Coarsening in Solid-Liquid Mixtures Studied on the Space Shuttle
NASA Technical Reports Server (NTRS)
Caruso, John J.
1999-01-01
Ostwald ripening, or coarsening, is a process in which large particles in a two-phase mixture grow at the expense of small particles. It is a ubiquitous natural phenomena occurring in the late stages of virtually all phase separation processes. In addition, a large number of commercially important alloys undergo coarsening because they are composed of particles embedded in a matrix. Many of them, such as high-temperature superalloys used for turbine blade materials and low-temperature aluminum alloys, coarsen in the solid state. In addition, many alloys, such as the tungsten-heavy metal systems, coarsen in the solid-liquid state during liquid phase sintering. Numerous theories have been proposed that predict the rate at which the coarsening process occurs and the shape of the particle size distribution. Unfortunately, these theories have never been tested using a system that satisfies all the assumptions of the theory. In an effort to test these theories, NASA studied the coarsening process in a solid-liquid mixture composed of solid tin particles in a liquid lead-tin matrix. On Earth, the solid tin particles float to the surface of the sample, like ice in water. In contrast, in a microgravity environment this does not occur. The microstructures in the ground- and space-processed samples (see the photos) show clearly the effects of gravity on the coarsening process. The STS-83-processed sample (right image) shows nearly spherical uniformly dispersed solid tin particles. In contrast, the identically processed, ground-based sample (left image) shows significant density-driven, nonspherical particles, and because of the higher effective solid volume fraction, a larger particle size after the same coarsening time. The "Coarsening in Solid-Liquid Mixtures" (CSLM) experiment was conducted in the Middeck Glovebox facility (MGBX) flown aboard the shuttle in the Microgravity Science Laboratory (MSL-1/1R) on STS-83/94. The primary objective of CSLM is to measure the temporal evolution of the solid particles during coarsening.
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
2017-05-26
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Vikrant; Li, Tingwen; De Wilde, Juray
Vortex chambers allow the generation of rotating fluidized beds, offering high-G intensified gas-solid contact, gas-solids separation and solids-solids segregation. Focusing on binary particle mixtures and fixing the density and diameter of the heavy/large particles, transient batch CFD-coarse-grained DPM simulations were carried out with varying densities or sizes of the light/small particles to evaluate to what extent combining these three functionalities is possible within a vortex chamber of given design. Both the rate and quality of segregation were analyzed. Within a relatively wide density and size range, fast and efficient segregation takes place, with an inner and slower rotating bed ofmore » the lighter/small particles forming within the outer and faster rotating bed of the heavier/large particles. Simulations show that the contamination of the outer bed with lighter particles occurs more easily than contamination of the inner bed with heavier particles and increases with decreasing difference in size or density of the particles. Bubbling in the inner bed is observed with an inner bed of very low density or small particles. Porosity plots show that vortex chambers with a sufficient number of gas inlet slots have to be used to guarantee a uniform gas distribution and particle bed. Lastly, the flexibility of particle segregation in vortex chambers with respect to the gas flow rate is demonstrated.« less
Liu, Guoliang; Zhang, Fusheng; Qu, Yuanzhi; Liu, He; Zhao, Lun; Cui, Mingyue; Ou, Yangjian; Geng, Dongshi
2017-09-01
The suspended solids in wastewater from Rekabak oilfield, Kazakhstan, were characterized and treated with flocculants to enhance settling. The wastewater contained a high concentration of total dissolved solids and calcium ion. Scanning electron microscopy and energy dispersive X-ray analyses showed that suspended solids were mainly composed of corrosion products (iron oxides) and silicon dioxide particles. Also, much salt deposition from wastewater caused a large increase in the suspended solids value. The settling of solid particles in wastewater was investigated by turbidity decrease within 60 min. The particle settling was enhanced by adding polyaluminum chloride (PAC) as coagulant and hydrolyzed polyacryamide (HPAM) or cationic polyacrylamide (CPAM) as flocculant. At optimal dose, the particle settling ability with PAC and CPAM was better than that with PAC and HPAM. Particle size analysis showed that HPAM or CPAM with high molecular weight played an important role for enlarging the particle size. The experiments with simulated wastewater showed that particle settling by using HPAM deteriorated significantly compared to that by CPAM at high calcium ion. This study provides further understanding about the effect of high salinity and Ca 2+ on solids formation, flocculant performance and particle settling. Meanwhile, the results are also helpful to develop novel flocculants used for high salinity wastewater.
NASA Astrophysics Data System (ADS)
Jalali, Payman; Hyppänen, Timo
2017-06-01
In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.
Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles
NASA Technical Reports Server (NTRS)
Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.
2002-01-01
Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.
Mechanisms of stability of armored bubbles: FY 1996 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossen, W.R.; Kam, S.I.
1996-11-01
Theoretical and experimental studies examine how a coating, or {open_quotes}armor,{close_quotes} of partially wetted solid particles can stabilize tiny bubbles against diffusion of gas into the surrounding liquid, in spite of the high capillary pressures normally associated with such bubbles. Experiments with polymethylmethacrylate (PNMA) beads and carbonated water demonstrate that armored bubbles can persist for weeks in liquid unsaturated with respect to the gas in the bubbles. This question is of concern regarding gas discharges from waste tanks at the Hanford reservation. The stresses on the solid-solid contacts between particles in such cases is large and could drive sintering of themore » particles into a rigid framework. Stability analysis suggests that a slightly shrunken bubble would not expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Expulsion of particles from more stressed bubbles at zero capillary pressure is energetically favored in some cases. It is not clear, however, whether this expulsion would proceed spontaneously from a small perturbation or require a large initial disturbance of the bubble. In some cases, it appears that a bubble would expel some particles and shrink, but the bubble would approach a final, stable size rather than disappear completely. This simplified analysis leaves out several factors. For instance, only one perturbation toward expelling a solid from the armor is considered; perhaps other perturbations would be more energetically favored than that tested. Other considerations (particle deformation, surface roughness, contact-angle hysteresis, and adhesion or physical bonding between adjacent particles) would make expelling solids more difficult than indicated by this theoretical study.« less
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting.
Zhu, Charles; Sempkowski, Michelle; Holleran, Timothy; Linz, Thomas; Bertalan, Thomas; Josefsson, Anders; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula
2017-06-01
Diffusion limitations on the penetration of nanocarriers in solid tumors hamper their therapeutic use when labeled with α-particle emitters. This is mostly due to the α-particles' relatively short range (≤100 μm) resulting in partial tumor irradiation and limited killing. To utilize the high therapeutic potential of α-particles against solid tumors, we designed non-targeted, non-internalizing nanometer-sized tunable carriers (pH-tunable liposomes) that are triggered to release, within the slightly acidic tumor interstitium, highly-diffusive forms of the encapsulated α-particle generator Actinium-225 ( 225 Ac) resulting in more homogeneous distributions of the α-particle emitters, improving uniformity in tumor irradiation and increasing killing efficacies. On large multicellular spheroids (400 μm-in-diameter), used as surrogates of the avascular areas of solid tumors, interstitially-releasing liposomes resulted in best growth control independent of HER2 expression followed in performance by (a) the HER2-targeting radiolabeled antibody or (b) the non-responsive liposomes. In an orthotopic human HER2-negative mouse model, interstitially-releasing 225 Ac-loaded liposomes resulted in the longest overall and median survival. This study demonstrates the therapeutic potential of a general strategy to bypass the diffusion-limited transport of radionuclide carriers in solid tumors enabling interstitial release from non-internalizing nanocarriers of highly-diffusing and deeper tumor-penetrating molecular forms of α-particle emitters, independent of cell-targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Scalable Domain Decomposed Monte Carlo Particle Transport
NASA Astrophysics Data System (ADS)
O'Brien, Matthew Joseph
In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.
Koehler, Kirsten A.; Anthony, T. Renee; Van Dyke, Michael
2016-01-01
The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min−1 of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies through screened inlets and that particle bounce, for solid particles, is an important determinant of aspiration and sampling efficiencies for samplers with screened inlets. PMID:21965462
De Wilde, Juray; Richards, George; Benyahia, Sofiane
2016-05-13
Coupled discrete particle method – computational fluid dynamics simulations are carried out to demonstrate the potential of combined high-G-intensified gas-solids contact, gas-solids separation and segregation in a rotating fluidized bed in a static vortex chamber. A case study with two distinct types of particles is focused on. When feeding solids using a standard solids inlet design, a dense and uniform rotating fluidized bed is formed, guaranteeing intense gas-solids contact. The presence of both types of particles near the chimney region reduces, however, the strength of the central vortex and is detrimental for separation and segregation. Optimization of the solids inletmore » design is required, as illustrated by stopping the solids feeding. High-G separation and segregation of the batch of particles is demonstrated, as the strength of the central vortex is restored. The flexibility with respect to the gas flow rate of the bed density and uniformity and of the gas-solids separation and segregation is demonstrated, a unique feature of vortex chamber generated rotating fluidized beds. With the particles considered in this case study, turbulent dispersion by large eddies in the gas phase is shown to have only a minor impact on the height of the inner bed of small/light particles.« less
Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.
Zhang, Mingxing; Chen, Haiyan
2018-04-20
Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50 = 4.785 μm, and another particle size is d 50 = 8.999 μm. For particle size d 50 = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.
Discrete Particle Model for Porous Media Flow using OpenFOAM at Intel Xeon Phi Coprocessors
NASA Astrophysics Data System (ADS)
Shang, Zhi; Nandakumar, Krishnaswamy; Liu, Honggao; Tyagi, Mayank; Lupo, James A.; Thompson, Karten
2015-11-01
The discrete particle model (DPM) in OpenFOAM was used to study the turbulent solid particle suspension flows through the porous media of a natural dual-permeability rock. The 2D and 3D pore geometries of the porous media were generated by sphere packing with the radius ratio of 3. The porosity is about 38% same as the natural dual-permeability rock. In the 2D case, the mesh cells reach 5 million with 1 million solid particles and in the 3D case, the mesh cells are above 10 million with 5 million solid particles. The solid particles are distributed by Gaussian distribution from 20 μm to 180 μm with expectation as 100 μm. Through the numerical simulations, not only was the HPC studied using Intel Xeon Phi Coprocessors but also the flow behaviors of large scale solid suspension flows in porous media were studied. The authors would like to thank the support by IPCC@LSU-Intel Parallel Computing Center (LSU # Y1SY1-1) and the HPC resources at Louisiana State University (http://www.hpc.lsu.edu).
Numerical study of the influence of solid polarization on electrophoresis at finite Debye thickness.
Bhattacharyya, Somnath; De, Simanta
2015-09-01
The influence of solid polarization on the electrophoresis of a uniformly charged dielectric particle for finite values of the particle-to-fluid dielectric permittivity ratio is analyzed quantitatively without imposing the thin Debye length or weak-field assumption. Present analysis is based on the computation of the coupled Poisson-Nernst-Planck and Stokes equations in the fluid domain along with the Laplace equation within the solid. The electrophoretic velocity is determined through the balance of forces acting on the particle. The solid polarization of the charged particle produces a reduction on its electrophoretic velocity compared to a nonpolarizable particle of the same surface charge density. In accordance with the existing thin-layer analysis, our computed results for thin Debye layer shows that the solid polarization is important only when the applied electric field is strong. When the Debye length is in the order of the particle size, the electrophoretic velocity decreases with the rise of the particle permittivity and attains a saturation limit at large values of the permittivity. Our computed solution for electrophoretic velocity is in agreement with the existing asymptotic analyses based on a thin Debye layer for limiting cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
NASA Astrophysics Data System (ADS)
Barodka, Siarhei; Kliutko, Yauhenia; Krasouski, Alexander; Papko, Iryna; Svetashev, Alexander; Turishev, Leonid
2013-04-01
Nowadays numerical simulation of thundercloud formation processes is of great interest as an actual problem from the practical point of view. Thunderclouds significantly affect airplane flights, and mesoscale weather forecast has much to contribute to facilitate the aviation forecast procedures. An accurate forecast can certainly help to avoid aviation accidents due to weather conditions. The present study focuses on modelling of the convective clouds development and thunder clouds detection on the basis of mesoscale atmospheric processes simulation, aiming at significantly improving the aeronautical forecast. In the analysis, the primary weather radar information has been used to be further adapted for mesoscale forecast systems. Two types of domains have been selected for modelling: an internal one (with radius of 8 km), and an external one (with radius of 300 km). The internal domain has been directly applied to study the local clouds development, and the external domain data has been treated as initial and final conditions for cloud cover formation. The domain height has been chosen according to the civil aviation forecast data (i.e. not exceeding 14 km). Simulations of weather conditions and local clouds development have been made within selected domains with the WRF modelling system. In several cases, thunderclouds are detected within the convective clouds. To specify the given category of clouds, we employ a simulation technique of solid phase formation processes in the atmosphere. Based on modelling results, we construct vertical profiles indicating the amount of solid phase in the atmosphere. Furthermore, we obtain profiles demonstrating the amount of ice particles and large particles (hailstones). While simulating the processes of solid phase formation, we investigate vertical and horizontal air flows. Consequently, we attempt to separate the total amount of solid phase into categories of small ice particles, large ice particles and hailstones. Also, we strive to reveal and differentiate the basic atmospheric parameters of sublimation and coagulation processes, aiming to predict ice particles precipitation. To analyze modelling results we apply the VAPOR three-dimensional visualization package. For the chosen domains, a diurnal synoptic situation has been simulated, including rain, sleet, ice pellets, and hail. As a result, we have obtained a large scope of data describing various atmospheric parameters: cloud cover, major wind components, basic levels of isobaric surfaces, and precipitation rate. Based on this data, we show both distinction in precipitation formation due to various heights and its differentiation of the ice particles. The relation between particle rise in the atmosphere and its size is analyzed: at 8-10 km altitude large ice particles, resulted from coagulation, dominate, while at 6-7 km altitude one can find snow and small ice particles formed by condensation growth. Also, mechanical trajectories of solid precipitation particles for various ice formation processes have been calculated.
Bidisperse and polydisperse suspension rheology at large solid fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.
At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study ofmore » bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.« less
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
NASA Astrophysics Data System (ADS)
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Yoda, M.; Bailey, B. C.
2000-01-01
On a twelve-month voyage to Mars, one astronaut will require at least two tons of potable water and two tons of pure oxygen. Efficient, reliable fluid reclamation is therefore necessary for manned space exploration. Space habitats require a compact, flexible, and robust apparatus capable of solid-fluid mechanical separation over a wide range of fluid and particle densities and particle sizes. In space, centrifugal filtration, where particles suspended in fluid are captured by rotating fixed-fiber mat filters, is a logical candidate for mechanical separation. Non-colloidal particles are deposited on the fibers due to inertial impaction or direct interception. Since rotation rates are easily adjustable, inertial effects are the most practical way to control separation rates for a wide variety of multiphase mixtures in variable gravity environments. Understanding how fluid inertia and differential fluid-particle inertia, characterized by the Reynolds and Stokes numbers, respectively, affect deposition is critical in optimizing filtration in a microgravity environment. This work will develop non-intrusive optical diagnostic techniques for directly visualizing where and when non-colloidal particles deposit upon, or contact, solid surfaces: 'particle proximity sensors'. To model particle deposition upon a single filter fiber, these sensors will be used in ground-based experiments to study particle dynamics as in the vicinity of a large (compared with the particles) cylinder in a simply sheared (i.e., linearly-varying, zero-mean velocity profile) neutrally-buoyant, refractive-index matched solid-liquid suspension.
Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi
2017-07-01
In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.
On the Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, Richard H.
2010-11-01
We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamic simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10 cm size particles. We then compare these results to a simulation with 1 km size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) temporary clumps can concentrate tens of M ⊕ of solids in very localized regions before clump disruption; (3) the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) the solid distribution may affect the fragmentation process; (6) proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and (8) large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.
A splitting integration scheme for the SPH simulation of concentrated particle suspensions
NASA Astrophysics Data System (ADS)
Bian, Xin; Ellero, Marco
2014-01-01
Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.
Solid phase extraction membrane
Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI
2002-11-05
A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.
NASA Astrophysics Data System (ADS)
Therssen, E.; Delfosse, L.
1995-08-01
The design and setting up of a pulverized solid injection system for use in laboratory burners is presented. The original dual system consists of a screw feeder coupled to an acoustic sower. This laboratory device allows a good regularity and stability of the particle-gas mixture transported to the burner in a large scale of mass powder and gas vector rate flow. The thermal history of the particles has been followed by optical measurements. The quality of the particle cloud injected in the burner has been validated by the good agreement between experimental and modeling particle temperature.
Numerical investigation of compaction of deformable particles with bonded-particle model
NASA Astrophysics Data System (ADS)
Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim
2017-06-01
In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.
On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability
NASA Astrophysics Data System (ADS)
Boley, Aaron C.; Durisen, R. H.
2011-01-01
We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity, while the latter are allowed to respond to gas drag forces. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1km-size particles, which explores the low-drag regime.We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕ of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. ACB's support was provided in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. RHD was supported by NASA Origins of Solar Systems grant NNX08AK36G.
CFD Modelling of Particle Mixtures in a 2D CFB
NASA Astrophysics Data System (ADS)
Seppälä, M.; Kallio, S.
The capability of Fluent 6.2.16 to simulate particle mixtures in a laboratory scale 2D circulating fluidized bed (CFB) unit has been tested. In the simulations, the solids were described as one or two particle phases. The loading ratio of small to large particles, particle diameters and the gas inflow velocity were varied. The 40 cm wide and 3 m high 2D CFB was modeled using a grid with 31080 cells. The outflow of particles at the top of the CFB was monitored and emanated particles were fed back to the riser through a return duct. The paper presents the segregation patterns of the particle phases obtained from the simulations. When the fraction of large particles was 50% or larger, large particles segregated, as expected, to the wall regions and to the bottom part of the riser. However, when the fraction of large particles was 10%, an excess of large particles was found in the upper half of the riser. The explanation for this unexpected phenomenon was found in the distribution of the large particles between the slow clusters and the faster moving lean suspension.
Scalability study of solid xenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, J.; Cease, H.; Jaskierny, W. F.
2015-04-01
We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.
NASA Astrophysics Data System (ADS)
Dash, John; Wang, Q.
2009-03-01
Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.
Dilatancy and compaction effects on the submerged granular column collapse
NASA Astrophysics Data System (ADS)
Wang, Chun; Wang, Yongqi; Peng, Chong; Meng, Xiannan
2017-10-01
The effects of dilatancy on the collapse dynamics of granular materials in air or in a liquid are studied experimentally and numerically. Experiments show that dilatancy has a critical effect on the collapse of granular columns in the presence of an ambient fluid. Two regimes of the collapse, one being quick and the other being slow, are observed from the experiments and the underlying reasons are analyzed. A two-fluid smoothed particle hydrodynamics model, based on the granular-fluid mixture theory and the critical state theory, is employed to investigate the complex interactions between the solid particles and the ambient water. It is found that dilatancy, resulting in large effective stress and large frictional coefficient between solid particles, helps form the slow regime. Small permeability, representing large inter-phase drag force, also retards the collapse significantly. The proposed numerical model is capable of reproducing these effects qualitatively.
Validating the MFiX-DEM Model for Flow Regime Prediction in a 3D Spouted Bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Subhodeep; Guenther, Chris; Rogers, William A.
The spout-fluidized bed reactor with relatively large oxygen carrier particles offers several advantages in chemical looping combustion operation using solid fuels. The large difference in size and weight between the oxygen carrier particles and the smaller coal or ash particles allows the oxygen carrier to be easily segregated for recirculation; the increased solids mixing due to dynamic flow pattern in the spout-fluidization regime prevents agglomeration. The primary objective in this work is to determine the effectiveness of the MFiX-DEM model in predicting the flow regime in a spouted bed. Successful validation of the code will allow the user to finemore » tune the operating conditions of a spouted bed to achieve the desired operating condition.« less
Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect
NASA Technical Reports Server (NTRS)
Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan
2013-01-01
Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru
2011-01-01
The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan
Crystal Engineering: From Molecules to Products
ERIC Educational Resources Information Center
Doherty, Michael F.
2006-01-01
Particle production and solids processing are essential components of the contemporary process industries. Crystalline solids represent a large and important segment of this manufacturing sector. Chemical engineers, especially in the United States, have historically abandoned this subject, leaving it to pharmacists, physical chemists, material…
Hopping Diffusion of Nanoparticles Subjected to Topological Constraints
NASA Astrophysics Data System (ADS)
Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael
2013-03-01
We describe a novel hopping mechanism for diffusion of large non-sticky nanoparticles subjected to topological constraints in polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size of unentangled polymer networks (tube diameter of entangled polymer liquids) are trapped by the network (entanglement) cages at time scales longer than the relaxation time of the network (entanglement) strand. At long time scales, however, these particles can move further by hopping between neighboring confinement cages. This hopping is controlled by fluctuations of surrounding confinement cages, which could be large enough to allow particles to slip through. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size slightly larger than the network mesh size (tube diameter). Very large particles in polymer solids will be permanently trapped by local network cages, whereas they can still move in polymer liquids by waiting for entanglement cages to rearrange on the relaxation time scale of the liquids. We would like to acknowledge the financial support of NSF CHE-0911588, DMR-0907515, DMR-1121107, DMR-1122483, and CBET-0609087, NIH R01HL077546 and P50HL107168, and Cystic Fibrosis Foundation under grant RUBIN09XX0.
NASA Astrophysics Data System (ADS)
Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.
2017-12-01
The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.
Large scale particle image velocimetry with helium filled soap bubbles
NASA Astrophysics Data System (ADS)
Bosbach, Johannes; Kühn, Matthias; Wagner, Claus
2009-03-01
The application of Particle Image Velocimetry (PIV) to measurement of flows on large scales is a challenging necessity especially for the investigation of convective air flows. Combining helium filled soap bubbles as tracer particles with high power quality switched solid state lasers as light sources allows conducting PIV on scales of the order of several square meters. The technique was applied to mixed convection in a full scale double aisle aircraft cabin mock-up for validation of Computational Fluid Dynamics simulations.
NASA Astrophysics Data System (ADS)
Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN
2017-11-01
To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.
Analysis of Reaction Products and Conversion Time in the Pyrolisis of Cellulose and Wood Particles
NASA Technical Reports Server (NTRS)
Miller, R. S.; Bellan, J.
1996-01-01
A detailed mathematical model is presented for the temporal and spatial accurate modeling of solid-fluid reactions in porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas flow.
The theory of nonstationary thermophoresis of a solid spherical particle
NASA Astrophysics Data System (ADS)
Kuzmin, M. K.; Yalamov, Yu. I.
2007-06-01
The theory of nonstationary thermophoresis of a solid spherical particle in a viscous gaseous medium is presented. The theory is constructed on the solutions of fluid-dynamics and thermal problems, each of which is split into stationary and strictly nonstationary parts. The solution of the stationary parts of the problems gives the final formula for determining the stationary component of the thermophoretic velocity of this particle. To determine the nonstationary component of the thermophoretic velocity of the particle, the corresponding formula in the space of Laplace transforms is derived. The limiting value theorems from operational calculus are used for obtaining the dependence of the nonstationary component of the thermophoretic velocity of the spherical particle on the strictly nonstationary temperature gradient for large and small values of time. The factors determining the thermophoretic velocity of the particle under investigation are determined.
Behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves
NASA Astrophysics Data System (ADS)
Gangwar, P. K.
2018-05-01
In this paper, CCW method has been used to study the behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves. The strength of overtaking waves is estimated under the assumption that both C+ and C- disturbances propagate in non-uniform region of same density distribution. It is assumed that the dusty gas is the mixture of a real gas and a large number of small spherical solid particles of uniform size. The solid particles are uniformly distributed in the medium. Maintaining equilibrium flow conditions, the expressions for shock strength has been derived both for freely propagation as well as under the effect of overtaking disturbances. The variation of all flow variables with propagation distance, mass concentration of solid particles in the mixture and the ratio of solid particles to the initial density of gas have been computed and discussed through graphs. It is found that the presence of dust particles in the gases medium has significant effects on the variation of flow variables and the shock is strengthened under the influence of overtaking disturbances. The results accomplished here been compared with those for ideal gas.
Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun
2017-07-11
Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.
Interstellar fossil Mg-26 and its possible relationship to excess meteoritic Mg-26
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1986-01-01
A plausible scenario is advanced for explainig a linear correlation found in some solar system solids between their Mg-26/Mg-24 isotopic ratios and their Al/Mg elemental abundance ratios. This scenario involves three stages: (1) the mechanical aggregation of an average ensemble of Al-bearing dust particles that is postulated to be modestly enriched in the Al/Mg abundance ratio because the aggregated particles themselves are; (2) the extraction, perhaps but not necessarily by hot distillation, of almost all Mg, leaving an aggregate with a large Al/Mg ratio and a large Mg-26 excess; and (3) the uptake of normal ambient Mg by the resulting hot Al-rich solid as it cools in Mg-rich vapor. A linear correlation in solids between their Mg-26/Mg-24 isotopic ratio and their aluminum enrichment may be a fossil correlation inherited from interstellar dust.
Sublimation systems and associated methods
Turner, Terry D.; McKellar, Michael G.; Wilding, Bruce M.
2016-02-09
A system for vaporizing and sublimating a slurry comprising a fluid including solid particles therein. The system includes a first heat exchanger configured to receive the fluid including solid particles and vaporize the fluid and a second heat exchanger configured to receive the vaporized fluid and solid particles and sublimate the solid particles. A method for vaporizing and sublimating a fluid including solid particles therein is also disclosed. The method includes feeding the fluid including solid particles to a first heat exchanger, vaporizing the fluid, feeding the vaporized fluid and solid particles to a second heat exchanger and sublimating the solid particles. In some embodiments the fluid including solid particles is liquid natural gas or methane including solid carbon dioxide particles.
Hopping Diffusion of Nanoparticles in Polymer Matrices
2016-01-01
We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.
The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less
Chen, Yi; Guildenbecher, Daniel R.; Hoffmeister, Kathryn N. G.; ...
2017-05-05
The combustion of molten metals is an important area of study with applications ranging from solid aluminized rocket propellants to fireworks displays. Our work uses digital in-line holography (DIH) to experimentally quantify the three-dimensional position, size, and velocity of aluminum particles during combustion of ammonium perchlorate (AP) based solid-rocket propellants. Additionally, spatially resolved particle temperatures are simultaneously measured using two-color imaging pyrometry. To allow for fast characterization of the properties of tens of thousands of particles, automated data processing routines are proposed. In using these methods, statistics from aluminum particles with diameters ranging from 15 to 900 µm are collectedmore » at an ambient pressure of 83 kPa. In the first set of DIH experiments, increasing initial propellant temperature is shown to enhance the agglomeration of nascent aluminum at the burning surface, resulting in ejection of large molten aluminum particles into the exhaust plume. The resulting particle number and volume distributions are quantified. In the second set of simultaneous DIH and pyrometry experiments, particle size and velocity relationships as well as temperature statistics are explored. The average measured temperatures are found to be 2640 ± 282 K, which compares well with previous estimates of the range of particle and gas-phase temperatures. The novel methods proposed here represent new capabilities for simultaneous quantification of the joint size, velocity, and temperature statistics during the combustion of molten metal particles. The proposed techniques are expected to be useful for detailed performance assessment of metalized solid-rocket propellants.« less
Diffusion and interactions of interstitials in hard-sphere interstitial solid solutions
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Lathouwers, Emma; Smallenburg, Frank; Filion, Laura
2017-12-01
Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion for a range of size ratios and densities. By applying classical transition state theory to these free-energy barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion coefficients as measured using event-driven molecular dynamics simulations. These results highlight that transition state theory can capture the interstitial dynamics in the hard-sphere model system. Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly, we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone, thus providing an empirical relationship between the large-particle fluctuations and the interstitial diffusivity.
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.
Global distribution of secondary organic aerosol particle phase state
NASA Astrophysics Data System (ADS)
Shiraiwa, M.; Li, Y., Sr.; Tsimpidi, A.; Karydis, V.; Berkemeier, T.; Pandis, S. N.; Lelieveld, J.; Koop, T.; Poeschl, U.
2016-12-01
Secondary organic aerosols (SOA) account for a large fraction of submicron particles in the atmosphere and play a key role in aerosol effects on climate, air quality and public health. The formation and aging of SOA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of SOA evolution in atmospheric aerosol models. SOA particles can adopt liquid, semi-solid and amorphous solid (glassy) phase states depending on chemical composition, relative humidity and temperature. The particle phase state is crucial for various atmospheric gas-particle interactions, including SOA formation, heterogeneous and multiphase reactions and ice nucleation. We found that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. Based on the concept of molecular corridors, we develop a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, which is a key property for determination of particle phase state. We use the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the atmospheric SOA phase state. For the planetary boundary layer, global simulations indicate that SOA is mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes, and solid over dry lands. We find that in the middle and upper troposphere (>500 hPa) SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants, and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded within SOA.
Solid-loaded flows: applications in technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molerus, O.
1983-01-01
The evaluation of experiments and the representation of the resulting data by nondimensional groups defined ad hoc largely governs the treatment of problems arising with solid-loaded flows in practice. Without doubt, this is a result of the very complex nature of solid-loaded flows and, consequently, empiricism tends to prevail, more or less. To overcome this situation, two sets of nondimensional groups, which take into consideration the translatory, as well as the rotary, motion of particles suspended in a fluid, are derived from the equations of motion of a solid body. The intuitive meaning of these nondimensional groups arises from theirmore » derivation. With respect to applications in engineering, the influence of the rotary motion of a particle on the motion of its center of gravity can thus be taken into account. As such, a common basis for the representation of the different phenomena observed with solid-loaded flows is established. The application of the above concepts to fluidization and hydraulic and pneumatic conveying proves their usefulness. New insights into well-known facts as well as new results demonstrate that taking the real nature of solid particles (i.e., those of finite dimensions) into consideration will provide a common and profound basis for the representation of different phenomena observed with solid-loaded flows in practice.« less
DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai Xuening; Stone, James M., E-mail: xbai@astro.princeton.ed, E-mail: jstone@astro.princeton.ed
2010-10-20
We present local two-dimensional and three-dimensional hybrid numerical simulations of particles and gas in the midplane of protoplanetary disks (PPDs) using the Athena code. The particles are coupled to gas aerodynamically, with particle-to-gas feedback included. Magnetorotational turbulence is ignored as an approximation for the dead zone of PPDs, and we ignore particle self-gravity to study the precursor of planetesimal formation. Our simulations include a wide size distribution of particles, ranging from strongly coupled particles with dimensionless stopping time {tau}{sub s} {identical_to} {Omega}t{sub stop} = 10{sup -4} (where {Omega} is the orbital frequency, t{sub stop} is the particle friction time) tomore » marginally coupled ones with {tau}{sub s} = 1, and a wide range of solid abundances. Our main results are as follows. (1) Particles with {tau}{sub s} {approx}> 10{sup -2} actively participate in the streaming instability (SI), generate turbulence, and maintain the height of the particle layer before Kelvin-Helmholtz instability is triggered. (2) Strong particle clumping as a consequence of the SI occurs when a substantial fraction of the solids are large ({tau}{sub s} {approx}> 10{sup -2}) and when height-integrated solid-to-gas mass ratio Z is super-solar. We construct a toy model to offer an explanation. (3) The radial drift velocity is reduced relative to the conventional Nakagawa-Sekiya-Hayashi (NSH) model, especially at high Z. Small particles may drift outward. We derive a generalized NSH equilibrium solution for multiple particle species which fits our results very well. (4) Collision velocity between particles with {tau}{sub s} {approx}> 10{sup -2} is dominated by differential radial drift, and is strongly reduced at larger Z. This is also captured by the multi-species NSH solution. Various implications for planetesimal formation are discussed. In particular, we show that there exist two positive feedback loops with respect to the enrichment of local disk solid abundance and grain growth. All these effects promote planetesimal formation.« less
Electrode assembly for use in a solid polymer electrolyte fuel cell
Raistrick, Ian D.
1989-01-01
A gas reaction fuel cell may be provided with a solid polymer electrolyte membrane. Porous gas diffusion electrodes are formed of carbon particles supporting a catalyst which is effective to enhance the gas reactions. The carbon particles define interstitial spaces exposing the catalyst on a large surface area of the carbon particles. A proton conducting material, such as a perfluorocarbon copolymer or ruthenium dioxide contacts the surface areas of the carbon particles adjacent the interstitial spaces. The proton conducting material enables protons produced by the gas reactions adjacent the supported catalyst to have a conductive path with the electrolyte membrane. The carbon particles provide a conductive path for electrons. A suitable electrode may be formed by dispersing a solution containing a proton conducting material over the surface of the electrode in a manner effective to coat carbon surfaces adjacent the interstitial spaces without impeding gas flow into the interstitial spaces.
NASA Astrophysics Data System (ADS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.
2016-02-01
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.
Solution on the Bethe lattice of a hard core athermal gas with two kinds of particles.
Oliveira, Tiago J; Stilck, Jürgen F
2011-11-14
Athermal lattice gases of particles with first neighbor exclusion have been studied for a long time as simple models exhibiting a fluid-solid transition. At low concentration the particles occupy randomly both sublattices, but as the concentration is increased one of the sublattices is occupied preferentially. Here, we study a mixed lattice gas with excluded volume interactions only in the grand-canonical formalism with two kinds of particles: small ones, which occupy a single lattice site and large ones, which, when placed on a site, do not allow other particles to occupy its first neighbors also. We solve the model on a Bethe lattice of arbitrary coordination number q. In the parameter space defined by the activities of both particles, at low values of the activity of small particles (z(1)) we find a continuous transition from the fluid to the solid phase as the activity of large particles (z(2)) is increased. At higher values of z(1) the transition becomes discontinuous, both regimes are separated by a tricritical point. The critical line has a negative slope at z(1) = 0 and displays a minimum before reaching the tricritical point, so that a re-entrant behavior is observed for constant values of z(2) in the region of low density of small particles. The isobaric curves of the total density of particles as a function of the density or the activity of small particles show a minimum in the fluid phase. © 2011 American Institute of Physics
Methods and systems for concentrated solar power
Ma, Zhiwen
2016-05-24
Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.
Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow
NASA Astrophysics Data System (ADS)
Sugiyama, Kazuyasu; , Satoshi, II; Takeuchi, Shintaro; Takagi, Shu; Matsumoto, Yoichiro
2010-03-01
For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy-Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.
Dan, Nily
2014-11-25
Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.
Boss, Emmanuel; Slade, Wayne; Hill, Paul
2009-05-25
Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.
Particle size distribution in effluent of trickling filters and in humus tanks.
Schubert, W; Günthert, F W
2001-11-01
Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zittel, P.F.
1994-09-10
The solid-fuel rocket motors of large space launch vehicles release gases and particles that may significantly affect stratospheric ozone densities along the vehicle's path. In this study, standard rocket nozzle and flowfield computer codes have been used to characterize the exhaust gases and particles through the afterburning region of the solid-fuel motors of the Titan IV launch vehicle. The models predict that a large fraction of the HCl gas exhausted by the motors is converted to Cl and Cl2 in the plume afterburning region. Estimates of the subsequent chemistry suggest that on expansion into the ambient daytime stratosphere, the highlymore » reactive chlorine may significantly deplete ozone in a cylinder around the vehicle track that ranges from 1 to 5 km in diameter over the altitude range of 15 to 40 km. The initial ozone depletion is estimated to occur on a time scale of less than 1 hour. After the initial effects, the dominant chemistry of the problem changes, and new models are needed to follow the further expansion, or closure, of the ozone hole on a longer time scale.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; De, Simanta
2016-09-01
The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.
Simulations of small solid accretion on to planetesimals in the presence of gas
NASA Astrophysics Data System (ADS)
Hughes, A. G.; Boley, A. C.
2017-12-01
The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandjean, Didier; Morales, Fernando; Mens, Ad
2007-02-02
Combination of in situ X-ray absorption spectroscopy (XAFS) at the Co and Mn K-edges with electron microscopy (STEM-EELS) has allowed to unravel the complex structure of a series of unpromoted and Mn promoted TiO2-supported cobalt Fischer-Tropsch catalysts prepared by homogeneous deposition precipitation (HDP), both in their calcined and reduced states. After calcination the catalysts are generally composed of large Co3O4 aggregates (13-20 nm) and a MnO2-type phase that is either dispersed on the TiO2 surface or, for the major part, covering the Co3O4 particles. Additionally Mn is also forming a spinel-type Co3-xMnxO4 solid solution at the surface of the Co3O4more » particles. In pure Co or when small amount of this spinel-type phase are formed during calcination, reduction in H2 at 350 deg. C produces Co0 particles of variable sizes (3.5-15 nm) otherwise Co reduction is limited to the Co2+ state. Manganese that exists entirely in a Mn2+ state in the reduced catalysts is forming (1) a highly dispersed Ti2MnO4-type phase at the TiO2 surface, (2) a less dispersed MnO phase close to the cobalt particles that coexists with (3) a rock salt-type Mn1-xCoxO solid solution. Similarly, large amount of spinel solid solution in the calcined state favors the formation of Mn1-xCoxO-type solid solution during reduction showing that one of the main roles of the Mn promoter is to limit Co reducibility.« less
Mechanisms of single bubble cleaning.
Reuter, Fabian; Mettin, Robert
2016-03-01
The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.
Filter paper solid-phase radioimmunoassay for human rotavirus surface immunoglobulins.
Watanabe, H; Holmes, I H
1977-01-01
A filter paper solid-phase radioimmunoassay has been developed. Filter paper disks adsorbed a large amount of rotavirus and serum globulin and gave small mean variation of coating and low background binding. The rotavirus isolated from stools from infants with acute enteritis 1, 3, and 4 days after onset of symptoms was shown to be already covered with immunoglobulin G (IgG), IgA, and IgM antibodies by this radioimmunoassay, by immunoelectrophoresis, and by immune electron microscopy. The immunoglobulins covering the virus particle were partially separated during 125I labeling and eluted at the position expected for IgG during Sephadex G-200 gel filtration. Rabbit antiserum prepared against purified fecal rotavirus contained not only rotavirus antibodies but also a fairly large amount of immunoglobulin antibody, reflecting the antibodies on the rotavirus particle surface. Images PMID:199613
Model of Fluidized Bed Containing Reacting Solids and Gases
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.
Planetesimal Formation through the Streaming Instability
NASA Astrophysics Data System (ADS)
Yang, Chao-Chin; Johansen, Anders; Schäfer, Urs
2015-12-01
The streaming instability is a promising mechanism to circumvent the barriers in direct dust growth and lead to the formation of planetesimals, as demonstrated by many previous studies. In order to resolve the thin layer of solids, however, most of these studies were focused on a local region of a protoplanetary disk with a limited simulation domain. It remains uncertain how the streaming instability is affected by the disk gas on large scales, and models that have sufficient dynamical range to capture both the thin particle layer and the large-scale disk dynamics are required.We hereby systematically push the limits of the computational domain up to more than the gas scale height, and study the particle-gas interaction on large scales in the saturated state of the streaming instability and the initial mass function of the resulting planetesimals. To overcome the numerical challenges posed by this kind of models, we have developed a new technique to simultaneously relieve the stringent time step constraints due to small-sized particles and strong local solid concentrations. Using these models, we demonstrate that the streaming instability can drive multiple radial, filamentary concentrations of solids, implying that planetesimals are born in well separated belt-like structures. We also find that the initial mass function of planetesimals via the streaming instability has a characteristic exponential form, which is robust against computational domain as well as resolution. These findings will help us further constrain the cosmochemical history of the Solar system as well as the planet formation theory in general.
Calibration and field application of a Sierra Model 235 cascade impactor.
Knuth, R H
1984-06-01
A Sierra Model 235 slotted impactor was used to measure the particle size distribution of ore dust in uranium concentrating mills. The impactor was calibrated at a flow rate of 0.21 m3/min, using solid monodisperse particles of methylene blue and an impaction surface of Whatman #41 filter paper soaked in mineral oil. The reduction from the impactor's design flow rate of 1.13 m3/min (40 cfm) to 0.21 m3/min (7.5 cfm), a necessary adjustment because of the anticipated large particles sizes of ore dust, increased the stage cut-off diameters by an average factor of 2.3. Evaluation of field test results revealed that the underestimation of mass median diameters, often caused by the rebound and reentrainment of solid particles from dry impaction surfaces, was virtually eliminated by using the oiled Whatman #41 impaction surface.
NASA Astrophysics Data System (ADS)
Blais, Bruno; Lassaigne, Manon; Goniva, Christoph; Fradette, Louis; Bertrand, François
2016-08-01
Although viscous solid-liquid mixing plays a key role in the industry, the vast majority of the literature on the mixing of suspensions is centered around the turbulent regime of operation. However, the laminar and transitional regimes face considerable challenges. In particular, it is important to know the minimum impeller speed (Njs) that guarantees the suspension of all particles. In addition, local information on the flow patterns is necessary to evaluate the quality of mixing and identify the presence of dead zones. Multiphase computational fluid dynamics (CFD) is a powerful tool that can be used to gain insight into local and macroscopic properties of mixing processes. Among the variety of numerical models available in the literature, which are reviewed in this work, unresolved CFD-DEM, which combines CFD for the fluid phase with the discrete element method (DEM) for the solid particles, is an interesting approach due to its accurate prediction of the granular dynamics and its capability to simulate large amounts of particles. In this work, the unresolved CFD-DEM method is extended to viscous solid-liquid flows. Different solid-liquid momentum coupling strategies, along with their stability criteria, are investigated and their accuracies are compared. Furthermore, it is shown that an additional sub-grid viscosity model is necessary to ensure the correct rheology of the suspensions. The proposed model is used to study solid-liquid mixing in a stirred tank equipped with a pitched blade turbine. It is validated qualitatively by comparing the particle distribution against experimental observations, and quantitatively by compairing the fraction of suspended solids with results obtained via the pressure gauge technique.
Friction between footwear and floor covered with solid particles under dry and wet conditions.
Li, Kai Way; Meng, Fanxing; Zhang, Wei
2014-01-01
Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.
Biomass drying in a pulsed fluidized bed without inert bed particles
Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...
2016-08-29
Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov
2016-02-20
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplanemore » temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.« less
ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS
Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...
Bulicz, Tytus R.
1990-01-01
An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.
NASA Astrophysics Data System (ADS)
Hayakawa, Hisao; Takada, Satoshi; Garzó, Vicente
2017-10-01
The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved by means of two independent but complementary routes: (i) Grad's moment method and (ii) event-driven Langevin simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser systems. The comparison between theory and simulations indicates that while the theoretical predictions for the kinetic temperature agree well with simulations for densities φ ≲0.5 , the agreement for the other rheological quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities (φ ≲0.3 ) if the inelasticity during collisions between particles is not large.
Hayakawa, Hisao; Takada, Satoshi; Garzó, Vicente
2017-10-01
The Enskog kinetic theory for moderately dense gas-solid suspensions under simple shear flow is considered as a model to analyze the rheological properties of the system. The influence of the environmental fluid on solid particles is modeled via a viscous drag force plus a stochastic Langevin-like term. The Enskog equation is solved by means of two independent but complementary routes: (i) Grad's moment method and (ii) event-driven Langevin simulation of hard spheres. Both approaches clearly show that the flow curve (stress-strain rate relation) depends significantly on the volume fraction of the solid particles. In particular, as the density increases, there is a transition from the discontinuous shear thickening (observed in dilute gases) to the continuous shear thickening for denser systems. The comparison between theory and simulations indicates that while the theoretical predictions for the kinetic temperature agree well with simulations for densities φ≲0.5, the agreement for the other rheological quantities (the viscosity, the stress ratio, and the normal stress differences) is limited to more moderate densities (φ≲0.3) if the inelasticity during collisions between particles is not large.
Effects of particulate radiation on premixed gas flames
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; Ronney, Paul D.
1993-01-01
Observations of the effect of the addition of fine solid particles to weakly combustible methane-air mixtures are reported. Burning rates, pressure rise, and thermal characteristics are found to exhibit nonmonotonic trends with increasing particle loading. These results are interpreted in terms of the effects of augmentation of radiant loss at small particle loadings and re-absorption of emitted radiation at larger loadings. It is suggested that in sufficiently large systems, flammability limits might not exist because of this reabsorption effect.
Role of cell deformability in the two-dimensional melting of biological tissues
NASA Astrophysics Data System (ADS)
Li, Yan-Wei; Ciamarra, Massimo Pica
2018-04-01
The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...
2017-04-18
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Morris, Aaron; Li, Tingwen
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
NASA Technical Reports Server (NTRS)
Powers, John; Netzer, David
1987-01-01
Particle behavior in combustion processes is an active research area at NPS. Currently, four research efforts are being conducted: (1) There is a long standing need to better understand the soot production and combustion processes in gas turbine combustors, both from a concern for improved engine life and to minimize exhaust particulates. Soot emissions are strongly effected by fuel composition and additives; (2) A more recent need for particle sizing/behavior measurements is in the combustor of a solid fuel ramjet which uses a metallized fuel. High speed motion pictures are being used to study rather large burning particles; (3) In solid propellant rocket motors, metals are used to improve specific impulse and/or to provide damping for combustion pressure oscillations. Particle sizing experiments are being conducted using diode arrays to measure the light intensity as a function of scattering angle; (4) Once a good quality hologram is attained, a need exists for obtaining the particle distributions from hologram in a short period of time. A Quantimet 720 Image Analyzer is being used to reconstruct images.
[Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].
Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping
2013-09-01
To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.
Statistical Physics Experiments Using Dusty Plasmas
NASA Astrophysics Data System (ADS)
Goree, John
2016-10-01
Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states. Third, we performed the first experimental test of a statistical physics theory (the Green-Kubo model) that is widely used by physical chemists to compute viscosity coefficients, and we found that it fails. Work supported by the U.S. Department of Energy, NSF, and NASA.
Rheometry of coarse biomass at high temperature and pressure
Daniel J. Klingenberg; Thatcher W. Root; Shalaka Burlawar; C. Tim Scott; Keith J. Bourne; Roland Gleisner; Carl Houtman; Vish Subramaniam
2017-01-01
We designed, constructed, and tested a new device that can measure the rheological properties of lignocellulosic biomass slurries with high solids concentrations (>25%) containing large particles (>10 mm), and that can operate at high temperatures (>230
Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2016-11-01
Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.
Bulicz, T.R.
1990-04-17
An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.
Influence of particle size distribution on nanopowder cold compaction processes
NASA Astrophysics Data System (ADS)
Boltachev, G.; Volkov, N.; Lukyashin, K.; Markov, V.; Chingina, E.
2017-06-01
Nanopowder uniform and uniaxial cold compaction processes are simulated by 2D granular dynamics method. The interaction of particles in addition to wide-known contact laws involves the dispersion forces of attraction and possibility of interparticle solid bridges formation, which have a large importance for nanopowders. Different model systems are investigated: monosized systems with particle diameter of 10, 20 and 30 nm; bidisperse systems with different content of small (diameter is 10 nm) and large (30 nm) particles; polydisperse systems corresponding to the log-normal size distribution law with different width. Non-monotone dependence of compact density on powder content is revealed in bidisperse systems. The deviations of compact density in polydisperse systems from the density of corresponding monosized system are found to be minor, less than 1 per cent.
NASA Astrophysics Data System (ADS)
Rodríguez-López, J. L.; Montejano-Carrizales, J. M.; José-Yacamán, M.
Modern nanoparticle research in the field of small metallic systems has confirmed that many nanoparticles take on some Platonic and Archimedean solids related shapes. A Platonic solid looks the same from any vertex, and intuitively they appear as good candidates for atomic equilibrium shapes. A very clear example is the icosahedral (Ih) particle that only shows {111} faces that contribute to produce a more rounded structure. Indeed, many studies report the Ih as the most stable particle at the size range r≤20 Å for noble gases and for some metals. In this review, we report on the structure and shape of mono- and bimetallic nanoparticles in the wide size range from 1-300 nm. First, we present AuPd nanoparticles in the 1-2 nm size range that show dodecahedral atomic growth packing, one of the Platonic solid shapes that have not been identified before in this small size range for metallic particles. Next, with particles in the size range of 2-5 nm, we present an energetic surface reconstruction phenomenon observed also on bimetallic nanoparticle systems of AuPd and AuCu, similar to a re-solidification effect observed during cooling process in lead clusters. These binary alloy nanoparticles show the fivefold edges truncated, resulting in {100} faces on decahedral structures, an effect largely envisioned and reported theoretically, with no experimental evidence in the literature before. Next nanostructure we review is a monometallic system in the size range of ≈5 nm that we termed the decmon. We present here some detailed geometrical analysis and experimental evidence that supports our models. Finally, in the size range of 100-300 nm, we present icosahedrally derived star gold nanocrystals which resembles the great stellated dodechaedron, which is a Kepler-Poisont solid. We conclude then that the shape or morphology of some mono- and bimetallic particles evolves with size following the sequence from atoms to the Platonic solids, and with a slightly greater particle's size, they tend to adopt Archimedean related shapes. If the particle's size is still greater, they tend to adopt shapes beyond the Archimedean (Kepler-Poisont) solids, reaching at the very end the bulk structure of solids. We demonstrate both experimentally and by means of computational simulations for each case that this structural atomic growth sequence is followed in such mono- and bimetallic nanoparticles.
NASA Astrophysics Data System (ADS)
Styborski, Jeremy A.
This project was started in the interest of supplementing existing data on additives to composite solid propellants. The study on the addition of iron and aluminum nanoparticles to composite AP/HTPB propellants was conducted at the Combustion and Energy Systems Laboratory at RPI in the new strand-burner experiment setup. For this study, a large literature review was conducted on history of solid propellant combustion modeling and the empirical results of tests on binders, plasticizers, AP particle size, and additives. The study focused on the addition of nano-scale aluminum and iron in small concentrations to AP/HTPB solid propellants with an average AP particle size of 200 microns. Replacing 1% of the propellant's AP with 40-60 nm aluminum particles produced no change in combustive behavior. The addition of 1% 60-80 nm iron particles produced a significant increase in burn rate, although the increase was lesser at higher pressures. These results are summarized in Table 2. The increase in the burn rate at all pressures due to the addition of iron nanoparticles warranted further study on the effect of concentration of iron. Tests conducted at 10 atm showed that the mean regression rate varied with iron concentration, peaking at 1% and 3%. Regardless of the iron concentration, the regression rate was higher than the baseline AP/HTPB propellants. These results are summarized in Table 3.
NASA Astrophysics Data System (ADS)
Mutabaruka, Patrick; Kamrin, Ken
2018-04-01
A numerical method for particle-laden fluids interacting with a deformable solid domain and mobile rigid parts is proposed and implemented in a full engineering system. The fluid domain is modeled with a lattice Boltzmann representation, the particles and rigid parts are modeled with a discrete element representation, and the deformable solid domain is modeled using a Lagrangian mesh. The main issue of this work, since separately each of these methods is a mature tool, is to develop coupling and model-reduction approaches in order to efficiently simulate coupled problems of this nature, as in various geological and engineering applications. The lattice Boltzmann method incorporates a large eddy simulation technique using the Smagorinsky turbulence model. The discrete element method incorporates spherical and polyhedral particles for stiff contact interactions. A neo-Hookean hyperelastic model is used for the deformable solid. We provide a detailed description of how to couple the three solvers within a unified algorithm. The technique we propose for rubber modeling/coupling exploits a simplification that prevents having to solve a finite-element problem at each time step. We also developed a technique to reduce the domain size of the full system by replacing certain zones with quasi-analytic solutions, which act as effective boundary conditions for the lattice Boltzmann method. The major ingredients of the routine are separately validated. To demonstrate the coupled method in full, we simulate slurry flows in two kinds of piston valve geometries. The dynamics of the valve and slurry are studied and reported over a large range of input parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chirone, R.; Marzocchella, A.; Salatino, P.
1999-07-01
A simple lumped-parameter model of a bubbling fluidized bed combustor fueled with high-volatile solid fuels is presented. The combustor is divided into three sections: the dense bed, the splashing region and the freeboard. Material balances on fixed carbon, volatile matter and oxygen are set up, taking into account fuel particle fragmentation and attrition, volatile matter segregation as well as postcombustion of both carbon fines and volatiles escaping the bed. A basic assumption of the model is that the combustion pathway that foes from the raw fuel to the combustion products proceeds via the formation of three phases: volatile matter, relativelymore » large non-elutriable char particles and fine char particles of elutriable size. The study is complemented by a simplified thermal balance on the splashing zone taking into account volatiles and elutriated fines postcombustion and radiative and convective heat fluxes to the bed and the freeboard. Results from calculations with either low- or high-volatile solid fuels indicate that low-volatile bituminous coal combustion takes place essentially in the bed mostly via coarse char particles combustion, while high-volatile biomass fuel combustion occurs to comparable extents both in the bed and in the splashing region of the combustor. Depending on the extent of volatile matter segregation with respect to the bed, a significant fraction of the heat is released into the splashing region of the combustor and this results into an increase of temperature in this region. Extensive bed solids recirculation associated to bubble bursting/solids ejection at the bed surface together with effective gas-solids heat transfer promotes thermal feedback from this region to the bed of as much as 90% of the heat release by volatile matter and elutriated fines afterburning.« less
High-Performance Reactive Particle Tracking with Adaptive Representation
NASA Astrophysics Data System (ADS)
Schmidt, M.; Benson, D. A.; Pankavich, S.
2017-12-01
Lagrangian particle tracking algorithms have been shown to be effective tools for modeling chemical reactions in imperfectly-mixed media. One disadvantage of these algorithms is the possible need to employ large numbers of particles in simulations, depending on the concentration covariance structure, and these large particle numbers can lead to long computation times. Two distinct approaches have recently arisen to overcome this. One method employs spatial kernels that are related to a specified, reduced particle number; however, over-wide kernels, dictated by a very low particle number, lead to an excess of reaction calculations and cause a reduction in performance. Another formulation involves hybrid particles that carry multiple species of reactant, wherein each particle is treated as its own well-mixed volume, obviating the need for large numbers of particles for each species but still requiring a fixed number of hybrid particles. Here, we combine these two approaches and demonstrate an improved method for simulating a given system in a computationally efficient manner. Additionally, the independent nature of transport and reaction calculations in this approach allows for significant gains via parallelization in an MPI or OpenMP context. For benchmarking, we choose a CO2 injection simulation with dissolution and precipitation of calcite and dolomite, allowing us to derive the proper treatment of interaction between solid and aqueous phases.
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Rrenard, J.; Levasseur-Regourd, A. C.; Worms, J. C.
Polarimetric phase curves were obtained with the PROGRA2 instrument for different particles: glass beads, polyhedral solids, rough particles, dense aggregates and aggregates with porosity higher than 90 %. The main purpose of these measurements is to build a large database, which allows interpreting remote sensing observations of solar system bodies. For some samples numerical or experimental models (i.e. DDA, stochastically built particles, microwave analogue) and laboratory experiments are compared to better disentangle the involved physical properties. This paper gives some main results of the experiment, and their applications to Earth atmosphere, comets and asteroids.
Effect of multiphase radiation on coal combustion in a pulverized coal jet flame
NASA Astrophysics Data System (ADS)
Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.
2017-08-01
The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.
NASA Technical Reports Server (NTRS)
Pai, S. I.
1973-01-01
The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of the RSRM geometry.
NASA Astrophysics Data System (ADS)
Lappa, Marcello
2016-10-01
The present analysis extends the author's earlier work [Lappa, Phys. Fluids 26, 093301 (2014), 10.1063/1.4893078] on the properties of patterns formed by the spontaneous accumulation and ordering of solid particles in certain types of flow. It is shown that under certain conditions, when subjected to vibrations to induce natural flow, nonisothermal fluids with dispersed solid particles are characterized by intervals of solid-pattern-forming behavior due to particle rearrangements preceded by intervals in which no recognizable structures of solid matter can be detected. The dynamics of these systems are highly nonlinear in nature. Because this family of particle attractors is known to exhibit strong sensitivity to the symmetry properties of the considered vibrated system and related geometrical constraints, the present study attempts to clarify the related dynamics in a geometry with curved walls (cylindrical enclosure). In particular, by assuming vibrations always directed perpendicularly to the imposed temperature gradient, we show that the morphology, spatial extension (percentage of physical volume occupied), separation (spatial distance), and mechanisms responsible for the formation of the resulting particle structures change significantly according to whether the temperature gradient is parallel or perpendicular to the symmetry axis of the cylinder. This indicates that the physics is not invariant with respect to 90° rotations in space of the specific forcing considered (direction of the imposed temperature gradient and associated perpendicular vibrations). Additional insights into the problem are obtained by assessing separately the influence played by the time-averaged (mean) and oscillatory effects. According to the numerical results, the intriguing diversity of particle agglomerates results from the different role or importance played by (curved or straight) boundaries in constraining particles and from the different structure and topology of the resulting macroscopic (large-scale) thermovibrational flow oscillating in time at the same frequency of the imposed vibrations.
Rheology and fluid mechanics of a hyper-concentrated biomass suspension
NASA Astrophysics Data System (ADS)
Botto, Lorenzo; Xu, Xiao
2013-11-01
The production of bioethanol from biomass material originating from energy crops requires mixing of highly concentrated suspensions, which are composed of millimetre-sized lignocellulosic fibers. In these applications, the solid concentration is typically extremely high. Owing to the large particle porosity, for a solid mass concentration slightly larger than 10%, the dispersed solid phase can fill the available space almost completely. To extract input parameters for simulations, we have carried out rheological measurements of a lignocellulosic suspension of Miscanthus, a fast-growing plant, for particle concentrations close to maximum random packing. We find that in this regime the rheometric curves exhibit features similar to those observed in model ``gravitational suspensions,'' including viscoplastic behaviour, strong shear-banding, non-continuum effects, and a marked influence of the particle weight. In the talk, these aspects will be examined in some detail, and differences between Miscanthus and corn stover, currently the most industrially relevant biomass substrate, briefly discussed. We will also comment on values of the Reynolds and Oldroyd numbers found in biofuel applications, and the flow patterns expected for these parameter values.
Analytical Solution for the Critical Velocity of Pushing/Engulfment Transition
NASA Technical Reports Server (NTRS)
Catalina, Adrian V.; Stefanescu, Doru M.; Sen, Subhayu
2004-01-01
The distribution of ceramic particles in a metal matrix composite material depends primarily on the interaction of the particles with the solid/liquid interface during the solidification process. A numerical model that describes the evolution of the shape of the solid/liquid interface in the proximity of a foreign particle will presented in this paper. The model accounts for the influence of the temperature gradient and the Gibbs-Thomson and disjoining pressure effects. It shows that for the systems characterized by k(sub p) < k(sub L) the disjoining pressure causes the interface curvature to change its sign in the close-contact particle/interface region. It also shows that the increase of the temperature gradient diminishes the effect of the disjoining pressure. The analysis of the numerical results obtained for a large range of processing conditions and materials parameters has led to the development of an analytical solution for the critical velocity of pushing/engulfinent transition. The theoretical results will be discussed and compared with the experimental measurements performed under microgravity conditions.
NASA Astrophysics Data System (ADS)
Trimpin, Sarah; Lu, I.-Chung; Rauschenbach, Stephan; Hoang, Khoa; Wang, Beixi; Chubatyi, Nicholas D.; Zhang, Wen-Jing; Inutan, Ellen D.; Pophristic, Milan; Sidorenko, Alexander; McEwen, Charles N.
2018-02-01
Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.
Yang, Yunqi; Fang, Zhiwei; Chen, Xuan; Zhang, Weiwang; Xie, Yangmei; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien
2017-01-01
Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields. PMID:28588490
Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave.
Habibi, Ruhollah; Devendran, Citsabehsan; Neild, Adrian
2017-09-26
The use of ultrasound for trapping and patterning particles or cells in microfluidic systems is usually confined to particles which are considerably smaller than the acoustic wavelength. In this regime, the primary forces result in particle clustering at certain locations in the sound field, whilst secondary forces, those arising due to particle-particle interaction forces, assist this clustering process. Using a wavelength closer to the size of the particles allows one particle to be held at each primary force minimum. However, to achieve this, the influence of secondary forces needs to be carefully studied, as inter-particle attraction is highly undesirable. Here, we study the effect of particle size and material properties on both the primary and secondary acoustic forces as the particle diameter is increased towards the wavelength of the 1-dimensional axisymmetric ultrasonic field. We show that the resonance frequencies of the solid sphere have an important role in the resulting secondary forces which leads to a narrow band of frequencies that allow the patterning of large particles in a 1-D array. Knowledge regarding the naturally existent secondary forces would allow for system designs enabling single cell studies to be conducted in a biologically safe manner.
Planetesimal formation in self-gravitating discs
NASA Astrophysics Data System (ADS)
Gibbons, P. G.; Rice, W. K. M.; Mamatsashvili, G. R.
2012-10-01
We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local overdensities which may be able to undergo gravitational collapse. We expand on these findings using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the PENCIL code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10 cm sized particles in a disc following the profiles of Clarke around an ˜1 M⊙ star, causing it to reach concentrations several orders of magnitude larger than the particles mean surface density. We also study the velocity dispersion of the particles, finding that the spiral structure can result in the particle velocities becoming highly ordered, having a narrow velocity dispersion. This implies low relative velocities between particles, which in turn suggest that collisions are typically low energy, lessening the likelihood of grain destruction. Both these findings suggest that the density waves that arise due to gravitational instabilities in the early stages of star formation provide excellent sites for the formation of large, planetesimal-sized objects.
Combustion of metal agglomerates in a solid rocket core flow
NASA Astrophysics Data System (ADS)
Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.
2013-12-01
The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.
A Level-set based framework for viscous simulation of particle-laden supersonic flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-06-01
Particle-laden supersonic flows are important in natural and industrial processes, such as, volcanic eruptions, explosions, pneumatic conveyance of particle in material processing etc. Numerical study of such high-speed particle laden flows at the mesoscale calls for a numerical framework which allows simulation of supersonic flow around multiple moving solid objects. Only a few efforts have been made toward development of numerical frameworks for viscous simulation of particle-fluid interaction in supersonic flow regime. The current work presents a Cartesian grid based sharp-interface method for viscous simulations of interaction between supersonic flow with moving rigid particles. The no-slip boundary condition is imposed at the solid-fluid interfaces using a modified ghost fluid method (GFM). The current method is validated against the similarity solution of compressible boundary layer over flat-plate and benchmark numerical solution for steady supersonic flow over cylinder. Further validation is carried out against benchmark numerical results for shock induced lift-off of a cylinder in a shock tube. 3D simulation of steady supersonic flow over sphere is performed to compare the numerically obtained drag co-efficient with experimental results. A particle-resolved viscous simulation of shock interaction with a cloud of particles is performed to demonstrate that the current method is suitable for large-scale particle resolved simulations of particle-laden supersonic flows.
Development of shashlik electromagnetic calorimeter prototype for SoLID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, C.; Wang, Y.; Xiao, D.
A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less
Development of shashlik electromagnetic calorimeter prototype for SoLID
Shen, C.; Wang, Y.; Xiao, D.; ...
2017-03-07
A shashlik electromagnetic calorimeter will be produced in Hall A of Jefferson Laboratory for Solenoidal large Intensity Device (SoLID) to measure the energy deposition of electrons and hadrons, and to provide particle identification after the energy of the accelerator was upgraded to 12 GeV. Tsinghua University is the member of Hall A collaboration in charge of development and production of the large shashlik electromagnetic calorimeter of SoLID. One module of that calorimeter is composed by 194 layers. Each layer consists of a 1.5 mm thick plastic scintillator put on top of a 0.5 mm thick lead plate. Scintillation light ismore » read out by wave-length shifter fibers penetrating through the calorimeter modules longitudinally along the direction of flight of the impact particle. This paper describes the design and construction of that module, as well as a few optimization studies meant to improve its performance. A detailed Geant4 simulation also shows that an energy resolution of 5%/√ E (GeV) and a good containment for electromagnetic showers can be achieved, as well as some basic electron identification. In conclusion, a prototype of that module will be tested soon with an electron beam at JLab.« less
Solid Hydrogen Experiments for Atomic Propellants: Image Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2002-01-01
This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
Chen, Mian; Yang, Lei; Zhang, Lan; Han, Yong; Lu, Zheng; Qin, Gaowu; Zhang, Erlin
2017-06-01
In this research, Ti-Ag alloys were prepared by powder metallurgy, casting and heat treatment method in order to investigate the effect of Ag compound particles on the bio-corrosion, the antibacterial property and the cell biocompatibility. Ti-Ag alloys with different sizes of Ag or Ag-compounds particles were successfully prepared: small amount of submicro-scale (100nm) Ti 2 Ag precipitates with solid solution state of Ag, large amount of nano-scale (20-30nm) Ti 2 Ag precipitates with small amount of solid solution state of Ag and micro-scale lamellar Ti 2 Ag phases, and complete solid solution state of Ag. The mechanical tests indicated that both nano/micro-scale Ti 2 Ag phases had a strong dispersion strengthening ability and Ag had a high solid solution strengthening ability. Electrochemical results shown the Ag content and the size of Ag particles had a limited influence on the bio-corrosion resistance although nano-scale Ti 2 Ag precipitates slightly improved corrosion resistance. It was demonstrated that the nano Ag compounds precipitates have a significant influence on the antibacterial properties of Ti-Ag alloys but no effect on the cell biocompatibility. It was thought that both Ag ions release and Ti 2 Ag precipitates contributed to the antibacterial ability, in which nano-scale and homogeneously distributed Ti 2 Ag phases would play a key role in antibacterial process. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Kai; Balachandar, S.
2017-11-01
We perform a series of Euler-Lagrange direct numerical simulations (DNS) for multiphase jets and sedimenting particles. The forces the flow exerts on the particles in these two-way coupled simulations are computed using the Basset-Bousinesq-Oseen (BBO) equations. These forces do not explicitly account for particle-particle interactions, even though such pairwise interactions induced by the perturbations from neighboring particles may be important especially when the particle volume fraction is high. Such effects have been largely unaddressed in the literature. Here, we implement the Pairwise Interaction Extended Point-Particle (PIEP) model to simulate the effect of neighboring particle pairs. A simple collision model is also applied to avoid unphysical overlapping of solid spherical particles. The simulation results indicate that the PIEP model provides a more elaborative and complicated movement of the dispersed phase (droplets and particles). Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) project N00014-16-1-2617.
NASA Astrophysics Data System (ADS)
Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.
2017-10-01
This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.
The Global Perspective on the Evolution of Solids in a Protoplanetary Disk
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Valageas, P.
1996-01-01
It is currently thought that planets around solar-type stars form by the accumulation of solid matter entrained in a gaseous, turbulent protoplanetary disk. We have developed a model designed to simulate the part of this process that starts from small particles suspended in the gaseous disk at the end of the formation stage, and ends up with most of the solid material aggregated into 1-10-km planetesimals. The major novelty of our approach is its emphasis on the global, comprehensive treatment of the problem, as our model simultaneously keeps track of the evolution of gas and solid particles due to gas-solid coupling, coagulation, sedimentation, and evaporation/condensation. The result of our calculations is the radial distribution of solid material circumnavigating a star in the form of a planetesimal swarm. Such a distribution should well approximate the radial apportionment of condensed components of the planets spread over the radial extent of the mature planetary system. Therefore we view our calculations as an attempt to predict the large-scale architecture of planetary systems and to assess their potential diversity. In particular, we have found that some initial conditions lead to all solids being lost to the star, but we can also identify initial conditions leading to a radial distribution of solid material quite reminiscent of what is found in our solar system.
Milde, Amanda S.; Richardson, William B.; Strauss, Eric A.; Larson, James H.; Vallazza, Jon; Knights, Brent C.
2017-01-01
Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (i) How do suspended particle characteristics (e.g. size and morphology) vary temporally and spatially? and (ii) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the Upper Mississippi River. A FlowCAM® (Flow Cytometer and Microscope) particle imaging system was used to enumerate and measure particles 53–300 μm in diameter for size and shape characteristics (e.g. volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3−) and soluble reactive phosphorus. Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorus were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients), which drive suspended particle dynamics in large rivers.
The effects of particulates from solid rocket motors fired in space
NASA Technical Reports Server (NTRS)
Mueller, A. C.; Kessler, D. J.
1985-01-01
The orbits attained by kick motor solid propellant particulates are modeled, and an estimate is made of the number of particulates which will remain in orbit. The fuel, Al2O3, is burned while inserting spacecraft into a transfer orbit and again while circularizing the GEO station. It is shown that 23 percent of 1 micron particles deorbit immediately, while most particles enter a retrograde orbit. The resulting flux is an order of magnitude larger than the micrometeoroid flux. The pressures exerted by solar radiation ensure that only 5 percent of the original flux is still in orbit after the first year. The estimates provided are valid for a large number of transfer orbit operations, but will vary widely over the short term.
Zhou, L; Qu, Z G; Ding, T; Miao, J Y
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
NASA Astrophysics Data System (ADS)
Zhou, L.; Qu, Z. G.; Ding, T.; Miao, J. Y.
2016-04-01
The gas-solid adsorption process in reconstructed random porous media is numerically studied with the lattice Boltzmann (LB) method at the pore scale with consideration of interparticle, interfacial, and intraparticle mass transfer performances. Adsorbent structures are reconstructed in two dimensions by employing the quartet structure generation set approach. To implement boundary conditions accurately, all the porous interfacial nodes are recognized and classified into 14 types using a proposed universal program called the boundary recognition and classification program. The multiple-relaxation-time LB model and single-relaxation-time LB model are adopted to simulate flow and mass transport, respectively. The interparticle, interfacial, and intraparticle mass transfer capacities are evaluated with the permeability factor and interparticle transfer coefficient, Langmuir adsorption kinetics, and the solid diffusion model, respectively. Adsorption processes are performed in two groups of adsorbent media with different porosities and particle sizes. External and internal mass transfer resistances govern the adsorption system. A large porosity leads to an early time for adsorption equilibrium because of the controlling factor of external resistance. External and internal resistances are dominant at small and large particle sizes, respectively. Particle size, under which the total resistance is minimum, ranges from 3 to 7 μm with the preset parameters. Pore-scale simulation clearly explains the effect of both external and internal mass transfer resistances. The present paper provides both theoretical and practical guidance for the design and optimization of adsorption systems.
How to form planetesimals from mm-sized chondrules and chondrule aggregates
NASA Astrophysics Data System (ADS)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.
2015-07-01
The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org
Process for selective grinding of coal
Venkatachari, Mukund K.; Benz, August D.; Huettenhain, Horst
1991-01-01
A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.
Chemistry and Physics of Solid Surfaces 5
1984-04-01
associated with dimers and trimers, Type 2 particles form large clusters of 2000-5000 A size in aqueous solution. Luminescence studies carried out with...and rates of energy transfer, real time measurements using ultrashort laser pulses hold great promise. With the possible exception of the stimulated...the dynamic prop- erties of such clusters . The clusters are not stationary entities as origi- nally envisioned. Instead even fairly large aggregates
NASA Astrophysics Data System (ADS)
George, Russ
2005-03-01
Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.
Airborne soil organic particles generated by precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.
Airborne organic particles play a critical role in the Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. These particles exist in liquid, amorphous semi-solid, or solid (glassy) phase states depending on their composition and ambient conditions5. However, sources and formation mechanisms for semi- solid and solid organic particles are poorly understood and typically neglected in atmospheric models6. Here we report field evidence for airborne solid organic particles generated by a “raindrop” mechanism7 pertinent to atmosphere – land surface interactions (Fig. 1). We find that after rain events at Southern Great Plains, Oklahoma, USA, submicron solid particles, withmore » a composition consistent with soil organic matter, contributed up to 60% of atmospheric particles in number. Subsequent experiments indicate that airborne soil organic particles are ejected from the surface of soils caused by intensive rains or irrigation. Our observations suggest that formation of these particles may be a widespread phenomenon in ecosystems where soils are exposed to strong, episodic precipitation events such as agricultural systems and grasslands8. Chemical imaging and micro-spectroscopy analysis of their physico-chemical properties suggests that airborne soil organic particles may have important impacts on cloud formation and efficiently absorb solar radiation and hence, are an important type of particles.« less
Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2002-01-01
This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
NASA Technical Reports Server (NTRS)
Eaton, John; Hwang, Wontae; Cabral, Patrick
2002-01-01
This research addresses turbulent gas flows laden with fine solid particles at sufficiently large mass loading that strong two-way coupling occurs. By two-way coupling we mean that the particle motion is governed largely by the flow, while the particles affect the gas-phase mean flow and the turbulence properties. Our main interest is in understanding how the particles affect the turbulence. Computational techniques have been developed which can accurately predict flows carrying particles that are much smaller than the smallest scales of turbulence. Also, advanced computational techniques and burgeoning computer resources make it feasible to fully resolve very large particles moving through turbulent flows. However, flows with particle diameters of the same order as the Kolmogorov scale of the turbulence are notoriously difficult to predict. Some simple flows show strong turbulence attenuation with reductions in the turbulent kinetic energy by up to a factor of five. On the other hand, some seemingly similar flows show almost no modification. No model has been proposed that allows prediction of when the strong attenuation will occur. Unfortunately, many technological and natural two-phase flows fall into this regime, so there is a strong need for new physical understanding and modeling capability. Our objective is to study the simplest possible turbulent particle-laden flow, namely homogeneous, isotropic turbulence with a uniform dispersion of monodisperse particles. We chose such a simple flow for two reasons. First, the simplicity allows us to probe the interaction in more detail and offers analytical simplicity in interpreting the results. Secondly, this flow can be addressed by numerical simulation, and many research groups are already working on calculating the flow. Our detailed data can help guide some of these efforts. By using microgravity, we can further simplify the flow to the case of no mean velocity for either the turbulence or the particles. In fact the addition of gravity as a variable parameter may help us to better understand the physics of turbulence attenuation. The experiments are conducted in a turbulence chamber capable of producing stationary or decaying isotropic turbulence with nearly zero mean flow and Taylor microscale Reynolds numbers up to nearly 500. The chamber is a 410 mm cubic box with the corners cut off to make it approximately spherical. Synthetic jet turbulence generators are mounted in each of the eight corners of the box. Each generator consists of a loudspeaker forcing a plenum and producing a pulsed jet through a 20 mm diameter orifice. These synthetic jets are directed into ejector tubes pointing towards the chamber center. The ejector tubes increase the jet mass flow and decrease the velocity. The jets then pass through a turbulence grid. Each of the eight loudspeakers is forced with a random phase and frequency. The resulting turbulence is highly Isotropic and matches typical behavior of grid turbulence. Measurements of both phases are acquired using particle image velocimetry (PIV). The gas is seeded with approximately 1 micron diameter seeding particles while the solid phase is typically 150 micron diameter spherical glass particles. A double-pulsed YAG laser and a Kodak ES-1.0 10-bit PIV camera provide the PIV images. Custom software is used to separate the images into individual images containing either gas-phase tracers or large particles. Modern high-resolution PIV algorithms are then used to calculate the velocity field. A large set of image pairs are acquired for each case, then the results are averaged both spatially and over the ensemble of acquired images. The entire apparatus is mounted in two racks which are carried aboard NASA's KC-135 Flying Microgravity Laboratory. The rack containing the turbulence chamber, the laser head, and the camera floats freely in the airplane cabin (constrained by competent NASA personnel) to minimize g-jitter.
Space shuttle program solid rocket booster decelerator subsystem
NASA Technical Reports Server (NTRS)
Barnard, J. W.
1985-01-01
The recovery of the Solid Rocket Boosters presented a major challenge. The SRB represents the largest payload ever recovered and presents the added complication that it is continually emitting hot gases and burning particles of insulation and other debris. Some items, such as portions of the nozzle, are large enough to burn through the nylon parachute material. The SRB Decelerator Subsystem program was highly successful in that no SRB has been lost as a result of inadequate performance of the DSS.
Experimental Characteristics of Particle Dynamics within Solid Rocket Motors Environments
2009-04-03
McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion...Solid Propellant Micromotors ,” Journal of Propulsion and Power 10(3), 410-418 (1994). 6. Kovalev, O. B., “Motor and Plume Particle Size Prediction in...McCrorie, J. D., Vaughn, J. K., Netzer, D. W., “Motor and Plume Particle Size Measurements in Solid Propellant Micromotors ,” Journal of Propulsion
Numerical investigation of adhesion effects on solid particles filtration efficiency
NASA Astrophysics Data System (ADS)
Shaffee, Amira; Luckham, Paul; Matar, Omar K.
2017-11-01
Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.
Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
NASA Astrophysics Data System (ADS)
Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse
2018-05-01
The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.
Plume particle collection and sizing from static firing of solid rocket motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
Effect of erodent particles on the erosion of metal specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Razzaque, M. Mahbubur, E-mail: mmrazzaque@me.buet.ac.bd; Alam, M. Khorshed; Khan, M. Ishak, E-mail: ishak.buet@gmail.com
2016-07-12
This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens aremore » examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.« less
Effect of erodent particles on the erosion of metal specimens
NASA Astrophysics Data System (ADS)
Razzaque, M. Mahbubur; Alam, M. Khorshed; Khan, M. Ishak
2016-07-01
This paper presents the experimental results of the measurement of erosion rate of carbon steel specimens in sand water slurry system in a slurry pot tester. Sylhet sand has been sieved to get three sizes of erodent particles; namely, less than 250 micron, 250 to 590 micron and 590 to 1190 micron. Experiments are done with three sand concentrations (10%, 15% and 20%). The rate of erosion of the carbon steel specimens is measured as the loss of weight per unit surface area per unit time under the dynamic action of solid particles. The eroded surfaces of the specimens are examined using Scanning Electron Microscopy (SEM) to visualize the impact of the slurry of various conditions. It is seen that irrespective of the particle size the rate of erosion increases with the increase of slurry concentration. This increment of erosion rate at high concentration is high for large particles. High erosion rate is observed in case of large sand particles. In case of small and fine particles erosion rate is small because of low impact energy as well as the wastage of energy to overcome the hindrance of the finer particles before striking on the specimen surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouis, C.; Beretta, F.; L'Insalata, A.
2007-04-15
The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants.more » The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)« less
Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid.
Meruane, C; Tamburrino, A; Roche, O
2012-08-01
Dense grain flows in nature consist of a mixture of solid constituents that are immersed in an ambient fluid. In order to obtain a good representation of these flows, the interaction mechanisms between the different constituents of the mixture should be considered. In this article, we study the dynamics of a dense granular flow composed of a binary mixture of small and large grains immersed in an ambient fluid. In this context, we extend the two-phase approach proposed by Meruane et al. [J. Fluid Mech. 648, 381 (2010)] to the case of flowing dense binary mixtures of solid particles, by including in the momentum equations a constitutive relation that describes the interaction mechanisms between the solid constituents in a dense regime. These coupled equations are solved numerically and validated by comparing the numerical results with experimental measurements of the front speed of gravitational granular flows resulting from the collapse, in ambient air or water, of two-dimensional granular columns that consisted of mixtures of small and large spherical particles of equal mass density. Our results suggest that the model equations include the essential features that describe the dynamics of grains flows of binary mixtures in an ambient fluid. In particular, it is shown that segregation of small and large grains can increase the front speed because of the volumetric expansion of the flow. This increase in flow speed is damped by the interaction forces with the ambient fluid, and this behavior is more pronounced in water than in air.
Model of lidar range-Doppler signatures of solid rocket fuel plumes
NASA Astrophysics Data System (ADS)
Bankman, Isaac N.; Giles, John W.; Chan, Stephen C.; Reed, Robert A.
2004-09-01
The analysis of particles produced by solid rocket motor fuels relates to two types of studies: the effect of these particles on the Earth's ozone layer, and the dynamic flight behavior of solid fuel boosters used by the NASA Space Shuttle. Since laser backscatter depends on the particle size and concentration, a lidar system can be used to analyze the particle distributions inside a solid rocket plume in flight. We present an analytical model that simulates the lidar returns from solid rocket plumes including effects of beam profile, spot size, polarization and sensing geometry. The backscatter and extinction coefficients of alumina particles are computed with the T-matrix method that can address non-spherical particles. The outputs of the model include time-resolved return pulses and range-Doppler signatures. Presented examples illustrate the effects of sensing geometry.
EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, M.; Steeper, T.; Steimke, J.
2012-12-10
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.« less
Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L.
2013-07-01
The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a wastemore » tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)« less
Solid Hydrogen Experiments for Atomic Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2001-01-01
This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
Dynamics of solid lubrication as observed by optical microscopy
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1976-01-01
A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.
Composite Solid Electrolyte For Lithium Cells
NASA Technical Reports Server (NTRS)
Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.
1994-01-01
Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.
Shear thickening in suspensions: the lubricated-to-frictional contact scenario
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2017-11-01
Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the predictions of the lubricated-to-frictional rheology is generally good, but discrepancies demand some perspective on the strong simplifying assumptions in the model. Since contact is difficult to both establish and to characterize for surfaces between particles of micron scale or smaller, what is happening in the very close ``contacts'' is not clear, and how changes at this scale give rise to the large-scale force organization is yet to be established. The insight to the elements needed for the abrupt flow induced transition seen in DST thus suggests a need for consideration of both the microscopic physics of contact and the statistical physics governing the macroscopic properties. This work was supported in part by the NSF CBET program, Grant # 1605283.
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Valageas, P.
1996-01-01
The problem of planetary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to decouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52) g/sq cm/s is allowed to evolve due to turbulent viscosity characterized by either alpha = 10(exp -2) or alpha = 10(exp -3). The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger than 0.1 cm but smaller than 10(exp 3) cm have inward radial velocities much larger than the gas, whereas particles larger than 10(exp 4) cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.
Rupture in cemented granular media: application to wheat endosperm
NASA Astrophysics Data System (ADS)
Topin, V.; Delenne, J.-Y.; Radjai, F.
2009-06-01
The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
Airborne soil organic particles generated by precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.
Airborne organic particles play a critical role in Earth’s climate 1, public health 2, air quality 3, and hydrological and carbon cycles 4. However, sources and formation mechanisms for semi-solid and solid organic particles 5 are poorly understood and typically neglected in atmospheric models 6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets 7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rainmore » events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events 8.« less
Airborne soil organic particles generated by precipitation
Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; ...
2016-05-02
Airborne organic particles play a critical role in Earth’s climate 1, public health 2, air quality 3, and hydrological and carbon cycles 4. However, sources and formation mechanisms for semi-solid and solid organic particles 5 are poorly understood and typically neglected in atmospheric models 6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets 7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rainmore » events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events 8.« less
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile
2014-09-28
We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped at interfaces. We suggest that the large aggregates may be broken during shear and may reform at the interface to form a solid armour. A simple calculation taking into account the adsorption dynamics of the aggregates as a function of their size is consistent with this hypothesis.
Particle Formation and Product Formulation Using Supercritical Fluids.
Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca
2015-01-01
Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.
Three-phase boundary length in solid-oxide fuel cells: A mathematical model
NASA Astrophysics Data System (ADS)
Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf
A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.
Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui
2013-01-01
This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745
Fixation and chemical analysis of single fog and rain droplets
NASA Astrophysics Data System (ADS)
Kasahara, M.; Akashi, S.; Ma, C.-J.; Tohno, S.
Last decade, the importance of global environmental problems has been recognized worldwide. Acid rain is one of the most important global environmental problems as well as the global warming. The grasp of physical and chemical properties of fog and rain droplets is essential to make clear the physical and chemical processes of acid rain and also their effects on forests, materials and ecosystems. We examined the physical and chemical properties of single fog and raindrops by applying fixation technique. The sampling method and treatment procedure to fix the liquid droplets as a solid particle were investigated. Small liquid particles like fog droplet could be easily fixed within few minutes by exposure to cyanoacrylate vapor. The large liquid particles like raindrops were also fixed successively, but some of them were not perfect. Freezing method was applied to fix the large raindrops. Frozen liquid particles existed stably by exposure to cyanoacrylate vapor after freezing. The particle size measurement and the elemental analysis of the fixed particle were performed in individual base using microscope, and SEX-EDX, particle-induced X-ray emission (PIXE) and micro-PIXE analyses, respectively. The concentration in raindrops was dependent upon the droplet size and the elapsed time from the beginning of rainfall.
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge. PMID:26755070
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-12
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
NASA Astrophysics Data System (ADS)
Xie, Yinghao; Wu, Fangfang; Sun, Xiaoqin; Chen, Hongmei; Lv, Meilin; Ni, Shuang; Liu, Gang; Xu, Xiaoxiang
2016-01-01
Wurtzite solid solutions between GaN and ZnO highlight an intriguing paradigm for water splitting into hydrogen and oxygen using solar energy. However, large composition discrepancy often occurs inside the compound owing to the volatile nature of Zn, thereby prescribing rigorous terms on synthetic conditions. Here we demonstrate the merits of constituting quinary Zn-Ga-Ge-N-O solid solutions by introducing Ge into the wurtzite framework. The presence of Ge not only mitigates the vaporization of Zn but also strongly promotes particle crystallization. Synthetic details for these quinary compounds were systematically explored and their photocatalytic properties were thoroughly investigated. Proper starting molar ratios of Zn/Ga/Ge are of primary importance for single phase formation, high particle crystallinity and good photocatalytic performance. Efficient photocatalytic hydrogen and oxygen production from water were achieved for these quinary solid solutions which is strongly correlated with Ge content in the structure. Apparent quantum efficiency for optimized sample approaches 1.01% for hydrogen production and 1.14% for oxygen production. Theoretical calculation reveals the critical role of Zn for the band gap reduction in these solid solutions and their superior photocatalytic acitivity can be understood by the preservation of Zn in the structure as well as a good crystallinity after introducing Ge.
a Study of Dynamic Powder Consolidation Based on a Particle-Level Mathematical Model.
NASA Astrophysics Data System (ADS)
Williamson, Richard L.
A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation. Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior. A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.
Global variation of the dust-to-gas ratio in evolving protoplanetary discs
NASA Astrophysics Data System (ADS)
Hughes, Anna L. H.; Armitage, Philip J.
2012-06-01
Recent theories suggest planetesimal formation via streaming and/or gravitational instabilities may be triggered by localized enhancements in the dust-to-gas ratio, and one hypothesis is that sufficient enhancements may be produced in the pile-up of small solid particles inspiralling under aerodynamic drag from the large mass reservoir in the outer disc. Studies of particle pile-up in static gas discs have provided partial support for this hypothesis. Here, we study the radial and temporal evolution of the dust-to-gas ratio in turbulent discs that evolve under the action of viscosity and photoevaporation. We find that particle pile-ups do not generically occur within evolving discs, particularly if the introduction of large grains is restricted to the inner, dense regions of a disc. Instead, radial drift results in depletion of solids from the outer disc, while the inner disc maintains a dust-to-gas ratio that is within a factor of ˜2 of the initial value. We attribute this result to the short time-scales for turbulent diffusion and radial advection (with the mean gas flow) in the inner disc. We show that the qualitative evolution of the dust-to-gas ratio depends only weakly upon the parameters of the disc model (the disc mass, size, viscosity and value of the Schmidt number), and discuss the implications for planetesimal formation via collective instabilities. Our results suggest that in discs where there is a significant level of midplane turbulence and accretion, planetesimal formation would need to be possible in the absence of large-scale enhancements. Instead, trapping and concentration of particles within local turbulent structures may be required as a first stage of planetesimal formation.
Effect of water on foaming properties of diglycerol fatty acid ester-oil systems.
Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Solans, Conxita; Aramaki, Kenji
2007-06-19
We have studied the effect of added water on the nonaqueous foaming properties of diglycerol fatty acid ester nonionic surfactant systems. Diglycerol monomyristate (designated as DGM) could not foam in nonpolar oils squalane and hexadecane at normal room temperature. Nevertheless, addition of a small amount of water induces a dramatic change in foaming properties. Both the foamability and foam stability increases with the amount of added water within the studied concentration range. Phase behavior study showed that in the dilute regions there is dispersion of solid surfactant in the aforementioned oils in the DGM systems. The particle size of the dispersed solid phase was found to be several tens of microns in the water free system, and hence it tends to coagulate and precipitate. In the case of shorter alkyl chain length, diglycerol monolaurate (DGL) surfactant-oil systems, dispersion of lamellar liquid crystal (Lalpha) is observed at room temperature, and the poor foaming properties were attributed to the large particle size of the liquid crystal. In both the DGL and DGM-oil systems, we observed a tendency of the particle size to decrease with the increasing concentration of added water. At higher temperature, the solid surfactant transforms to lamellar liquid crystal phase, and foaming is improved in the DGM/squalane system. Foams are stable for several minutes. Judging from the foaming test and particle size distribution data it can be concluded that the poor foaming in the diglycerol fatty acid esters-oil systems may possibly be due to bigger particle size, which causes precipitation. Addition of water results in the dispersion of smaller particles and improves the foaming behavior.
NASA Astrophysics Data System (ADS)
Ingersoll, A. P.; Nakajima, M.; Ewald, S.; Gao, P.
2015-12-01
Postberg et al (2009) argued that the observed plume activity requires large vapor chambers above the evaporating liquid (left figure). Here we argue that large vapor chambers are unnecessary, and that a liquid-filled crack 1 meter wide extending along the 500 km length of the tiger stripes would be an adequate source (right figure). We consider controlled boiling (companion paper by Nakajima and Ingersoll 2015AGU) regulated by friction between the gas and the walls. Postberg et al use formulas from Rayleigh-Benard convection, which we argue does not apply when bubbles are transferring their latent heat across the liquid-gas interface. We show that modest convection currents in the liquid (few cm/s) can supply energy to the boiling zone and prevent it from freezing. Hedman et al (2013) reported brightness variations with orbital phase, but they also reported that their 2005 observations were roughly 50% higher than the 2009 observations. Here we extend the observation period to 2015 (Ingersoll and Ewald 2015). Our analysis relies on ISS images whereas Hedman et al rely on VIMS near-IR images, which have 40 times lower resolution. We successfully separate the brightness of the plume from the E-ring background. Our earlier analysis of the particle size distribution (Ingersoll and Ewald 2011) allows us to correct for differences in scattering angle. We confirm a general decline in activity over the 10-year period, but we find hints of fluctuations on shorter time scales. Kempf (Cassini project science meeting, Jan 22, 2015) reported that the mass of particles in the plumes could be an order of magnitude less than that reported by Ingersoll and Ewald (2011). Kempf used in situ particle measurements by CDA, whereas I&E used brightness observations and the assumption that the particles are solid ice. Here we show (Gao et al 2015AGU) that fractal aggregates fit the brightness data just as well as solid ice, and are consistent with the lower mass reported by Kempf.
Duy, Pham K; Chun, Seulah; Chung, Hoeil
2017-11-21
We have systematically characterized Raman scatterings in solid samples with different particle sizes and investigated subsequent trends of particle size-induced intensity variations. For this purpose, both lactose powders and pellets composed of five different particle sizes were prepared. Uniquely in this study, three spectral acquisition schemes with different sizes of laser illuminations and detection windows were employed for the evaluation, since it was expected that the experimental configuration would be another factor potentially influencing the intensity of the lactose peak, along with the particle size itself. In both samples, the distribution of Raman photons became broader with the increase in particle size, as the mean free path of laser photons, the average photon travel distance between consecutive scattering locations, became longer under this situation. When the particle size was the same, the Raman photon distribution was narrower in the pellets since the individual particles were more densely packed in a given volume (the shorter mean free path). When the size of the detection window was small, the number of photons reaching the detector decreased as the photon distribution was larger. Meanwhile, a large-window detector was able to collect the widely distributed Raman photons more effectively; therefore, the trends of intensity change with the variation in particle size were dissimilar depending on the employed spectral acquisition schemes. Overall, the Monte Carlo simulation was effective at probing the photon distribution inside the samples and helped to support the experimental observations.
De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco
2009-03-15
The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.
Solid hydrogen coated graphite particles in the interstellar medium. I.
NASA Technical Reports Server (NTRS)
Swamy, K. S. K.; Wickramasinghe, N. C.
1969-01-01
Solid para hydrogen coated graphite particles expulsion into interstellar medium from star formation regions, considering mantles stability and particles extinction efficiency, albedo and phase function
Alonso, Ellen C P; Riccomini, Karina; Silva, Luis Antônio D; Galter, Daniela; Lima, Eliana M; Durig, Thomas; Taveira, Stephania F; Martins, Felipe Terra; Cunha-Filho, Marcílio S S; Marreto, Ricardo N
2016-10-01
This study sought to evaluate the achievement of carvedilol (CARV) inclusion complexes with modified cyclodextrins (HPβCD and HPγCD) using fluid-bed granulation (FB). The solid complexes were produced using FB and spray drying (SD) and were characterised by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction, SEM, flowability and particle size analyses and in vitro dissolution. The DSC, FTIR and powder X-ray diffraction findings suggested successful CARV inclusion in the modified β- and γ-cyclodextrins, which was more evident in acidic media. The CARV dissolution rate was ~7-fold higher for complexes with both cyclodextrins prepared using SD than for raw CARV. Complexes prepared with HPβCD using FB also resulted in a significant improvement in dissolution rate (~5-fold) and presented superior flowability and larger particle size. The findings suggested that FB is the best alternative for large-scale production of solid dosage forms containing CARV. Additionally, the results suggest that HPγCD could be considered as another option for CARV complexation because of its excellent performance in inclusion complex formation in the solid state. © 2016 Royal Pharmaceutical Society.
Zhu, Yan; Cammers-Goodwin, Arthur; Zhao, Bin; Dozier, Alan; Dickey, Elizabeth C
2004-05-17
This study aimed to elucidate the structural nature of the polydisperse, nanoscopic components in the solution and the solid states of partially reduced polyoxomolybdate derived from the [Mo132] keplerate, [(Mo)Mo5]12-[Mo2 acetate]30. Designer tripodal hexamine-tris-crown ethers and nanoscopic molybdate coprecipitated from aqueous solution. These microcrystalline solids distributed particle radii between 2-30 nm as assayed by transmission electron microscopy (TEM). The solid materials and their particle size distributions were snap shots of the solution phase. The mother liquor of the preparation of the [Mo132] keplerate after three days revealed large species (r=20-30 nm) in the coprecipitate, whereas [Mo132] keplerate redissolved in water revealed small species (3-7 nm) in the coprecipitate. Nanoparticles of coprecipitate were more stable than solids derived solely from partially reduced molybdate. The TEM features of all material analyzed lacked facets on the nanometer length scale; however, the structures diffracted electrons and appeared to be defect-free as evidenced by Moiré patterns in the TEM images. Moiré patterns and size-invariant optical densities of the features in the micrographs suggested that the molybdate nanoparticles were vesicular.
A continuum theory of a lubrication problem with solid particles
NASA Technical Reports Server (NTRS)
Dai, Fuling; Khonsari, M. M.
1993-01-01
The governing equations for a two-dimensional lubrication problem involving the mixture of a Newtonian fluid with solid particles at an arbitrary volume fraction are developed using the theory of interacting continuua (mixture theory). The equations take the interaction between the fluid and the particles into consideration. Provision is made for the possibility of particle slippage at the boundaries. The equations are simplified assuming that the solid volume fraction varies in the sliding direction alone. Equations are solved for the velocity of the fluid phase and that of the solid phase of the mixture flow in the clearance space of an arbitrary shaped bearing. It is shown that the classical pure fluid case can be recovered as a special case of the solutions presented. Extensive numerical solutions are presented to quantify the effect of particulate solid for a number of pertinent performance parameters for both slider and journal bearings. Included in the results are discussions on the influence of particle slippage on the boundaries as well as the role of the interacting body force between the fluid and solid particles.
Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praveen, D.; Damle, Ramakrishna
2016-05-23
Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in themore » past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.« less
NASA Astrophysics Data System (ADS)
Chang, J. S.; Sohn, H. Y.
2012-08-01
Top-blow injection of a gas-solid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas-solid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas-solid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was small. The overall results including the previous work indicated that the penetration behavior of an annular jet is much less sensitive to the variations in operating variables than that of a circular jet. Correlation equations for the penetration depth that show good agreements with the measured values have been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.
2009-05-22
The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonianmore » slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.« less
High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko.
Fray, Nicolas; Bardyn, Anaïs; Cottin, Hervé; Altwegg, Kathrin; Baklouti, Donia; Briois, Christelle; Colangeli, Luigi; Engrand, Cécile; Fischer, Henning; Glasmachers, Albrecht; Grün, Eberhard; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Jessberger, Elmar K; Koch, Andreas; Krüger, Harald; Langevin, Yves; Lehto, Harry; Lehto, Kirsi; Le Roy, Léna; Merouane, Sihane; Modica, Paola; Orthous-Daunay, François-Régis; Paquette, John; Raulin, François; Rynö, Jouni; Schulz, Rita; Silén, Johan; Siljeström, Sandra; Steiger, Wolfgang; Stenzel, Oliver; Stephan, Thomas; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Wanczek, Karl-Peter; Zaprudin, Boris; Kissel, Jochen; Hilchenbach, Martin
2016-10-06
The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.
Hendricks, Charles D.
1988-01-01
A method is provided for producing commercially large quantities of high melting temperature solid or hollow spherical particles of a predetermined chemical composition and having a uniform and controlled size distribution. An end (18, 50, 90) of a solid or hollow rod (20, 48, 88) of the material is rendered molten by a laser beam (14, 44, 82). Because of this, there is no possibility of the molten rod material becoming contaminated with extraneous material. In various aspects of the invention, an electric field is applied to the molten rod end (18, 90), and/or the molten rod end (50, 90) is vibrated. In a further aspect of the invention, a high-frequency component is added to the electric field applied to the molten end of the rod (90). By controlling the internal pressure of the rod, the rate at which the rod is introduced into the laser beam, the environment of the process, the vibration amplitude and frequency of the molten rod end, the electric field intensity applied to the molten rod end, and the frequency and intensity of the component added to the electric field, the uniformity and size distribution of the solid or hollow spherical particles (122) produced by the inventive method is controlled. The polarity of the electric field applied to the molten rod end can be chosen to eliminate backstreaming electrons, which tend to produce run-away heating in the rod, from the process.
Getting the gas out - developing gas networks in magmatic systems
NASA Astrophysics Data System (ADS)
Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde
2015-04-01
Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity melts) or (2) to develop sufficient porosity for full connectivity of a bubble network (in high viscosity melts). In contrast, our experiments suggest that the presence of solid particles may greatly enhance gas escape. On the one hand, the addition of solid particles increases the bulk viscosity of the mixture, which reduces the migration rate of large single bubbles. On the other hand, the strength of networks created by touching crystals inhibits bulk magma deformation and forces smaller bubbles to deform to occupy the spaces between particles, thereby increasing both the bubble shape anisotropy and, correspondingly, the probability of bubble coalescence. Gas pathways created in this way take advantage of inhomogeneities in the spatial distribution of crystals and allow large-scale gas release at relatively low vesicularities. This mechanism of gas escape is likely to be important not only in mafic arc volcanoes, where shallow conduits are likely to be highly crystalline, but also for degassing of crystal-mush-dominated magmatic systems.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2005-01-01
This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.
Foaming in simulated radioactive waste.
Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C
2001-10-01
Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.
Kumbhani, S; Longin, T; Wingen, L M; Kidd, C; Perraud, V; Finlayson-Pitts, B J
2018-02-06
Real-time in situ mass spectrometry analysis of airborne particles is important in several applications, including exposure studies in ambient air, industrial settings, and assessing impacts on visibility and climate. However, obtaining molecular and 3D structural information is more challenging, especially for heterogeneous solid or semisolid particles. We report a study of extractive electrospray ionization mass spectrometry (EESI-MS) for the analysis of solid particles with an organic coating. The goal is to elucidate how much of the overall particle content is sampled, and determine the sensitivity of this technique to the surface layers. It is shown that, for NaNO 3 particles coated with glutaric acid (GA), very little of the solid NaNO 3 core is sampled compared to the GA coating, whereas for GA particles coated with malonic acid (MA), significant signals from both the MA coating and the GA core are observed. However, conventional ESI-MS of the same samples collected on a Teflon filter (and then extracted) detects much more core material compared to EESI-MS in both cases. These results show that, for the experimental conditions used here, EESI-MS does not sample the entire particle but, instead, is more sensitive to surface layers. Separate experiments on single-component particles of NaNO 3 , GA, or citric acid show that there must be a kinetics limitation to dissolution that is important in determining EESI-MS sensitivity. We propose a new mechanism of EESI solvent droplet interaction with solid particles that is consistent with the experimental observations. In conjunction with previous EESI-MS studies of organic particles, these results suggest that EESI does not necessarily sample the entire particle when solid, and that not only solubility but also surface energies and the kinetics of dissolution play an important role.
Results in orbital evolution of objects in the geosynchronous region
NASA Technical Reports Server (NTRS)
Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1990-01-01
The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh
2016-10-01
The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less
Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha
2014-01-01
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng
A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vesselmore » connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.« less
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows
NASA Astrophysics Data System (ADS)
Murphy, Eric
Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the first time. Next, kinetic theory was used to predict the cooling of a gas of such particles. DEM was then used to validate this approach. A study on the rheology of dry cohesive granules with and without friction was then carried out, where the physics of different flow phenomenology was exhaustively explored. Lastly, homogeneous cement slurry simulations were carried out, and compared with vane-rheometer experiments. Qualitative agreement between simulation and experiment were observed. Lastly, the physics of clustering in homogeneous gas-solid flows is explored in the hopes of gaining a mechanistic explanation of how particle-fluid interactions lead to clustering. Exact equations are derived, detailing the evolution of the two particle density, which may be closed using high-fidelity particle-resolved direct numerical simulation. Two canonical gas-solid flows are then addressed, the homogeneously cooling gas-solid flow (HCGSF) and sedimenting gas-solid flow (SGSF). A mechanism responsible for clustering in the HCGSF is identified. Clustering of plane-wave like structures is observed in the SGSF, and the exact terms are quantified. A method for modeling the dynamics of clustering in these systems is proposed, which may aid in the prediction of clustering and other correlation length-scales useful for less expensive computations.
NASA Astrophysics Data System (ADS)
Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.
2014-07-01
We study particle dynamics in self-gravitating gaseous discs with a simple cooling law prescription via two-dimensional simulations in the shearing sheet approximation. It is well known that structures arising in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results have shown that spiral density waves can be highly efficient at collecting dust particles, creating significant local overdensities of particles. The degree of such concentrations has been shown to be dependent on two parameters: the size of the dust particles and the rate of gas cooling. We expand on these findings, including the self-gravity of dust particles, to see how these particle overdensities evolve. We use the PENCIL code to solve the local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas through an aerodynamic drag force. We find that the enhancements in the surface density of particles in spiral density wave crests can reach levels high enough to allow the solid component of the disc to collapse under its own self-gravity. This produces many gravitationally bound collections of particles within the spiral structure. The total mass contained in bound structures appears nearly independent of the cooling time, suggesting that the formation of planetesimals through dust particle trapping by self-gravitating density waves may be possible at a larger range of radii within a disc than previously thought. So, density waves due to gravitational instabilities in the early stages of star formation may provide excellent sites for the rapid formation of many large, planetesimal-sized objects.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Mainardi, R.; Gloeckler, G.
1974-01-01
A 6500 sq cm-ster cosmic-ray detector consisting of 12 gas counter trays sandwiched between two large-area circular scintillation counters was flown from Palestine, Texas in November 1972 to study the composition of primary particles greater than 1.5 GeV/nucleon in the charge range from 3 to 30. For each analyzed event, the particle trajectory was recorded, using four 20-wire proportional counter trays. Also recorded were the energy loss in each of the solid counters and the dE/dx losses in each of the 12 gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Gloeckler, G.; Mainardi, R.
1973-01-01
A 6500 sq cm-ster cosmic ray detector consisting of twelve gas counter trays sandwiched between two large area circular scintillation counters was flown from Palestine, Texas in November of 1972 to study the composition of primary particles 1.5 GeV/nucleon in the charge range 3 to 30. For each analyzed event, a recording was made of (1) the particle trajectory using four 20 wire proportional counter trays, (2) the energy loss in each of the solid counters, and (3) the dE/dx losses in each of the twelve gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
Xu, Jingxiang; Higuchi, Yuji; Ozawa, Nobuki; Sato, Kazuhisa; Hashida, Toshiyuki; Kubo, Momoji
2017-09-20
Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.
NASA Astrophysics Data System (ADS)
Usman, K.; Walayat, K.; Mahmood, R.; Kousar, N.
2018-06-01
We have examined the behavior of solid particles in particulate flows. The interaction of particles with each other and with the fluid is analyzed. Solid particles can move freely through a fixed computational mesh using an Eulerian approach. Fictitious boundary method (FBM) is used for treating the interaction between particles and the fluid. Hydrodynamic forces acting on the particle's surface are calculated using an explicit volume integral approach. A collision model proposed by Glowinski, Singh, Joseph and coauthors is used to handle particle-wall and particle-particle interactions. The particulate flow is computed using multigrid finite element solver FEATFLOW. Numerical experiments are performed considering two particles falling and colliding and sedimentation of many particles while interacting with each other. Results for these experiments are presented and compared with the reference values. Effects of the particle-particle interaction on the motion of the particles and on the physical behavior of the fluid-particle system has been analyzed.
NASA Astrophysics Data System (ADS)
Wang, Bo; Pan, Zihe; Cheng, Huaigang; Chen, Zuliang; Cheng, Fangqin
2018-06-01
Vaterite-type calcium carbonate particles have some unique properties such as high hydrophilicity, large surface areas, and hierarchical structures consisting of primary vaterite particles in comparison with calcite or aragonite-type polymorphs. In this paper, gypsum (CaSO4·2H2O) suspension is used to synthesize micro-sized vaterite CaCO3 through magnetic stirring (MS) and ultrasonic probe vibration (UPV) methods. The effects of ammonia concentration, CO2 flow rate, solid-liquid ratio on the gypsum carbonation process, mineral phase composition, morphology and particle size distribution of CaCO3 are investigated. The results show that the carbonation process is significantly influenced by ammonia concentration, CO2 flow rate and ultrasound. Comparing with magnetic stirring, ultrasonic probe vibration take less time to reach the complete carbonate reaction. Gypsum is transformed to vaterite with the conversion rate about ∼95% when the mole ratio of NH4+/Ca2+ is 2.4 otherwise the carbonation reaction was uncompleted with gypsum residues left. Comparing with MS method, the UPV method resulted in smaller size and narrower size distribution of as-prepared microparticles and approximately 80% reduction of the particle size was achieved. It is established that increasing the solid-liquid ratio resulted in larger particle size in MS system and smaller particle size in UPV system. Increasing CO2 flow rate caused the particle size decreased in MS system and increased in UPV system.
System for forming janus particles
Hong, Liang [Midland, MI; Jiang, Shan [Champaign, IL; Granick, Steve [Champaign, IL
2011-01-25
The invention is a method of forming Janus particles, that includes forming an emulsion that contains initial particles, a first liquid, and a second liquid; solidifying the first liquid to form a solid that contains at least a portion of the initial particles on a surface of the solid; and treating the exposed particle sides with a first surface modifying agent, to form the Janus particles. Each of the initial particles on the surface has an exposed particle side and a blocked particle side.
Pratte, P; Cosandey, S; Goujon Ginglinger, C
2017-11-01
Combustion of biomass produces solid carbon particles, whereas their generation is highly unlikely when a biomass is heated instead of being burnt. For instance, in the Tobacco Heating System (THS2.2), the tobacco is heated below 350°C and no combustion takes place. Consequently, at this relatively low temperature, released compounds should form an aerosol consisting of suspended liquid droplets via a homogeneous nucleation process. To verify this assumption, mainstream aerosol generated by the heat-not-burn product, THS2.2, was assessed in comparison with mainstream smoke produced from the 3R4F reference cigarette for which solid particles are likely present. For this purpose, a methodology was developed based on the use of a commercial Dekati thermodenuder operating at 300°C coupled with a two-stage impactor to trap solid particles. If any particles were collected, they were subsequently analyzed by a scanning electron microscope and an electron dispersive X-ray. The setup was first assessed using glycerine-based aerosol as a model system. The removal efficiency of glycerin was determined to be 86 ± 2% using a Trust Science Innovation (TSI) scanning mobility particle sizer, meaning that quantification of solid particles can be achieved as long as their fraction is larger than 14% in number. From experiments conducted using the 3R4F reference cigarette, the methodology showed that approximately 80% in number of the total particulate matter was neither evaporated nor removed by the thermodenuder. This 80% in number was attributed to the presence of solid particles and/or low volatile liquid droplets. The particles collected on the impactor were mainly carbon based. Oxygen, potassium, and chloride traces were also noted. In comparison, solid particles were not detected in the aerosol of THS2.2 after passing through the thermodenuder operated at 300°C. This result is consistent with the fact that no combustion process takes place in THS2.2 and no formation and subsequent transfer of solid carbon particles is expected to occur in the mainstream aerosol.
The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues.
Li, Meng; Zheng, Shili; Liu, Biao; Du, Hao; Dreisinger, David Bruce; Tafaghodi, Leili; Zhang, Yi
2017-07-01
A large amount of Cu-Cd zinc plant residues (CZPR) are produced from the hydrometallurgical zinc plant operations. Since these residues contain substantial amount of heavy metals including Cd, Zn and Cu, therefore, they are considered as hazardous wastes. In order to realize decontamination treatment and efficient extraction of the valuable metals from the CZPR, a comprehensive recovery process using sulfuric acid as the leaching reagent and air as the oxidizing reagent has been proposed. The effect of temperature, sulfuric acid concentration, particle size, solid/liquid ratio and stirring speed on the cadmium extraction efficiency was investigated. The leaching kinetics of cadmium was also studied. It was concluded that the cadmium leaching process was controlled by the solid film diffusion process. Moreover, the order of the reaction rate constant versus H 2 SO 4 concentration, particle size, solid/liquid ratio and stirring speed was calculated. The XRD and SEM-EDS analysis results showed that the main phases of the secondary sulfuric acid leaching residues were lead sulfate and calcium sulfate. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Qiang; Shao, Lin
2017-03-01
Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.
Global distribution of particle phase state in atmospheric secondary organic aerosols
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-21
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-01-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776
Hess, Wayne P.; Joly, Alan G.; Gerrity, Daniel P.; Beck, Kenneth M.; Sushko, Peter V.; Shlyuger, Alexander L.
2005-06-28
Energy tunable solid state sources of neutral particles are described. In a disclosed embodiment, a halogen particle source includes a solid halide sample, a photon source positioned to deliver photons to a surface of the halide, and a collimating means positioned to accept a spatially defined plume of hyperthermal halogen particles emitted from the sample surface.
Fluidics platform and method for sample preparation
Benner, Henry W.; Dzenitis, John M.
2016-06-21
Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.
Magnetic reconnection as a chondrule heating mechanism
NASA Astrophysics Data System (ADS)
Lazerson, Samuel A.
2010-12-01
The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.
The effect of organic aerosol material on aerosol reactivity towards ozone
NASA Astrophysics Data System (ADS)
Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele
2015-04-01
After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and humidified and excess flow was ventilated. It proved necessary to separate the particles before the O3 monitor to prevent interference with the optical O3 detection method. Unfortunately, large O3 losses occurred on the used filter, which limited the accuracy of the γ-determinations. Nevertheless, it was found that already a small amount of added PEG considerably reduced the observed γ. Other aerosol separation methods are currently being investigated for the follow-up experiments in Kuopio.
Sakai, Toshiro; Thommes, Markus
2014-02-01
The goal of this investigation was to qualify the DSM Xplore Pharma Micro Extruder as a formulation screening tool for early-stage hot-melt extrusion. Dispersive and distributive mixing was investigated using soluplus, copovidone or basic butylated methacrylate copolymer with sodium chloride (NaCl) in a batch size of 5 g. Eleven types of solid dispersions were prepared using various drugs and carriers in batches of 5 g in accordance with the literature. The dispersive mixing was a function of screw speed and recirculation time and the particle size was remarkably reduced after 1 min of processing, regardless of the polymers. An inverse relationship between the particle size and specific mechanical energy (SME) was also found. The SME values were higher than those in large-scale extruders. After 1 min recirculation at 200 rpm, the uniformity of NaCl content met the criteria of the European Pharmacopoeia, indicating that distributive mixing was achieved in this time. For the solid dispersions preparations, the results from different scanning calorimetry, powder X-ray diffractometry and in-vitro dissolution tests confirmed that all solid-dispersion systems were successfully prepared. These findings demonstrated that the extruder is a useful tool to screen solid-dispersion formulations and their material properties on a small scale. © 2013 Royal Pharmaceutical Society.
Won, Dong-Han; Kim, Min-Soo; Lee, Sibeum; Park, Jeong-Sook; Hwang, Sung-Joo
2005-09-14
Solid dispersions of felodipine were formulated with HPMC and surfactants by the conventional solvent evaporation (CSE) and supercritical anti-solvent precipitation (SAS) methods. The solid dispersion particles were characterized by particle size, zeta potential, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), solubility and dissolution studies. The effects of the drug/polymer ratio and surfactants on the solubility of felodipine were also studied. The mean particle size of the solid dispersions was 200-250 nm; these had a relatively regular spherical shape with a narrow size distribution. The particle size of the solid dispersions from the CSE method increased at 1 h after dispersed in distilled water. However, the particle sizes of solid dispersions from the SAS process were maintained for 6 h due to the increased solubility of felodipine. The physical state of felodipine changed from crystalline to amorphous during the CSE and SAS processes, confirmed by DSC/XRD data. The equilibrium solubility of the felodipine solid dispersion prepared by the SAS process was 1.5-20 microg/ml, while the maximum solubility was 35-110 microg/ml. Moreover, the solubility of felodipine increased with decreasing drug/polymer ratio or increasing HCO-60 content. The solid dispersions from the SAS process showed a high dissolution rate of over 90% within 2 h. The SAS process system may be used to enhance solubility or to produce oral dosage forms with high dissolution rate.
Interaction of ozone with wooden building products, treated wood samples and exotic wood species
NASA Astrophysics Data System (ADS)
Schripp, Tobias; Langer, Sarka; Salthammer, Tunga
2012-07-01
Wooden building products indoors are known to be able to affect the perceived air quality depending on their emission strength. The indoor application of modern ecological lacquer systems (eco-lacquers or 'green' lacquers) may be a much stronger source than the substrates itself. Especially with regard to the formation of ultrafine particles by gas-to-particle conversion in the presence of ozone or other reactive species the impact of the applied building products on the indoor air quality has to be addressed. The present study reports a two concentration step ozonation of OSB panels, painted beech boards, and a number of solid 'exotic' wood types in a 1 m³ emission test chamber. The emission of volatile organic compounds (VOC) was recorded as well as the formation of ultrafine particles in the range 7-300 nm. The products are characterized on the basis of their ozone deposition velocity; the obtained values of 0.008-0.381 cm s-1 are comparable with previously published data. Within the samples of the present study one eco-lacquer was the strongest source of VOC (total VOC ˜ 60 mg m-3) while the wooden building products (OSB) were of intermediate emission strength. The lowest emission was found for the solid (exotic) wood samples. The VOC release of the samples corresponded roughly to the particle formation potential. However, the strongest UFP formation was measured for one solid wood sample ('Garapa') which showed a strong surface reaction in the presence of ozone and formed a large number of particles <40 nm. Overall, the experiments demonstrated the necessity of real-life samples for the estimation of UFP indoor air pollution from the ozone chemistry of terpenes.
Infrared reflectance spectra: Effects of particle size, provenance and preparation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.
2014-09-22
We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectancemore » spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.« less
Effects of microscale inertia on heat or mass transfer from a drop
NASA Astrophysics Data System (ADS)
Krishnamurthy, Deepak; Subramanian, Ganesh
2012-11-01
Heat or mass transport from suspensions of solid particles or drops is ubiquitous in many industrial processes. In the zero inertia limit the transport is diffusion limited owing to the presence of closed streamlines around each particle. A small but finite amount of inertia though, results in a vastly different picture, greatly enhancing transport by destroying the closed streamline configuration. We develop a theoretical formulation to study the effects of weak inertia on transport from a density-matched drop in a 2D linear flow. It is shown that, unlike a solid particle, the near-surface streamlines are closed only when the viscosity ratio (λ) exceeds a critical value λc = 2 α / (1- α) , where α is the linear flow parameter measuring relative magnitudes of extension and vorticity. The velocity field on the drop surface can be characterized using a complex-valued analogue of the (C, τ) coordinate system used to describe Jeffrey orbits of an axisymmetric particle. In the open-streamline case (λ < λ c) , convective transport occurs even with zero inertia, and for large Peclet number (Pe) (the relative magnitude of convective to diffusive transport), the Nusselt number (dimensionless rate of heat transfer) is expected to scale as F(α, λ) Pe1/2 and is determined via a boundary layer analysis in the (C, τ) coordinate system. In the closed streamline case (λ > λ c) , similar to the solid particle, inertia plays a crucial role, and the Nusselt number must scale as G(α, λ)Re1/2Pe1/2. A methodology is developed to analyze the convection along spiraling streamlines using a physically motivated choice of coordinate system on the drop surface.
Infrared reflectance spectra: effects of particle size, provenance and preparation
NASA Astrophysics Data System (ADS)
Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.
2014-10-01
We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.
ERIC Educational Resources Information Center
2000
In All About Solids, Liquids and Gases, young students will be introduced to the three common forms of matter. They'll learn that all things are made up of tiny particles called atoms and that the movement of these particles determines the form that matter takes. In solids, the particles are packed tightly together and move very little. The…
Ishikawa, Masamichi; Kitano, Ryota
2010-02-16
Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.
Climate impact of anthropogenic aerosols on cirrus clouds
NASA Astrophysics Data System (ADS)
Penner, J.; Zhou, C.
2017-12-01
Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.
Solid colloidal optical wavelength filter
Alvarez, Joseph L.
1992-01-01
A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.
An upper bound on the particle-laden dependency of shear stresses at solid-fluid interfaces
NASA Astrophysics Data System (ADS)
Zohdi, T. I.
2018-03-01
In modern advanced manufacturing processes, such as three-dimensional printing of electronics, fine-scale particles are added to a base fluid yielding a modified fluid. For example, in three-dimensional printing, particle-functionalized inks are created by adding particles to freely flowing solvents forming a mixture, which is then deposited onto a surface, which upon curing yields desirable solid properties, such as thermal conductivity, electrical permittivity and magnetic permeability. However, wear at solid-fluid interfaces within the machinery walls that deliver such particle-laden fluids is typically attributed to the fluid-induced shear stresses, which increase with the volume fraction of added particles. The objective of this work is to develop a rigorous strict upper bound for the tolerable volume fraction of particles that can be added, while remaining below a given stress threshold at a fluid-solid interface. To illustrate the bound's utility, the expression is applied to a series of classical flow regimes.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
NASA Astrophysics Data System (ADS)
Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin
2011-11-01
The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-09
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Makoto
A new muon channel, MUSIC, is being constructed at the Research Center for Nuclear Physics (RCNP) at Osaka University in Japan. The muon channel utilizes a strong solenoidal magnetic field to collect pions and to transport muons. A large-bore superconducting coil encloses the pion-production target to capture pions with a large solid angle. A long solenoid magnet transports pions and muons with the capability to select the charge and momentum of the particles. The design of the solenoid channel is described in this paper.
Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.
Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando
2006-03-01
The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.
Debris Detector Verification by Hvi-Tests
NASA Astrophysics Data System (ADS)
Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin
Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for impact detection. Considering that the SOLID method could be applied to several S/Cs in different orbits, the spatial coverage in space concerning SD and MM can be significantly increased. In this way the method allows to generate large amount of impact data, which can be used for environmental model validation. This paper focuses on the verification of the SOLID method by Hypervelocity Impact (HVI) tests performed at Fraunhofer EMI. The test set-up as well as achieved results are presented and discussed.
CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed
NASA Astrophysics Data System (ADS)
Fulchini, F.; Nan, W.; Ghadiri, M.; Yazdan Panah, M.; Bertholin, S.; Amblard, B.; Cloupet, A.; Gauthier, T.
2017-06-01
In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.
Core-shell microspheres with porous nanostructured shells for liquid chromatography.
Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei
2018-01-01
The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fe–Ni solid solutions in nano-size dimensions: Effect of hydrogen annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Asheesh, E-mail: asheeshk@barc.gov.in; Meena, S.S.; Banerjee, S.
Highlights: • Fe–Ni solid solution with nano-size dimensions were prepared and characterized. • Both as prepared and hydrogenated solid solutions have FCC structure of Ni. • Paramagnetic and ferromagnetic domains coexist in these samples. - Abstract: Nanoparticles of Ni{sub 0.50}Fe{sub 0.50} and Ni{sub 0.75}Fe{sub 0.25} alloys were prepared by chemical reduction in ethylene glycol medium. XRD and {sup 57}Fe Mössbauer studies have confirmed the formation of Fe–Ni solid solution in nano-size dimensions with FCC structure. These samples consist of both ferromagnetic and paramagnetic domains which have been attributed to the coexistence of large and small particles as confirmed by atomicmore » force microscopic (AFM) and {sup 57}Fe Mössbauer spectroscopic studies. Improved extent of Fe–Fe exchange interaction existing in Ni{sub 0.50}Fe{sub 0.50} alloy compared to Ni{sub 0.75}Fe{sub 0.25} alloy explains the observed increase in the relative extent of ferromagnetic domains compared to paramagnetic domains in the former sample. Increase in the relative extent of ferromagnetic domains for hydrogenated alloys is due to increase in particle size brought about by the high temperature activation prior to hydrogenation.« less
Behavior of ceramic particles at the solid-liquid metal interface in metal matrix composites
NASA Technical Reports Server (NTRS)
Stefanescu, D. M.; Dhindaw, B. K.; Kacar, S. A.; Moitra, A.
1988-01-01
Directional solidification results were obtained in order to investigate particle behavior at the solid-liquid interface in Al-2 pct Mg (cellular interface) and Al-6.1 pct Ni (eutectic interface) alloys. It is found that particles can be entrapped in the solid if adequate solidification rates and temperature gradients are used. Model results showed critical velocity values slightly higher than those obtained experimentally.
Clustering of particles and pathogens within evaporating drops
NASA Astrophysics Data System (ADS)
Park, Jaebum; Kim, Ho-Young
2017-11-01
The evaporation of sessile suspension drops leads to accumulation of the particles around the pinned contact line, which is widely termed the coffee ring effect. However, the evaporation behavior of a liquid drop containing a small number of particles with the size comparable to the host drop is unclear yet. Thus, here we investigate the motion and spatial distribution of large particles within a sessile drop. The spherical particles cluster only when their initial distance is below a critical value, which is a function of the diameter and wettability of particle as well as the surface tension and size of the host drop. We rationalize such a critical distance for self-assembly based on the balance of the capillary force and the frictional resistance to sliding and rolling of the particles on a solid substrate. We further discuss the physical significance of this drop-mediated ``Cheerios effect'' in connection with the fate of pathogens residing in drops as a result of sneezing and coughing.
Japan's research on particle clouds and sprays
NASA Technical Reports Server (NTRS)
Sato, Jun'ichi
1995-01-01
Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.
Liu, Yili; Sun, Weixin; Du, Bing; Liu, Jianguo
2018-02-12
Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L -1 ) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10 -8 to 10 -9 m s -1 after 1-2 years of operation and perching significant leachate above it (0.6-0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China.
NASA Astrophysics Data System (ADS)
Barnes, Brian C.; Leiter, Kenneth W.; Becker, Richard; Knap, Jaroslaw; Brennan, John K.
2017-07-01
We describe the development, accuracy, and efficiency of an automation package for molecular simulation, the large-scale atomic/molecular massively parallel simulator (LAMMPS) integrated materials engine (LIME). Heuristics and algorithms employed for equation of state (EOS) calculation using a particle-based model of a molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), are described in detail. The simulation method for the particle-based model is energy-conserving dissipative particle dynamics, but the techniques used in LIME are generally applicable to molecular dynamics simulations with a variety of particle-based models. The newly created tool set is tested through use of its EOS data in plate impact and Taylor anvil impact continuum simulations of solid RDX. The coarse-grain model results from LIME provide an approach to bridge the scales from atomistic simulations to continuum simulations.
Laser-excited pulses in a crystallized dusty plasma
NASA Astrophysics Data System (ADS)
Nosenko, V.; Nunomura, S.; Goree, J.
2000-10-01
A dusty plasma is an ionized gas containing small particles of solid matter. These particles acquire a large negative electric charge. Polymer microspheres were shaken into a capacitively-coupled parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, arranged in a hexagonal lattice. They were imaged using a video camera, to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. There are several ways these waves can be excited, including applying a force from the radiation pressure of a laser beam. By chopping an argon laser beam that is directed at the lattice, it is possible to launch a pulsed wave in the lattice. We evaluate the pulse's shape and propagation speed, and test whether it has the properties of a shock.
Kuppan, Saravanan; Xu, Yahong; Liu, Yijin; ...
2017-02-01
Understanding the reaction pathway and kinetics of solid-state phase transformation is critical in designing advanced electrode materials with better performance and stability. Despite the first-order phase transition with a large lattice mismatch between the involved phases, spinel LiMn 1.5Ni 0.5O 4 is capable of fast rate even at large particle size, presenting an enigma yet to be understood. The present study uses advanced two-dimensional and three-dimensional nano-tomography on a series of well-formed LixMn 1.5Ni 0.5O 4 (0 ≤ x ≤ 1) crystals to visualize the mesoscale phase distribution, as a function of Li content at the sub-particle level. Inhomogeneity alongmore » with the coexistence of Li-rich and Li-poor phases are broadly observed on partially delithiated crystals, providing direct evidence for a concurrent nucleation and growth process instead of a shrinking-core or a particle-by-particle process. As a result, superior kinetics of (100) facets at the vertices of truncated octahedral particles promote preferential delithiation, whereas the observation of strain-induced cracking suggests mechanical degradation in the material.« less
Shear Induced Structural Relaxation in a Supercooled Colloidal Liquid
NASA Astrophysics Data System (ADS)
Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.
2009-11-01
Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the shear- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, James; Mandal, Animesh
X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less
Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh
2017-07-14
Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Study on the mechanism of liquid phase sintering (M-12)
NASA Technical Reports Server (NTRS)
Kohara, S.
1993-01-01
The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.
A Computerized Wear Particle Atlas for Ferrogram and Filtergram Analyses
1998-01-01
A Computerised Wear Particle Atlas for Ferrogram and Filtergram Analyses Jian G. Ding Lubrosoft P/L P 0 Box 2368, Rowville Melbourne VIC 3178...Australia (61-3) 9759-9083 Abstract: A new computerised wear particle atlas has been developed for identification of solid particles and...differentiation of wear severity of lubricated equipment. This atlas contains 892 images of representative solid particles selected from thousands of filtergram
Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
Gong, Xiuqing; Wu, Jinbo; Huang, Xianxiang; Wen, Weijia; Sheng, Ping
2008-04-23
We show that the chemical structures of silicone oils can have an important role in the giant electrorheological (GER) effect. The interaction between silicone oils and solid nanoparticles is found to significantly influence the ER effect. By increasing the kinematic viscosity of silicone oils, which is a function of siloxane chain length, sol-like, gel-like and clay-like appearances of the constituted ER fluids were observed. Different functional-group-terminated silicone oils were also employed as the dispersing media. Significant differences of yield stress were found. We systematically study the effect of siloxane chain lengths on the permeability of oils traveling through the porous spaces between the particles (using the Washburn method), oils adsorbed on the particles' surface (using FT-IR spectra), as well as their particle size distribution (using dynamic light scattering). Our results indicate the hydrogen bonds are instrumental in linking the silicone oil to GER solid particles, and long chain lengths can enhance the agglomeration of the GER nanoparticles to form large clusters. An optimal oil structure, with hydroxyl-terminated silicone oil and a suitable viscosity, was chosen which can create the highest yield stress of ∼300 kPa under a 5 kV mm(-1) DC electric field.
NASA Astrophysics Data System (ADS)
Kellogg, Kevin; Liu, Peiyuan; Lamarche, Casey; Hrenya, Christine
2017-11-01
In flows of cohesive particles, agglomerates will readily form and break. These agglomerates are expected to complicate how particles interact with the surrounding fluid in multiphase flows, and consequently how the solids flow. In this work, a dilute flow of particles driven by gas against gravity is studied. A continuum framework, composed of a population balance to predict the formation of agglomerates, and kinetic-theory-based balances, is used to predict the flow of particles. The closures utilized for the birth and death rates due to aggregation and breakage in the population balance take into account how the impact velocity (the granular temperature) affects the outcome of a collision as aggregation, rebound, or breakage. The agglomerate size distribution and solids velocity predicted by the continuum framework are compared to discrete element method (DEM) simulations, as well to experimental results of particles being entrained from the riser of a fluidized bed. Dow Corning Corporation.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
Accurate stratospheric particle size distributions from a flat plate collection surface
NASA Technical Reports Server (NTRS)
Zolensky, M. E.; Mackinnon, I. D. R.
1985-01-01
Flat plate particle collections have revealed the presence of a remarkable variety of both terrestrial and extraterrestrial material in the stratosphere. It is found that the ratio of terrestrial to extraterrestrial material and the nature of the material collected may vary significantly over short time scales. These fluctuations may be related to massive injections of volcanic ash, emissions from solid fuel rockets, or variations in the micrometeoroid flux. The variations in particle number density can be of great importance to the earth's atmospheric radiation balance, and, therefore, its climate. With the objective to assess the number density of solid particles in the stratosphere, an examination has been conducted of all particles exceeding 1 micron in average diameter for a representative suite of particles obtained from a single flat plate collection surface. Attention is given to solid particle size distributions in the stratosphere, and the origin of important stratospheric particle types.
Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.
Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B
2010-04-01
Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.
Limits of shock wave ignition of hydrogen-oxygen mixture in the presence of particles
NASA Astrophysics Data System (ADS)
Efremov, V. P.; Obruchkova, L. R.; Ivanov, M. F.; Kiverin, A. D.
2018-01-01
It is a well known fact that the cloud of non-reacting particles in the flow weakens or even suppresses the detonation. Contrary to this phenomenon there are experimental data showing that the presence of solid particles in the combustible mixtures shorten significantly the ignition delay time. In other words particles could promote the initiation of detonation. This paper analyzes numerically the phenomenon of detonation initiation behind the shock wave in the combustible mixture containing only one solid particle. Numerical results demonstrate a significant degree of lowering of ignition limits. Namely, it is shown that it becomes possible to ignite the gaseous mixture much earlier due to the shock wave interaction with solid particle surface. It is found that ignition arises in subsonic region located between the particle and the bow shock front.
Modification of homogeneous and isotropic turbulence by solid particles
NASA Astrophysics Data System (ADS)
Hwang, Wontae
2005-12-01
Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135 showed that the absence of particle potential energy loss and particle wakes caused greater levels of turbulence attenuation since there was no additional production due to mean particle motion. The relatively stationary dispersion of particles acted like a series of screens which produced forces opposing turbulent motions.
Particle effects on ultraviolet disinfection of coliform bacteria in recycled water.
Jolis, D; Lam, C; Pitt, P
2001-01-01
Pilot- and bench-scale coliform inactivation tests with UV irradiation were used to show how suspended solids remaining in filtered secondary effluent affect the efficiency of the UV disinfection process. Observed kinetic inactivation rates decreased with increasing suspended particle sizes of 7 microm or larger present in tertiary effluent. First-order inactivation rates estimated from collimated beam dose-response curves for discrete ranges of UV doses were substantially different, which should caution researchers not to compare inactivation data obtained with largely dissimilar UV doses or suspended particle distributions. A dose of approximately 800 J/m2 was identified as the minimum dose that will consistently meet the California wastewater reclamation coliform criterion when applied to in-line filtration effluent.
Using large volume samplers for the monitoring of particle bound micro pollutants in rivers
NASA Astrophysics Data System (ADS)
Kittlaus, Steffen; Fuchs, Stephan
2015-04-01
The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This relatively low cost approach (less costs for analysis because of small sample number) allows to quantify the pollutant load, to derive dissolved-solid partition coefficients and to quantify the pollutant load in different particle size classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.M.; Chao, B.T.
This technical progress report covers the progress made during the fifth quarter of the project entitled Measurements of Solids Motion in Gas Fluidized Beds under Grant No. DOE-F22-81PC40804 during the period 1 October through 31 December 1982. The research concerns the measurement of solids particle velocity distribution and residence time distribution using the Computer-Aided Particle Tracking Facility (CAPTF) at the University of Illinois at Urbana-Champaign. The experimental equipment and measuring methods used to determine particle size distribution and particle motion and the results obtained are presented.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Bradford, Scott A.
2017-04-01
Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air-water interface disappears during imbibition, particles residing on this interface are released into the liquid phase. Similarly, during drainage, particles residing at the solid-water interface may be detached from this interface by capillary forces and released into the liquid phase or become attached to the air-water interface. The solute transport module uses the concept of two-site sorption to describe nonequilibrium adsorption-desorption reactions to the solid phase. The module further assumes that the contaminant can be sorbed onto surfaces of both deposited and mobile colloids, fully accounting for the dynamics of colloids movement between different phases. We will demonstrate the use of the module using selected datasets and numerical examples.
Homogenous Surface Nucleation of Solid Polar Stratospheric Cloud Particles
NASA Technical Reports Server (NTRS)
Tabazadeh, A.; Hamill, P.; Salcedo, D.; Gore, Warren J. (Technical Monitor)
2002-01-01
A general surface nucleation rate theory is presented for the homogeneous freezing of crystalline germs on the surfaces of aqueous particles. While nucleation rates in a standard classical homogeneous freezing rate theory scale with volume, the rates in a surface-based theory scale with surface area. The theory is used to convert volume-based information on laboratory freezing rates (in units of cu cm, seconds) of nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) aerosols into surface-based values (in units of sq cm, seconds). We show that a surface-based model is capable of reproducing measured nucleation rates of NAT and NAD aerosols from concentrated aqueous HNO3 solutions in the temperature range of 165 to 205 K. Laboratory measured nucleation rates are used to derive free energies for NAT and NAD germ formation in the stratosphere. NAD germ free energies range from about 23 to 26 kcal mole, allowing for fast and efficient homogeneous NAD particle production in the stratosphere. However, NAT germ formation energies are large (greater than 26 kcal mole) enough to prevent efficient NAT particle production in the stratosphere. We show that the atmospheric NAD particle production rates based on the surface rate theory are roughly 2 orders of magnitude larger than those obtained from a standard volume-based rate theory. Atmospheric volume and surface production of NAD particles will nearly cease in the stratosphere when denitrification in the air exceeds 40 and 78%, respectively. We show that a surface-based (volume-based) homogeneous freezing rate theory gives particle production rates, which are (not) consistent with both laboratory and atmospheric data on the nucleation of solid polar stratospheric cloud particles.
NASA Astrophysics Data System (ADS)
Ao, Wen; Liu, Peijin; Yang, Wenjing
2016-12-01
In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for most element compositions for all the carbon inclusions. The rough, spherical, strip shape and flake shape carbon-inclusions are believed to be derived from the degradation products of the binder or oxidizer, while the fiber silk is possibly the combustion product of fiber inside the heat insulation layer of the propellants. Images of products at different pressures reveal high pressure reduces the degree of agglomeration. The chemical compositions, size range and content of all the observed structures are given in this paper. Results of our study are expected to provide better insight in the working process of solid rocket motor.
Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome
Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W.
2016-01-01
RATIONALE A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. METHODS A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. RESULTS Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. CONCLUSION The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. PMID:27624170
Porous extraction paddle: a solid phase extraction technique for studying the urine metabolome.
Shao, Gang; MacNeil, Michael; Yao, Yuanyuan; Giese, Roger W
2016-09-14
A method was needed to accomplish solid phase extraction of a large urine volume in a convenient way where resources are limited, towards a goal of metabolome and xenobiotic exposome analysis at another, distant location. A porous extraction paddle (PEP) was set up, comprising a porous nylon bag containing extraction particles that is flattened and immobilized between two stainless steel meshes. Stirring the PEP after attachment to a shaft of a motor mounted on the lid of the jar containing the urine accomplishes extraction. The bag contained a mixture of nonpolar and partly nonpolar particles to extract a diversity of corresponding compounds. Elution of a urine-exposed, water-washed PEP with aqueous methanol containing triethylammonium acetate (conditions intended to give a complete elution), followed by MALDI-TOF/TOF-MS, demonstrated that a diversity of compounds had been extracted ranging from uric acid to peptides. The PEP allows the user to extract a large liquid sample in a jar simply by turning on a motor. The technique will be helpful in conducting metabolomics and xenobiotic exposome studies of urine, encouraging the extraction of large volumes to set up a convenient repository sample (e.g. 2 g of exposed adsorbent in a cryovial) for shipment and re-analysis in various ways in the future, including scaled-up isolation of unknown chemicals for identification. This article is protected by copyright. All rights reserved.
Novel Method of Aluminum to Copper Bonding by Cold Spray
NASA Astrophysics Data System (ADS)
Fu, Si-Lin; Li, Cheng-Xin; Wei, Ying-Kang; Luo, Xiao-Tao; Yang, Guan-Jun; Li, Chang-Jiu; Li, Jing-Long
2018-04-01
Cold spray bonding (CSB) has been proposed as a new method for joining aluminum and copper. At high speeds, solid Al particles impacted the groove between the two substrates to form a bond between Al and Cu. Compared to traditional welding technologies, CSB does not form distinct intermetallic compounds. Large stainless steel particles were introduced into the spray powders as in situ shot peen particles to create a dense Al deposit and to improve the bond strength of joints. It was discovered that introducing shot peen particles significantly improved the flattening ratio of the deposited Al particles. Increasing the proportion of shot peen particles from 0 to 70 vol.% decreased the porosity of the deposits from 12.4 to 0.2%, while the shear strength of joints significantly increased. The tensile test results of the Al-Cu joints demonstrated that cracks were initiated at the interface between the Al and the deposit. The average tensile strength was 71.4 MPa and could reach 81% of the tensile strength of pure Al.
NASA Astrophysics Data System (ADS)
Matter, John; Gnanvo, Kondo; Liyanage, Nilanga; Solid Collaboration; Moller Collaboration
2017-09-01
The JLab Parity Violation In Deep Inelastic Scattering (PVDIS) experiment will use the upgraded 12 GeV beam and proposed Solenoidal Large Intensity Device (SoLID) to measure the parity-violating electroweak asymmetry in DIS of polarized electrons with high precision in order to search for physics beyond the Standard Model. Unlike many prior Parity-Violating Electron Scattering (PVES) experiments, PVDIS is a single-particle tracking experiment. Furthermore the experiment's high luminosity combined with the SoLID spectrometer's open configuration creates high-background conditions. As such, the PVDIS experiment has the most demanding tracking detector needs of any PVES experiment to date, requiring precision detectors capable of operating at high-rate conditions in PVDIS's full production luminosity. Developments in large-area GEM detector R&D and SoLID simulations have demonstrated that GEMs provide a cost-effective solution for PVDIS's tracking needs. The integrating-detector-based JLab Measurement Of Lepton Lepton Electroweak Reaction (MOLLER) experiment requires high-precision tracking for acceptance calibration. Large-area GEMs will be used as tracking detectors for MOLLER as well. The conceptual designs of GEM detectors for the PVDIS and MOLLER experiments will be presented.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
2014-01-01
Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from 10 ms to 5 min, which can be further applied to monitor the dynamics of heterogeneous reactions. The OT-RS system provides a flexible method to characterize and monitor the physical properties and heterogeneous chemistry of optically trapped solid particles in gaseous environment at single-particle level.
Research on the cavitation characteristic of Kaplan turbine under sediment flow condition
NASA Astrophysics Data System (ADS)
Weili, L.; Jinling, L.; Xingqi, L.; Yuan, L.
2010-08-01
The sediment concentration in many rivers in our world is very high, and the Kaplan turbine running in these rivers are usually seriously abraded. Since the existence of sand, the probability of cavitation is greatly enhanced. Under the joint action and mutual promotion of cavitation and sand erosion, serious abrasion could be made, the hydraulic performance of the Kaplan turbine may be descended, and the safety and stability of turbine are greatly threatened. Therefore, it is very important and significant to investigate the cavitation characteristic of Kaplan turbine under sediment flow condition. In this paper, numerical simulation of cavitation characteristic in pure water and solid-liquid two-phase flow in Kaplan turbine was performed. The solid-liquid two-fluid model were adopted in the numerical simulation, and the pressure, velocity and particle concentration distributive regularity on turbine blade surface under different diameter and concentration was revealed. Particle trajectory model was used to investigate the region and degree of runner blade abrasion in different conditions. The results showed that serious sand abrasion could be found near the blade head and outlet in large flow rate working condition. Relatively slight abrasion may be found near blade flange in small flow rate working condition. The more the sediment concentration and the large the sand diameter, the serious the runner is abraded, and the greater the efficiency is decreased. further analysis of the combined effects of wear and abrasion was performed. The result shows that the cavitation in silt flow is more serious than in pure water. The runner cavitation performance become worse under high sand concentration and large particle diameter, and the efficiency decrease greatly with the increase of sediment concentration.
Sudo, S; Ohtomo, T; Otsuka, K
2015-08-01
We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.
NASA Astrophysics Data System (ADS)
Mostajeran Goortani, Behnam; Gitzhofer, François; Bouyer, Etienne; Mousavi, Mehdi
2009-03-01
An innovative method, namely ultrafast plasma surface melting, is developed to fabricate solid films of silicon with very high rates (150 cm2/min). The method is composed of preparing a suspension of solid particles in a volatile solvent and spreading it on a refractory substrate such as Mo. After solvent evaporation, the resulting porous layer is exposed to the flame tale of inductively coupled RF plasma to sinter and melt the surface particles and to prepare a solid film of silicon. It is shown that by controlling the flow dynamics and heat transfer around the substrate, and managing the kinetic parameters (i.e., exposure time, substrate transport speed, and reaction kinetics) in the reactor, we can produce solid crystalline Si films with the potential applications in photovoltaic cells industry. The results indicate that the optimum formation conditions with a film thickness of 250-700 μm is when the exposure time in the plasma is in the range of 5-12.5 s for a 100 × 50 mm large layer. By combining the Fourier’s law of conduction with the experimental measurements, we obtained an effective heat diffusivity and developed a model to obtain heat diffusion in the porous layer exposed to the plasma. The model further predicts the minimum and maximum exposure time for the substrate in the plasma flame as a function of material properties, the porous layer thickness and of the imposed heat flux.
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
Detection of pulsed neutrons with solid-state electronics
NASA Astrophysics Data System (ADS)
Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.
2016-09-01
Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.
System design of a 1 MW north-facing, solid particle receiver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, J.; Ho, C.
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
System design of a 1 MW north-facing, solid particle receiver
Christian, J.; Ho, C.
2015-05-01
Falling solid particle receivers (SPR) utilize small particles as a heat collecting medium within a cavity receiver structure. The components required to operate an SPR include the receiver (to heat the particles), bottom hopper (to catch the falling particles), particle lift elevator (to lift particles back to the top of the receiver), top hopper (to store particles before being dropped through the receiver), and ducting. In addition to the required components, there are additional features needed for an experimental system. These features include: a support structure to house all components, calibration panel to measure incident radiation, cooling loops, and sensorsmore » (flux gages, thermocouples, pressure gages). Each of these components had to be designed to withstand temperatures ranging from ambient to 700 °C. Thermal stresses from thermal expansion become a key factor in these types of high temperature systems. The SPR will be housing ~3000 kg of solid particles. The final system will be tested at the National Solar Thermal Test Facility in Albuquerque, NM.« less
Measuring particle charge in an rf dusty plasma
NASA Astrophysics Data System (ADS)
Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir
2004-11-01
A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.
Gaps and rings carved by vortices in protoplanetary dust
NASA Astrophysics Data System (ADS)
Barge, Pierre; Ricci, Luca; Carilli, Christopher Luke; Previn-Ratnasingam, Rathish
2017-09-01
Context. Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at submillimeter and millimeter wavelengths. Aims: We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at submillimeter and millimeter wavelengths. Methods: Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and Nest Generation Very Large Array (ngVLA) observations. Results: We find that a giant vortex not only captures dust grains with Stokes number St< 1 but can also affect the distribution of larger grains (with St 1) carving a gap associated with a ring composed of incompletely trapped particles. The results are presented for different particle sizes and associated with their possible signatures in disk observations. Conclusions: Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
Thakur, Ranjit; Gupta, Ram B
2006-02-03
Nanoparticles are of significant importance in drug delivery. Rapid expansion of supercritical solution (RESS) process can produce pure and high-quality drug particles. However, due to extremely low solubility of polar drugs in supercritical CO(2) (sc CO(2)), RESS has limited commercial applicability. To overcome this major limitation, a modified process rapid expansion of supercritical solution with solid cosolvent (RESS-SC) is proposed which uses a solid cosolvent. Here, the new process is tested for phenytoin drug using menthol solid cosolvent. Phenytoin solubility in pure sc CO(2) is only 3 micromol/mol but when menthol solid cosolvent is used the solubility is enhanced to 1,302 micromol/mol, at 196 bar and 45 degrees C. This 400-fold increase in the solubility can be attributed to the interaction between phenytoin and menthol. Particle agglomeration in expansion zone is another major issue with conventional RESS process. In proposed RESS-SC process solid cosolvent hinders the particle growth resulting in the formation of small nanoparticles. For example, the average particle size of phenytoin in conventional RESS process is 200 nm whereas, with RESS-SC process, the average particle size is 120 nm, at 96 bar and 45 degrees C. Similarly at 196 bar and 45 degrees C, 105 nm average particles were obtained by RESS and 75 nm average particles were obtained in RESS-SC process. The particles obtained were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and differential scanning calorimetery (DSC) analyses. Phenytoin nanoparticle production rate in RESS-SC is about 400-fold more in comparison to that in RESS process.
Optofluidic devices with integrated solid-state nanopores
Hawkins, Aaron R.; Schmidt, Holger
2016-01-01
This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940
1994-08-01
study demonstrated that either of these reduced- temperature sterilization processes will produce an acceptable product that is an alternative to thermal...and uniform heating of liquids and solids simultaneously, even of large particles, up to sterilization temperatures . Uniform heating means shorter...potential cost reduction by substitution of continuous processing of a high- temperature /short-time ( HTST ) nature for traditional batch retort
A rocket-borne energy spectrometer using multiple solid-state detectors for particle identification
NASA Technical Reports Server (NTRS)
Fries, K. L.; Smith, L. G.; Voss, H. D.
1979-01-01
A rocket-borne experiment using energy spectrometers that allows particle identification by the use of multiple solid-state detectors is described. The instrumentation provides information regarding the energy spectrum, pitch-angle distribution, and the type of energetic particles present in the ionosphere. Particle identification was accomplished by considering detector loss mechanisms and their effects on various types of particles. Solid state detectors with gold and aluminum surfaces of several thicknesses were used. The ratios of measured energies for the various detectors were compared against known relationships during ground-based analysis. Pitch-angle information was obtained by using detectors with small geometrical factors mounted with several look angles. Particle flux was recorded as a function of rocket azimuth angle. By considering the rocket azimuth, the rocket precession, and the location of the detectors on the rocket, the pitched angle of the incident particles was derived.
Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M
2015-11-10
Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity. Copyright © 2015. Published by Elsevier B.V.
The cohesive law of particle/binder interfaces in solid propellants
NASA Astrophysics Data System (ADS)
Tan, H.
2011-10-01
Solid propellants are treated as composites with high volume fraction of particles embedded in the polymeric binder. A micromechanics model is developed to establish the link between the microscopic behavior of particle/binder interfaces and the macroscopic constitutive information. This model is then used to determine the tension/shearing coupled interface cohesive law of a redesigned solid rocket motor propellant, based on the experimental data of the stress-strain and dilatation-strain curves for the material under slow rate uniaxial tension.
Motte, J-C; Escudié, R; Bernet, N; Delgenes, J-P; Steyer, J-P; Dumas, C
2013-09-01
Among all the process parameters of solid-state anaerobic digestion (SS-AD), total solid content (TS), inoculation (S/X ratio) and size of the organic solid particles can be optimized to improve methane yield and process stability. To evaluate the effects of each parameter and their interactions on methane production, a three level Box-Behnken experimental design was implemented in SS-AD batch tests degrading wheat straw by adjusting: TS content from 15% to 25%, S/X ratio (in volatile solids) between 28 and 47 and particle size with a mean diameter ranging from 0.1 to 1.4mm. A dynamic analysis of the methane production indicates that the S/X ratio has only an effect during the start-up phase of the SS-AD. During the growing phase, TS content becomes the main parameter governing the methane production and its strong interaction with the particle size suggests the important role of water compartmentation on SS-AD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt
1978-04-25
Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.
Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S
2015-02-02
Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.
Weng, Xiaojun; Burke, Robert A; Redwing, Joan M
2009-02-25
The structure and chemistry of the catalyst particles that terminate GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition were investigated using a combination of electron diffraction, high-resolution transmission electron microscopy, and x-ray energy dispersive spectrometry. The crystal symmetry, lattice parameter, and chemical composition obtained reveal that the catalyst particles are Ni(3)Ga with an ordered L 1(2) structure. The results suggest that the catalyst is a solid particle during growth and therefore favor a vapor-solid-solid mechanism for the growth of GaN nanowires under these conditions.
Modelling the influence of total suspended solids on E. coli removal in river water.
Qian, Jueying; Walters, Evelyn; Rutschmann, Peter; Wagner, Michael; Horn, Harald
2016-01-01
Following sewer overflows, fecal indicator bacteria enter surface waters and may experience different lysis or growth processes. A 1D mathematical model was developed to predict total suspended solids (TSS) and Escherichia coli concentrations based on field measurements in a large-scale flume system simulating a combined sewer overflow. The removal mechanisms of natural inactivation, UV inactivation, and sedimentation were modelled. For the sedimentation process, one, two or three particle size classes were incorporated separately into the model. Moreover, the UV sensitivity coefficient α and natural inactivation coefficient kd were both formulated as functions of TSS concentration. It was observed that the E. coli removal was predicted more accurately by incorporating two particle size classes. However, addition of a third particle size class only improved the model slightly. When α and kd were allowed to vary with the TSS concentration, the model was able to predict E. coli fate and transport at different TSS concentrations accurately and flexibly. A sensitivity analysis revealed that the mechanisms of UV and natural inactivation were more influential at low TSS concentrations, whereas the sedimentation process became more important at elevated TSS concentrations.
Rabanel, Jean-Michel; Faivre, Jimmy; Paka, Ghislain Djiokeng; Ramassamy, Charles; Hildgen, Patrice; Banquy, Xavier
2015-10-01
We developed a nanoparticles (NPs) library from poly(ethylene glycol)-poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a "micelle-like" or "polymer nano-aggregate" structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to "polymer nano-aggregate" particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents
NASA Astrophysics Data System (ADS)
Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.
2018-03-01
The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.
Coarsening Experiment Being Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2001-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science space flight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The preceding figures show the coarsening of tin particles in a lead-tin eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment is slated to fly onboard the International Space Station. The experiment will be run in the Microgravity Science Glovebox installed in the U.S. Laboratory module.
Variable-amplitude oscillatory shear response of amorphous materials.
Perchikov, Nathan; Bouchbinder, Eran
2014-06-01
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
NASA Technical Reports Server (NTRS)
Jex, D. W.; Linton, R. C.; Russell, W. M.; Trenkle, J. J.; Wilkes, D. R.
1976-01-01
A series of three tests was conducted using solid rocket propellants to determine the effects a solid rocket plume would have on thermal protective surfaces (TPS). The surfaces tested were those which are baselined for the shuttle vehicle. The propellants used were to simulate the separation solid rocket motors (SSRM) that separate the solid rocket boosters (SRB) from the shuttle launch vehicle. Data cover: (1) the optical effects of the plume environment on spacecraft related surfaces, and (2) the solid particle size, distribution, and composition at TPS sample locations.
Elementary Particle Spectroscopy in Regular Solid Rewrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology andmore » neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each other fuse into atomic honeycombs of periodic table signature.« less
Thin film production method and apparatus
Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.
2010-08-10
A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.
Quasi-particle energy spectra in local reduced density matrix functional theory.
Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I
2014-10-28
Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.
Sun, Weixin; Liu, Jianguo
2018-01-01
Clogging of the leachate collection system (LCS) has been a common operation problem in municipal solid waste (MSW) landfills in China, which can result in high water levels that threaten the safety of landfill operations. To determine the cause of failure in an LCS, raw leachate from a municipal solid waste transfer station was collected and the high content of particulate matter was characterized. Based on the parameters obtained in a filtration test, a numerical simulation was performed to estimate the influence of particle deposition on drainage system clogging. The results showed that LCSs were confronted with the risk of clogging due to the deposition of particulate matter resulting from the higher concentration of total suspended solids (TSS level > 2200 mg L−1) and larger particle size (>30% TSS particles > 15 μm) in the leachate. On one hand, the non-woven geotextile, as the upper layer of the LCS, retained most particulate matter of large diameters, reducing its hydraulic conductivity to approximately 10−8 to 10−9 m s−1 after 1–2 years of operation and perching significant leachate above it (0.6–0.7 m). On the other hand, the geotextile prevented the gravel layer from physically clogging and minimized the leachate head above the bottom liner. Therefore, the role of geotextile should be balanced to optimize the LCS in MSW landfills in China. PMID:29439538
NASA Astrophysics Data System (ADS)
Montopoli, Mario; Cimini, Domenico; Marzano, Frank
2016-04-01
Volcanic eruptions inject both gas and solid particles into the Atmosphere. Solid particles are made by mineral fragments of different sizes (from few microns to meters), generally referred as tephra. Tephra from volcanic eruptions has enormous impacts on social and economical activities through the effects on the environment, climate, public health, and air traffic. The size, density and shape of a particle determine its fall velocity and thus residence time in the Atmosphere. Larger particles tend to fall quickly in the proximity of the volcano, while smaller particles may remain suspended for several days and thus may be transported by winds for thousands of km. Thus, the impact of such hazards involves local as well as large scales effects. Local effects involve mostly the large sized particles, while large scale effects are caused by the transport of the finest ejected tephra (ash) through the atmosphere. Forecasts of ash paths in the atmosphere are routinely run after eruptions using dispersion models. These models make use of meteorological and volcanic source parameters. The former are usually available as output of numerical weather prediction models or large scale reanalysis. Source parameters characterize the volcanic eruption near the vent; these are mainly the ash mass concentration along the vertical column and the top altitude of the volcanic plume, which is strictly related to the flux of the mass ejected at the emission source. These parameters should be known accurately and continuously; otherwise, strong hypothesis are usually needed, leading to large uncertainty in the dispersion forecasts. However, direct observations during an eruption are typically dangerous and impractical. Thus, satellite remote sensing is often exploited to monitor volcanic emissions, using visible (VIS) and infrared (IR) channels available on both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) satellites. VIS and IR satellite imagery are very useful to monitor the dispersal fine-ash cloud, but tend to saturate near the source due to the strong optical extinction of ash cloud top layers. Conversely, observations at microwave (MW) channels from LEO satellites have demonstrated to carry additional information near the volcano source due to the relative lower opacity. This feature makes satellite MW complementary to IR radiometry for estimating source parameters close to the volcano emission, at the cost of coarser spatial resolution. The presentation shows the value of passive MW observations for the detection and quantitative retrieval of volcanic emission source parameters through the investigation of notable case studies, such as the eruptions of Grímsvötn (Iceland, May 2011) and Calbuco (Cile, April 2015), observed by the Special Sensor Microwave Imager/Sounder and the Advanced Technology Microwave Sounder.
NASA Astrophysics Data System (ADS)
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-04-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
NASA Astrophysics Data System (ADS)
Pfrang, C.; Shiraiwa, M.; Pöschl, U.
2011-07-01
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
NASA Astrophysics Data System (ADS)
Breard, Eric C. P.; Dufek, Josef; Lube, Gert
2018-01-01
Pyroclastic density currents (PDCs) are a significant volcanic hazard. However, their dominant transport mechanisms remain poorly understood, in part because of the large variability of PDC types and deposits. Here we combine field data with experimental and numerical simulations to illuminate the twofold fate of particles settling from an ash cloud to form the dense PDC basal flow. At solid fractions >1 vol %, heterogeneous drag leads to formation of mesoscale particle clusters that favor rapid particle settling and result in a mobile dense layer with significant bed weight support. Conversely, at lower concentrations the absence of particle clusters typically leads to formation of poorly mobile dense beds that deposit massive layers. Based on this transport dichotomy, we present a numerical dense-dilute parameter that allows a PDC's dominant transport mechanism to be determined directly from the deposit geometry and grainsize characteristics.
Crystallization process of a three-dimensional complex plasma
NASA Astrophysics Data System (ADS)
Steinmüller, Benjamin; Dietz, Christopher; Kretschmer, Michael; Thoma, Markus H.
2018-05-01
Characteristic timescales and length scales for phase transitions of real materials are in ranges where a direct visualization is unfeasible. Therefore, model systems can be useful. Here, the crystallization process of a three-dimensional complex plasma under gravity conditions is considered where the system ranges up to a large extent into the bulk plasma. Time-resolved measurements exhibit the process down to a single-particle level. Primary clusters, consisting of particles in the solid state, grow vertically and, secondarily, horizontally. The box-counting method shows a fractal dimension of df≈2.72 for the clusters. This value gives a hint that the formation process is a combination of local epitaxial and diffusion-limited growth. The particle density and the interparticle distance to the nearest neighbor remain constant within the clusters during crystallization. All results are in good agreement with former observations of a single-particle layer.
An analysis of the orbital distribution of solid rocket motor slag
NASA Astrophysics Data System (ADS)
Horstman, Matthew F.; Mulrooney, Mark
2009-01-01
The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.
Effect of interfaces on the nearby Brownian motion
Huang, Kai; Szlufarska, Izabela
2015-01-01
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green–Kubo relation for friction at the liquid–solid interface. Our computer experiment unambiguously reveals that the t−3/2 long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t−5/2 decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid–solid interfaces. PMID:26438034
NASA Technical Reports Server (NTRS)
Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.
2012-01-01
Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.
A novel fractionation approach for water constituents - distribution of storm event metals.
McKenzie, Erica R; Young, Thomas M
2013-05-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.
A novel fractionation approach for water constituents – distribution of storm event metals
McKenzie, Erica R.; Young, Thomas M.
2014-01-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891
Effect of interfaces on the nearby Brownian motion.
Huang, Kai; Szlufarska, Izabela
2015-10-06
Near-boundary Brownian motion is a classic hydrodynamic problem of great importance in a variety of fields, from biophysics to micro-/nanofluidics. However, owing to challenges in experimental measurements of near-boundary dynamics, the effect of interfaces on Brownian motion has remained elusive. Here we report a computational study of this effect using μs-long large-scale molecular dynamics simulations and our newly developed Green-Kubo relation for friction at the liquid-solid interface. Our computer experiment unambiguously reveals that the t(-3/2) long-time decay of the velocity autocorrelation function of a Brownian particle in bulk liquid is replaced by a t(-5/2) decay near a boundary. We discover a general breakdown of traditional no-slip boundary condition at short time scales and we show that this breakdown has a profound impact on the near-boundary Brownian motion. Our results demonstrate the potential of Brownian-particle-based micro-/nanosonar to probe the local wettability of liquid-solid interfaces.
Dynamics of an acoustically levitated particle using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Barrios, G.; Rechtman, R.
When the acoustic force inside a cavity balances the gravitational force on a particle the result is known as acoustic levitation. Using the lattice Boltzmann equation method we find the acoustic force acting on a rounded particle for two different single-axis acoustic levitators in two dimensions, the first with plane waves, the second with a rounded reflector that enhances the acoustic force. With no gravitational force, a particle oscillates around a pressure node; in the presence of gravity the oscillation is shifted a small vertical distance below the pressure node. This distance increases linearly as the density ratio between the solid particle and fluid grows. For both cavities, the particle oscillates with the frequency of the sound source and its harmonics and in some cases there is a much smaller second dominant frequency. When the momentum of the acoustic source changes, the oscillation around the average vertical position can have both frequencies mentioned above. However, if this quantity is large enough, the oscillations of the particle are aperiodic in the cavity with a rounded reflector.
Pulsed DF chain-laser breakdown induced by maritime aerosols
NASA Astrophysics Data System (ADS)
Amimoto, S. T.; Whittier, J. S.; Ronkowski, F. G.; Valenzuela, P. R.; Harper, G.
1982-08-01
Thresholds for breakdown induced by liquid and solid aerosols in room air have been measured for a 1 microsec-duration pulsed D2-F2 laser of 3.58 -4.78 micron bandwidth. The DF laser beam was directed into an aerosol chamber that simulated maritime atmospheres on the open sea. Both focus and collimated beams were studied. For a focused beam in which the largest encountered aerosol particles were of 1 to 4 micron diameter, pulsed DF breakdown thresholds were measured to lie in the range 0.6 to 1.8 GW/sq cm. Salt-water aerosol breakdown thresholds for micron-size particles were found to be 15 to 30% higher than the corresponding thresholds for fresh-water particles. For a collimated beam that encountered particle diameters as large as 100 microns, breakdown could not be induced using 0.5- microsec (FWHM) pulses at peak intensities of 59 MW/sq cm. Image converter camera measurements of the radial plasma growth rate of 1.3 cm/microsec (at 1.4 GW/sq cm) were consistent with measurements of the cutoff rate of the transmitted laser beam. Pulsed DF breakdown thresholds of 32 MW/sq cm for 30- micron diameter Al2O3 particles were also measured to permit comparison with the earlier pulsed-HF breakdown results of Lencioni, et al.; the solid-particle threshold measurements agree with the Lencioni data if one assumes that the thresholds for microsecond-duration pulses scales is 1/lambda. An approximate theoretical model of the water particle breakdown process is presented that permits the scaling of the present results to other laser pulse durations, aerosol distributions, and transmission path lengths.
Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.
Tinjum, James M; Benson, Craig H; Edil, Tuncer B
2008-02-25
Batch leaching studies on chromite ore processing residue (COPR) were performed using acids to investigate leaching of hexavalent chromium, Cr(VI), with respect to particle size, reaction time, and type of acid (HNO(3) and H(2)SO(4)). Aqueous Cr(VI) is maximized at approximately 0.04 mol Cr(VI) per kg of dry COPR at pH 7.6-8.1. Cr(VI) mobilized more slowly for larger particles, and the pH increased with time and increased more rapidly for smaller particles, suggesting that rate limitations occur in the solid phase. With H(2)SO(4), the pH stabilized at a higher value (8.8 for H(2)SO(4) vs. 8.0 for HNO(3)) and more rapidly (16 h vs. 30 h), and the differences in pH for different particle sizes were smaller. The acid neutralization capacity (ANC) of COPR is very large (8 mol HNO(3) per kg of dry COPR for a stable eluate pH of 7.5). Changes to the elemental and mineralogical composition and distribution in COPR particles after mixing with acid indicate that Cr(VI)-bearing solids dissolved. However, concentrations of Cr(VI) >2800 mg kg(-1) (>50% of the pre-treatment concentration) were still found after mixing with acid, regardless of the particle size, reaction time, or type of acid used. The residual Cr(VI) appears to be partially associated with poorly-ordered Fe and Al oxyhydroxides that precipitated in the interstitial areas of COPR particles. Remediation strategies that use HNO(3) or H(2)SO(4) to neutralize COPR or to maximize Cr(VI) in solution are likely to require extensive amounts of acid, may not mobilize all of the Cr(VI), and may require extended contact time, even under well-mixed conditions.
Influence of lubrication forces in direct numerical simulations of particle-laden flows
NASA Astrophysics Data System (ADS)
Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans
2016-11-01
Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).
ASHEE: a compressible, Equilibrium-Eulerian model for volcanic ash plumes
NASA Astrophysics Data System (ADS)
Cerminara, M.; Esposti Ongaro, T.; Berselli, L. C.
2015-10-01
A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas-particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations (Neri et al., 2003) for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model (Ferry and Balachandar, 2001), valid for low concentration regimes (particle volume fraction less than 10-3) and particles Stokes number (St, i.e., the ratio between their relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas-particle non-equilibrium effects. Direct numerical simulation accurately reproduce the dynamics of isotropic, compressible turbulence in subsonic regime. For gas-particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce their observed averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the eruptive mixture in a stratified atmosphere describes some of important features of turbulent volcanic plumes, including air entrainment, buoyancy reversal, and maximum plume height. For very fine particles (St → 0, when non-equilibrium effects are negligible) the model reduces to the so-called dusty-gas model. However, coarse particles partially decouple from the gas phase within eddies (thus modifying the turbulent structure) and preferentially concentrate at the eddy periphery, eventually being lost from the plume margins due to the concurrent effect of gravity. By these mechanisms, gas-particle non-equilibrium processes are able to influence the large-scale behavior of volcanic plumes.
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-05-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St + = 24 and the particle Reynolds number Re p = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y + = 60 and 2/3 of the boundary-layer thickness are the most influenced.
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-01-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors’ knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced. PMID:29104418
NASA Astrophysics Data System (ADS)
Luo, Kun; Hu, Chenshu; Wu, Fan; Fan, Jianren
2017-05-01
In the present work, a direct numerical simulation (DNS) of dilute particulate flow in a turbulent boundary layer has been conducted, containing thousands of finite-sized solid rigid particles. The particle surfaces are resolved with the multi-direct forcing immersed-boundary method. This is, to the best of the authors' knowledge, the first DNS study of a turbulent boundary layer laden with finite-sized particles. The particles have a diameter of approximately 11.3 wall units, a density of 3.3 times that of the fluid, and a solid volume fraction of 1/1000. The simulation shows that the onset and the completion of the transition processes are shifted earlier with the inclusion of the solid phase and that the resulting streamwise mean velocity of the boundary layer in the particle-laden case is almost consistent with the results of the single-phase case. At the same time, relatively stronger particle movements are observed in the near-wall regions, due to the driving of the counterrotating streamwise vortexes. As a result, increased levels of dissipation occur on the particle surfaces, and the root mean square of the fluctuating velocities of the fluid in the near-wall regions is decreased. Under the present parameters, including the particle Stokes number St+ = 24 and the particle Reynolds number Rep = 33 based on the maximum instantaneous fluid-solid velocity lag, no vortex shedding behind the particle is observed. Lastly, a trajectory analysis of the particles shows the influence of turbophoresis on particle wall-normal concentration, and the particles that originated between y+ = 60 and 2/3 of the boundary-layer thickness are the most influenced.
Process for coal liquefaction using electrodeposited catalyst
Moore, Raymond H.
1978-01-01
A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.
Literature review relevant to particle erosion in complex geometries
NASA Astrophysics Data System (ADS)
Volent, Eirik; Dahlhaug, Ole Gunnar
2018-06-01
Erosion is a challenge in many industries where fluid is transferred through pipe and valve arrangements. Wear can occur in a variety of systems and is often related to the presents of droplets or solid particles in the fluid stream. Solid particles are in many cases present in hydropower systems, and can cause severe damage to system components. Flow conditions, particle size and concentration vary greatly and can thus cause a vast variety of damage, ranging from manageable wear to component failure. The following paper will present a summary of literature relevant to the prediction of erosion in complex geometries. The intention of the review is to investigate the current state of the art, directly relevant to the prediction of wear due to solid particle erosion in complex geometries.
Optimal conditions for particle-bubble attachment in flotation: an experimental study
NASA Astrophysics Data System (ADS)
Sanchez Yanez, Aaron; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T.
2017-11-01
Mineral flotation is a process used in the mining industry for separating solid particles of different sizes and densities. The separation is done by injecting bubbles into a slurry where the particles attach to them, forming floating aggregates. The attachment depends mainly on the bubbles and particles sizes as well as the hydrophobicity and roughness of the particles. We simplified the collective behavior in the industrial process to a single free particle-bubble collision, in contrast with previous studies where one of the two was kept fixed. We experimentally investigated the collision of spherical solid particles of a fixed diameter with bubbles of different sizes. By controlling the initial relative offset of the bubble and the particle, we conducted experiments observing their interaction. Recording with two synchronized high-speed cameras, perpendicular to each other, we can reconstruct the tridimensional trajectories of the bubble, the solid particle, and the aggregate. We describe the conditions for which the attachment happens in terms of dimensionless parameters such as the Ohnesorge number, the relative particle-bubble offset and the hydrophobicity of the particle surface. We furthermore investigate the role of the surface roughness in the attachment.
Gutiérrez-Cacciabue, Dolores; Cid, Alicia G; Rajal, Verónica B
2016-01-01
In this work, sunlight inactivation of two indicator bacteria in freshwater, with and without solid particles, was studied and the persistence of culturable cells and total DNA was compared. Environmental water was used to prepare two matrices, with and without solid particles, which were spiked with Escherichia coli and Enterococcus faecalis. These matrices were used to prepare microcosm bags that were placed in two containers: one exposed to sunlight and the other in the dark. During one month, samples were removed from each container and detection was done by membrane filter technique and real-time PCR. Kinetic parameters were calculated to assess sunlight effect. Indicator bacteria without solid particles exposed to sunlight suffered an immediate decay (<4h) compared with the ones which were shielded from them. In addition, the survival of both bacteria with solid particles varied depending on the situation analyzed (T99 from 3 up to 60days), being always culturable E. coli more persistent than E. faecalis. On the other side, E. faecalis DNA persisted much longer than culturable cells (T99>40h in the dark with particles). In this case active cells were more prone to sunlight than total DNA and the protective effect of solid particles was also observed. Results highlight that the effects caused by the parameters which describe the behavior of culturable microorganisms and total DNA in water are different and must be included in simulation models but without forgetting that these parameters will also depend on bacterial properties, sensitizers, composition, type, and uses of the aquatic environment under assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Biggs, C A; Prall, C; Tait, S; Ashley, R
2005-01-01
The changes in particle size of sewer sediment particles rapidly eroded from a previously deposited sediment bed are described, using a rotating annular flume as a laboratory scale sewer simulator. This is the first time that particle size distributions of eroded sewer sediments from a previously deposited sediment bed have been monitored in such a controlled experimental environment. Sediments from Loenen, The Netherlands and Dundee, UK were used to form deposits in the base of the annular flume (WL Delft Netherlands) with varying conditions for consolidation in order to investigate the effect of changing consolidation time, temperature and sediment type on the amount and size of particles eroded from a bed under conditions of increasing shear. The median size of the eroded particles did not change significantly with temperature, although the eroded suspended solids concentration was greater for the higher temperature under the same shear stresses, indicating a weaker bed deposit. An increase in consolidation time caused an increase in median size of eroded solids at higher bed shear stresses, and this was accompanied by higher suspended solids concentrations. As the shear stress increased, the solids eroded from the bed developed under a longer consolidation time (56 hours) tended towards a broad unimodal distribution, whilst the size distribution of solids eroded from beds developed under shorter consolidation times (18 or 42 hours) retained a bi- or tri-modal distribution. Using different types of sediment in the flume had a marked effect on the size of particles eroded.
Fluid-Driven Deformation of a Soft Granular Material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2015-01-01
Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.
Laser-excited pulse propagation in a crystallized complex plasma
NASA Astrophysics Data System (ADS)
Nosenko, V.; Nunomura, S.; Goree, J.
2000-10-01
A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.
Dynamics of passive and active particles in the cell nucleus.
Hameed, Feroz M; Rao, Madan; Shivashankar, G V
2012-01-01
Inspite of being embedded in a dense meshwork of nuclear chromatin, gene loci and large nuclear components are highly dynamic at 37°C. To understand this apparent unfettered movement in an overdense environment, we study the dynamics of a passive micron size bead in live cell nuclei at two different temperatures (25 and 37°C) with and without external force. In the absence of a force, the beads are caged over large time scales. On application of a threshold uniaxial force (about 10(2) pN), the passive beads appear to hop between cages; this large scale movement is absent upon ATP-depletion, inhibition of chromatin remodeling enzymes and RNAi of lamin B1 proteins. Our results suggest that the nucleus behaves like an active solid with a finite yield stress when probed at a micron scale. Spatial analysis of histone fluorescence anisotropy (a measure of local chromatin compaction, defined as the volume fraction of tightly bound chromatin) shows that the bead movement correlates with regions of low chromatin compaction. This suggests that the physical mechanism of the observed yielding is the active opening of free-volume in the nuclear solid via chromatin remodeling. Enriched transcription sites at 25°C also show caging in the absence of the applied force and directed movement beyond a yield stress, in striking contrast with the large scale movement of transcription loci at 37°C in the absence of a force. This suggests that at physiological temperatures, the loci behave as active particles which remodel the nuclear mesh and reduce the local yield stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcos, T.N.; Tadrous, N.A.; Borai, E.H.
2007-07-01
Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle sizemore » distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)« less
Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei; Han, Jiansheng
2015-01-01
This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox(®)), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox(®), the C max (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics.
NASA Astrophysics Data System (ADS)
Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.
2017-11-01
The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.
Thermal shock resistance ceramic insulator
Morgan, Chester S.; Johnson, William R.
1980-01-01
Thermal shock resistant cermet insulators containing 0.1-20 volume % metal present as a dispersed phase. The insulators are prepared by a process comprising the steps of (a) providing a first solid phase mixture of a ceramic powder and a metal precursor; (b) heating the first solid phase mixture above the minimum decomposition temperature of the metal precursor for no longer than 30 minutes and to a temperature sufficiently above the decomposition temperature to cause the selective decomposition of the metal precursor to the metal to provide a second solid phase mixture comprising particles of ceramic having discrete metal particles adhering to their surfaces, said metal particles having a mean diameter no more than 1/2 the mean diameter of the ceramic particles, and (c) densifying the second solid phase mixture to provide a cermet insulator having 0.1-20 volume % metal present as a dispersed phase.
Graphene nanocomposites for electrochemical cell electrodes
Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun
2015-11-19
A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oh, U.; Tan, Daisuke
2012-10-01
A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.
Particle-based solid for nonsmooth multidomain dynamics
NASA Astrophysics Data System (ADS)
Nordberg, John; Servin, Martin
2018-04-01
A method for simulation of elastoplastic solids in multibody systems with nonsmooth and multidomain dynamics is developed. The solid is discretised into pseudo-particles using the meshfree moving least squares method for computing the strain tensor. The particle's strain and stress tensor variables are mapped to a compliant deformation constraint. The discretised solid model thus fit a unified framework for nonsmooth multidomain dynamics simulations including rigid multibodies with complex kinematic constraints such as articulation joints, unilateral contacts with dry friction, drivelines, and hydraulics. The nonsmooth formulation allows for impact impulses to propagate instantly between the rigid multibody and the solid. Plasticity is introduced through an associative perfectly plastic modified Drucker-Prager model. The elastic and plastic dynamics are verified for simple test systems, and the capability of simulating tracked terrain vehicles driving on a deformable terrain is demonstrated.
Global Distribution of Solid Ammonium Sulfate Aerosols and their Climate Impact Acting as Ice Nuclei
NASA Astrophysics Data System (ADS)
Zhou, C.; Penner, J.
2017-12-01
Laboratory experiments show that liquid ammonium sulfate particles effloresce when RHw is below 34% to become solid and dissolve when RHw is above 79%. Solid ammonium sulfate aerosols can act as heterogeneous ice nuclei particles (INPs) to form ice particles in deposition mode when the relative humidity over ice is above 120%. In this study we used the coupled IMPACT/CAM5 model to track the efflorescence and deliquescence processes of ammonium sulfate. Results show that about 20% of the total simulated pure sulfate aerosol mass is in the solid state and is mainly distributed in the northern hemisphere (NH) from 50 hPa to 200 hPa. When these solid ammonium sulfate aerosols are allowed to act as ice nuclei particles, they act to increase the ice water path in the NH and reduce ice water path in the tropics. The addition of these particles leads to a positive net radiative effect at the TOA ranging from 0.5-0.9 W/m2 depending on the amounts of other ice nuclei particles (e.g., dust, soot) used in the ice nucleation process. The short-term climate feedback shows that the ITCZ shifts northwards and precipitation increases in the NH. There is also an average warming of 0.05-0.1 K near the surface (at 2 meter) in the NH which is most obvious in the Arctic region.
HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays
NASA Technical Reports Server (NTRS)
Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.
1993-01-01
The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.
Further insight into the mechanism of heavy metals partitioning in stormwater runoff.
Djukić, Aleksandar; Lekić, Branislava; Rajaković-Ognjanović, Vladana; Veljović, Djordje; Vulić, Tatjana; Djolić, Maja; Naunovic, Zorana; Despotović, Jovan; Prodanović, Dušan
2016-03-01
Various particles and materials, including pollutants, deposited on urban surfaces are washed off by stormwater runoff during rain events. The interactions between the solid and dissolved compounds in stormwater runoff are phenomena of importance for the selection and improvement of optimal stormwater management practices aimed at minimizing pollutant input to receiving waters. The objective of this research was to further investigate the mechanisms responsible for the partitioning of heavy metals (HM) between the solid and liquid phases in urban stormwater runoff. The research involved the collection of samples from urban asphalt surfaces, chemical characterization of the bulk liquid samples, solids separation, particle size distribution fractionation and chemical and physico-chemical characterization of the solid phase particles. The results revealed that a negligible fraction of HM was present in the liquid phase (less than 3% by weight), while there was a strong correlation between the total content of heavy metals and total suspended solids. Examinations of surface morphology and mineralogy revealed that the solid phase particles consist predominantly of natural macroporous materials: alpha quartz (80%), magnetite (11.4%) and silicon diphosphate (8.9%). These materials have a low surface area and do not have significant adsorptive capacity. These materials have a low surface area and do not have significant adsorptive capacity. The presence of HM on the surface of solid particles was not confirmed by scanning electron microscopy and energy dispersive X-ray microanalyses. These findings, along with the results of the liquid phase sample characterization, indicate that the partitioning of HM between the liquid and solid phases in the analyzed samples may be attributed to precipitation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Particle Image Velocimetry Using a Novel, Non-Intrusive Particle Seeding
2006-05-01
Conference of Liquid Atomization and Spray Systems , Sorrento Italy, July 2003 35. Thomas P.J. “On the influence of the Basset history force on the motion...dispensed into the flow as a liquid , immediately condensing to solid seed particles as they leave the spray nozzle. The advantage of using these...process transitions the solid tracer particles to CO2 gas . The result is a self- cleaning non-hazardous seed material that can eliminate many of the
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-03-02
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens
NASA Astrophysics Data System (ADS)
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-03-01
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.
Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens
Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent
2017-01-01
We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033
Surface plasmon resonances in liquid metal nanoparticles
NASA Astrophysics Data System (ADS)
Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.
2017-06-01
We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.
Numerical study of particle deposition and scaling in dust exhaust of cyclone separator
NASA Astrophysics Data System (ADS)
Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.
2016-05-01
The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.
Concentrating small particles in protoplanetary disks through the streaming instability
NASA Astrophysics Data System (ADS)
Yang, C.-C.; Johansen, A.; Carrera, D.
2017-10-01
Laboratory experiments indicate that direct growth of silicate grains via mutual collisions can only produce particles up to roughly millimeters in size. On the other hand, recent simulations of the streaming instability have shown that mm/cm-sized particles require an excessively high metallicity for dense filaments to emerge. Using a numerical algorithm for stiff mutual drag force, we perform simulations of small particles with significantly higher resolutions and longer simulation times than in previous investigations. We find that particles of dimensionless stopping time τs = 10-2 and 10-3 - representing cm- and mm-sized particles interior of the water ice line - concentrate themselves via the streaming instability at a solid abundance of a few percent. We thus revise a previously published critical solid abundance curve for the regime of τs ≪ 1. The solid density in the concentrated regions reaches values higher than the Roche density, indicating that direct collapse of particles down to mm sizes into planetesimals is possible. Our results hence bridge the gap in particle size between direct dust growth limited by bouncing and the streaming instability.
Zheng, Zhongqing; Durbin, Thomas D; Xue, Jian; Johnson, Kent C; Li, Yang; Hu, Shaohua; Huai, Tao; Ayala, Alberto; Kittelson, David B; Jung, Heejung S
2014-01-01
It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bohorquez, Patricio; Heyman, Joris
2016-04-01
The advection-diffusion equation arises quite often in the context of sediment transport, e.g., for describing time and space variations in the particle activity (the solid volume of particles in motion per unit streambed area). Stochastic models can also be used to derive this equation, with the significant advantage that they provide information on the statistical properties of particle activity. Stochastic models are quite useful when sediment transport exhibits large fluctuations (typically at low transport rates), making the measurement of mean values difficult. We develop an approach based on birth-death Markov processes, which involves monitoring the evolution of the number of particles moving within an array of cells of finite length. While the topic has been explored in detail for diffusion-reaction systems, the treatment of advection has received little attention. We show that particle advection produces nonlocal effects, which are more or less significant depending on the cell size and particle velocity. Albeit nonlocal, these effects look like (local) diffusion and add to the intrinsic particle diffusion (dispersal due to velocity fluctuations), with the important consequence that local measurements depend on both the intrinsic properties of particle displacement and the dimensions of the measurement system.
NASA Astrophysics Data System (ADS)
Schneiderbauer, Simon; Saeedipour, Mahdi
2018-02-01
Highly resolved two-fluid model (TFM) simulations of gas-solid flows in vertical periodic channels have been performed to study closures for the filtered drag force and the Reynolds-stress-like contribution stemming from the convective terms. An approximate deconvolution model (ADM) for the large-eddy simulation of turbulent gas-solid suspensions is detailed and subsequently used to reconstruct those unresolved contributions in an a priori manner. With such an approach, an approximation of the unfiltered solution is obtained by repeated filtering allowing the determination of the unclosed terms of the filtered equations directly. A priori filtering shows that predictions of the ADM model yield fairly good agreement with the fine grid TFM simulations for various filter sizes and different particle sizes. In particular, strong positive correlation (ρ > 0.98) is observed at intermediate filter sizes for all sub-grid terms. Additionally, our study reveals that the ADM results moderately depend on the choice of the filters, such as box and Gaussian filter, as well as the deconvolution order. The a priori test finally reveals that ADM is superior compared to isotropic functional closures proposed recently [S. Schneiderbauer, "A spatially-averaged two-fluid model for dense large-scale gas-solid flows," AIChE J. 63, 3544-3562 (2017)].
Yuan, Nannan; Wang, Changhui; Pei, Yuansheng
2016-11-01
Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill
NASA Astrophysics Data System (ADS)
Yang, Yang; Rowson, Neil; Ingram, Andy
2016-11-01
Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.
Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2017-11-01
The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.
Magnetic separation of general solid particles realised by a permanent magnet
Hisayoshi, K.; Uyeda, C.; Terada, K.
2016-01-01
Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss. PMID:27929081
Magnetic separation of general solid particles realised by a permanent magnet
NASA Astrophysics Data System (ADS)
Hisayoshi, K.; Uyeda, C.; Terada, K.
2016-12-01
Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.
Magnetic separation of general solid particles realised by a permanent magnet.
Hisayoshi, K; Uyeda, C; Terada, K
2016-12-08
Most existing solids are categorised as diamagnetic or weak paramagnetic materials. The possibility of magnetic motion has not been intensively considered for these materials. Here, we demonstrate for the first time that ensembles of heterogeneous particles (diamagnetic bismuth, diamond and graphite particles, as well as two paramagnetic olivines) can be dynamically separated into five fractions by the low field produced by neodymium (NdFeB) magnets during short-duration microgravity (μg). This result is in contrast to the generally accepted notion that ordinary solid materials are magnetically inert. The materials of the separated particles are identified by their magnetic susceptibility (χ), which is determined from the translating velocity. The potential of this approach as an analytical technique is comparable to that of chromatography separation because the extraction of new solid phases from a heterogeneous grain ensemble will lead to important discoveries about inorganic materials. The method is applicable for the separation of the precious samples such as lunar soils and/or the Hayabusa particles recovered from the asteroids, because even micron-order grains can be thoroughly separated without sample-loss.
Building a Buckyball Particle in Space Artist Concept
2012-02-22
NASA Spitzer Space Telescope has detected the solid form of buckyballs in space for the first time. To form a solid particle, the buckyballs must stack together, as illustrated in this artist concept showing the very beginnings of the process.
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
NASA Astrophysics Data System (ADS)
Nordmark, H.; Nagayoshi, H.; Matsumoto, N.; Nishimura, S.; Terashima, K.; Marioara, C. D.; Walmsley, J. C.; Holmestad, R.; Ulyashin, A.
2009-02-01
Scanning and transmission electron microscopies have been used to study silicon substrate texturing and whisker growth on Si substrates using pure hydrogen source gas in a tungsten hot filament reactor. Substrate texturing, in the nanometer to micrometer range of mono- and as-cut multicrystalline silicon, was observed after deposition of WSi2 particles that acted as a mask for subsequent hydrogen radical etching. Simultaneous Si whisker growth was observed for long residence time of the source gas and low H2 flow rate with high pressure. The whiskers formed via vapor-solid-solid growth, in which the deposited WSi2 particles acted as catalysts for a subsequent metal-induced layer exchange process well below the eutectic temperature. In this process, SiHx species, formed by substrate etching by the H radicals, diffuse through the metal particles. This leads to growth of crystalline Si whiskers via metal-induced solid-phase crystallization. Transmission electron microscopy, electron diffraction, and x-ray energy dispersive spectroscopy were used to study the WSi2 particles and the structure of the Si substrates in detail. It has been established that the whiskers are partly crystalline and partly amorphous, consisting of pure Si with WSi2 particles on their tips as well as sometimes being incorporated into their structure.
Method of preparing porous, active material for use in electrodes of secondary electrochemical cells
Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt
1977-01-01
Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.
NASA Astrophysics Data System (ADS)
Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.
2012-07-01
In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.
Fictitious domain method for fully resolved reacting gas-solid flow simulation
NASA Astrophysics Data System (ADS)
Zhang, Longhui; Liu, Kai; You, Changfu
2015-10-01
Fully resolved simulation (FRS) for gas-solid multiphase flow considers solid objects as finite sized regions in flow fields and their behaviours are predicted by solving equations in both fluid and solid regions directly. Fixed mesh numerical methods, such as fictitious domain method, are preferred in solving FRS problems and have been widely researched. However, for reacting gas-solid flows no suitable fictitious domain numerical method has been developed. This work presents a new fictitious domain finite element method for FRS of reacting particulate flows. Low Mach number reacting flow governing equations are solved sequentially on a regular background mesh. Particles are immersed in the mesh and driven by their surface forces and torques integrated on immersed interfaces. Additional treatments on energy and surface reactions are developed. Several numerical test cases validated the method and a burning carbon particles array falling simulation proved the capability for solving moving reacting particle cluster problems.
NASA Astrophysics Data System (ADS)
Hirokawa, Norio; Ueda, Masahiro; Harano, Yoshio
1994-08-01
Solid-fats dispersed systems, such as margarine, butter and cacao-butter, were characterized by a novel method based on liquid permeation under pressure, for the simultaneous measurement of a solid-content ɛ p and an average diameter dp of solid particles (fats crystals) in them. Further, micro-structures of these systems were observed by a scanning electron microscope (SEM). As the result, it has been clarified that the spherical fats crystals of several μm in size appeared in the initial solid-fats products are agglomerates of fine particles of ca. 0.1 μm and that these fine particles are uniformly redispersed during an annealing treatment accompanying the reduction of ɛ p and dp. It is strongly suggested that this phenomenon is caused by a transition of fat crystals into a more stable polymorph.
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun
2018-01-01
Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.
An Investigation of Particulate Behavior in Solid Rocket Motors
1981-06-01
that in the latter only a relatively few Al203 particles (of circular cross-section) are present. The other residue appears to be from the inhibitor ...cast in the propellant (Figure 16). The presence of large amounts of inhibitor residue obviously affected the scattered-light intensity profile and the...calculations. Therefore, the quantity of inhibitor used in future experi- ments should be minimized. D. DISCUSSION OF RESULTS The volume-surface mean
NASA Technical Reports Server (NTRS)
Woods, D.
1980-01-01
The size distributions of particles in the exhaust plumes from the Titan rockets launched in August and September 1977 were determined from in situ measurements made from a small sampling aircraft that flew through the plumes. Two different sampling instruments were employed, a quartz crystal microbalance (QCM) cascade impactor and a forward scattering spectrometer probe (FSSP). The QCM measured the nonvolatile component of the aerosols in the plume covering an aerodynamic size ranging from 0.05 to 25 micrometers diameter. The FSSP, flown outside the aircraft under the nose section, measured both the liquid droplets and the solid particles over a size range from 0.5 to 7.5 micrometers in diameter. The particles were counted and classified into 15 size intervals. The presence of a large number of liquid droplets in the exhaust clouds is discussed and data are plotted for each launch and compared.
Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, J.S.; Shadle, L.J.; Yue, P.C.
2007-01-01
Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid massmore » flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.« less
Ghorai, Pradip Kr; Yashonath, S
2005-03-31
We report a molecular dynamics study of a binary mixture consisting of a large (host) particle and a smaller (guest) particle whose radius is varied over a range. These simulations investigate the possible existence of a diffusion anomaly or levitation effect in dense fluids, previously seen for guest molecules diffusing within porous solids. The voids in the larger component have been characterized in terms of void and neck distributions by means of Voronoi polyhedral analysis. Four different mixtures with differing ratios of guest to host diffusivities (D) have been studied. The results suggest that the diffusion anomaly is seen in both close-packed solids with disorder and dense fluids. In the latter, the void network is constantly and dynamically changing and possesses a considerable degree of disorder. The two regimes, viz., the linear regime (LR) and the anomalous regime (AR), found for porous solids are shown to exist for a dense medium as well. The linear regime is characterized by D(g) proportional to 1/sigma(gg)(2), where sigma(gg) is the diameter of the guest. The anomalous regime exhibits a maximum in D up to rather high temperatures (T = 1.663), even though in porous solids the maximum disappears at higher temperatures. In agreement with previous studies on porous solids, a particle in the AR is associated with lower activation energy, lower friction, and less backscattering in the velocity autocorrelation function when compared to a particle in the LR. Wavevector dependent self-diffusivity, Delta, and decay of the intermediate scattering function, F(s)(k, t), exhibit contrasting behaviors for the LR and AR. For LR, Delta exhibits a minimum at values of k at which there are spatial correlations in S(k) while a smooth decrease with k is seen for AR. For LR, F(s)(k, t) shows a biexponential decay corresponding to two different time scales of motion. Probably, the fast decay is associated with motion within the first shell of solvent neighbors and the slow decay with motion past these shells. For AR, a single-exponential decay is seen. The results indicate a breakdown of the Stokes-Einstein (SE) relationship. The relevant quantity that determines the validity of the SE relationship is the levitation parameter which is indirectly related to the solute/solvent radius ratio and not either the size of the solute or the solvent alone.
The rotation and translation of non-spherical particles in homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Byron, Margaret
The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity fields. Using these simultaneous measurements, we examine particles' turbulent slip velocity and compare it to particles' quiescent settling velocity, which we measure directly. We observe that the slip velocity is strongly reduced relative to the quiescent case, and explore various mechanisms of particle loitering in turbulence. We further explore the relationship between the instantaneous particle velocity and the instantaneous fluid velocity, and develop a linear parametrization. By comparing our experimental data to a simple one-dimensional flow in the context of this parametrization, we elucidate aspects of slip velocity that are unique to turbulence. We obtain the particles' angular velocity by applying the solid-body rotation equation to velocity measurements at points inside the particle. We find that the expected value of angular velocity magnitude does not vary significantly with particle aspect ratio, as long as particles are nearly neutrally buoyant. Stronger effects on rotation are found for more negatively-buoyant particles. We also investigate particles' inheritance of vorticity from turbulent velocity fields, and find that particle rotation can be predicted by applying a spatial filter to fluid-phase vorticity. The results of this study will allow us to more accurately predict the motion of aspherical particles, giving new insights into oceanic carbon cycling, industrial processes, and other important topics. This analysis will also shed light onto biological questions of navigation, reproduction, and predator-prey interaction by quantifying the turbulence-driven behavior of meso-scale aquatic organisms, allowing researchers to sift out passive vs. active effects in a behaving organism. Lastly, processes that are directly dependent on particle dynamics (e.g., sediment transport, industrial processes) will be informed by our results.
Simulation studies for the PANDA experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, B.
2005-10-26
One main component of the planned Facility for Antiproton and Ion Research (FAIR) is the High Energy Storage Ring (HESR) at GSI, Darmstadt, which will provide cooled antiprotons with momenta between 1.5 and 15 GeV/c. The PANDA experiment will investigate p-barannihilations with internal hydrogen and nuclear targets. Due to the planned extensive physics program a multipurpose detector with nearly complete solid angle coverage, proper particle identification over a large momentum range, and high resolution calorimetry for neutral particles is required. For the optimization of the detector design simulation studies of several benchmark channels are in progress which are covering themore » most relevant physics topics. Some important simulation results are discussed here.« less
Coarsening Experiment Prepared for Flight
NASA Technical Reports Server (NTRS)
Hickman, J. Mark
2003-01-01
The Coarsening in Solid-Liquid Mixtures-2 (CSLM-2) experiment is a materials science spaceflight experiment whose purpose is to investigate the kinetics of competitive particle growth within a liquid matrix. During coarsening, small particles shrink by losing atoms to larger particles, causing the larger particles to grow. In this experiment, solid particles of tin will grow (coarsen) within a liquid lead-tin eutectic matrix. The following figures show the coarsening of tin particles in a lead-tin (Pb-Sn) eutectic as a function of time. By conducting this experiment in a microgravity environment, we can study a greater range of solid volume fractions, and the effects of sedimentation present in terrestrial experiments will be negligible. The CSLM-2 experiment flew November 2002 on space shuttle flight STS-113 for operation on the International Space Station, but it could not be run because of problems with the Microgravity Science Glovebox in the U.S. Laboratory module. Additional samples will be sent to ISS on subsequent shuttle flights.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping
2015-11-01
The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Investigation of automotive primer and basecoat paint surface's adhesion by solid particle erosion
NASA Astrophysics Data System (ADS)
Demirci, M.; Baǧcı, M.
2018-05-01
Millions of cars are sold around the world and tons of paint are used for these cars. Since the car paint industry is alive in this way, new developments in the paint sector have been taking place every day. It is important to determine how these developments affect paint erosion. Solid particle erosion wear is a subject that keeps its update for car paints and it always needs to be investigated in detail. The target of this experimental study is to investigate solid particle erosion behavior of a commercial acrylic/melamine primer surface and basecoat of automotive paint. As a erodent, silica particles having a weight of 1 to 5 kg were used. Tests were performed at 30° and 90° impact angle and particle velocity 23 m s-1. With this work, an idea about the adhesion of the car paint coatings to the material surface was obtained.
Apparatus and method for noninvasive particle detection using doppler spectroscopy
Sinha, Dipen N.
2016-05-31
An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.
Wax encapsulation of water-soluble compounds for application in foods.
Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A
2006-11-01
Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.
Modeling Gas-Particle Partitioning of SOA: Effects of Aerosol Physical State and RH
NASA Astrophysics Data System (ADS)
Zuend, A.; Seinfeld, J.
2011-12-01
Aged tropospheric aerosol particles contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. In liquid aerosol particles non-ideal mixing of all species determines whether the condensed phase undergoes liquid-liquid phase separation or whether it is stable in a single mixed phase, and whether it contains solid salts in equilibrium with their saturated solution. The extended thermodynamic model AIOMFAC is able to predict such phase states by representing the variety of organic components using functional groups within a group-contribution concept. The number and composition of different condensed phases impacts the diversity of reaction media for multiphase chemistry and the gas-particle partitioning of semivolatile species. Recent studies show that under certain conditions biogenic and other organic-rich particles can be present in a highly viscous, semisolid or amorphous solid physical state, with consequences regarding reaction kinetics and mass transfer limitations. We present results of new gas-particle partitioning computations for aerosol chamber data using a model based on AIOMFAC activity coefficients and state-of-the-art vapor pressure estimation methods. Different environmental conditions in terms of temperature, relative humidity (RH), salt content, amount of precursor VOCs, and physical state of the particles are considered. We show how modifications of absorptive and adsorptive gas-particle mass transfer affects the total aerosol mass in the calculations and how the results of these modeling approaches compare to data of aerosol chamber experiments, such as alpha-pinene oxidation SOA. For a condensed phase in a mixed liquid state containing ammonium sulfate, the model predicts liquid-liquid phase separation up to high RH in case of, on average, moderately hydrophilic organic compounds, such as first generation oxidation products of alpha-pinene. The computations also reveal that treating liquid phases as ideal mixtures substantially overestimates the SOA mass, especially at high relative humidity.
Gritti, Fabrice; Guiochon, Georges
2015-03-06
Previous data have shown that could deliver a minimum reduced plate height as small as 1.7. Additionally, the reduction of the mesopore size after C18 derivatization and the subsequent restriction for sample diffusivity across the Titan-C18 particles were found responsible for the unusually small value of the experimental optimum reduced velocity (5 versus 10 for conventional particles) and for the large values of the average reduced solid-liquid mass transfer resistance coefficients (0.032 versus 0.016) measured for a series of seven n-alkanophenones. The improvements in column efficiency made by increasing the average mesopore size of the Titan silica from 80 to 120Å are investigated from a quantitative viewpoint based on the accurate measurements of the reduced coefficients (longitudinal diffusion, trans-particle mass transfer resistance, and eddy diffusion) and of the intra-particle diffusivity, pore, and surface diffusion for the same series of n-alkanophenone compounds. The experimental results reveal an increase (from 0% to 30%) of the longitudinal diffusion coefficients for the same sample concentration distribution (from 0.25 to 4) between the particle volume and the external volume of the column, a 40% increase of the intra-particle diffusivity for the same sample distribution (from 1 to 7) between the particle skeleton volume and the bulk phase, and a 15-30% decrease of the solid-liquid mass transfer coefficient for the n-alkanophenone compounds. Pore and surface diffusion are increased by 60% and 20%, respectively. The eddy dispersion term and the maximum column efficiency (295000plates/m) remain virtually unchanged. The rate of increase of the total plate height with increasing the chromatographic speed is reduced by 20% and it is mostly controlled (75% and 70% for 80 and 120Å pore size) by the flow rate dependence of the eddy dispersion term. Copyright © 2015 Elsevier B.V. All rights reserved.
Templated Solid-State Dewetting of Thin Silicon Films.
Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Delobbe, Anne; Ronda, Antoine; Berbezier, Isabelle; Abbarchi, Marco
2016-11-01
Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)
NASA Technical Reports Server (NTRS)
Ryan, T. W., III; Dodge, L. G.
1984-01-01
Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.
Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.
1993-01-01
Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.
Optical trapping and Raman spectroscopy of solid particles.
Rkiouak, L; Tang, M J; Camp, J C J; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D
2014-06-21
The heterogeneous interactions of gas molecules on solid particles are crucial in many areas of science, engineering and technology. Such interactions play a critical role in atmospheric chemistry and in heterogeneous catalysis, a key technology in the energy and chemical industries. Investigating heterogeneous interactions upon single levitated particles can provide significant insight into these important processes. Various methodologies exist for levitating micron sized particles including: optical, electrical and acoustic techniques. Prior to this study, the optical levitation of solid micron scale particles has proved difficult to achieve over timescales relevant to the above applications. In this work, a new vertically configured counter propagating dual beam optical trap was optimized to levitate a range of solid particles in air. Silica (SiO2), α-alumina (Al2O3), titania (TiO2) and polystyrene were stably trapped with a high trapping efficiency (Q = 0.42). The longest stable trapping experiment was conducted continuously for 24 hours, and there are no obvious constraints on trapping time beyond this period. Therefore, the methodology described in this paper should be of major benefit to various research communities. The strength of the new technique is demonstrated by the simultaneous levitation and spectroscopic interrogation of silica particles by Raman spectroscopy. In particular, the adsorption of water upon silica was investigated under controlled relative humidity environments. Furthermore, the collision and coagulation behaviour of silica particles with microdroplets of sulphuric acid was followed using both optical imaging and Raman spectroscopy.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
Organic speciation of size-segregated atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Tremblay, Raphael
Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources. The presence of known carcinogenic PAHs in the respirable particles has strong importance for human health. Recommendations for method improvements and further studies are included.
Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei
2012-01-01
Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
NASA Astrophysics Data System (ADS)
Grathwohl, Peter; Ruegner, Hermann; Schwientek, Marc; Beckingham, Barbara
2013-04-01
Water quality in rivers typically depends on the degree of urbanization or the population density in a catchment. Transport of many pollutants in rivers is coupled to transport of suspended particles, potentially dominated by storm water overflows and mobilization of legacy contamination of sediments. Concentration of pollutants strongly sorbed to suspended particles cannot be diluted by water directly, but depends on the mixture of "polluted" urban and "clean" background particles. In the current study, the total concentration of polycyclic aromatic hydrocarbons (PAHs), the amount of total suspended solids (TSS) and turbidity were measured on a monthly basis in water samples from 5 neighbouring catchments with contrasting land use in Southwest Germany over 1.5 years. In addition, single flood events with large changes in turbidity were sampled at high temporal resolution. Linear correlations of turbidity and TSS where obtained over all catchments investigated. From linear regressions of turbidity vs. total PAH concentrations in water, robust mean concentrations of PAHs on suspended particles could be obtained, which were distinct for each catchment depending on urban influence. PAH concentrations on suspended particles were stable over a large turbidity range (up to 900 NTU) confirmed by samples taken during flood events. No pronounced effects due to changing particle size or origin have been observed for the catchments investigated (< 150 squared km). Regression of total concentrations of PAHs in water samples vs. turbidity thus comprises a robust measure of the average sediment quality in a given catchment and this correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. The findings are very promising for other particle-bound contaminant fluxes (PCBs, phosphorus, etc.) and in terms of on-line monitoring of turbidity as a proxy for pollution.
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Solid polymer electrolyte compositions
Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba
2001-01-01
An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.
Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen
2005-06-01
A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.
NASA Astrophysics Data System (ADS)
Ronnet, Thomas; Mousis, Olivier; Vernazza, Pierre
2016-10-01
The Galilean satellites are thought to have formed within an accretion disk surrounding Jupiter at the late stages of its formation. However, the structure of the gaseous disk, as well as the size and origin of the solids that eventually formed the satellites are yet to be constrained.Here we model an evolving gaseous disk around Jupiter and investigate the fate of solid particles of different sizes submitted to aerodynamic drag, turbulent diffusion, and heated by the surrounding gas. The motion of the solid particles is integrated in the (r-z) plane, taking into account dust settling and radial drift. The evolution of their ice-to-rock ratio is tracked when they cross the snowline and start to sublimate. Sublimation is coupled to the equations of motion as it changes the radius of the particle and consequently acts on the drag force. The I/R ratio then serves as a comparison to the observed bulk compositions of Io and Europa.
NASA Astrophysics Data System (ADS)
Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.
2017-11-01
The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.
Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size
Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; ...
2015-05-19
We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less
Multilayer design of hybrid phosphor film for application in LEDs
NASA Astrophysics Data System (ADS)
Güner, Tuğrul; Köseoğlu, Devrim; Demir, Mustafa M.
2016-10-01
Crosslinked polydimethylsiloxane (PDMS) composite coatings containing luminescent micrometer-sized yellow Y3Al5O12:Ce3+ (YAG:Ce3+) particles were prepared by spraying for potential applications in solid-state lighting. Blue light was down converted by phosphor particles to produce white light, yet poor color properties of YAG:Ce3+ stemmed from a deficiency of red. When nitride-based red phosphor was simply blended into the system, the electrostatic interaction of negatively charged YAG:Ce3+ and positively charged red phosphor particles caused remarkable clustering and heterogeneity in particle dispersion. Consequently, the light is dominantly blue and shifted to cold white. In other case, phosphor particles were sprayed onto the diffused polycarbonate substrate in stacked layers. Coatings with >80% inorganic content by mass with a thickness of 60 μm were subjected to thermal crosslinking, which the presence of the phosphor particles obstructed, presumably due to the hindrance of large phosphor particles in the diffusion of PDMS precursors. The coating of YAG:Ce3+ first followed by red phosphor in stacked layers produced better light output and color properties than the coating obtained by spraying the mixture at once. Monte Carlo simulation validated the hypothesis.
Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong
We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less
2015-12-01
evaluation The major drawback to light obscuration particle counting is that the technology is unable to differentiate between solid particulate ...light obscuration particle counter technologies evaluated were able to properly measure solid particulate contamination and provide an indication of...undissolved water, Aqua-Glo, Particulate , Gravimetric 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT none 18. NUMBER OF PAGES 55 19a. NAME OF
A comparison of solids collected in sediment traps and automated water samplers
Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.
1996-01-01
Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.
Design of Particle-Based Thermal Energy Storage for a Concentrating Solar Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Zhang, Ruichong; Sawaged, Fadi
Solid particles can operate at higher temperature than current molten salt or oil, and they can be a heat-transfer and storage medium in a concentrating solar power (CSP) system. By using inexpensive solid particles and containment material for thermal energy storage (TES), the particle-TES cost can be significantly lower than other TES methods such as a nitrate-salt system. The particle-TES system can hold hot particles at more than 800 degrees C with high thermal performance. The high particle temperatures increase the temperature difference between the hot and cold particles, and they improve the TES capacity. The particle-based CSP system ismore » able to support high-efficiency power generation, such as the supercritical carbon-dioxide Brayton power cycle, to achieve >50% thermal-electric conversion efficiency. This paper describes a solid particle-TES system that integrates into a CSP plant. The hot particles discharge to a heat exchanger to drive the power cycle. The returning cold particles circulate through a particle receiver to absorb solar heat and charge the TES. This paper shows the design of a particle-TES system including containment silos, foundation, silo insulation, and particle materials. The analysis provides results for four TES capacities and two silo configurations. The design analysis indicates that the system can achieve high thermal efficiency, storage effectiveness (i.e., percentage usage of the hot particles), and exergetic efficiency. An insulation method for the hot silo was considered. The particle-TES system can achieve high performance and low cost, and it holds potential for next-generation CSP technology.« less
Majorana modes in solid state systems and its dynamics
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-04-01
We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.
NASA Astrophysics Data System (ADS)
Nguyen, V. B.; Li, J.; Chang, P.-H.; Phan, Q. T.; Teo, C. J.; Khoo, B. C.
2018-01-01
In this paper, numerical simulations are performed to study the dynamics of the deflagration-to-detonation transition (DDT) in pulse detonation engines (PDE) using energetic aluminum particles. The DDT process and detonation wave propagation toward the unburnt hydrogen/air mixture containing solid aluminum particles is numerically studied using the Eulerian-Lagrangian approach. A hybrid numerical methodology combined with appropriate sub-models is used to capture the gas dynamic characteristics, particle behavior, combustion characteristics, and two-way solid-particle-gas flow interactions. In our approach, the gas mixture is expressed in the Eulerian frame of reference, while the solid aluminum particles are tracked in the Lagrangian frame of reference. The implemented computer code is validated using published benchmark problems. The obtained results show that the aluminum particles not only shorten the DDT length but also reduce the DDT time. The improvement of DDT is primarily attributed to the heat released from surface chemical reactions on the aluminum particles. The temperatures associated with the DDT process are greater than the case of non-reacting particles added, with an accompanying rise in the pressure. For an appropriate range of particle volume fraction, particularly in this study, the higher volume fraction of the micro-aluminum particles added in the detonation chamber can lead to more heat energy released and more local instabilities in the combustion process (caused by the local high temperature), thereby resulting in a faster DDT process. In essence, the aluminum particles contribute to the DDT process of successfully transitioning to detonation waves for (failure) cases in which the fuel gas mixture can be either too lean or too rich. With a better understanding of the influence of added aluminum particles on the dynamics of the DDT and detonation process, we can apply it to modify the geometry of the detonation chamber (e.g., the length of the detonation tube) accordingly to improve the operational performance of the PDE.
Kimura, Shunsuke; Kasatani, Sachiha; Tanaka, Megumi; Araki, Kaeko; Enomura, Masakazu; Moriyama, Kei; Inoue, Daisuke; Furubayashi, Tomoyuki; Tanaka, Akiko; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira
2016-02-01
The amorphization has been generally known to improve the absorption and permeation of poorly water-soluble drugs through the enhancement of the solubility. The present study focused on the direct contact of amorphous solid particles with the surface of the membrane using curcumin as a model for water-insoluble drugs. Amorphous nanoparticles of curcumin (ANC) were prepared with antisolvent crystallization method using a microreactor. The solubility of curcumin from ANC was two orders of magnitude higher than that of crystalline curcumin (CC). However, the permeation of curcumin from the saturated solution of ANC was negligible. The transepithelial permeation of curcumin from ANC suspension was significantly increased as compared to CC suspension, while the permeation was unlikely correlated with the solubility, and the increase in the permeation was dependent on the total concentration of curcumin in ANC suspension. The absorptive transport of curcumin (from apical to basal, A to B) from ANC suspension was much higher than the secretory transport (from basal to apical, B to A). In vitro transport of curcumin through air-interface monolayers is large from ANC but negligible from CC particles. These findings suggest that the direct contact of ANC with the absorptive membrane can play an important role in the transport of curcumin from ANC suspension. The results of the study suggest that amorphous particles may be directly involved in the transepithlial permeation of curcumin.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...
Lateral solids dispersion coefficient in large-scale fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Daoyin; Chen, Xiaoping
2010-11-15
The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effectmore » on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)« less
Singh, Gurjeet; Sharma, Shailesh; Gupta, Ghanshyam Das
2017-07-01
The present study emphasized on the use of solid dispersion technology to triumph over the drawbacks associated with the highly effective antihypertensive drug telmisartan using different polymers (poloxamer 188 and locust bean gum) and methods (modified solvent evaporation and lyophilization). It is based on the comparison between selected polymers and methods for enhancing solubility through particle size reduction. The results showed different profiles for particle size, solubility, and dissolution of formulated amorphous systems depicting the great influence of polymer/method used. The resulting amorphous solid dispersions were characterized using x-ray diffraction (XRD), differential scanning calorimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analysis. The optimized solid dispersion (TEL 19) prepared with modified locust bean gum using lyophilization technique showed reduced particle size of 184.5 ± 3.7 nm and utmost solubility of 702 ± 5.47 μg/mL in water, which is quite high as compared to the pure drug (≤1 μg/mL). This study showed that the appropriate selection of carrier may lead to the development of solid dispersion formulation with desired solubility and dissolution profiles. The optimized dispersion was later formulated into fast-dissolving tablets, and further optimization was done to obtain the tablets with desired properties.
Nolan, John P.; Mandy, Francis
2008-01-01
While the term flow cytometry refers to the measurement of cells, the approach of making sensitive multiparameter optical measurements in a flowing sample stream is a very general analytical approach. The past few years have seen an explosion in the application of flow cytometry technology for molecular analysis and measurements using micro-particles as solid supports. While microsphere-based molecular analyses using flow cytometry date back three decades, the need for highly parallel quantitative molecular measurements that has arisen from various genomic and proteomic advances has driven the development in particle encoding technology to enable highly multiplexed assays. Multiplexed particle-based immunoassays are now common place, and new assays to study genes, protein function, and molecular assembly. Numerous efforts are underway to extend the multiplexing capabilities of microparticle-based assays through new approaches to particle encoding and analyte reporting. The impact of these developments will be seen in the basic research and clinical laboratories, as well as in drug development. PMID:16604537
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
Material fabrication using acoustic radiation forces
Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ
2015-12-01
Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.
NASA Astrophysics Data System (ADS)
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Wu, Junliang; Ren, Yufen; Wang, Xuemei; Wang, Xiaoke; Chen, Liding; Liu, Gangcai
2015-10-01
Roofs and roads, accounting for a large portion of the urban impervious land surface, have contributed significantly to urban nonpoint pollution. In this study, in Beijing, China, roof and road runoff are sampled to measure the suspended solids (SS), nitrogen (N), and phosphorus (P) contained in particles with different sizes. The SS content in the road runoff (151.59 mg/L) was sevenfold that in the roof runoff (21.13 mg/L, p < 0.05). The SS contained more coarse particulates in the roof runoff than in road runoff. The small particulates in the range of 0.45-50 μm consisted of 59 % SS in the roof runoff and 94 % SS in the road runoff. P was mainly attached to particle sizes of 10-50 μm in the roof (73 %) and road (48 %) runoffs, while N was mainly in a dissolved phase state in both runoffs. So, the different associations of N and P raise a challenge in preventing stormwater pollution in urban environments.
Valve for controlling solids flow
Feldman, David K.
1980-01-01
A fluidized solids control valve is disclosed that is particularly well adapted for use with a flow of coal or char that includes both large particles and fines. The particles may or may not be fluidized at various times during the operation. The valve includes a tubular body that terminates in a valve seat covered by a normally closed closure plate. The valve body at the seat and the closure plate is provided with aligned longitudinal slots that receive a pivotally supported key plate. The key plate is positionable by an operator in inserted, intermediate and retracted positions respecting the longitudinal slot in the valve body. The key plate normally closes the slot within the closure plate but is shaped and aligned obliquely to the longitudinal slot within the valve body to provide progressively increasing slot openings between the inserted and retracted positions. Transfer members are provided between the operator, key plate and closure plate to move the closure plate into an open position only when the key plate is retracted from the longitudinal slot within the valve body.
Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong
2017-01-05
The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.
Process for the production of liquid hydrocarbons
Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus
2006-06-27
The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.
1980-07-01
Solution of the Nonlinear Eddy Current and Loss Problems in Quasilinear Poisson Equation in a Nonuniform the Solid Rotors of Large Turbogenerators...stable probe support and aiid possibly also for the effect of a nonuniform Scanning mechanisms, especially for test pieces of magnetic field...without specimen): defects such as inclusions, voids, delaminations, 55 db and nonuniform particle distribution. Due to im- Dynamic range: 50 to 70
NASA Technical Reports Server (NTRS)
Pagan, Kathy L.; Tabazadeh, Azadeh; Drdla, Katja; Hervig, Mark E.; Eckermann, Stephen D.; Browell, Edward V.; Legg, Marion J.; Foschi, Patricia G.
2004-01-01
A number of recently published papers suggest that mountain-wave activity in the stratosphere, producing ice particles when temperatures drop below the ice frost point, may be the primary source of large NAT particles. In this paper we use measurements from the Advanced Very High Resolution Radiometer (AVHRR) instruments on board the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites to map out regions of ice clouds produced by stratospheric mountain-wave activity inside the Arctic vortex. Lidar observations from three DC-8 flights in early December 1999 show the presence of solid nitric acid (Type Ia or NAT) polar stratospheric clouds (PSCs). By using back trajectories and superimposing the position maps on the AVHRR cloud imagery products, we show that these observed NAT clouds could not have originated at locations of high-amplitude mountain-wave activity. We also show that mountain-wave PSC climatology data and Mountain Wave Forecast Model 2.0 (MWFM-2) raw hemispheric ray and grid box averaged hemispheric wave temperature amplitude hindcast data from the same time period are in agreement with the AVHRR data. Our results show that ice cloud formation in mountain waves cannot explain how at least three large scale NAT clouds were formed in the stratosphere in early December 1999.
Rojas-Rejón, Oscar A; Sánchez, Arturo
2014-07-01
This work studies the effect of initial solid load (4-32 %; w/v, DS) and particle size (0.41-50 mm) on monosaccharide yield of wheat straw subjected to dilute H(2)SO(4) (0.75 %, v/v) pretreatment and enzymatic saccharification. Response surface methodology (RSM) based on a full factorial design (FFD) was used for the statistical analysis of pretreatment and enzymatic hydrolysis. The highest xylose yield obtained during pretreatment (ca. 86 %; of theoretical) was achieved at 4 % (w/v, DS) and 25 mm. The solid fraction obtained from the first set of experiments was subjected to enzymatic hydrolysis at constant enzyme dosage (17 FPU/g); statistical analysis revealed that glucose yield was favored with solids pretreated at low initial solid loads and small particle sizes. Dynamic experiments showed that glucose yield did not increase after 48 h of enzymatic hydrolysis. Once established pretreatment conditions, experiments were carried out with several initial solid loading (4-24 %; w/v, DS) and enzyme dosages (5-50 FPU/g). Two straw sizes (0.41 and 50 mm) were used for verification purposes. The highest glucose yield (ca. 55 %; of theoretical) was achieved at 4 % (w/v, DS), 0.41 mm and 50 FPU/g. Statistical analysis of experiments showed that at low enzyme dosage, particle size had a remarkable effect over glucose yield and initial solid load was the main factor for glucose yield.
Adsorption of heavy metals by road deposited solids.
Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna
2013-01-01
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
NASA Astrophysics Data System (ADS)
Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu
2017-08-01
In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.
Ticehurst, Martyn David; Marziano, Ivan
2015-06-01
This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. © 2015 Royal Pharmaceutical Society.
Radial pressure profiles in a cold‐flow gas‐solid vortex reactor
Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.
2015-01-01
A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Lee, A.Y.; Ruck, G.W.
A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap betweenmore » the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m/sup 2/ and for the latter 0.5 MW/m/sup 2/. The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented.« less
Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron
2015-01-01
A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics. PMID:26610515
Gillen, Greg; Najarro, Marcela; Wight, Scott; Walker, Marlon; Verkouteren, Jennifer; Windsor, Eric; Barr, Tim; Staymates, Matthew; Urbas, Aaron
2015-11-24
A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD) inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height), as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics.
A new method for spray deposit assessment
Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore
1965-01-01
Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.
Particle transport in porous media
NASA Astrophysics Data System (ADS)
Corapcioglu, M. Yavuz; Hunt, James R.
The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.
DNA-nanoparticle superlattices formed from anisotropic building blocks
NASA Astrophysics Data System (ADS)
Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.
2010-11-01
Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.
NASA Astrophysics Data System (ADS)
Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim
2017-11-01
We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.
Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim
2017-11-28
We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.
An Analysis of the Orbital Distribution of Solid Rocket Motor Slag
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Mulrooney, Mark
2007-01-01
The contribution made by orbiting solid rocket motors (SRMs) to the orbital debris environment is both potentially significant and insufficiently studied. A combination of rocket motor design and the mechanisms of the combustion process can lead to the emission of sufficiently large and numerous by-products to warrant assessment of their contribution to the orbital debris environment. These particles are formed during SRM tail-off, or the termination of burn, by the rapid expansion, dissemination, and solidification of the molten Al2O3 slag pool accumulated during the main burn phase of SRMs utilizing immersion-type nozzles. Though the usage of SRMs is low compared to the usage of liquid fueled motors, the propensity of SRMs to generate particles in the 100 m and larger size regime has caused concern regarding their contributing to the debris environment. Particle sizes as large as 1 cm have been witnessed in ground tests conducted under vacuum conditions and comparable sizes have been estimated via ground-based telescopic and in-situ observations of sub-orbital SRM tail-off events. Using sub-orbital and post recovery observations, a simplistic number-size-velocity distribution of slag from on-orbit SRM firings was postulated. In this paper we have developed more elaborate distributions and emission scenarios and modeled the resultant orbital population and its time evolution by incorporating a historical database of SRM launches, propellant masses, and likely location and time of particulate deposition. From this analysis a more comprehensive understanding has been obtained of the role of SRM ejecta in the orbital debris environment, indicating that SRM slag is a significant component of the current and future population.
Remote sensing of particle backscattering in Chesapeake Bay: a 6-year SeaWiFS retrospective view
Zawada, D.G.; Hu, C.; Clayton, T.; Chen, Z.; Brock, J.C.; Muller-Karger, F. E.
2007-01-01
Traditional field techniques to monitor water quality in large estuaries, such as boat-based surveys and autonomous moored sensors, generally provide limited spatial coverage. Satellite imagery potentially can be used to address both of these limitations. Here, we show that satellite-based observations are useful for inferring total-suspended-solids (TSS) concentrations in estuarine areas. A spectra-matching optimization algorithm was used to estimate the particle backscattering coefficient at 400 nm, bbp(400), in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) satellite imagery. These estimated values of bbp(400) were compared to in situ measurements of TSS for the study period of September 1997–December 2003. Contemporaneous SeaWiFS bbp(400) values and TSS concentrations were positively correlated (N = 340, r2 = 0.4, P bp(400) values served as a reasonable first-order approximation for synoptically mapping TSS. Overall, large-scale patterns of SeaWiFS bbp(400) appeared to be consistent with expectations based on field observations and historical reports of TSS. Monthly averages indicated that SeaWiFS bbp(400) was typically largest in winter (>0.049 m−1, November–February) and smallest in summer (−1, June–August), regardless of the amount of riverine discharge to the bay. The study period also included Hurricanes Floyd and Isabel, which caused large-scale turbidity events and changes in the water quality of the bay. These results demonstrate that this technique can provide frequent synoptic assessments of suspended solids concentrations in Chesapeake Bay and other coastal regions.
NASA Technical Reports Server (NTRS)
Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.
2016-01-01
Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).
NASA Astrophysics Data System (ADS)
Balakrishnan, Kaushik
The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
NASA Astrophysics Data System (ADS)
Faizan-Ur-Rab, M.; Zahiri, S. H.; King, P. C.; Busch, C.; Masood, S. H.; Jahedi, M.; Nagarajah, R.; Gulizia, S.
2017-12-01
Cold spray is a solid-state rapid deposition technology in which metal powder is accelerated to supersonic speeds within a de Laval nozzle and then impacts onto the surface of a substrate. It is possible for cold spray to build thick structures, thus providing an opportunity for melt-less additive manufacturing. Image analysis of particle impact location and focused ion beam dissection of individual particles were utilized to validate a 3D multicomponent model of cold spray. Impact locations obtained using the 3D model were found to be in close agreement with the empirical data. Moreover, the 3D model revealed the particles' velocity and temperature just before impact—parameters which are paramount for developing a full understanding of the deposition process. Further, it was found that the temperature and velocity variations in large-size particles before impact were far less than for the small-size particles. Therefore, an optimal particle temperature and velocity were identified, which gave the highest deformation after impact. The trajectory of the particles from the injection point to the moment of deposition in relation to propellant gas is visualized. This detailed information is expected to assist with the optimization of the deposition process, contributing to improved mechanical properties for additively manufactured cold spray titanium parts.
NASA Astrophysics Data System (ADS)
Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John
2012-11-01
Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Firework displays as sources of particles similar to gunshot residue.
Grima, Matthew; Butler, Mark; Hanson, Robert; Mohameden, Ahmed
2012-03-01
In light of past research being targeted to find specific particles which may be similar to gunshot residue (GSR), this project was formulated to detect any possible particulate by random particle fallout onto substrates at firework displays and to assess the impact this may have on GSR evidence. Firework residue was collected at a display site, from amongst spectators as well as from the author's hair 90min after the display. SEM-EDX analysis has detected such particulate in all three scenarios, with the firework particle population at large providing a solid ground for discrimination from GSR. Wind dispersal was found to decrease the particle population and subsequently, the latter's discriminatory power. Some particles, if treated individually were found to be indistinguishable from GSR. Findings also include residues which may mimic strontium based GSR as well as GSR which may be mixed with that from previous firings. The continuous changes made to primer and propellant compositions by manufacturers also call for greater consideration when classifying particles as originating from pyrotechnic devices. Furthermore, authorities such as police forces should be made more aware about the incidence of such particle transfer in firework related periods. Copyright © 2011 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions
NASA Astrophysics Data System (ADS)
Morris, Jeffrey
2015-03-01
Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in concentrated suspensions.
Entrainment of solid particles over irregular wavy walls
NASA Astrophysics Data System (ADS)
Milici, Barbara
2017-11-01
The distribution of inertial particles in turbulent flows is highly nonuniform and is governed by the dynamics of turbulent structures of the underlying carrier flow field which, in turn, is affected by the presence of a loading of dispersed particles. The issue is discussed here focusing on the coupling between near-bed coherent structures and suspended solid particles dynamics, in wall-bounded turbulent multiphase flows, bounded by rough boundaries. The friction Reynolds number of the unladen flow is Reτ=180 and the dispersed phase spans one order of magnitude of particle diameter. The analysis takes into account fluid-particle interaction (two-way coupling) in the frame of the Particle-Source-In-Cell (PSIC) method, using Direct Numerical Simulations (DNS) for the carrier phase coupled with Lagrangian Particle Tracking (LPT) for the dispersed phase. The effect of the wall's roughness is taken into account modelling the elastic rebound of particles onto it, instead of using a virtual rebound model.
Interactions between Impacting Particles and Target in Two-Phase Flow
NASA Astrophysics Data System (ADS)
Kang, Sang-Wook; Chow, Tze-Show
1996-11-01
The time-dependent interaction phenomena between a target and the incident solid particles borne by supersonic gas-jet stream have been numerically analyzed. In particular, the analysis dealt with particles such as aluminum, copper, and uranium ipinging on aluminum, copper, or uranium targets at various impact velocities ranging from 200 m/s to 1,000 m/s. Typical particle sizes were 50 to 100 micrometers. Results show considerable deformation of both the incident particles and the target when the velocity is greater than 500 m/s. Experiments performed on copper particles impacting an aluminum target demonstrate that under certain conditions (such as a supersonic gas jet issuing from a nozzle carrying solid particles) the impacts not only deform but also cause deposition of the particles on the surface. The present analysis shows the plausibility of such behavior when the particles impact the target at high velocities.
LEICA - A low energy ion composition analyzer for the study of solar and magnetospheric heavy ions
NASA Technical Reports Server (NTRS)
Mason, Glenn M.; Hamilton, Douglas C.; Walpole, Peter H.; Heuerman, Karl F.; James, Tommy L.; Lennard, Michael H.; Mazur, Joseph E.
1993-01-01
The SAMPEX LEICA instrument is designed to measure about 0.5-5 MeV/nucleon solar and magnetospheric ions over the range from He to Ni. The instrument is a time-of-flight mass spectrometer which measures particle time-of-flight over an about 0.5 m path, and the residual energy deposited in an array of Si solid state detectors. Large area microchannel plates are used, resulting in a large geometrical factor for the instrument (0.6 sq cm sr) which is essential for accurate compositional measurements in small solar flares, and in studies of precipitating magnetospheric heavy ions.
The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy
NASA Astrophysics Data System (ADS)
Kazarinov, N. A.; Evstifeev, A. D.; Petrov, Y. V.; Atroshenko, S. A.; Valiev, R. R.
2018-04-01
In this work, the results on solid particle erosion of an ultrafine-grained Grade 5 titanium alloy, which was produced using high-pressure torsion (HPT) technique, are presented. In order to assess influence of the HPT treatment on material's behavior in erosive conditions, special experimental procedures were developed. The ultrafine-grained (UFG) alloy was tested alongside with a conventional coarse-grained (CG) Grade 5 titanium alloy in equal conditions. The experiments were conducted in a small-scale wind tunnel with corundum particles as an abrasive material. Both particle dimensions and particle velocities were varied in course of the experiments. Erosion resistance of the samples was evaluated in two ways—mass reduction measurements with subsequent gravimetric erosion rate calculations and investigation of samples' surface roughness after erosion tests. The UFG titanium alloy demonstrated considerable improvement of static mechanical properties (ultimate tensile strength, microhardness), whereas its CG counterpart appeared to be slightly more resistant to solid particle erosion, which might indicate the drop of dynamic strength properties for the HPT-processed material.
Design and Computational Fluid Dynamics Investigation of a Personal, High Flow Inhalable Sampler
Anthony, T. Renée; Landázuri, Andrea C.; Van Dyke, Mike; Volckens, John
2016-01-01
The objective of this research was to develop an inlet to meet the inhalable sampling criterion at 10 l min−1 flow using the standard, 37-mm cassette. We designed a porous head for this cassette and evaluated its performance using computational fluid dynamics (CFD) modeling. Particle aspiration efficiency was simulated in a wind tunnel environment at 0.4 m s−1 freestream velocity for a facing-the-wind orientation, with sampler oriented at both 0° (horizontal) and 30° down angles. The porous high-flow sampler oriented 30° downward showed reasonable agreement with published mannequin wind tunnel studies and humanoid CFD investigations for solid particle aspiration into the mouth, whereas the horizontal orientation resulted in oversampling. Liquid particles were under-aspirated in all cases, however, with 41–84% lower aspiration efficiencies relative to solid particles. A sampler with a single central 15-mm pore at 10 l min−1 was also investigated and was found to match the porous sampler’s aspiration efficiency for solid particles; the single-pore sampler is expected to be more suitable for liquid particle use. PMID:20418278
A New Composite Electrode Applied for Studying the Electrochemistry of Insoluble Particles: α-HgS.
Yang, Minjun; Compton, Richard G
2018-05-22
The redox chemistry of solid α-HgS particles is revealed using a carbon/PVDF composite containing α-HgS, carbon black, polyvinylidene fluoride (PVDF). The electrochemical behaviour of the carbon/PVDF composite is first characterised with three water insoluble organic solids. Then the reduction of solid α-HgS particles is investigated and found to occur at a high negative potential, -1.82 V versus saturated mercury sulphate reference electrode, to form metallic mercury and sulphide ions. The subsequent oxidation of metallic mercury and sulphide occurs at +0.24 and -0.49 V versus MSE respectively. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assessment of analytical techniques for predicting solid propellant exhaust plumes
NASA Technical Reports Server (NTRS)
Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.
1977-01-01
The calculation of solid propellant exhaust plume flow fields is addressed. Two major areas covered are: (1) the applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size and particle size distributions, and (2) thermochemical modeling of the gaseous phase of the flow field. Comparisons of experimentally measured and analytically predicted data are made. The experimental data were obtained for subscale solid propellant motors with aluminum loadings of 2, 10 and 15%. Analytical predictions were made using a fully coupled two-phase numerical solution. Data comparisons will be presented for radial distributions at plume axial stations of 5, 12, 16 and 20 diameters.
Limitations on analysis of small particles with an electron probe: pollution studies
Heidel, R.H.; Desborough, G.A.
1975-01-01
Recent literature concerning the size and composition of airborne lead particles in automobile exhaust emissions determined by electron microprobe analysis reports 14 distinct lead compounds. Particle sizes reported were from 0.2 ??m to 2 ??m in the diameter. The determination of chemical formulae for compounds requires quantitative elemental data for individual particles. It was also assumed that the lead bearing particles analysed were solid (specifically non porous or non fluffy) compounds which occurred as discrete (non aggregate) particles. Intensity data obtained in the laboratory from the excited volume in a 1 ??m diameter sphere of solid lead chloride indicate insufficient precision and sensitivity to obtain chemical formulae as reported in the literature for exhaust emission products.
Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M
2015-10-01
Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.
A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium
NASA Technical Reports Server (NTRS)
Witzke, Walter R; Prok, George M; Walsh, Thomas J
1954-01-01
Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.
Anderson localization and Mott insulator phase in the time domain
Sacha, Krzysztof
2015-01-01
Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169
Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL
2009-11-17
A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.
Christophersen, Philip Carsten; Zhang, Long; Müllertz, Anette; Nielsen, Hanne Mørck; Yang, Mingshi; Mu, Huiling
2014-09-01
To investigate the in vitro release and degradation of desmopressin from saturated triglyceride microparticles under both lipolytic and proteolytic conditions. The release of desmopressin from different solid lipid microparticles in the absence and presence of a microbial lipase and protease was determined. Trilaurin (TG12), trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18) were used as lipid excipients to produce solid lipid microparticles. In the presence of lipase, the rate of drug release from different lipid particles was in the order of TG14 > TG16 > TG18, which is the same rank order as the lipid degradation rate. A reverse rank order was found for the protection of desmopressin from enzymatic degradation due to spatial separation of desmopressin from the protease. TG12 accelerated the release of desmopressin from all lipid particles when added as either drug-free microparticles to the lipolysis medium or incorporated in TG16 particles. Additionally, TG12 particles protected desmopressin from degradation when present in the lipolysis medium with the other lipid microparticles. TG12 is a very interesting lipid for oral lipid formulations containing peptides and proteins as it alters release and degradation of the incorporated desmopressin. The present study demonstrates the possibility of bio-relevant in vitro evaluation of lipid-based solid particles.
Sedimentation of finite-size particles in quiescent and turbulent environments
NASA Astrophysics Data System (ADS)
Brandt, Luca; Fornari, Walter; Picano, Francesco
2015-11-01
Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows. We present Direct Numerical Simulations of sedimentation in quiescent and turbulent environments using an Immersed Boundary Method to study the behavior of finite-size particles in homogeneous isotropic turbulence. The particle radius is approximately 6 Komlogorov lengthscales, the volume fraction 0.5% and 1% and the density ratio 1.02. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. The reduction with respect to a single particle in quiescent fluid is about 12% in dilute conditions. The probability density function of the particle velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails in quiescent fluid. These tails are associated to the intermittent fast sedimentation of particle pairs in drafting-kissing-tumbling motions. Using the concept of mean relative velocity we estimate the mean drag coefficient from empirical formulas and show that non stationary effects, related to vortex shedding, explain the increased reduction in mean settling velocity in a turbulent environment. This work was supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS.
Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures
NASA Astrophysics Data System (ADS)
Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-04-01
The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.
NASA Astrophysics Data System (ADS)
Alois, Stefano; Merrison, Jonathan; Iversen, Jens Jacob; Sesterhenn, Joern
2017-04-01
Contact electrification between different particles size/material can lead to electric field generation high enough to produce electrical breakdown. Experimental studies of solid aerosol contact electrification (Alois et al., 2016) has shown various electrical breakdown phenomena; these range from field emission at the contact site (nm-scale) limiting particle surface charge concentration, to visible electrical discharges (cm-scale) observed both with the use of an electrometer and high-speed camera. In these experiments micron-size particles are injected into a low-pressure chamber, where they are deviated by an applied electric field. A laser Doppler velocimeter allows the simultaneous determination of particle size and charge of single grains. Results have shown an almost constant surface charge concentration, which is likely to be due to charge limitation by field emission at the contact site between particle and injector. In a second measurement technique, the electrically isolated injector tube (i.e. a Faraday cage) is connected to an oscilloscope and synchronised to a high speed camera filming the injection. Here the electrification of a large cloud of particles can be quantified and discharging effects studied. This study advances our understanding on the physical processes leading to electrification and electrical breakdown mechanisms.
Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth
NASA Astrophysics Data System (ADS)
Ding, Feng; Bolton, Kim; Rosén, Arne
2004-07-01
Molecular dynamics simulations have been used to study the thermal behavior of FeN-mCm clusters where N, the total number of atoms, extends up to 2400. Comparison of the computed results with experimental data shows that the simulations yield the correct trends for the liquid-solid region of the iron-carbide phase diagram as well as the correct dependence of cluster melting point as a function of cluster size. The calculation indicates that, when carbon nanotubes (CNTs) are grown on large (>3-4 nm) catalyst particles at low temperatures (<1200 K), the catalyst particles are not completely molten. It is argued that the mechanism of CNT growth under these conditions may be governed by the surface melting of the cluster. .
Allowing for crystalline structure effects in Geant4
Bagli, Enrico; Asai, Makoto; Dotti, Andrea; ...
2017-03-24
In recent years, the Geant4 toolkit for the Monte Carlo simulation of radiation with matter has seen large growth in its divers user community. A fundamental aspect of a successful physics experiment is the availability of a reliable and precise simulation code. Geant4 currently does not allow for the simulation of particle interactions with anything other than amorphous matter. To overcome this limitation, the GECO (GEant4 Crystal Objects) project developed a general framework for managing solid-state structures in the Geant4 kernel and validate it against experimental data. As a result, accounting for detailed geometrical structures allows, for example, simulation ofmore » diffraction from crystal planes or the channeling of charged particle.« less
Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo
2013-08-27
Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan
2018-05-09
It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.
NASA Astrophysics Data System (ADS)
Fernández-Ruiz, Ramón; Friedrich K., E. Josue; Redrejo, M. J.
2018-02-01
The main goal of this work was to investigate, in a systematic way, the influence of the controlled modulation of the particle size distribution of a representative solid sample with respect to the more relevant analytical parameters of the Direct Solid Analysis (DSA) by Total-reflection X-Ray Fluorescence (TXRF) quantitative method. In particular, accuracy, uncertainty, linearity and detection limits were correlated with the main parameters of their size distributions for the following elements; Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb. In all cases strong correlations were finded. The main conclusion of this work can be resumed as follows; the modulation of particles shape to lower average sizes next to a minimization of the width of particle size distributions, produce a strong increment of accuracy, minimization of uncertainties and limit of detections for DSA-TXRF methodology. These achievements allow the future use of the DSA-TXRF analytical methodology for development of ISO norms and standardized protocols for the direct analysis of solids by mean of TXRF.
Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M
2018-04-01
This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium
NASA Astrophysics Data System (ADS)
Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi
2016-01-01
Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.
Physical characteristics of indigestible solids affect emptying from the fasting human stomach.
Meyer, B; Beglinger, C; Neumayer, M; Stalder, G A
1989-01-01
Gastric emptying of indigestible solids depends on their size. It is not clear whether physical characteristics other than particle size affect emptying of indigestible solids from the fasting human stomach. We studied gastric emptying of three differently shaped particles, (cubes, spheres, rods) of either hard or soft consistency during the fasting state in human volunteers. The shape of indigestible particles did not affect their emptying. The area under the gastric emptying curve (AUC: particles x hour) was for hard cubes 24.7 (2.2), for hard spheres 27.9 (1.6), for hard rods 26.9 (2.7). All soft particles emptied faster than their identically shaped hard counterparts, but there was no difference among the three shapes (AUC for soft cubes: 29.2 (3.0), for soft spheres 32.0 (1.8), for soft rods 34.1 (1.2). If gastric emptying of hard and soft particles was compared independently of their shape, soft particles emptied significantly faster than hard ones: AUC 31.8 (1.2) v 26.5 (1.3) (p less than 0.01). In conclusion, the consistency but not the shape significantly affects gastric emptying. Specific physical characteristics other than size and shape may affect gastric emptying of indigestible particles which may be of importance in the design of drugs. PMID:2599438
Elasto-capillary interactions of drops and particles
NASA Astrophysics Data System (ADS)
Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno
2017-11-01
The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.
Thermal properties of granulated materials.
NASA Technical Reports Server (NTRS)
Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.
1972-01-01
Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.
Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi
2016-01-13
High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivakumar Babu, G.L., E-mail: gls@civil.iisc.ernet.in; Lakshmikanthan, P., E-mail: lakshmikanthancp@gmail.com; Santhosh, L.G., E-mail: lgsanthu2006@gmail.com
Highlights: • Shear strength properties of mechanically biologically treated municipal solid waste. • Effect of unit weight and particle size on the shear strength of waste. • Effect of particle size on the strength properties. • Stiffness ratio and the strength ratio of MSW. - Abstract: Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated bymore » performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m{sup 3} to 10.3 kN/m{sup 3} at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8° to 33° corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8° to 55° in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43.« less
NASA Astrophysics Data System (ADS)
Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N.
2016-05-01
We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the Athena code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the Athena simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, {dN}/{{dM}}p\\propto {M}p-p, with p≃ 1.6+/- 0.1, which equates to a differential size distribution of {dN}/{{dR}}p\\propto {R}p-q, with q≃ 2.8+/- 0.1. We find no significant trends with resolution from a convergence study of up to 5123 grid zones and {N}{{par}}≈ 1.5× {10}8 particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time τ =0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.
Lubrication of chocolate during oral processing.
Rodrigues, S A; Selway, N; Morgenstern, M P; Motoi, L; Stokes, J R; James, B J
2017-02-22
The structure of chocolate is drastically transformed during oral processing from a composite solid to an oil/water fluid emulsion. Using two commercial dark chocolates varying in cocoa solids content, this study develops a method to identify the factors that govern lubrication in molten chocolate and saliva's contribution to lubrication following oral processing. In addition to chocolate and its individual components, simulated boluses (molten chocolate and phosphate buffered saline), in vitro boluses (molten chocolate and whole human saliva) and ex vivo boluses (chocolate expectorated after chewing till the point of swallow) were tested. The results reveal that the lubrication of molten chocolate is strongly influenced by the presence of solid sugar particles and cocoa solids. The entrainment of particles into the contact zone between the interacting surfaces reduces friction such that the maximum friction coefficient measured for chocolate boluses is much lower than those for single-phase Newtonian fluids. The addition of whole human saliva or a substitute aqueous phase (PBS) to molten chocolate dissolves sugar and decreases the viscosity of molten chocolate so that thinner films are achieved. However, saliva is more lubricating than PBS, which results in lower friction coefficients for chocolate-saliva mixtures when compared to chocolate-PBS mixtures. A comparison of ex vivo and in vitro boluses also suggests that the quantity of saliva added and uniformity of mixing during oral processing affect bolus structure, which leads to differences in measured friction. It is hypothesized that inhomogeneous mixing in the mouth introduces large air bubbles and regions of non-emulsified fat into the ex vivo boluses, which enhance wetting and lubrication.
Hydrodynamic Stability Analysis of Particle-Laden Solid Rocket Motors
NASA Astrophysics Data System (ADS)
Elliott, T. S.; Majdalani, J.
2014-11-01
Fluid-wall interactions within solid rocket motors can result in parietal vortex shedding giving rise to hydrodynamic instabilities, or unsteady waves, that translate into pressure oscillations. The oscillations can result in vibrations observed by the rocket, rocket subsystems, or payload, which can lead to changes in flight characteristics, design failure, or other undesirable effects. For many years particles have been embedded in solid rocket propellants with the understanding that their presence increases specific impulse and suppresses fluctuations in the flowfield. This study utilizes a two dimensional framework to understand and quantify the aforementioned two-phase flowfield inside a motor case with a cylindrical grain perforation. This is accomplished through the use of linearized Navier-Stokes equations with the Stokes drag equation and application of the biglobal ansatz. Obtaining the biglobal equations for analysis requires quantification of the mean flowfield within the solid rocket motor. To that end, the extended Taylor-Culick form will be utilized to represent the gaseous phase of the mean flowfield while the self-similar form will be employed for the particle phase. Advancing the mean flowfield by quantifying the particle mass concentration with a semi-analytical solution the finalized mean flowfield is combined with the biglobal equations resulting in a system of eight partial differential equations. This system is solved using an eigensolver within the framework yielding the entire spectrum of eigenvalues, frequency and growth rate components, at once. This work will detail the parametric analysis performed to demonstrate the stabilizing and destabilizing effects of particles within solid rocket combustion.
Ionizing Radiation Environments and Exposure Risks
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.
2015-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.
Jumping liquid metal droplet in electrolyte triggered by solid metal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jianbo; University of Chinese Academy of Sciences, Beijing 100049; Wang, Junjie
2016-05-30
We report the electron discharge effect due to point contact between liquid metal and solid metal particles in electrolyte. Adding nickel particles induces drastic hydrogen generating and intermittent jumping of a sub-millimeter EGaIn droplet in NaOH solution. Observations from different orientations disclose that such jumping behavior is triggered by pressurized bubbles under the assistance of interfacial interactions. Hydrogen evolution around particles provides clear evidence that such electric instability originates from the varied electric potential and morphology between the two metallic materials. The point-contact-induced charge concentration significantly enhances the near-surface electric field intensity at the particle tips and thus causes electricmore » breakdown of the electrolyte.« less
Measurement of surface effects on the rotational diffusion of a colloidal particle.
Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo
2011-03-15
A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
NASA Astrophysics Data System (ADS)
Maters, E. C.; Flament, P.; de Jong, J.; Mattielli, N. D. C.; Deboudt, K.
2017-12-01
Iron (Fe) is a key element in ocean biogeochemistry and hence the carbon cycle. Its low concentration in seawater limits primary production in >30% of the surface ocean, and thus strong interest lies in constraining Fe inputs to the ocean on different spatial and temporal scales. During Earth's past, large fluctuations in atmospheric deposition fluxes of continental particles including mineral dust and volcanic ash to the ocean may have played a role in climate change events. At present, anthropogenic particles from metal working, biomass burning, and fossil fuel combustion are increasingly recognised to deliver Fe to the ocean as well. To assess the relative importance of these particulate Fe sources, knowledge of their deposition flux (overall dominated by natural dusts) and their Fe solubility (a proxy for Fe bioavailability, and typically higher in anthropogenic materials) is needed, although large uncertainties remain in these parameters. A potential tool for tracing atmospheric inputs to the ocean is the Fe isotope composition (δ56Fe), previously reported to be distinct for natural versus anthropogenic particles. However, it remains unknown if and how the δ56Fe is influenced by various physicochemical processes (e.g. acidification, photochemistry) shown to enhance Fe solubility in airborne particles. Iron isotopic fractionation has been observed during ligand-controlled and photo-reductive dissolution of goethite at low pH,[1] and similar effects may apply to more complex materials during atmospheric transport. Specifically, isotopic enrichment in partially dissolved particles may result from initial preferential release of 54Fe over 56Fe from the solid surface. To test these hypotheses, we subjected natural and anthropogenic specimens, including mineral dust from the Sahara desert and industrial ash from an Fe-Mn alloy factory, to simulated atmospheric processing in pH 2 solution in the presence/absence of oxalic acid and solar radiation. The Fe solubility and δ56Fe/IRMM-014 values of the solid samples were measured to determine the extents of fractionation relative to unprocessed particles. The results of these experiments and the implications for tracing atmospheric Fe inputs to the ocean will be presented. [1] Wiederhold, J. G. et. al. (2006) Environ. Sci. Technol., 40, 3787-3793.
None
2016-03-22
An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
Particle-fluid interactions for flow measurements
NASA Technical Reports Server (NTRS)
Berman, N. S.
1973-01-01
Study has been made of the motion of single particle and of group of particles, emphasizing solid particles in gaseous fluid. Velocities of fluid and particle are compared for several conditions of physical interest. Mean velocity and velocity fluctuations are calculated for single particle, and some consideration is given to multiparticle systems.
Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics
NASA Astrophysics Data System (ADS)
Zaid, Faraj Muftah
This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.
Particulate Matter (PM) Basics
Particle pollution is the term for a mixture of solid particles and liquid droplets found in the air. These include inhalable coarse particles, with diameters between 2.5 micrometers and 10 micrometers, and fine particles, 2.5 micrometers and smaller.
A generalized transport-velocity formulation for smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.
The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable formore » fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.« less
Quantum tunneling observed without its characteristic large kinetic isotope effects.
Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki
2015-06-16
Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.
Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles
Li, Jiahe; Ai, Yiwei; Wang, Lihua; Bu, Pengcheng; Sharkey, Charles C.; Wu, Qianhui; Wun, Brittany; Roy, Sweta; Shen, Xiling; King, Michael R.
2015-01-01
Circulating tumor cells (CTCs) are responsible for metastases in distant organs via hematogenous dissemination. Fundamental studies in the past decade have suggested that neutralization of CTCs in circulation could represent an effective strategy to prevent metastasis. Current paradigms of targeted drug delivery into a solid tumor largely fall into two main categories: unique cancer markers (e.g. overexpression of surface receptors) and tumor-specific microenvironment (e.g. low pH, hypoxia, etc.). While relying on a surface receptor to target CTCs can be greatly challenged by cancer heterogeneity, targeting of tumor microenvironments has the advantage of recognizing a broader spectrum of cancer cells regardless of genetic differences or tumor types. The blood circulation, however, where CTCs transit through, lacks the same tumor microenvironment as that found in a solid tumor. In this study, a unique “microenvironment” was confirmed upon introduction of cancer cells of different types into circulation where activated platelets and fibrin were physically associated with blood-borne cancer cells. Inspired by this observation, synthetic silica particles were functionalized with activated platelet membrane along with surface conjugation of tumor-specific apoptosis-inducing ligand cytokine, TRAIL. Biomimetic synthetic particles incorporated into CTC-associated micro-thrombi in lung vasculature and dramatically decreased lung metastases in a mouse breast cancer metastasis model. Our results demonstrate a “Trojan Horse” strategy of neutralizing CTCs to attenuate metastasis. PMID:26519648
Physically-based quantitative analysis of soil erosion induced by heavy rainfall on steep slopes
NASA Astrophysics Data System (ADS)
Della Sala, Maria; Cuomo, Sabatino; Novità, Antonio
2014-05-01
Heavy rainstorms cause either shallow landslides or soil superficial erosion in steep hillslopes covered by coarse unsaturated soils (Cascini et al., 2013), even over large areas (Cuomo and Della Sala, 2013a). The triggering stage of both phenomena is related to ground infiltration, runoff and overland flow (Cuomo and Della Sala, 2013), which are key processes to be investigated. In addition, the mobilization of solid particles deserves a proper physical-based modeling whether a quantitative estimation of solid particles discharge at the outlet of mountain basin is required. In this work, the approaches for soil superficial erosion analysis are firstly reviewed; then, a relevant case study of two medium-sized mountain basins, affected by flow-like phenomena with huge consequences (Cascini et al., 2009) is presented, which motivates a parametric numerical analysis with a physically-based model carried out for a wide class of soil properties and rainfall scenarios (Cuomo et al., 2013b). The achieved results outline that the peak discharge of water and solid particles driven by overland flow depends on rainfall intensity while volumetric solid concentration within the washout is related to the morphometric features of the whole mountain basin. Furthermore, soil suction is outlined as a key factor for the spatial-temporal evolution of infiltration and runoff in the basin, also affecting the discharge of water and solid particles at the outlet of the basin. Based on these insights, selected cases are analyzed aimed to provide a wide class of possible slope erosion scenarios. It is shown that, provided the same amount of cumulated rainfall, the sequence of high and low intensity rainfall events strongly affects the time-discharge at the outlet of the basin without significant variations of the maximum volumetric solid concentration. References Cascini, L., Cuomo, S., Ferlisi, S., Sorbino, G. (2009). Detection of mechanisms for destructive landslides in Campania region-southern Italy. Proc. of the first Italian Workshop on Landslides, 8-10 June 2009 Naples, Italy, vol 1. Studio Editoriale Doppiavoce, Naples, pp 43-51. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013a). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Cuomo, S., Della Sala, M. (2013b). Rainfall-induced infiltration, runoff and failure in steep unsaturated shallow soil deposits. Engineering Geology. 162, 118-127. Cuomo, S., Della Sala, M., Novità A. (2013). Physically-based modeling of soil erosion induced by rainfall on steep slopes. (submitted to Geomorphology).
NASA Astrophysics Data System (ADS)
Corti, T.; Krieger, U. K.; Koop, T.; Peter, T.
2003-04-01
Within a liquid aerosol particle a solid phase may coexist with the liquid over a wide range of ambient conditions. The optical properties of such particles are of interest for a number of reasons. They will affect the scattering albedo of atmospheric aerosols, may cause depolarisation in lidar measurements, and potentially open a window for studying the internal morphology and physical properties (e.g. wetting properties, diffusion constants) of composite particles in laboratory experiments. In this contribution, we will present results of experimental and theoretical work on mixed-phase aerosol particles. The optical properties of mixed-phase particles depend on the location of the inclusion in the liquid phase, which is determined by the surface tensions of the involved interfaces. In the case of complete wetting, the energetically favoured position of the inclusion is in the volume of the liquid phase. For partial wetting, a position at the surface of the liquid phase is favoured, with the contact angle between the solid, liquid and air being described by Young's equation. For systems with small contact angles, the difference in energy between an inclusion situated at the droplets surface and in its volume may be so small that the thermal energy kT is sufficient to displace the inclusion from the droplet surface into its volume. The critical contact angle depends on the size of the inclusion and the droplet and ranges from 0.1 to 10 degrees. Examples of mixed-phase aerosol particles are aged soot particles and sea salt particles at low relative humidity. For aged soot, contact angles on sulphuric acid clearly above 10 degrees have been reported, so that soot inclusions are expected to be located at the surface of aerosol particles. For mixed-phase sea salt particles, consisting of a solid NaCl inclusion and an aqueous solution of mainly NaCl and MgCl2, our measurements on macroscopic NaCl crystals show a contact angle clearly below 10 degrees and possibly as low as 0.1 degrees. An experimental method - based on measuring photon count statistics - is developed to distinguish in single levitated aerosol particle whether a solid inclusion is located in the volume of the particle or at its surface.
Method of burning sulfur-containing fuels in a fluidized bed boiler
Jones, Brian C.
1982-01-01
A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.
A Model to Simulate Titanium Behavior in the Iron Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Guo, Bao-Yu; Zulli, Paul; Maldonado, Daniel; Yu, Ai-Bing
2010-08-01
The erosion of hearth refractory is a major limitation to the campaign life of a blast furnace. Titanium from titania addition in the burden or tuyere injection can react with carbon and nitrogen in molten pig iron to form titanium carbonitride, giving the so-called titanium-rich scaffold or buildup on the hearth surface, to protect the hearth from subsequent erosion. In the current article, a mathematical model based on computational fluid dynamics is proposed to simulate the behavior of solid particles in the liquid iron. The model considers the fluid/solid particle flow through a packed bed, conjugated heat transfer, species transport, and thermodynamic of key chemical reactions. A region of high solid concentration is predicted at the hearth bottom surface. Regions of solid formation and dissolution can be identified, which depend on the local temperature and chemical equilibrium. The sensitivity to the key model parameters for the solid phase is analyzed. The model provides an insight into the fundamental mechanism of solid particle formation, and it may form a basic model for subsequent development to study the formation of titanium scaffold in the blast furnace hearth.
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
Studies in Three Phase Gas-Liquid Fluidised Systems
NASA Astrophysics Data System (ADS)
Awofisayo, Joyce Ololade
1992-01-01
Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.
Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen
2016-01-01
Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials. PMID:26883719
Fluvial particle characterization using artificial neural network and spectral image processing
NASA Astrophysics Data System (ADS)
Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru
2008-03-01
Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.
The TREK/E36 experiment at J-PARC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohl, M.; Collaboration: TREK Collaboration
2013-11-07
Experiment E36 is planned to run at the J-PARC K1.1BR kaon beamline in 2014-15 using a stopped kaon beam along with the TREK target and detector setup. The decay products of stopped positive kaons will be observed with a large-acceptance toroidal spectrometer capable of tracking charged particles with high resolution, combined with a photon calorimeter with large solid angle and redundant particle identification systems. With the aim to test lepton universality in the K{sub e2}/K{sub μ2} ratio with high precision, the experiment is highly sensitive to new physics beyond the Standard Model. A further goal of E36 is to searchmore » for a heavy sterile neutrino in two-body kaon decay, along with additional searches for exotic decay modes including the possibility to produce a dark photon and to observe its decay into an e{sup +}e{sup −} pair. An overview of the planned measurements with E36 will be presented.« less
Fluidized-bed reactor modeling for production of silicon by silane pyrolysis
NASA Technical Reports Server (NTRS)
Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.
1986-01-01
An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.
Blaesi, Aron H; Saka, Nannaji
2017-11-01
In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows
NASA Astrophysics Data System (ADS)
Njobuenwu, Derrick O.; Fairweather, Michael
2017-08-01
An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.
3D Numerical Prediction of Gas-Solid Flow Behavior in CFB Risers for Geldart A and B Particles
NASA Astrophysics Data System (ADS)
Özel, A.; Fede, P.; Simonin, O.
In this study, mono-disperse flows in squared risers conducted with A and B-type particles were simulated by Eulerian n-fluid 3D unsteady code. Two transport equations developed in the frame of kinetic theory of granular media supplemented by the interstitial fluid effect and the interaction with the turbulence (Balzer et al., 1996) are resolved to model the effect of velocity fluctuations and inter-particle collisions on the dispersed phase hydrodynamic. The studied flow geometries are three-dimensional vertical cold channels excluding cyclone, tampon and returning pipe of a typical circulating fluidized bed. For both type of particles, parametric studies were carried out to determine influences of boundary conditions, physical parameters and turbulence modeling. The grid dependency was analyzed with mesh refinement in horizontal and axial directions. For B-type particles, the results are in good qualitative agreement with the experiments and numerical predictions are slightly improved by the mesh refinement. On the contrary, the simulations with A-type particles show a less satisfactory agreement with available measurements and are highly sensitive to mesh refinement. Further studies are carried out to improve the A-type particles by modeling subgrid-scale effects in the frame of large-eddy simulation approach.
Determination of cohesive and normal stresses and simulation of fluidization using kinetic theory
NASA Astrophysics Data System (ADS)
Bezbaruah, R.
1991-08-01
The general objective of this study is focused on the solid stresses involved in gas-solid flow. These stresses are generally included in the momentum conservation equations, essentially for stability and to prevent particles from collapsing to unreasonably low values of gas volume fraction. The first half of this work undertakes the measurement of the stresses in various powders by direct means, while the second part uses a newly developed kinetic theory constitutive equation for stress to predict the flow and also the solid's viscosity in a CFB. The cohesive or tensile stress found to exist in some classes of powders is measured using a Cohetester, based on which a cohesive force model is derived, which is sensitive to the characteristic properties of the powder material. The normal stress is measured using a Consolidometer, and the powder solid's modulus is obtained as a function of the volume fraction. The solid's modulus is seen to vary with particle size and particle type, with the smaller size particles being more compressible. The simulation of flow in the CFB using Gidaspow's (1991) extension of Ding's (1990) kinetic theory model to dilute phase flow, predicts realistic values of solids' viscosity that are comparable to viscosities obtained experimentally by Miller (1991). However, to obtain a match between the two, the value of the restitution coefficient has to be close to unity. The flow behavior showed periodic oscillations of flow (turbulence) as seen in a real system.
Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.
2016-01-01
We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.
Computer simulation and high level virial theory of Saturn-ring or UFO colloids.
Bates, Martin A; Dennison, Matthew; Masters, Andrew
2008-08-21
Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B(8).
Computer simulation and high level virial theory of Saturn-ring or UFO colloids
NASA Astrophysics Data System (ADS)
Bates, Martin A.; Dennison, Matthew; Masters, Andrew
2008-08-01
Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B8.
A discussion on improving hydration activity of steel slag by altering its mineral compositions.
Wang, Qiang; Yan, Peiyu; Feng, Jianwen
2011-02-28
This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag. Copyright © 2010 Elsevier B.V. All rights reserved.
Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling
2012-04-01
A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp; Kandori, Kazuhiko; Tanaka, Hidekazu
Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. Thesemore » Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.« less
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
Materials and methods for autonomous restoration of electrical conductivity
Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil
2014-03-25
An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.
NASA Astrophysics Data System (ADS)
Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji
2017-12-01
We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.
Emission of nanoparticles during combustion of waste biomass in fireplace
NASA Astrophysics Data System (ADS)
Drastichová, Vendula; Krpec, Kamil; Horák, Jiří; Hopan, František; Kubesa, Petr; Martiník, Lubomír; Koloničný, Jan; Ochodek, Tadeáš; Holubčík, Michal
2014-08-01
Contamination of air by solid particles is serious problem for human health and also environment. Small particles in nano-sizes are more dangerous than same weight of larger size. Negative effect namely of the solid particles depends on (i) number, (ii) specific surface area (iii) respirability and (iv) bonding of others substances (e.g. PAHs, As, Cd, Zn, Cu etc.) which are higher for smaller (nano-sizes) particles compared to larger one. For this reason mentioned above this contribution deals with measuring of amount, and distribution of nanoparticles produced form combustion of waste city biomass in small combustion unit with impactor DLPI.
Immobilization of recombinant vault nanoparticles on solid substrates.
Xia, Yun; Ramgopal, Yamini; Li, Hai; Shang, Lei; Srinivas, Parisa; Kickhoefer, Valerie A; Rome, Leonard H; Preiser, Peter R; Boey, Freddy; Zhang, Hua; Venkatraman, Subbu S
2010-03-23
Native vaults are nanoscale particles found abundantly in the cytoplasm of most eukaryotic cells. They have a capsule-like structure with a thin shell surrounding a "hollow" interior compartment. Recombinant vault particles were found to self-assemble following expression of the major vault protein (MVP) in a baculovirus expression system, and these particles are virtually identical to native vaults. Such particles have been recently studied as potential delivery vehicles. In this study, we focus on immobilization of vault particles on a solid substrate, such as glass, as a first step to study their interactions with cells. To this end, we first engineered the recombinant vaults by fusing two different tags to the C-terminus of MVP, a 3 amino acid RGD peptide and a 12 amino acid RGD-strep-tag peptide. We have demonstrated two strategies for immobilizing vaults on solid substrates. The barrel-and-cap structure of vault particles was observed for the first time, by atomic force microscopy (AFM), in a dry condition. This work proved the feasibility of immobilizing vault nanoparticles on a material surface, and the possibility of using vault nanoparticles as localized and sustainable drug carriers as well as a biocompatible surface moiety.
Ratios of total suspended solids to suspended sediment concentrations by particle size
Selbig, W.R.; Bannerman, R.T.
2011-01-01
Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.
NASA Astrophysics Data System (ADS)
Totsuji, Hiroo
2008-07-01
The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.
Coarsening in Solid-liquid Mixtures: Overview of Experiments on Shuttle and ISS
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Hawersaat, Robert W.; Lorik, T.; Thompson, J.; Gulsoy, B.; Voorhees, P. W.
2013-01-01
The microgravity environment on the Shuttle and the International Space Station (ISS) provides the ideal condition to perform experiments on Coarsening in Solid-Liquid Mixtures (CSLM) as deleterious effects such as particle sedimentation and buoyancy-induced convection are suppressed. For an ideal system such as Lead-Tin in which all the thermophysical properties are known, the initial condition in microgravity of randomly dispersed particles with local clustering of solid Tin in eutectic liquid Lead-Tin matrix, permitted kinetic studies of competitive particle growth for a range of volume fractions. Verification that the quenching phase of the experiment had negligible effect of the spatial distribution of particles is shown through the computational solution of the dynamical equations of motion, thus insuring quench-free effects from the coarsened microstructure measurements. The low volume fraction experiments conducted on the Shuttle showed agreement with transient Ostwald ripening theory, and the steady-state requirement of LSW theory was not achieved. More recent experiments conducted on ISS with higher volume fractions have achieved steady-state condition and show that the kinetics follows the classical diffusion limited particle coarsening prediction and the measured 3D particle size distribution becomes broader as predicted from theory.
Effect of particle inertia on fluid turbulence in gas-solid disperse flow
NASA Astrophysics Data System (ADS)
Mito, Yoichi
2016-11-01
The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.
Zhang, Y; Banks, C J
2013-02-01
Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modeling the burnout of solid polydisperse fuel under the conditions of external heat transfer
NASA Astrophysics Data System (ADS)
Skorik, I. A.; Goldobin, Yu. M.; Tolmachev, E. M.; Gal'perin, L. G.
2013-11-01
A self-similar burnout mode of solid polydisperse fuel is considered taking into consideration heat transfer between fuel particles, gases, and combustion chamber walls. A polydisperse composition of fuel is taken into account by introducing particle distribution functions by radiuses obtained for the kinetic and diffusion combustion modes. Equations for calculating the temperatures of particles and gases are presented, which are written for particles average with respect to their distribution functions by radiuses taking into account the fuel burnout ratio. The proposed equations take into consideration the influence of fuel composition, air excess factor, and gas recirculation ratio. Calculated graphs depicting the variation of particle and gas temperatures, and the fuel burnout ratio are presented for an anthracite-fired boiler.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
Method of producing particulate-reinforced composites and composites produced thereby
Han, Qingyou; Liu, Zhiwei
2015-12-29
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.
Method of producing particulate-reinforced composites and composties produced thereby
Han, Qingyou; Liu, Zhiwei
2013-12-24
A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.