estimated covariance results in the elimination of approximately 35% of object pairs as unable to ever conjunct with a probability of collision exceeding 1x10-6. Because Pc is directly proportional to object size and inversely proportional to covariance size, this pre-filter will have a significantly larger impact on future catalogs, which are expected to contain a much larger fraction of small debris tracked only by a limited subset of available sensors. This relationship also provides a mathematically rigorous basis for eliminating objects from analysis entirely based on element set age or quality - a practice commonly done by rough rules of thumb today. Further, these relations can be used to determine the required geometric screening radius for all objects. This analysis reveals the screening volumes for small objects are much larger than needed, while the screening volumes for pairs of large objects may be inadequate. These relationships may also form the basis of an important metric for catalog maintenance by defining the maximum allowable covariance size for effective conjunction analysis. The application of these techniques promises to greatly improve the efficiency and completeness of conjunction analysis.

  15. Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles

    PubMed Central

    2011-01-01

    Background Why some species are widespread while others are very restricted geographically is one of the most basic questions in biology, although it remains largely unanswered. This is particularly the case for groups of closely related species, which often display large differences in the size of the geographical range despite sharing many other factors due to their common phylogenetic inheritance. We used ten lineages of aquatic Coleoptera from the western Palearctic to test in a comparative framework a broad set of possible determinants of range size: species' age, differences in ecological tolerance, dispersal ability and geographic location. Results When all factors were combined in multiple regression models between 60-98% of the variance was explained by geographic location and phylogenetic signal. Maximum latitudinal and longitudinal limits were positively correlated with range size, with species at the most northern latitudes and eastern longitudes displaying the largest ranges. In lineages with lotic and lentic species, the lentic (better dispersers) display larger distributional ranges than the lotic species (worse dispersers). The size of the geographical range was also positively correlated with the extent of the biomes in which the species is found, but we did not find evidence of a clear relationship between range size and age of the species. Conclusions Our findings show that range size of a species is shaped by an interplay of geographic and ecological factors, with a phylogenetic component affecting both of them. The understanding of the factors that determine the size and geographical location of the distributional range of species is fundamental to the study of the origin and assemblage of the current biota. Our results show that for this purpose the most relevant data may be the phylogenetic history of the species and its geographical location. PMID:22122885

  16. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  17. The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

    USGS Publications Warehouse

    He, Y.; Zhuang, Q.; Harden, Jennifer W.; McGuire, A. David; Fan, Z.; Liu, Y.; Wickland, Kimberly P.

    2014-01-01

    The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and their response to climate change is highly uncertain. In this study, we developed a multi-layer microbial explicit soil decomposition model framework for boreal forest ecosystems. A thorough sensitivity analysis was conducted to identify dominating biogeochemical processes and to highlight structural limitations. Our results indicate that substrate availability (limited by soil water diffusion and substrate quality) is likely to be a major constraint on soil decomposition in the fibrous horizon (40–60% of soil organic carbon (SOC) pool size variation), while energy limited microbial activity in the amorphous horizon exerts a predominant control on soil decomposition (>70% of SOC pool size variation). Elevated temperature alleviated the energy constraint of microbial activity most notably in amorphous soils, whereas moisture only exhibited a marginal effect on dissolved substrate supply and microbial activity. Our study highlights the different decomposition properties and underlying mechanisms of soil dynamics between fibrous and amorphous soil horizons. Soil decomposition models should consider explicitly representing different boreal soil horizons and soil–microbial interactions to better characterize biogeochemical processes in boreal forest ecosystems. A more comprehensive representation of critical biogeochemical mechanisms of soil moisture effects may be required to improve the performance of the soil model we analyzed in this study.

  18. Magnetic Properties of Nanoparticle Matrix Composites

    DTIC Science & Technology

    2015-06-02

    recording materials with large value of Ku are SmCo5 with Ku = 11-20 x 10 7 erg/cm 3 for the minimum stable particle size of 2.45 nm, FePt with Ku...nanoparticles and the matrix compared with the bulk behavior of the soft and hard phases and ferromagnetic coupling. 15. SUBJECT TERMS...Magnetic materials , Ab initio methods, nanoparticles, Nanocomposites, Ferromagnetics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  19. Laboratory Spectrometer for Wear Metal Analysis of Engine Lubricants.

    DTIC Science & Technology

    1986-04-01

    analysis, the acid digestion technique for sample pretreatment is the best approach available to date because of its relatively large sample size (1000...microliters or more). However, this technique has two major shortcomings limiting its application: (1) it requires the use of hydrofluoric acid (a...accuracy. Sample preparation including filtration or acid digestion may increase analysis times by 20 minutes or more. b. Repeatability In the analysis

  20. Scalable population estimates using spatial-stream-network (SSN) models, fish density surveys, and national geospatial database frameworks for streams

    Treesearch

    Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel

    2017-01-01

    Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100s–10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...

  1. Xenon monitoring and the Comprehensive Nuclear-Test-Ban Treaty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Theodore W.

    How do you monitor (verify) a CTBT? It is a difficult challenge to monitor the entire world for nuclear tests, regardless of size. Nuclear tests 'normally' occur underground, above ground or underwater. Setting aside very small tests (let's limit our thinking to 1 kiloton or more), nuclear tests shake the ground, emit large amounts of radioactivity, and make loud noises if in the atmosphere (or hydroacoustic waves if underwater)

  2. Estimating carbon and nitrogen pools in a forest soil: Influence of soil bulk density methods and rock content

    Treesearch

    Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang

    2017-01-01

    Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...

  3. Constraints on Circumstellar Dust Grain Sizes from High Spatial Resolution Observations in the Thermal Infrared

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.

    1996-01-01

    We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.

  4. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  5. Radiative corrections to quantum sticking on graphene

    NASA Astrophysics Data System (ADS)

    Sengupta, Sanghita; Clougherty, Dennis P.

    2017-07-01

    We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method (SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED. The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane. We find that for micromembranes (sizes ranging 100 nm to 10 μ m ), the latter three methods give results that are in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.

  6. Causal structures in inflation

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Uzan, Jean-Philippe

    2015-12-01

    This article reviews the properties and limitations associated with the existence of particle, visual, and event horizons in cosmology in general and in inflationary universes in particular, carefully distinguishing them from 'Hubble horizons'. It explores to what extent one might be able to probe conditions beyond the visual horizon (which is close in size to the present Hubble radius), thereby showing that visual horizons place major limits on what are observationally testable aspects of a multiverse, if such exists. Indeed these limits largely prevent us from observationally proving a multiverse either does or does not exist. We emphasize that event horizons play no role at all in observational cosmology, even in the multiverse context, despite some claims to the contrary in the literature. xml:lang="fr"

  7. Determination of industrial color tolerance limits: case studies in the textile industry

    NASA Astrophysics Data System (ADS)

    Gay, Jennifer; Hirschler, Robert

    2002-06-01

    The approach and findings during the application of instrumental color quality control in industry are described, where the best tolerance formulae and tolerance limits were determined by correlating visual and instrumental evaluations. A panel of previously tested observers evaluated a collection of samples taken from production and color measurements are then compared to these assessments, according to different color difference formulae. T he formula and the limit giving the best agreement with visual evaluations were determined with two different methods. For a large variety of textile substrates, processes and market situations the CMC(2:1) formula was always the best or one of the bests, but the limits varied widely, according to the individual application. Additional shade sorting, based on the tolerance limit, was also applied in several companies. The ideal box size was also determined by comparing visual and instrumental evaluations. The application as logistical tools was established according to individual necessities.

  8. Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range

    PubMed Central

    Johnson, Christopher N.; Barmuta, Leon A.; Jones, Menna E.

    2017-01-01

    Australia’s native marsupial fauna has just two primarily flesh-eating ‘hypercarnivores’, the Tasmanian devil (Sarcophilus harrisii) and the spotted-tailed quoll (Dasyurus maculatus) which coexist only on the island of Tasmania. Devil populations are currently declining due to a fatal transmissible cancer. Our aim was to analyse the diet of both species across their range in Tasmania, as a basis for understanding how devil decline might affect the abundance and distribution of quolls through release from competition. We used faecal analysis to describe diets of one or both species at 13 sites across Tasmania. We compared diet composition and breadth between the two species, and tested for geographic patterns in diets related to rainfall and devil population decline. Dietary items were classified into 6 broad categories: large mammals (≥ 7.0kg), medium-sized mammals (0.5–6.9kg), small mammals (< 0.5kg), birds, reptiles and invertebrates. Diet overlap based on prey-size category was high. Quoll diets were broader than devils at all but one site. Devils consumed more large and medium-sized mammals and quolls more small mammals, reptiles and invertebrates. Medium-sized mammals (mainly Tasmanian pademelon Thylogale billardierii), followed by large mammals (mainly Bennett’s wallaby Macropus rufogriseus) and birds, were the most important prey groups for both species. Diet composition varied across sites, suggesting that both species are flexible and opportunistic foragers, but was not related to rainfall for devils. Quolls included more large mammals but fewer small mammals and invertebrates in their diet in the eastern drier parts of Tasmania where devils have declined. This suggests that a competitive release of quolls may have occurred and the substantial decline of devils has provided more food in the large-mammal category for quolls, perhaps as increased scavenging opportunities. The high diet overlap suggests that if resources become limited in areas of high devil density, interspecific competition could occur. PMID:29176811

  9. γ-Irradiation assisted synthesis of graphene oxide sheets supported Ag nanoparticles with single crystalline structure and parabolic distribution from interlamellar limitation

    NASA Astrophysics Data System (ADS)

    Yue, Yunhao; Zhou, Baoming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Kuang, Liyun; Ma, Meijun; Fu, Hongjun

    2017-05-01

    This paper reported a method to fabricate graphene oxide sheets supported Ag nanoparticles (AgNPs/GOS) with single crystalline structure and parabolic distribution without surfactant or functional agent. We used imidazole silver nitrate as intercalation precursor into the layers of graphite oxide, and subsequently reduction and growth of interlamellar AgNPs were induced via γ-irradiation. The results illustrated that the synergism of interlamellar limitation of graphite oxide and fragmentation ability of γ-irradiation could prevent coalescent reaction of AgNPs with other oligomeric clusters, and the single crystalline and small-sized (below 13.9 nm) AgNPs were prepared. Moreover, the content and size of AgNPs exhibited parabolic distribution on GOS surface because the graphite oxide exfoliated to GOS from the edge to the central area of layers. In addition, complete exfoliation degree of GOS and large-sized AgNPs were obtained simultaneously under suitable silver ions concentration. Optimized composites exhibited outstanding surface-enhanced Raman scattering properties for crystal violet with enhancement factor of 1.3 × 106 and detection limit of 1.0 × 10-7 M, indicating that the AgNPs/GOS composites could be applied to trace detection of organic dyes molecules. Therefore, this study presented a strategy for developing GOS supported nanometal with single crystalline structure and parabolic distribution based on γ-irradiation.

  10. A new understanding of multiple-pulsed laser-induced retinal injury thresholds.

    PubMed

    Lund, David J; Sliney, David H

    2014-04-01

    Laser safety standards committees have struggled for years to formulate adequately a sound method for treating repetitive-pulse laser exposures. Safety standards for lamps and LEDs have ignored this issue because averaged irradiance appeared to treat the issue adequately for large retinal image sizes and skin exposures. Several authors have recently questioned the current approach of three test conditions (i.e., limiting single-pulse exposure, average irradiance, and a single-pulse-reduction factor) as still insufficient to treat pulses of unequal energies or certain pulse groupings. Schulmeister et al. employed thermal modeling to show that a total-on-time pulse (TOTP) rule was conservative. Lund further developed the approach of probability summation proposed by Menendez et al. to explain pulse-additivity, whereby additivity is the result of an increasing probability of detecting injury with multiple pulse exposures. This latter argument relates the increase in detection probability to the slope of the probit curve for the threshold studies. Since the uncertainty in the threshold for producing an ophthalmoscopically detectable minimal visible lesion (MVL) is large for retinal exposure to a collimated laser beam, safety committees traditionally applied large risk reduction factors ("safety factors") of one order of magnitude when deriving intrabeam, "point-source" exposure limits. This reduction factor took into account the probability of visually detecting the low-contrast lesion among other factors. The reduction factor is smaller for large spot sizes where these difficulties are quite reduced. Thus the N⁻⁰·²⁵ reduction factor may result from the difficulties in detecting the lesion. Recent studies on repetitive pulse exposures in both animal and in vitro (retinal explant) models support this interpretation of the available data.

  11. Oxygen no longer plays a major role in Body Size Evolution

    NASA Astrophysics Data System (ADS)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  12. Developing recreational harvest regulations for an unexploited lake trout population

    USGS Publications Warehouse

    Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.

    2016-01-01

    Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.

  13. Species' Traits as Predictors of Range Shifts Under Contemporary Climate Change: A Meta-analysis

    NASA Astrophysics Data System (ADS)

    MacLean, S. A.; Beissinger, S. R.

    2016-12-01

    A growing body of literature seeks to explain variation in range shifts using species' ecological and life history traits, with expectations that shifts should be greater in species with greater dispersal ability, reproductive potential, and ecological generalization. If trait-based arguments, hold, then traits would provide valuable evidence-based tools for conservation and management that could increase the accuracy of future range projections, vulnerability assessments, and predictions of novel community assemblages. However, empirical support is limited in extent and consensus, and trait-based relationships remain largely unvalidated. We conducted a comprehensive literature review of species' traits as predictors of range shifts, collecting results from over 11,000 species' responses across multiple taxa from studies that directly compared 20th century and contemporary distributions for multispecies assemblages. We then performed a meta-analysis to calculate the mean study-level effects of body size, fecundity, diet breadth, habitat breadth, and historic range limit, while directly controlling for ecological and methodological heterogeneity across studies that could bias reported effect sizes. We show that ecological and life history traits have had limited success in accounting for variation among species in range shifts over the past century. Of the five traits analyzed, only habitat breadth and historic range limit consistently supported range shift predictions across multiple studies. Fecundity, body size, and diet breadth showed no clear relationship with range shifts, and some traits identified in our literature review (e.g. migratory ecology) have consistently contradicted range shift predictions. Current understanding of species' traits as predictors of range shifts is limited, and standardized study is needed before traits can be reliably incorporated into projections of climate change impacts.

  14. Traumatic brain injury and hemorrhagic shock: evaluation of different resuscitation strategies in a large animal model of combined insults.

    PubMed

    Jin, Guang; DeMoya, Marc A; Duggan, Michael; Knightly, Thomas; Mejaddam, Ali Y; Hwabejire, John; Lu, Jennifer; Smith, William Michael; Kasotakis, Georgios; Velmahos, George C; Socrate, Simona; Alam, Hasan B

    2012-07-01

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related mortality and morbidity. Combination of TBI and HS (TBI + HS) is highly lethal, and the optimal resuscitation strategy for this combined insult remains unclear. A critical limitation is the lack of suitable large animal models to test different treatment strategies. We have developed a clinically relevant large animal model of TBI + HS, which was used to evaluate the impact of different treatments on brain lesion size and associated edema. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters and intracranial pressure. A computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4 m/s velocity, 100-ms dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 h of shock, animals were randomized to one of three resuscitation groups (n = 5/group): (a) normal saline (NS); (b) 6% hetastarch, Hextend (Hex); and (c) fresh frozen plasma (FFP). Volumes of Hex and FFP matched the shed blood, whereas NS was three times the volume. After 6 h of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with TTC (2,3,5-triphenyltetrazolium chloride) to quantify the lesion size and brain swelling. Combination of 40% blood loss with cortical impact and a period of shock (2 h) resulted in a highly reproducible brain injury. Total fluid requirements were lower in the Hex and FFP groups. Lesion size and brain swelling in the FFP group (2,160 ± 202.63 mm and 22% ± 1.0%, respectively) were significantly smaller than those in the NS group (3,285 ± 130.8 mm3 and 37% ± 1.6%, respectively) (P < 0.05). Hex treatment decreased the swelling (29% ± 1.6%) without reducing the lesion size. Early administration of FFP reduces the size of brain lesion and associated swelling in a large animal model of TBI + HS. In contrast, artificial colloid (Hex) decreases swelling without reducing the actual size of the brain lesion.

  15. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tojo, H.; Hatae, T.; Hamano, T.

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less

  16. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    PubMed

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  17. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    PubMed

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  18. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  19. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  20. Scaling Laws for NanoFET Sensors

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

Top