NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1977-01-01
A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1993-01-01
The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group at the International Space University (ISU) summer session of 1992 to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1993-01-01
In 1992, the International Space University (ISU) held its Summer Session in Kitakyushu, Japan. This paper summarizes and expands upon some aspects of space solar power and space transportation that were considered during that session. The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW, or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. A high-cost space transportation program is potentially the most crippling barrier to such a space power program. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed. Over 120 students from 29 countries participated in this summer session. The results discussed in this paper, therefore, represent the efforts of many nations.
Large Space Systems Technology, 1979. [antenna and space platform systems conference
NASA Technical Reports Server (NTRS)
Ward, J. C., Jr. (Compiler)
1980-01-01
Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.
NASA Technical Reports Server (NTRS)
1971-01-01
The optimal allocation of resources to the national space program over an extended time period requires the solution of a large combinatorial problem in which the program elements are interdependent. The computer model uses an accelerated search technique to solve this problem. The model contains a large number of options selectable by the user to provide flexible input and a broad range of output for use in sensitivity analyses of all entering elements. Examples of these options are budget smoothing under varied appropriation levels, entry of inflation and discount effects, and probabilistic output which provides quantified degrees of certainty that program costs will remain within planned budget. Criteria and related analytic procedures were established for identifying potential new space program directions. Used in combination with the optimal resource allocation model, new space applications can be analyzed in realistic perspective, including the advantage gain from existing space program plant and on-going programs such as the space transportation system.
Large space systems technology, 1981. [conferences
NASA Technical Reports Server (NTRS)
Boyer, W. J. (Compiler)
1982-01-01
A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.
Space Shuttle wind tunnel testing program
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Hillje, E. R.
1984-01-01
A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.
Benchmarking processes for managing large international space programs
NASA Technical Reports Server (NTRS)
Mandell, Humboldt C., Jr.; Duke, Michael B.
1993-01-01
The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Detweiler, Michael
2010-01-01
Creating large space habitats by launching all materials from Earth is prohibitively expensive. Using space resources and space based labor to build space solar power satellites can yield extraordinary profits after a few decades. The economic viability of this program depends on the use of space resources and space labor. To maximize the return on the investment, the early use of high density bolo habitats is required. Other shapes do not allow for the small initial scale required for a quick population increase in space. This study found that 5 Man Year, or 384 person bolo high density habitats will be the most economically feasible for a program started at year 2010 and will cause a profit by year 24 of the program, put over 45,000 people into space, and create a large system of space infrastructure for the further exploration and development of space.
NASA Technical Reports Server (NTRS)
1979-01-01
The performance, design and verification requirements for the space Construction Automated Fabrication Experiment (SCAFE) are defined. The SCAFE program defines, develops, and demonstrates the techniques, processes, and equipment required for the automatic fabrication of structural elements in space and for the assembly of such elements into a large, lightweight structure. The program defines a large structural platform to be constructed in orbit using the space shuttle as a launch vehicle and construction base.
The space telescope: A study of NASA, science, technology, and politics
NASA Technical Reports Server (NTRS)
Smith, Robert William
1989-01-01
Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.
NASA Technical Reports Server (NTRS)
Sobieski, S. (Editor); Wampler, E. J. (Editor)
1973-01-01
The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.
The Space Station as a Construction Base for Large Space Structures
NASA Technical Reports Server (NTRS)
Gates, R. M.
1985-01-01
The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
LSS systems planning and performance program
NASA Technical Reports Server (NTRS)
Mckenna, Victoria Jones; Dendy, Michael J.; Naumann, Charles B.; Rice, Sally A.; Weathers, John M.
1993-01-01
This report describes, using viewgraphs, the Marshall Space Flight Center's Large Space Structures Ground Test Facilities located in building 4619. Major topics include the Active Control Evaluation of Systems (ACES) Laboratory; the Control-Structures Interaction/Controls, Astrophysics, and Structures Experiment in Space (CSI/CASES); Advanced Development Facility; and the ACES Guest Investigator Program.
Advanced technology requirements for large space structures. Part 5: Atlas program requirements
NASA Technical Reports Server (NTRS)
Katz, E.; Lillenas, A. N.; Broddy, J. A.
1977-01-01
The results of a special study which identifies and assigns priorities to technology requirements needed to accomplish a particular scenario of future large area space systems are described. Proposed future systems analyzed for technology requirements included large Electronic Mail, Microwave Radiometer, and Radar Surveillance Satellites. Twenty technology areas were identified as requirements to develop the proposed space systems.
NASA Technical Reports Server (NTRS)
Housner, J. M.; Mcgowan, P. E.; Abrahamson, A. L.; Powell, M. G.
1986-01-01
The LATDYN User's Manual presents the capabilities and instructions for the LATDYN (Large Angle Transient DYNamics) computer program. The LATDYN program is a tool for analyzing the controlled or uncontrolled dynamic transient behavior of interconnected deformable multi-body systems which can undergo large angular motions of each body relative other bodies. The program accommodates large structural deformation as well as large rigid body rotations and is applicable, but not limited to, the following areas: (1) development of large flexible space structures; (2) slewing of large space structure components; (3) mechanisms with rigid or elastic components; and (4) robotic manipulations of beam members. Presently the program is limited to two dimensional problems, but in many cases, three dimensional problems can be exactly or approximately reduced to two dimensions. The program uses convected finite elements to affect the large angular motions involved in the analysis. General geometry is permitted. Detailed user input and output specifications are provided and discussed with example runstreams. To date, LATDYN has been configured for CDC/NOS and DEC VAX/VMS machines. All coding is in ANSII-77 FORTRAN. Detailed instructions regarding interfaces with particular computer operating systems and file structures are provided.
Science, society and the space program.
NASA Technical Reports Server (NTRS)
Stafford, T. P.
1972-01-01
Exposition of the contributions the space program can make toward improving the quality of life. The contribution involves both short-range application of space technology and the long-range search for knowledge. Large land areas can be surveyed from spacecraft to determine not only whether land is tillable, but what kind of crops will flourish. The space communications program can reach many millions of people more economically than other methods. The long-range aspects are concerned with the effect of modification of the environment.
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Mathew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Adelman, H. M.
1984-01-01
Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.
Economic effects and spin-offs in a small space economy: the case of Canada.
Amesse, Fernand; Cohendet, Patrick; Poirier, Alain; Chouinard, Jean-Marc
2002-12-01
Canada, through a well-focused space program (telecommunications, earth observation, robotics), has succeeded in developing a space industry largely based on SMEs. The result has been significant economic benefits and technological spin-offs. In this article, the results of two programs, the ESA (European Space Agency) and the STEAR (Strategic Technologies in Automation and Robotics), are compared. The ESA program has generated significant indirect effects and spin-offs for Canadian exports. ESA's reputation and network have enabled SMEs to increase export sales of both space products and other commercial products derived from space technologies. The STEAR program has been highly successful in promoting a new generation of SMEs for space robotics, encouraging both spin-in and spin-offs of technologies. The analysis highlights the complementarity of mission- and diffusion-oriented programs in the technology transfer process.
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
Your Face(book) and MySpace: Let's Hook Up
NASA Astrophysics Data System (ADS)
Gay, P. L.; Foster, T.
2008-06-01
In the public social network venues of MySpace and Facebook, individuals of all ages and nationalities look for like-minded online denizens with whom they can build relationships. Through social networking sites, it is possible for EPO programs to bring together diverse individuals to laugh, learn, and socialize around pet projects and favorite topics. Astronomy is popular among these people, with over 5000 members of the MySpace community listing ``astronomy'' as an interest. By building interesting MySpace and Facebook profiles for your programs, you can plug into the intellectual and social hunger of these individuals. In this workshop, we will discuss the tricks for creating an interesting profile, how to hide such weirdnesses as age and zodiacal sign, and the proper netiquette for nurturing large friends lists and building large communities. Specific emphasis will be given to using Facebook to build one-on-one relationships with program volunteers and students, and how to use MySpace as a way to distribute program announcements to large populations. We will also address the issues of contacting minors, and coping with stalkers and crazies. Come learn how to reach people who already want to learn and love the cosmos, and are just waiting to hear what you have to share.
1971-01-01
This 1971 artist's concept shows a Nuclear Shuttle and an early Space Shuttle docked with an Orbital Propellant Depot. As envisioned by Marshall Space Flight Center Program Development persornel, an orbital modular propellant storage depot, supplied periodically by the Space Shuttle or Earth-to-orbit fuel tankers, would be critical in making available large amounts of fuel to various orbital vehicles and spacecraft.
NASA Technical Reports Server (NTRS)
Buchanan, H. J.
1983-01-01
Work performed in Large Space Structures Controls research and development program at Marshall Space Flight Center is described. Studies to develop a multilevel control approach which supports a modular or building block approach to the buildup of space platforms are discussed. A concept has been developed and tested in three-axis computer simulation utilizing a five-body model of a basic space platform module. Analytical efforts have continued to focus on extension of the basic theory and subsequent application. Consideration is also given to specifications to evaluate several algorithms for controlling the shape of Large Space Structures.
NASA Technical Reports Server (NTRS)
Bush, Harold
1991-01-01
Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
NASA Technical Reports Server (NTRS)
Springer, A.
1994-01-01
A history of the National Aeronautics and Space Administration (NASA) George C. Marshall Space Flight Center's (MSFC) 14 x 14-Inch Trisonic Wind Tunnel is presented. Its early and continuing role in the United States space program is shown through highlights of the tunnel's history and the major programs tested in the tunnel over the past 40 years. The 14-Inch Tunnel has its beginning with the Army in the late 1950's under the Army Ballistic Missile Agency (ABMA). Such programs as the Redstone, Jupiter, Pershing, and early Saturn were tested in the 14-Inch Tunnel in the late 1950's. America's first launch vehicle, the Jupiter C, was designed and developed using the 14-Inch Wind Tunnel. Under NASA, the 14-Inch Wind Tunnel has made large contributions to the Saturn, Space Transportation System, and future launch vehicle programs such as Shuttle-C and the National Launch System. A technical description of the tunnel is presented for background information on the type and capabilities of the 14-Inch Wind Tunnel. The report concludes in stating: the 14-Inch Wind Tunnel as in speed of sound; transonic, at or near the speed of sound the past, will continue to play a large but unseen role in he development of America's space program.
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
Microcomputer design and analysis of the cable catenary large space antenna system
NASA Technical Reports Server (NTRS)
Akle, W.
1984-01-01
The use of microcomputers in the design of a cable catenary large space antenna system is discussed. The development of a system design capability, data base utilization, systems integration, program structure and logic, and integrated graphics output are discussed.
NASA Technical Reports Server (NTRS)
1972-01-01
The study has concluded that there are very large space program cost savings to be obtained by use of low cost, refurbishable, and standard spacecraft in conjunction with the shuttle transportation system. The range of space program cost savings for three different groups of programs are shown in quantitative terms. The total savings for the 91 programs will range from $13.4 billion to $18.0 billion depending on the degree of hardware standardization. These savings, principally resulting from payload cost reductions, tangibly support the development costs of the shuttle system.
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.
1991-01-01
Control-Structures Interaction (CSI) technology embraces the understanding of the interaction between the spacecraft structure and the control system, and the creation and validation of concepts, techniques, and tools, for enabling the interdisciplinary design of an integrated structure and control system, rather than the integration of a structural design and a control system design. The goal of this program is to develop validated CSI technology for integrated design/analysis and qualification of large flexible space systems and precision space structures. A description of the CSI technology program is presented.
Space and energy. [space systems for energy generation, distribution and control
NASA Technical Reports Server (NTRS)
Bekey, I.
1976-01-01
Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, N.R.
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
NASA Technical Reports Server (NTRS)
Capps, Richard W. (Editor)
1996-01-01
The Office of Space Science (OSS) has initiated mission concept studies and associated technology roadmapping activities for future large space optical systems. The scientific motivation for these systems is the study of the origins of galaxies, stars, planetary systems and, ultimately, life. Collectively, these studies are part of the 'Astronomical Search for Origins and Planetary Systems Program' or 'Origins Program'. A series of at least three science missions and associated technology validation flights is currently envisioned in the time frame between the year 1999 and approximately 2020. These would be the Space Interferometry Mission (SIM), a 10-meter baseline Michelson stellar interferometer; the Next Generation Space Telescope (NGST), a space-based infrared optimized telescope with aperture diameter larger than four meters; and the Terrestrial Planet Finder (TPF), an 80-meter baseline-nulling Michelson interferometer described in the Exploration of Neighboring Planetary Systems (ExNPS) Study. While all of these missions include significant technological challenges, preliminary studies indicate that the technological requirements are achievable. However, immediate and aggressive technology development is needed. The Office of Space Access and Technology (OSAT) is the primary sponsor of NASA-unique technology for missions such as the Origins series. For some time, the OSAT Space Technology Program has been developing technologies for large space optical systems, including both interferometers and large-aperture telescopes. In addition, technology investments have been made by other NASA programs, including OSS; other government agencies, particularly the Department of Defense; and by the aerospace industrial community. This basis of prior technology investment provides much of the rationale for confidence in the feasibility of the advanced Origins missions. In response to the enhanced interest of both the user community and senior NASA management in large space optics, OSAT is moving to improve the focus of its sensor, spacecraft, and interferometer/telescope technology programs on the specific additional needs of the OSS Origins Program. To better define Origins mission technology and facilitate its development, OSAT and OSS called for a series of workshops with broad participation from industry, academia and the national laboratory community to address these issues. Responsibility for workshop implementation was assigned jointly to the two NASA field centers with primary Origins mission responsibility, the Goddard Space Flight Center and the Jet Propulsion Laboratory. The Origins Technology Workshop, held at Dana Point, California between June 4 and 6, 1996 was the first in the series of comprehensive workshops aimed at addressing the broad technological needs of the Origins Program. It was attended by 64 individuals selected to provide technical expertise relevant to the technology challenges of the Origins missions. This report summarizes the results of that meeting. A higher level executive summary was considered inappropriate because of the potential loss of important context for the recommendations. Subsequent to the Origins Technology Workshop and prior to publication of this report, NASA Headquarters reorganized the activities of the Of fice of Space Access and Technology. It appears likely that responsibility for the technology programs recommended in this document will move to the Office of Space Science.
Machine intelligence and robotics: Report of the NASA study group. Executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.
A near term space demonstration program for large structures
NASA Technical Reports Server (NTRS)
Nathan, C. A.
1978-01-01
For applications involving an employment of ultralarge structures in space, it would be necessary to have some form of space fabrication and assembly in connection with launch vehicle payload and volume limitations. The findings of a recently completed NASA sponsored study related to an orbital construction demonstration are reported. It is shown how a relatively small construction facility which is assembled in three shuttle flights can substantially advance space construction know-how and provide the nation with a permanent shuttle tended facility that can further advance large structures technologies and provide a construction capability for deployment of large structural systems envisioned for the late 1980s. The large structures applications identified are related to communications, navigation, earth observation, energy systems, radio astronomy, illumination, space colonization, and space construction.
NASA Technical Reports Server (NTRS)
1989-01-01
Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.
Laboratory development and testing of spacecraft diagnostics
NASA Astrophysics Data System (ADS)
Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric
2017-10-01
The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.
Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, D. B. S.
1979-01-01
Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.
Hybrid Propulsion Demonstration Program 250K Hybrid Motor
NASA Technical Reports Server (NTRS)
Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.
2003-01-01
The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.
Some thoughts on the management of large, complex international space ventures
NASA Technical Reports Server (NTRS)
Lee, T. J.; Kutzer, Ants; Schneider, W. C.
1992-01-01
Management issues relevant to the development and deployment of large international space ventures are discussed with particular attention given to previous experience. Management approaches utilized in the past are labeled as either simple or complex, and signs of efficient management are examined. Simple approaches include those in which experiments and subsystems are developed for integration into spacecraft, and the Apollo-Soyuz Test Project is given as an example of a simple multinational approach. Complex approaches include those for ESA's Spacelab Project and the Space Station Freedom in which functional interfaces cross agency and political boundaries. It is concluded that individual elements of space programs should be managed by individual participating agencies, and overall configuration control is coordinated by level with a program director acting to manage overall objectives and project interfaces.
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Use of shuttle for life sciences
NASA Technical Reports Server (NTRS)
Mcgaughy, R. E.
1972-01-01
The use of the space shuttle in carrying out biological and medical research programs, with emphasis on the sortie module, is examined. Detailed descriptions are given of the goals of space life science disciplines, how the sortie can meet these goals, and what shuttle design features are necessary for a viable biological and medical experiment program. Conclusions show that the space shuttle sortie module is capable of accommodating all biological experiments contemplated at this time except for those involving large specimens or large populations of small animals; however, these experiments can be done with a specially designed module. It was also found that at least two weeks is required to do a meaningful survey of biological effects.
NASA Technical Reports Server (NTRS)
1959-01-01
The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.
Radiation risk and human space exploration.
Schimmerling, W; Cucinotta, F A; Wilson, J W
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
Radiation risk and human space exploration
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Cucinotta, F. A.; Wilson, J. W.
2003-01-01
Radiation protection is essential to enable humans to live and work safely in space. Predictions about the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Prudent use of worst-case scenarios may impose unacceptable constraints on shielding mass for spacecraft or habitats, tours of duty of crews on Space Station, and on the radius and duration of sorties on planetary surfaces. The NASA Space Radiation Health Program has been devised to develop the knowledge required to accurately predict and to efficiently manage radiation risk. The knowledge will be acquired by means of a peer-reviewed, largely ground-based and investigator-initiated, basic science research program. The NASA Strategic Plan to accomplish these objectives in a manner consistent with the high priority assigned to the protection and health maintenance of crews will be presented. Published by Elsevier Science Ltd on behalf of COSPAR.
Application of the ADAMS program to deployable space truss structures
NASA Technical Reports Server (NTRS)
Calleson, R. E.
1985-01-01
The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.
Space Weather Research at the National Science Foundation
NASA Astrophysics Data System (ADS)
Moretto, T.
2015-12-01
There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.
ERIC Educational Resources Information Center
Whitehead, Linda C.; Ginsberg, Stacey I.
1999-01-01
Presents suggestions for creating family-like programs in large child-care centers in three areas: (1) physical environment, incorporating cozy spaces, beauty, and space for family interaction; (2) caregiving climate, such as sharing home photographs, and serving meals family style; and (3) family involvement, including regular conversations with…
Platform options for the Space Station program
NASA Technical Reports Server (NTRS)
Mangano, M. J.; Rowley, R. W.
1986-01-01
Platforms for polar and 28.5 deg orbits were studied to determine the platform requirements and characteristics necessary to support the science objectives. Large platforms supporting the Earth-Observing System (EOS) were initially studied. Co-orbiting platforms were derived from these designs. Because cost estimates indicated that the large platform approach was likely to be too expensive, require several launches, and generally be excessively complex, studies of small platforms were undertaken. Results of these studies show the small platform approach to be technically feasible at lower overall cost. All designs maximized hardware inheritance from the Space Station program to reduce costs. Science objectives as defined at the time of these studies are largely achievable.
Large size space construction for space exploitation
NASA Astrophysics Data System (ADS)
Kondyurin, Alexey
2016-07-01
Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).
Research and Technology annual report FY-1981
NASA Technical Reports Server (NTRS)
1981-01-01
Space transportation systems are summarized: space shuttle enhancement, a space operations center, the space platform, and geostationary activites are discussed. Aeronautics and space technology are summarized: experiments, energy systems, propulsion technology, synthetic aperture radar, large space systems, and shuttle-launched vehicles are discussed. Space sciences are summarized: lunar, planetary, and life sciences are discussed. Space and terrestrial applications are summarized. The AgRISTARS program, forest and wildland resource, and Texas LANDSAT applications are discussed.
NASA Technical Reports Server (NTRS)
1997-01-01
Kennedy Space Center specialists aided Space, Energy, Time Saving (SETS) Systems, Inc. in working out the problems they encountered with their new electronic "tankless" water heater. The flow switch design suffered intermittent problems. Hiring several testing and engineering firms produced only graphs, printouts, and a large expense, but no solutions. Then through the Kennedy Space Center/State of Florida Technology Outreach Program, SETS was referred to Michael Brooks, a 21-year space program veteran and flowmeter expert. Run throughout Florida to provide technical service to businesses at no cost, the program applies scientific and engineering expertise originally developed for space applications to the Florida business community. Brooks discovered several key problems, resulting in a new design that turned out to be simpler, yielding a 63 percent reduction in labor and material costs over the old design.
Selling the Space Telescope - The interpenetration of science, technology, and politics
NASA Technical Reports Server (NTRS)
Smith, Robert W.
1991-01-01
Attention is given to the politics of initiating the Space Telescope program and to the manner in which the coalition, or working consensus, for the Telescope was assembled, in particular, the role played by astronomers. It is contended that what ensued was a case study in the influence of government patronage on a large-scale scientific and technological program. It is concluded that while a politically feasible Space Telescope did result, in the selling process the Telescope had been both oversold and underfunded.
Two-stage optics - High-acuity performance from low-acuity optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.
1992-01-01
The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.
The World Space Observatory Ultraviolet (WSO-UV), as a bridge to future UV astronomy
NASA Astrophysics Data System (ADS)
Shustov, B.; Gómez de Castro, A. I.; Sachkov, M.; Vallejo, J. C.; Marcos-Arenal, P.; Kanev, E.; Savanov, I.; Shugarov, A.; Sichevskii, S.
2018-04-01
Ultraviolet (UV) astronomy is a vital branch of space astronomy. Many dozens of short-term UV-experiments in space, as well as long-term observatories, have brought a very important knowledge on the physics and chemistry of the Universe during the last decades. Unfortunately, no large UV-observatories are planned to be launched by most of space agencies in the coming 10-15 years. Conversely, the large UVOIR observatories of the future will appear not earlier than in 2030s. This paper briefly describes the projects that have been proposed by various groups. We conclude that the World Space Observatory-Ultraviolet (WSO-UV) will be the only 2-m class UV telescope with capabilities similar to those of the HST for the next decade. The WSO-UV has been described in detail in previous publications, and this paper updates the main characteristics of its instruments and the current state of the whole project. It also addresses the major science topics that have been included in the core program of the WSO-UV, making this core program very relevant to the current state of the UV-astronomy. Finally, we also present here the ground segment architecture that will implement this program.
Large Advanced Space Systems (LASS) computer-aided design program additions
NASA Technical Reports Server (NTRS)
Farrell, C. E.
1982-01-01
The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.
Structural dynamics and control of large space structures. [conference
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1981-01-01
The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.
Constraints in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.
1996-01-01
Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.
Evaluation philosophy for shuttle launched payloads
NASA Technical Reports Server (NTRS)
Heuser, R. E.
1975-01-01
Potential benefits of factory-to-pad testing constitute major cost savings and increase test effectiveness. Overall flight performance will be improved. The factory-to-pad approach is compatible with space shuttle processing and the large space telescope program.
Advanced degrees in astronautical engineering for the space industry
NASA Astrophysics Data System (ADS)
Gruntman, Mike
2014-10-01
Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.
Large space-based systems for dealing with global environment change
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M.
1992-01-01
Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
Proceedings of the Seventh Annual Summer Conference. NASA/USRA: University Advanced Design Program
NASA Technical Reports Server (NTRS)
1991-01-01
The Advanced Design Program (ADP) is a unique program that brings together students and faculty from U.S. engineering schools with engineers from the NASA centers through integration of current and future NASA space and aeronautics projects into university engineering design curriculum. The Advanced Space Design Program study topics cover a broad range of projects that could be undertaken during a 20-30 year period beginning with the deployment of the Space Station Freedom. The Advanced Aeronautics Design Program study topics typically focus on nearer-term projects of interest to NASA, covering from small, slow-speed vehicles through large, supersonic passenger transports and on through hypersonic research vehicles. Student work accomplished during the 1990-91 academic year and reported at the 7th Annual Summer Conference is presented.
Definition of technology development missions for early space stations: Large space structures
NASA Technical Reports Server (NTRS)
Gates, R. M.; Reid, G.
1984-01-01
The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.
1996-06-20
Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space Shuttle, a future space station, or any other space related vehicle with the least amount of expended energy. When something is sent into outer space, the forces that try to pull it back to Earth (gravity) are very small so that it only requires a very small force to move very large objects. In space, a force equal to a paperclip can move an object as large as a car. Microthrusters are used to produce these small forces.
Life Sciences Data Archive (LSDA)
NASA Technical Reports Server (NTRS)
Fitts, M.; Johnson-Throop, Kathy; Thomas, D.; Shackelford, K.
2008-01-01
In the early days of spaceflight, space life sciences data were been collected and stored in numerous databases, formats, media-types and geographical locations. While serving the needs of individual research teams, these data were largely unknown/unavailable to the scientific community at large. As a result, the Space Act of 1958 and the Science Data Management Policy mandated that research data collected by the National Aeronautics and Space Administration be made available to the science community at large. The Biomedical Informatics and Health Care Systems Branch of the Space Life Sciences Directorate at JSC and the Data Archive Project at ARC, with funding from the Human Research Program through the Exploration Medical Capability Element, are fulfilling these requirements through the systematic population of the Life Sciences Data Archive. This program constitutes a formal system for the acquisition, archival and distribution of data for Life Sciences-sponsored experiments and investigations. The general goal of the archive is to acquire, preserve, and distribute these data using a variety of media which are accessible and responsive to inquiries from the science communities.
High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Bautz, Marshall
2017-01-01
We summarize currently-funded NASA activities in high energy astrophysics and cosmology embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes participation in a space mission to measure gravitational waves from a variety of astrophysical sources, including binary black holes, throughout most of cosmic history, and in another to map the evolution of black hole accretion by means of the accompanying X-ray emission. These missions are envisioned as collaborations with the European Space Agency's Large 3 (L3) and Athena programs, respectively. It also features definition of a large, NASA-led X-ray Observatory capable of tracing the surprisingly rapid growth of supermassive black holes during the first billion years of cosmic history. The program also includes the study of cosmic rays and high-energy gamma-ray photons resulting from range of physical processes, and efforts to characterize both the physics of inflation associated with the birth of the universe and the nature of the dark energy that dominates its mass-energy content today. Finally, we describe the activities of the Physics of the Cosmos Program Analysis Group, which serves as a forum for community analysis and input to NASA.
NASA Technical Reports Server (NTRS)
Su, Renjeng
1998-01-01
The Center for Space Construction (CSC) at University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the Center is to conduct research into space technology and to directly contribute to space engineering education. The Center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Sciences. The College has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction represents prominent evidence of this record. The basic concept on which the Center was founded is the in-space construction of large space systems, such as space stations, interplanetary space vehicles, and extraterrestrial space structures. Since 1993, the scope of CSC research has evolved to include the design and construction of all spacecraft, large and small. With the broadened scope our research projects seek to impact the technological basis for spacecraft such as remote sensing satellites, communication satellites and other special-purpose spacecraft, as well as large space platforms. A summary of accomplishments, including student participation and degrees awarded, during the contract period is presented.
Asteroseismology of Procyon with SOPHIE
NASA Astrophysics Data System (ADS)
Mosser, B.; Bouchy, F.; Martić, M.; Appourchaux, T.; Barban, C.; Berthomieu, G.; Garcia, R. A.; Lebrun, J. C.; Michel, E.; Provost, J.; Thévenin, F.; Turck-Chièze, S.
2008-01-01
Context: This paper reports a 9-night asteroseismic observation program conducted in January 2007 with the new spectrometer sophie at the OHP 193-cm telescope, on the F5 IV-V target Procyon A. Aims: This first asteroseismic program with sophie was intended to test the performance of the instrument with a bright but demanding asteroseismic target and was part of a multisite network. Methods: The sophie spectra have been reduced with the data reduction software provided by OHP. The Procyon asteroseismic data were then analyzed with statistical tools. The asymptotic analysis has been conducted considering possible curvature in the échelle diagram analysis. Results: These observations have proven the efficient performance of sophie used as an asteroseismometer, and succeed in a clear detection of the large spacing. An échelle diagram based on the 54-μHz spacing shows clear ridges. Identification of the peaks exhibits large spacings varying from about 52 μHz to 56 μHz. Outside the frequency range [0.9, 1.0 mHz] where the identification is confused, the large spacing increases at a rate of about dΔν/dn ≃ 0.2 μHz. This may explain some of the different values of the large spacing obtained by previous observations. Based on observations collected with the sophie échelle spectrometer mounted on the 1.93-m telescope at OHP, France (program 06B.PNPS.BOU); http://www.obs-hp.fr/www/guide/ sophie/sophie-eng.html Table of radial velocity measurements is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/478/197
NASA Technical Reports Server (NTRS)
Merchant, D. H.; Gates, R. M.; Straayer, J. W.
1975-01-01
The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs.
REU Solar and Space Physics Summer School
NASA Astrophysics Data System (ADS)
Snow, M. A.; Wood, E. L.
2011-12-01
The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1985-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data acquisition are discussed. Space communications, radio antennas, the Deep Space Network, antenna design, Project SETI, seismology, coding, very large scale integration, downlinking, and demodulation are among the topics covered.
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
The NASA Space Launch System Program Systems Engineering Approach for Affordability
NASA Technical Reports Server (NTRS)
Hutt, John J.; Whitehead, Josh; Hanson, John
2017-01-01
The National Aeronautics and Space Administration is currently developing the Space Launch System to provide the United States with a capability to launch large Payloads into Low Earth orbit and deep space. One of the development tenets of the SLS Program is affordability. One initiative to enhance affordability is the SLS approach to requirements definition, verification and system certification. The key aspects of this initiative include: 1) Minimizing the number of requirements, 2) Elimination of explicit verification requirements, 3) Use of certified models of subsystem capability in lieu of requirements when appropriate and 4) Certification of capability beyond minimum required capability. Implementation of each aspect is described and compared to a "typical" systems engineering implementation, including a discussion of relative risk. Examples of each implementation within the SLS Program are provided.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...
NASA Astrophysics Data System (ADS)
Acuña, M.
The International Solar Terrestrial Physics Program (ISTP) evolved from the individual plans of US, Japanese and European countries to develop space missions to expand our knowledge of the Sun-Earth connection as a "system". Previous experience with independent missions amply illustrated the critical need for coordinated and simultaneous observations in key regions of Sun-Earth space in order to resolve time-space ambiguities and cause-effect relationships. Mission studies such as the US Origins of Plasmas in the Earth's Neighborhood (OPEN), Geotail in Japan, the Solar Heliospheric Observatory in Europe and the Regatta and other magnetospheric missions in the former Soviert Union, formed the early conceptual elements that eventually led to the ISTP program. The coordinating role developed by the Inter-Agency-Consultative-Group (IACG) integrated by NASA, ESA, ISAS and IKI and demonstrated during the comet Halley apparition in 1986, was continued to include solar-terrestrial research and the mission elements described above. In addition to the space elements, a most important component of the coordination effort was the inclusion of data networks, analysis and planning tools as well as globally accessible data sets by the scientific community at large. This approach enabled the active and direct participation of scientists in developing countries in one of the most comprehensive solar-terrestrial research programs implemented to date. The creation of multiple ISTP data repositories throughout the world has enabled a large number of scientists in developing countries to have direct access to the latest spacecraft observations and a most fruitful interaction with fellow researchers throughout the world. This paper will present a review of the evolution of the ISTP program, its products, analysis tools, data bases, infrastructure and lessons learned applicable to future international collaborative programs.
NASA Technical Reports Server (NTRS)
Manford, J. S.; Bennett, G. R.
1985-01-01
The Space Station Program will incorporate analysis of operations constraints and considerations in the early design phases to avoid the need for later modifications to the Space Station for operations. The application of modern tools and administrative techniques to minimize the cost of performing effective orbital operations planning and design analysis in the preliminary design phase of the Space Station Program is discussed. Tools and techniques discussed include: approach for rigorous analysis of operations functions, use of the resources of a large computer network, and providing for efficient research and access to information.
EVA assembly of large space structure element
NASA Technical Reports Server (NTRS)
Bement, L. J.; Bush, H. G.; Heard, W. L., Jr.; Stokes, J. W., Jr.
1981-01-01
The results of a test program to assess the potential of manned extravehicular activity (EVA) assembly of erectable space trusses are described. Seventeen tests were conducted in which six "space-weight" columns were assembled into a regular tetrahedral cell by a team of two "space"-suited test subjects. This cell represents the fundamental "element" of a tetrahedral truss structure. The tests were conducted under simulated zero-gravity conditions. Both manual and simulated remote manipulator system modes were evaluated. Articulation limits of the pressure suit and zero gravity could be accommodated by work stations with foot restraints. The results of this study have confirmed that astronaut EVA assembly of large, erectable space structures is well within man's capabilities.
Program for the exploitation of unused NASA patents
NASA Technical Reports Server (NTRS)
Fay, R. J.
1972-01-01
The program to exploit unused NASA patents through the use of a multidisciplinary approach involving faculty students, and research staff is reported. NASA patents were screened for their applicability outside the space program, specific applications were identified, and the technical and commercial feasibility of these applications was established. Also application of this technology by governmental agencies outside the space program was sought. The program was specifically interested in energy absorbing devices such as those developed for lunar soft landings. These energy absorbing devices absorb large amounts of mechanical energy but are, in general, not reusable. Some of these devices can also operate as structural elements until their structural load capacity is exceeded and they become activated as energy absorbers. The capability of these devices to operate as structural elements and as energy absorbing devices makes them candidates for many applications in the fields of transportation and materials handling safety where accidents take a large toll in human injury and property damage.
A Case Study: Using Delmia at Kennedy Space Center to Support NASA's Constellation Program
NASA Technical Reports Server (NTRS)
Kickbusch, Tracey; Humeniuk, Bob
2010-01-01
The presentation examines the use of Delmia (Digital Enterprise Lean Manufacturing Interactive Application) for digital simulation in NASA's Constellation Program. Topics include an overview of the Kennedy Space Center (KSC) Design Visualization Group tasks, NASA's Constellation Program, Ares 1 ground processing preliminary design review, and challenges and how Delmia is used at KSC, Challenges include dealing with large data sets, creating and maintaining KSC's infrastructure, gathering customer requirements and meeting objectives, creating life-like simulations, and providing quick turn-around on varied products,
NASA management of the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Peters, F.
1975-01-01
The management system and management technology described have been developed to meet stringent cost and schedule constraints of the Space Shuttle Program. Management of resources available to this program requires control and motivation of a large number of efficient creative personnel trained in various technical specialties. This must be done while keeping track of numerous parallel, yet interdependent activities involving different functions, organizations, and products all moving together in accordance with intricate plans for budgets, schedules, performance, and interaction. Some techniques developed to identify problems at an early stage and seek immediate solutions are examined.
ERIC Educational Resources Information Center
Haggerty, James J.
Contemporary technology has many applications that differ from their original usage. Programs sponsored by the National Aeronautics and Space Administration (NASA) need advanced technology and the technologies they generate are exceptionally diverse. The large storehouse of technology built over almost a quarter-century of space research and more…
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
Invited Paper: US Naval Space Surveillance Upgrade Program 1999-2003
NASA Astrophysics Data System (ADS)
Schumacher, Paul W., Jr.
2009-03-01
This paper reviews some of the main objectives, constraints and lessons learned in a particular US Navy program that ended in 2003 with the transition of the space surveillance mission, personnel and funding to the US Air Force. Because of changing needs for space situational awareness both for national security and global commercial reasons, the Air Force sensor program that is now emerging must necessarily be different in scope from the Navy program. However, the Navy program was the first US space surveillance sensor acquisition that addressed the problem of building a large catalog of small space objects. This problem was, and remains, a new one, because the existing catalog of space objects has been maintained since the launch of the first satellite, Sputnik I, on 4 October 1957. To date, it has always been possible to maintain a complete inventory of space objects without ever re-building the catalog ab initio, because of the relatively slow rate at which new satellites are launched into space. Now, with the probable introduction of new and very sensitive space surveillance systems in several countries in the coming years, the apparent satellite population will grow instantly by orders of magnitude as the previously invisible small-debris background population becomes visible. The problem of building a large catalog of possibly faint objects in a short time has become unavoidable. Yet, all existing methods of managing sensors, associating tracking data and predicting orbital uncertainties are inadequate for this task. For this reason, reviewing from a historical point of view the Navy's attempts to address some of these problems in a conceptual system design may give us a useful perspective, even though that particular program is defunct.My personal involvement with the Navy program included the entire duration and almost all aspects of the effort. Beginning in 1999, I participated in the formal identification of the need to improve the capability of the existing system, wrote the basic specification of system performance requirements, helped develop the Navy's Request for Proposals from industry, served on the source selection panel, reviewed the conceptual and preliminary designs of the new system, and finally assisted in the transition of the old system and mission to the Air Force in 2003-2004. Subsequently, in 2005, I joined Air Force Research Laboratory to work on projects related to space surveillance. Today, essentially all persons with first-hand technical knowledge of the Navy upgrade program and its background are either retired or work somewhere in the Air Force.
Space station structures and dynamics test program
NASA Technical Reports Server (NTRS)
Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.
1987-01-01
The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.
The challenge of assembling a space station in orbit
NASA Technical Reports Server (NTRS)
Brand, Vance D.
1990-01-01
Assembly of a space station in orbit is a challenging and complicated task. If mankind is to exploit the knowledge already gained from space flight and continue to advance the frontiers of space exploration, then space stations in orbit must be part of the overall space infrastructure. Space stations, like the Freedom, having relatively large mass which greatly exceeds the lifting capability of their transportation system, are candidates for on-orbit assembly. However, when a large wide-body booster is available, there are significant advantages to having a deployable space station assembled on Earth and transported into orbit intact or in a few large pieces. The United States will build the Space Station Freedom by the assembly method. Freedom's assembly is feasible, but a significant challenge, and it will absorb much of NASA's effort in the next 8 years. The Space Station Freedom is an international program which will be the centerpiece of the free world's space activities in the late 1990's. Scientific information and products from the Space Station Freedom and its use as a transportation depot will advance technology and facilitate the anticipated manned space exploration surge to the Moon and Mars early in the 21st century.
Overview of NASA's Space Solar Power Technology Advanced Research and Development Program
NASA Technical Reports Server (NTRS)
Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)
2001-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).
Development of visual 3D virtual environment for control software
NASA Technical Reports Server (NTRS)
Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence
1991-01-01
Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D environment has considerable potential in the field of software engineering.
EDIN0613P weight estimating program. [for launch vehicles
NASA Technical Reports Server (NTRS)
Hirsch, G. N.
1976-01-01
The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.
Expanding Public Outreach: The Solar System Ambassadors Program
NASA Astrophysics Data System (ADS)
Ferrari, K. A.
2000-12-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. Those volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums, e.g. community service clubs, libraries, museums, planetariums, ``star parties," mall displays, etc. In 2001, 200 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, K-12 in-service educators, retirees, community college teachers, and other members of the general public interested in providing greater service and inspiration to the community at large. Last year, Ambassadors conducted approximately 600 events that directly reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL projects include Cassini, Galileo, STARDUST, Outer Planets mission, Solar Probe, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR-Shoemaker and Deep Impact, and the Deep Space Network. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. Integrating nation-wide volunteers in a public-engagement program helps optimize project funding set aside for education and outreach purposes. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.
Consideration of adding a commercial module to the International Space Station
NASA Astrophysics Data System (ADS)
Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.
1999-01-01
The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.
Technology for large space systems: A bibliography with indexes (supplement 20)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
Space science at NASA - Retrospect and prospect
NASA Technical Reports Server (NTRS)
Rosendhal, Jeffrey D.
1988-01-01
Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.
The 100 ampere-hour nickel cadmium battery development program, volume 1
NASA Technical Reports Server (NTRS)
Gaston, S.
1974-01-01
A program to develop a long-life, reliable and safe 100 ampere-hour sealed nickel-cadmium cell and battery module with ancillary charge control and automated test equipment to fulfill the requirements of a large Manned Orbital Space Station which uses Solar Arrays as its prime source for 25 kW of electrical power was conducted. A sealed 100 ampere-hour cell with long life potential and a replaceable, space maintainable battery module has been developed for Manned Space Station applications. The 100 ampere-hour cell has been characterized for initial (early life) anticipated conditions.
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1989-01-01
This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.
Space Radiation and Risks to Human Health
NASA Technical Reports Server (NTRS)
Huff, Janice L.
2014-01-01
The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.
Space transportation booster engine thrust chamber technology, large scale injector
NASA Technical Reports Server (NTRS)
Schneider, J. A.
1993-01-01
The objective of the Large Scale Injector (LSI) program was to deliver a 21 inch diameter, 600,000 lbf thrust class injector to NASA/MSFC for hot fire testing. The hot fire test program would demonstrate the feasibility and integrity of the full scale injector, including combustion stability, chamber wall compatibility (thermal management), and injector performance. The 21 inch diameter injector was delivered in September of 1991.
Deployable antenna phase A study
NASA Technical Reports Server (NTRS)
Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.
1979-01-01
Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.
2002-04-29
KENNEDY SPACE CENTER, FLA. -- U.S. Representative Dave Weldon addresses a large group attending the opening of a new program known as SABRE, Space Agricultural Biotechnology Research and Education, that involves the University of Florida and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
2002-04-29
KENNEDY SPACE CENTER, FLA. -- Center Director Roy D. Bridges Jr. speaks to a large group attending the opening of a new program known as SABRE, Space Agricultural Biotechnology Research and Education, that involves the University of Florida and NASA. SABRE will focus on the discovery, development and application of the biological aspects of advanced life support strategies. The program will include faculty from UF's Institute of Food and Agricultural Sciences, who will be located at both KSC - in the state-owned Space Experiment Research and Processing Laboratory (SERPL) being built there - and UF in Gainesville. SABRE will be directed by Robert Ferl, professor in the horticultural sciences department and assistant director of UF's Biotechnology Program. He will be responsible for coordinating the research and education efforts of UF and NASA
[Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].
Guo, S S; Ai, W D
2001-04-01
The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.
Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.
2010-01-01
Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Environmental projects. Volume 1: Polychlorinated biphenyl (PCB) abatement program
NASA Technical Reports Server (NTRS)
Kushner, L.
1987-01-01
Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. Some of the ancillary electrical equipment of thes Deep Space Stations, particularly transformers and power capicitors, were filled with stable, fire-retardant, dielectric fluids containing substances called polychlorobiphenyls (PCBs). Because the Environmental Protection Agency has determined that PCBs are environmental pollutants toxic to humans, all NASA centers have been asked to participate in a PCB-abatement program. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a two-year long PCB-abatement program has eliminated PCBs from the Goldstone Complex.
Technology for large space systems: A bibliography with indexes (supplement 22)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 1077 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion.
Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo
2015-01-01
The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.
Appendange deployment mechanism for the Hubble Space Telescope program
NASA Technical Reports Server (NTRS)
Greenfield, H. T.
1985-01-01
The key requirements, a design overview, development testing (qualification levels), and two problems and their solutions resolved during the mechanism development testing phase are presented. The mechanism described herein has demonstrated its capability to deploy/restow two large Hubble Space Telescope deployable appendages in a varying but controlled manner.
SSP Power Management and Distribution
NASA Technical Reports Server (NTRS)
Lynch, Thomas H.; Roth, A. (Technical Monitor)
2000-01-01
Space Solar Power is a NASA program sponsored by Marshall Space Flight Center. The Paper presented here represents the architectural study of a large power management and distribution (PMAD) system. The PMAD supplies power to a microwave array for power beaming to an earth rectenna (Rectifier Antenna). The power is in the GW level.
The space shuttle program: a policy failure?
Logsdon, J M
1986-05-30
The 5 January 1972 announcement by President Richard Nixon that the United States would develop during the 1970's a new space transportation system-the space shuttle-has had fundamental impacts on the character of U.S. space activities. In retrospect, it can be argued that the shuttle design chosen was destined to fail to meet many of the policy objectives established for the system; the shuttle's problems in serving as the primary launch vehicle for the United States and in providing routine and cost-effective space transportation are in large part a result of the ways in which compromises were made in the 1971-72 period in order to gain White House and congressional approval to proceed with the program. The decision to develop a space shuttle is an example of a poor quality national commitment to a major technological undertaking.
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
DIALOG: An executive computer program for linking independent programs
NASA Technical Reports Server (NTRS)
Glatt, C. R.; Hague, D. S.; Watson, D. A.
1973-01-01
A very large scale computer programming procedure called the DIALOG Executive System has been developed for the Univac 1100 series computers. The executive computer program, DIALOG, controls the sequence of execution and data management function for a library of independent computer programs. Communication of common information is accomplished by DIALOG through a dynamically constructed and maintained data base of common information. The unique feature of the DIALOG Executive System is the manner in which computer programs are linked. Each program maintains its individual identity and as such is unaware of its contribution to the large scale program. This feature makes any computer program a candidate for use with the DIALOG Executive System. The installation and use of the DIALOG Executive System are described at Johnson Space Center.
Technology Innovations from NASA's Next Generation Launch Technology Program
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.
2004-01-01
NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.
Model verification of large structural systems. [space shuttle model response
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1978-01-01
A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.
Control of flexible structures
NASA Technical Reports Server (NTRS)
Russell, R. A.
1985-01-01
The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.
Matching by linear programming and successive convexification.
Jiang, Hao; Drew, Mark S; Li, Ze-Nian
2007-06-01
We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.
Improving science literacy and education through space life sciences
NASA Astrophysics Data System (ADS)
MacLeish, Marlene Y.; Moreno, Nancy P.; Tharp, Barbara Z.; Denton, Jon J.; Jessup, George; Clipper, Milton C.
2001-08-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institutions—Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University—are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students—especially those from underrepresented groups—to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families.
Space Tethers Programmatic Infusion Opportunities
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Frame, K. L.
2005-01-01
Programmatic opportunities abound for space Cables, Stringers and Tethers, justified by the tremendous performance advantages that these technologies offer and the rather wide gaps that must be filled by the NASA Exploration program, if the "sustainability goal" is to be met. A definition and characterization of the three categories are presented along with examples. A logical review of exploration requirements shows how each class can be infused throughout the program, from small experimental efforts to large system deployments. The economics of tethers in transportation is considered along with the impact of stringers for structural members. There is an array of synergistic methodologies that interlace their fabrication, implementation and operations. Cables, stringers and tethers can enhance a wide range of other space systems and technologies, including power storage, formation flying, instrumentation, docking mechanisms and long-life space components. The existing tether (i.e., MXER) program's accomplishments are considered consistent with NASA's new vision and can readily conform to requirements-driven technology development.
Technology Development Activities for the Space Environment and its Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody; Barth, Janet; LaBel, Ken
2003-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how emerging microelectronics will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the push to use Commercial-off-the-shelf (COTS) and shrinking microelectronics behind less shielding and the potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will describe the relationship between the Living With a Star (LWS): Space Environment Testbeds (SET) Project and NASA's Space Environments and Effects (SEE) Program and their technology development activities funded as a result from the recent SEE Program's NASA Research Announcement.
James Webb Space Telescope Optical Telescope Element Mirror Coatings
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian
2012-01-01
James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.
Overview of the Center for Space Construction
NASA Technical Reports Server (NTRS)
Hearth, Donald P.
1989-01-01
The purpose of this overview is to outline the position of the Center for Space Construction within the context of space-related programs at the University of Colorado. the University's historically strong research and graduate programs in space science and its strong undergraduate aerospace engineering program were the starting point in 1984 for a major expansion of space-related education and research programs at the Boulder campus. This initiative has resulted in a tripling of space-related research as well as a large increase in the enrollment of high quality engineering students, particularly at the graduate level. The Center for Space Construction is a major element of this initiative, since it represents a mechanism for interdisciplinary and system level research and education within the Engineering College, thus filling a major need. Seventeen faculty members and 37 students from 7 academic units are associated with the Center and are interacting with each other and with the CSC Associates (a group of industrial organizations and government laboratories). The first Ph.D. has been awarded to a student working in the Center; the second Ph.D. is expected later this year. Several new courses have been introduced in the College. Finally, excellent research is being conducted and Center participants are publishing in the open literature.
Demographics of Investigators Involved in OSSA-Funded Research
NASA Technical Reports Server (NTRS)
Stern, S. Alan; Konkel, Ronald; Habegger, Jay; Byerly, Radford, Jr.
1991-01-01
The birth of the U.S. civil space program and the subsequent, dramatic growth in the ranks of the space science research population occurred in the 1950s and 1960s'. The large, post- Sputnik/ Apollo buildup in space program manpower is now approximately one career-lifetime in the past. It is therefore natural to anticipate that a large fraction of the space program engineers, scientists, and managers who pioneered the early exploration of space are approaching retirement. Such a "retirement wave" bodes both a loss of manpower and, more fundamentally, a loss of experience from the civil-space manpower base. Such losses could play a critical role constraining in NASA's ability to expand or maintain its technical capabilities. If this indeed applies to the NASA space science research population, then the potential for problems is exacerbated by the anticipated growth in flight rates, data volume, and data-set diversity which will accompany the planned expansion in the OSSA science effort during the 1990s and 2000s. The purpose of this study was to describe the OSSA PI/Co-I population and to determine the degree to which the OSSA space science investigator population faces a retirement wave, and to estimate the future population of PIs in the 1990-2010 era. To conduct such a study, we investigated the present demographics of the PI and Co-1 population contained in the NASA/OSSA Announcement of Opportunity (AO) mailing list. PIs represent the "leadership" class of the OSSA scientific researcher population, and Co-Is represent one important, oncoming component of the "replacement" generation. Using the PI population data, we then make projection estimates of the future PI population from 1991 through 2010, under various NASA growth/PI demand scenarios.
NASA Technical Reports Server (NTRS)
Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.
1996-01-01
As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin construction of the world's largest orbiting power system in 1997.
The future of management: The NASA paradigm
NASA Technical Reports Server (NTRS)
Harris, Philip R.
1992-01-01
Prototypes of 21st century management, especially for large scale enterprises, may well be found within the aerospace industry. The space era inaugurated a number of projects of such scope and magnitude that another type of management had to be created to ensure successful achievement. The challenges will be not just in terms of technology and its management, but also human and cultural in dimension. Futurists, students of management, and those concerned with technological administration would do well to review the literature of emerging space management for its wider implications. NASA offers a paradigm, or demonstrated model, of future trends in the field of management at large. More research is needed on issues of leadership for Earth based project in space and space based programs with managers there. It is needed to realize that large scale technical enterprises, such as are undertaken in space, require a new form of management. NASA and other responsible agencies are urged to study excellence in space macromanagement, including the necessary multidisciplinary skills. Two recommended targets are the application of general living systems theory and macromanagement concepts for space stations in the 1990s.
Involving Scientists in the NASA / JPL Solar System Educators Program
NASA Astrophysics Data System (ADS)
Brunsell, E.; Hill, J.
2001-11-01
The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.
Laboratory simulation of space plasma phenomena*
NASA Astrophysics Data System (ADS)
Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.
2017-12-01
Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.
The utilization of nonterrestrial materials. [resources for solar power satellite construction
NASA Technical Reports Server (NTRS)
1981-01-01
The development of research and technology programs on the user of nonterrestrial materials for space applications was considered with emphasis on the space power satellite system as a model of large space systems for which the use of nonterrestrial materials may be economically viable. Sample topics discussed include the mining of raw materials and the conversion of raw materials into useful products. These topics were considered against a background of the comparative costs of using terrestrial materials. Exploratory activities involved in the preparation of a nonterrestrial materials utilization program, and the human factors involved were also addressed. Several recommendations from the workshop are now incorporated in NASA activities.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Zinc-oxygen battery development program
NASA Technical Reports Server (NTRS)
Bourland, Deborah S.
1991-01-01
The purpose of this Zinc-Oxygen development program is to incorporate the improved air/oxygen cathode and zinc anode technology developed in recent years into relatively large cells (150-200 amp/hr, 25-100 hour rate) and smaller high rate cells (9-12 amp/hr, 3-12 hour rate). Existing commercial cells manufactured by Duracell and Rayovac are currently being utilized on the Space Shuttle Orbiter in a mini-oscilloscope, the crew radio, and other crew equipment. These applications provide a basis for other Orbiter systems that require portable, storable, electrical power as well as emergency power for the Space Station major payload systems power and for Space Station equipment applications.
Technology for large space systems: A special bibliography with indexes
NASA Technical Reports Server (NTRS)
1979-01-01
This bibliography lists 460 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1968 and December 31, 1978. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, and flight experiments.
Technology for large space systems: A special bibliography with indexes (supplement 01)
NASA Technical Reports Server (NTRS)
1979-01-01
This bibliography lists 180 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1979 and June 30, 1979. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, and flight experiments.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Technology for large space systems: A special bibliography with indexes (supplement 04)
NASA Technical Reports Server (NTRS)
1981-01-01
This bibliography lists 259 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1980 and December 31, 1980. Its purpose is to provide information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology Program. Subject matter is grouped according to systems, interactive analysis and design. Structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
NASA Technical Reports Server (NTRS)
Campbell, T. G.
1983-01-01
The Jet Propulsion Laboratory and the Langley Research Center have been developing technology related to large space antennas (LSA) during the past several years. The need for a communication system research program became apparent during the recent studies for the Land Mobile Satellite System. This study indicated the need for additional research in (1) electromagnetic analysis methods, (2) design and development of multiple beam feed systems, and (3) the measurement methods for LSA reflectors.
Development of CCD imaging sensors for space applications, phase 1
NASA Technical Reports Server (NTRS)
Antcliffe, G. A.
1975-01-01
The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.
Early use of Space Station Freedom for NASA's Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
Rhome, Robert C.; O'Malley, Terence F.
1992-01-01
The paper describes microgravity science opportunities inherent to the restructured Space Station and presents a synopsis of the scientific utilization plan for the first two years of ground-tended operations. In the ground-tended utilization mode the Space Station is a large free-flyer providing a continuous microgravity environment unmatched by any other platform within any existing U.S. program. It is pointed out that the importance of this period of early Space Station mixed-mode utilization between crew-tended and ground-tended approaches is of such magnitude that Station-based microgravity science experiments many become benchmarks to the disciplines involved. The traffic model that is currently being pursued is designed to maximize this opportunity for the U.S. microgravity science community.
Absolute flux density calibrations of radio sources: 2.3 GHz
NASA Technical Reports Server (NTRS)
Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.
1977-01-01
A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
2009-03-28
CAPE CANAVERAL, Fla. – NASA Deputy Manager of Space Shuttle Program LeRoy Cain and NASA Associate Administrator for Space Operations Bill Gerstenmaier inspect the thermal protection system tile beneath space shuttle Discovery following touchdown on Runway 15 at NASA's Kennedy Space Center in Florida. Discovery’s landing completed the 13-day, 5.3-million mile journey on the STS-119 mission to the International Space Station. Main gear touchdown was at 3:13:17 p.m. EDT. Nose gear touchdown was at 3:13:40 p.m. and wheels stop was at 3:14:45 p.m. Discovery delivered the final pair of large power-generating solar array wings and the S6 truss segment. The mission was the 28th flight to the station, the 36th flight of Discovery and the 125th in the Space Shuttle Program, as well as the 70th landing at Kennedy. Photo credit: NASA/Kim Shiflett
Space qualification of silicon carbide for mirror applications: progress and future objectives
NASA Astrophysics Data System (ADS)
Palusinski, Iwona A.; Ghozeil, Isaac
2006-09-01
Production of optical silicon carbide (SiC) for mirror applications continues to evolve and there are renewed plans to use this material in future space-based systems. While SiC has the potential for rapid and cost-effective manufacturing of large, lightweight, athermal optical systems, this material's use in mirror applications is relatively new and has limited flight heritage. This combination of drivers stresses the necessity for a space qualification program for this material. Successful space qualification will require independent collaboration to absorb the high cost of executing this program while taking advantage of each contributing group's laboratory expertise to develop a comprehensive SiC database. This paper provides an overview of the trends and progress in the production of SiC, and identifies future objectives such as non-destructive evaluation and space-effects modeling to ensure proper implementation of this material into future space-based systems.
NASA Technical Reports Server (NTRS)
Von Puttkamer, J.
1978-01-01
Manned spaceflight is considered within the framework of two broad categories: human exploitation of space for economic or scientific gain, and human habitation of space as a place where man may live, grow, and actualize himself. With the advent of the Space Shuttle, exploitation of space will take the form of new product development. This will continue during the 1990s as the new products are manufactured on a scale large enough to be profitable. The turn of the century should see major industries in space, and large space habitats. Thus, the question of mankind's existential needs arises. In addition to basic physical needs, the spiritual and cultural requirements of human beings must be considered. The impact of man's presence in space upon human culture in general is discussed with reference to international cooperation, public interest in space programs, scientific advancement, the basic urge to explore, and the density of mankind as a whole; which will become free of external constraints as we step into the cosmos.
Extraterrestrial resource utilization for economy in space missions
NASA Technical Reports Server (NTRS)
Lewis, J. S.; Ramohalli, K.; Triffet, T.
1990-01-01
The NASA/University of Arizona Space Engineering Research Center is dedicated to research on the discovery, characterization, mapping, beneficiation, extraction, processing, and fabrication of useful products from extraterrestrial material. Schemes for the automated production of low-technology products that are likely to be desired in large quantities in the early stages of any large-scale space activity are identified and developed. This paper summarizes the research program, concentrating upon the production of (1) propellants, both cryogenic and storable, (2) volatiles such as water, nitrogen, and carbon dioxide for use in life-support systems (3) structural metals, and (4) refractories for use in aerobrakes and furnace linings.
Novel In-Space Manufacturing Concepts for the Development of Large Space Telescopes
NASA Technical Reports Server (NTRS)
Mooney, James T.; Reardon, Patrick; Gregory Don; Manning, Andrew; Blackmon, Jim; Howsman, Tom; Williams, Philip; Brantley, Whitt; Rakoczy, John; Herren, Kenneth
2006-01-01
There is a continuous demand for larger, lighter, and higher quality telescopes. Over the past several decades, we have seen the evolution from launchable 2 meter-class telescopes (such as Hubble), to today s demand for deployable 6 meter-class telescopes (such as JWST), to tomorrow s need for up to 150 meter-class telescopes. As the apertures continue to grow, it will become much more difficult and expensive to launch assembled telescope structures. To address this issue, we are seeing the emergence of new novel structural concepts, such as inflatable structures and membrane optics. While these structural concepts do show promise, it is very difficult to achieve and maintain high surface figure quality. Another potential solution to develop large space telescopes is to move the fabrication facility into space and launch the raw materials. In this paper we present initial in-space manufacturing concepts to enable the development of large telescopes. This includes novel approaches for the fabrication of both the optical elements and the telescope support structure. We will also discuss potential optical designs for large space telescopes and describe their relation to the fabrication methods. These concepts are being developed to meet the demanding requirements of DARPA s LASSO (Large Aperture Space Surveillance Optic) program which currently requires a 150 meter optical aperture with a 17 degree field of view.
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
High voltage cabling for high power spacecraft
NASA Technical Reports Server (NTRS)
Dunbar, W. G.
1981-01-01
Studies by NASA have shown that many of the space missions proposed for the time period 1980 to 2000 will require large spacecraft structures to be assembled in orbit. Large antennas and power systems up to 2.5 MW size are predicted to supply the electrical/electronic subsystems, solar electric subsystems, solar electric propulsion, and space processing for the near-term programs. Platforms of 100 meters/length for stable foundations, utility stations, and supports for these multi-antenna and electronic powered mechanisms are also being considered. This paper includes the findings of an analytic and conceptual design study for large spacecraft power distribution, and electrical loads and their influence on the cable and connector requirements for these proposed large spacecraft.
Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R
2013-01-01
This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.
Complementarity of NGST, ALMA, and Far IR Space Observatories
NASA Technical Reports Server (NTRS)
Mather, John C.
2004-01-01
The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.
Complementarity of NGST, ALMA, and far IR Space Observatories
NASA Technical Reports Server (NTRS)
Mather, John C.; Fisher, Richard R. (Technical Monitor)
2002-01-01
The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory in space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.
Program Model Checking: A Practitioner's Guide
NASA Technical Reports Server (NTRS)
Pressburger, Thomas T.; Mansouri-Samani, Masoud; Mehlitz, Peter C.; Pasareanu, Corina S.; Markosian, Lawrence Z.; Penix, John J.; Brat, Guillaume P.; Visser, Willem C.
2008-01-01
Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools.
Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.
Space Resource Roundtable Rationale
NASA Astrophysics Data System (ADS)
Duke, Michael
1999-01-01
Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That is why there is an emphasis in NASA programs on propellant production on Mars - NASA plans missions to Mars, so could make use of those propellants. For other types of applications, however, it will be up to market forces to define the materials and products needed and develop the technologies for extracting them from space resources. Some leading candidates among the potential products from space resources are propellants for other space activities, water from the Moon for use in space, silicon for photovoltaic energy collection in space, and, eventually, He-3 from the Moon for fusion energy production. As the capabilities for manufacturing materials in space are opened up by research aboard the International Space Station, new opportunities for utilization of space resources may emerge. Whereas current research emphasizes increasing knowledge, one program objective should be the development of industrial production techniques for space. These will be based on the development of value-added processing in space, where materials are brought to the space facility, processed there, and returned to Earth. If enough such space processing is developed that the materials transportation requirements are measured in the hundreds of tons a year level, opportunities for substituting lunar materials may develop. The fundamental message is that it is not possible to develop space resources in a vacuum. One must have three things: a recoverable resource, technology to recover it, and a customer. Of these, the customer probably is the most important. All three must be integrated in a space resource program. That is what the Space Resource Roundtable, initiated with this meeting, will bring together.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Kim, Tony; Sudnik, Janet; Sivak, Amy; Porter, Molly; Cylar, Rosaling; Cavanaugh, Dominique; Krome, Kim
2017-01-01
The National Aeronautics and Space Administration (NASA) Centennial Challenges Program, part of the Space Technology Mission Directorate (STMD), addresses key technology needs of NASA and the nation, while facilitating new sources of innovation outside the traditional community. This is done by the direct engagement of the public at large, through the offering of Congressional authorized prize purses and associated challenges developed by NASA and the aerospace community and set up as a competition awarding the prize money for achieving the specified technology goal.
Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.
NASA Technical Reports Server (NTRS)
1984-01-01
Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.
NASA Technical Reports Server (NTRS)
1976-01-01
Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.
NASA Astrophysics Data System (ADS)
Liao, Haitao; Wu, Wenwang; Fang, Daining
2018-07-01
A coupled approach combining the reduced space Sequential Quadratic Programming (SQP) method with the harmonic balance condensation technique for finding the worst resonance response is developed. The nonlinear equality constraints of the optimization problem are imposed on the condensed harmonic balance equations. Making use of the null space decomposition technique, the original optimization formulation in the full space is mathematically simplified, and solved in the reduced space by means of the reduced SQP method. The transformation matrix that maps the full space to the null space of the constrained optimization problem is constructed via the coordinate basis scheme. The removal of the nonlinear equality constraints is accomplished, resulting in a simple optimization problem subject to bound constraints. Moreover, second order correction technique is introduced to overcome Maratos effect. The combination application of the reduced SQP method and condensation technique permits a large reduction of the computational cost. Finally, the effectiveness and applicability of the proposed methodology is demonstrated by two numerical examples.
Using Computerized Outlines in Teaching American Government.
ERIC Educational Resources Information Center
Janda, Kenneth
Because writing an outline on the chalk board wastes time and space, a computer program, a videoprojector, and a standard motion picture screen were used to outline a lecture to a large history class. PC-Outline is an outline program for IBM-compatible microcomputers which aids in processing outlines by inserting Roman numerals, letters, and…
Technology for Large Space Systems: A Special Bibliography with Indexes (Supplement 2)
NASA Technical Reports Server (NTRS)
1980-01-01
This bibliography lists 258 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1979 and December 31, 1979. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
Technology for large space systems: A special bibliography with indexes (supplement 05)
NASA Technical Reports Server (NTRS)
1981-01-01
This bibliography lists 298 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1981 and June 30, 1981. Its purpose is to provide helpful, information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
Technology for large space systems: A special bibliography with indexes (supplement 06)
NASA Technical Reports Server (NTRS)
1982-01-01
This bibliography lists 220 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1981 and December 31, 1981. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments.
Cleared for Launch - Lessons Learned from the OSIRIS-REx System Requirements Verification Program
NASA Technical Reports Server (NTRS)
Stevens, Craig; Adams, Angela; Williams, Bradley; Goodloe, Colby
2017-01-01
Requirements verification of a large flight system is a challenge. It is especially challenging for engineers taking on their first role in space systems engineering. This paper describes our approach to verification of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) system requirements. It also captures lessons learned along the way from developing systems engineers embroiled in this process. We begin with an overview of the mission and science objectives as well as the project requirements verification program strategy. A description of the requirements flow down is presented including our implementation for managing the thousands of program and element level requirements and associated verification data. We discuss both successes and methods to improve the managing of this data across multiple organizational interfaces. Our approach to verifying system requirements at multiple levels of assembly is presented using examples from our work at instrument, spacecraft, and ground segment levels. We include a discussion of system end-to-end testing limitations and their impacts to the verification program. Finally, we describe lessons learned that are applicable to all emerging space systems engineers using our unique perspectives across multiple organizations of a large NASA program.
Improving science literacy and education through space life sciences.
MacLeish, M Y; Moreno, N P; Tharp, B Z; Denton, J J; Jessup, G; Clipper, M C
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Improving science literacy and education through space life sciences
NASA Technical Reports Server (NTRS)
MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.
2001-01-01
The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
Space strategy for Europe and the International Lunar Decade
NASA Astrophysics Data System (ADS)
Beldavs, VZ
2017-09-01
The 2020-2030 decade offers extraordinary opportunity for the European space sector that is largely not recognized in present space strategy which does not recognize commercial space activities beyond communications satellites, launchers, and earth observation and navigation and downstream activities. Lunar and cislunar development can draw on the extensive experience of Europe in mining, clean energy, ecological systems as well as deep experience in managing the development of technologies through TRL1 through commercial sale via Horizon 2020 and previous Framework programs. The EU has unrivalled experience in coordinating research and advanced technology development from research centers, major firms and SMEs across multiple sovereign states. This capacity to coordinate across national boundaries can be a significant contribution to a global cooperative program like the International Lunar Decade. This paper will present a European space strategy for beyond 2020 and how this can mesh with the International Lunar Decade.
Space Radiation Program Element Tissue Sharing Initiative
NASA Technical Reports Server (NTRS)
Wu, H.; Huff, J. L.; Simonsen, L. C.
2014-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, SRPE is taking the initiative to promote tissue sharing among the scientists in the space radiation research community. This initiative is enthusiastically supported by the community members as voiced in the responses to a recent survey. For retrospective tissue samples, an online platform will be established for the PIs to post a list of the available samples, and to exchange information with the potential recipients. For future animal experiments, a tissue sharing policy is being developed by SRPE.
THE SPACE PUBLIC OUTREACH TEAM (SPOT)
NASA Astrophysics Data System (ADS)
Williamson, Kathryn; National Radio Astronomy Observatory; Montana Space Grant Consortium; West Virginia Space Grant Consortium; NASA Independent Verification and Validation Center
2014-01-01
The Space Public Outreach Team (SPOT) has shown over 17 years of success in bringing astronomy and space science-themed presentations to approximately 10,000 students per year in Montana, and the program is now being piloted in West Virginia through a joint partnership between the National Radio Astronomy Observatory (NRAO), the West Virginia Space Grant Consortium, and NASA Independent Verification and Validation Center. SPOT recruits and trains undergraduate presenters from all over the state to learn interactive slide shows that highlight the state’s on-going and world-class space science research. Presenters then travel to K-12 schools to deliver these presentations and provide teachers additional supplemental information for when the SPOT team leaves. As a large-scale, low-cost, and sustainable program being implemented in both Montana and West Virginia, SPOT has the potential to become a nation-wide effort that institutions in other states can model to increase their education and public outreach presence.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Analysis of separation of the space shuttle orbiter from a large transport airplane
NASA Technical Reports Server (NTRS)
Wilhite, A. W.
1977-01-01
The feasibility of safely separating the space shuttle orbiter (140A/B) from the top of a large carrier vehicle (the C-5 airplane) at subsonic speeds was investigated. The longitudinal equations of motion for both vehicles were numerically integrated using a digital computer program which incorporates experimentally derived interference aerodynamic data to analyze the separation maneuver for various initial conditions. Separation of the space shuttle orbiter from a carrier vehicle was feasible for a range of dynamic-pressure and flight-path-angle conditions. By using an autopilot, the vehicle attitudes were held constant which ensured separation. Carrier-vehicle engine thrust, landing gear, and spoilers provide some flexibility in the separation maneuver.
Science opportunities from the Topex/Poseidon mission
NASA Technical Reports Server (NTRS)
Stewart, R.; Fu, L. L.; Lefebvre, M.
1986-01-01
The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program.
The Large Benefits of Small-Satellite Missions
NASA Astrophysics Data System (ADS)
Baker, Daniel N.; Worden, S. Pete
2008-08-01
Small-spacecraft missions play a key and compelling role in space-based scientific and engineering programs [Moretto and Robinson, 2008]. Compared with larger satellites, which can be in excess of 2000 kilograms, small satellites range from 750 kilograms-roughly the size of a golf cart-to less than 1 kilogram, about the size of a softball. They have been responsible for greatly reducing the time needed to obtain science and technology results. The shorter development times for smaller missions can reduce overall costs and can thus provide welcome budgetary options for highly constrained space programs. In many cases, we contend that 80% (or more) of program goals can be achieved for 20% of the cost by using small-spacecraft solutions.
Integration of an expert system into a user interface language demonstration
NASA Technical Reports Server (NTRS)
Stclair, D. C.
1986-01-01
The need for a User Interface Language (UIL) has been recognized by the Space Station Program Office as a necessary tool to aid in minimizing the cost of software generation by multiple users. Previous history in the Space Shuttle Program has shown that many different areas of software generation, such as operations, integration, testing, etc., have each used a different user command language although the types of operations being performed were similar in many respects. Since the Space Station represents a much more complex software task, a common user command language--a user interface language--is required to support the large spectrum of space station software developers and users. To assist in the selection of an appropriate set of definitions for a UIL, a series of demonstration programs was generated with which to test UIL concepts against specific Space Station scenarios using operators for the astronaut and scientific community. Because of the importance of expert system in the space station, it was decided that an expert system should be embedded in the UIL. This would not only provide insight into the UIL components required but would indicate the effectiveness with which an expert system could function in such an environment.
Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours
NASA Astrophysics Data System (ADS)
Barnhardt, D.; Garretson, P.; Will, P.
Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.
Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats
NASA Technical Reports Server (NTRS)
Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.
2015-01-01
Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate. This paper will provide a brief status of the pre-InVEST CubeSats, and discuss the development and status of the InVEST program. Figure
NASA Technical Reports Server (NTRS)
1978-01-01
The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.
Emulating a flexible space structure: Modeling
NASA Technical Reports Server (NTRS)
Waites, H. B.; Rice, S. C.; Jones, V. L.
1988-01-01
Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.
Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 2
NASA Technical Reports Server (NTRS)
1978-01-01
The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in using Shuttle as a launch vehicle, and construction were defined. Additional construction systems operational techniques, processes, and equipment which can be developed and demonstrated in the same program to provide further risk reduction benefits to future large space systems were identified and examined.
NASA Space Rocket Logistics Challenges
NASA Technical Reports Server (NTRS)
Bramon, Chris; Neeley, James R.; Jones, James V.; Watson, Michael D.; Inman, Sharon K.; Tuttle, Loraine
2014-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2017. SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges. This presentation will address the SLS challenges, along with the analysis and decisions to mitigate the threats posed by each.
1988-06-22
Moog Incorporated East Aurora, New York 14052-0013 ABSTRACT The goals of U.S. space programs have created a need for large, complex, long- life ...Bernard Schroer, Uiversity of Alabaw in Wntsville 64 A Robotic Vehicle Global Route Planner for the 1990s William J. Pollard KMS Fusion Inc Ann
Small Payload Integration and Testing Project Development
NASA Technical Reports Server (NTRS)
Sorenson, Tait R.
2014-01-01
The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has mainly focused on large payloads for space flight beginning with the Apollo program to the assembly and resupply of the International Space Station using the Space Shuttle. NASA KSC is currently working on contracting manned Low Earth Orbit (LEO) to commercial providers, developing Space Launch System, the Orion program, deep space manned programs which could reach Mars, and providing technical expertise for the Launch Services Program for science mission payloads/satellites. KSC has always supported secondary payloads and smaller satellites as the launch provider; however, they are beginning to take a more active role in integrating and testing secondary payloads into future flight opportunities. A new line of business, the Small Payload Integration and Testing Services (SPLITS), has been established to provide a one stop shop that can integrate and test payloads. SPLITS will assist high schools, universities, companies and consortiums interested in testing or launching small payloads. The goal of SPLITS is to simplify and facilitate access to KSC's expertise and capabilities for small payloads integration and testing and to help grow the space industry. An effort exists at Kennedy Space Center to improve the external KSC website. External services has partnered with SPLITS as a content test bed for attracting prospective customers. SPLITS is an emerging effort that coincides with the relaunch of the website and has a goal of attracting external partnerships. This website will be a "front door" access point for all potential partners as it will contain an overview of KSC's services, expertise and includes the pertinent contact information.
STS-124 Space Shuttle Discovery Landing
2008-06-14
NASA Deputy Shuttle Program Manager LeRoy Cain points out a portion of the space shuttle Discovery to NASA Associate Administrator for Space Operations Bill Gerstenmaier, left, during a walk around shortly after Discovery touched down at 11:15 a.m., Saturday, June 14, 2008, at the Kennedy Space Center in Cape Canaveral, Florida. During the 14-day STS-124 mission Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Discovery also brought home NASA astronaut Garrett Reisman after his 3 month mission onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)
Unisys' experience in software quality and productivity management of an existing system
NASA Technical Reports Server (NTRS)
Munson, John B.
1988-01-01
A summary of Quality Improvement techniques, implementation, and results in the maintenance, management, and modification of large software systems for the Space Shuttle Program's ground-based systems is provided.
Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design
NASA Technical Reports Server (NTRS)
Runkle, R. E.; Drobnik, R. F.
1979-01-01
The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.
NASA Technical Reports Server (NTRS)
1975-01-01
A program to design, fabricate and test a dimensionally stable metering structure in support of the large space telescope (LST) program is discussed. Graphite/epoxy was the material selected as the only viable candidate material which can meet the stringent thermal expansion criteria of the LST. A metering shell was designed and fabricated, with emphasis on dimensional stability in conjunction with low cost. Thermal expansion test coupons extracted from the layups of the skin panels indicated the attainment of a coefficient of thermal expansion of 0.0666 micrometers/m K. Subsequent thermal vacuum chamber tests on the complete metering shell demonstrated an expansion of the 2.95-meter overall length of 0.27 micrometers/K. Static and dynamics tests, which demonstrated adequacy with respect to limit loads and stiffness, were also accomplished.
NASA Astrophysics Data System (ADS)
Denardini, Clezio Marcos; Padilha, Antonio; Takahashi, Hisao; Souza, Jonas; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Costa, D. Joaquim
On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is kwon by the acronyms Embrace that stands for the Portuguese statement “Estudo e Monitoramento BRAasileiro de Clima Espacial” Program (Brazilian Space Weather Study and Monitoring program). The main purpose of the Embrace Program is to monitor the space climate and weather from sun, interplanetary space, magnetosphere and ionosphere-atmosphere, and to provide useful information to space related communities, technological, industrial and academic areas. Since then we have being visiting several different space weather costumers and we have host two workshops of Brazilian space weather users at the Embrace facilities. From the inputs and requests collected from the users the Embrace Program decided to monitored several physical parameters of the sun-earth environment through a large ground base network of scientific sensors and under collaboration with space weather centers partners. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. A comprehensive data bank and an interface layer are under development to allow an easy and direct access to the useful information. Nowadays, the users will count on products derived from a GNSS monitor network that covers most of the South American territory; a digisonde network that monitors the ionospheric profiles in two equatorial sites and in one low latitude site; several solar radio telescopes to monitor solar activity, and a magnetometer network, besides a global ionospheric physical model. Regarding outreach, we publish a daily bulletin in Portuguese with the status of the space weather environment on the Sun, in the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, we have release brand new products, among them, some regional magnetic indices and the GNSS vertical error map over South America. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)
NASA Astrophysics Data System (ADS)
Recommended priorities for astronomy and astrophysics in the 1980s are considered along with the frontiers of astrophysics, taking into account large-scale structure in the universe, the evolution of galaxies, violent events, the formation of stars and planets, solar and stellar activity, astronomy and the forces of nature, and planets, life, and intelligence. Approved, continuing, and previously recommended programs are related to the Space Telescope and the associated Space Telescope Science Institute, second-generation instrumentation for the Space Telescope, and Gamma Ray Observatory, facilities for the detection of solar neutrinos, and the Shuttle Infrared Telescope Facility. Attention is given to the prerequisites for new research initiatives, new programs, programs for study and development, high-energy astrophysics, radio astronomy, theoretical and laboratory astrophysics, data processing and computational facilities, organization and education, and ultraviolet, optical, and infrared astronomy.
Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment
NASA Technical Reports Server (NTRS)
Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth
2003-01-01
From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.
Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities
NASA Technical Reports Server (NTRS)
Kauffman, Billy; Hardage, Donna; Minor, Jody
2003-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.
Space Environments and Effects (SEE) Program: Spacecraft Charging Technology Development Activities
NASA Technical Reports Server (NTRS)
Kauffman, B.; Hardage, D.; Minor, J.
2004-01-01
Reducing size and weight of spacecraft, along with demanding increased performance capabilities, introduces many uncertainties in the engineering design community on how materials and spacecraft systems will perform in space. The engineering design community is forever behind on obtaining and developing new tools and guidelines to mitigate the harmful effects of the space environment. Adding to this complexity is the continued push to use Commercial-off-the-Shelf (COTS) microelectronics, potential usage of unproven technologies such as large solar sail structures and nuclear electric propulsion. In order to drive down these uncertainties, various programs are working together to avoid duplication, save what resources are available in this technical area and possess a focused agenda to insert these new developments into future mission designs. This paper will introduce the SEE Program, briefly discuss past and currently sponsored spacecraft charging activities and possible future endeavors.
On the verge of an astronomy CubeSat revolution
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2018-05-01
CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.
Space solar cell research: Problems and potential
NASA Technical Reports Server (NTRS)
Flood, D. J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was apparent in the early days of the space program, and the silicon solar cell was pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved through improvements in silicon single crystal material, better device designs, and a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. A brief overview of some of the opportunities and challenges for space photovoltaic applications is given, and some of the current research directed at achieving high efficiency and controlling radiation damage in space solar cells is discussed.
2009-03-28
CAPE CANAVERAL, Fla. – STS-119 Commander Lee Archambault shakes hands with NASA Deputy Manager of Space Shuttle Program LeRoy Cain (third from left) as Pilot Tony Antonelli, behind him, is greeted by NASA Associate Administrator for Space Operations Bill Gerstenmaier. Shuttle Launch Director Mike Leinbach, left, and Kennedy Space Center Deputy Director Janet Petro also await their turns to welcome the crew home. Space shuttle Discovery’s landing completed the 13-day, 5.3-million mile journey of the STS-119 mission to the International Space Station. Main gear touchdown was at 3:13:17 p.m. EDT. Nose gear touchdown was at 3:13:40 p.m. and wheels stop was at 3:14:45 p.m. Discovery delivered the final pair of large power-generating solar array wings and the S6 truss segment. The mission was the 28th flight to the station, the 36th flight of Discovery and the 125th in the Space Shuttle Program, as well as the 70th landing at Kennedy. Photo credit: NASA/Kim Shiflett
Large area low-cost space solar cell development
NASA Technical Reports Server (NTRS)
Baraona, C. R.; Cioni, J. L.
1982-01-01
A development program to produce large-area (5.9 x 5.9 cm) space quality silicon solar cells with a cost goal of 30 $/watt is descibed. Five cell types under investigation include wraparound dielectric, mechanical wraparound and conventional contact configurations with combinations of 2 or 10 ohm-cm resistivity, back surface reflectors and/or fields, and diffused or ion implanted junctions. A single step process to cut cell and cover-glass simultaneously is being developed. A description of cell developments by Applied Solar Energy Corp., Spectrolab and Spire is included. Results are given for cell and array tests, performed by Lockheed, TRW and NASA. Future large solar arrays that might use cells of this type are discussed.
Experimental evaluation of battery cells for space-based radar application
NASA Technical Reports Server (NTRS)
Maskell, Craig A.; Metcalfe, John R.
1994-01-01
A test program was conducted to characterize five space-quality nickel-hydrogen (NiH2) battery cells. A subset of those tests was also done on five commercial nickel-cadmium (NiCd) cells, for correlation to the characteristics of an Energy Storage Unit Simulator. The test program implemented the recommendations of a 1991 study, as reported to IECEC-92. The findings of the tests are summarized, and expected impacts on the performance of the electrical power system (EPS) of a large space-based radar (SBR) surveillance satellite are derived. The main characteristics examined and compared were terminal voltage (average and transient) and capacity through discharge, equivalent series resistance, derived inductance and capacitance, charge return efficiency, and inter-pulse charge effectiveness.
AiGERM: A logic programming front end for GERM
NASA Technical Reports Server (NTRS)
Hashim, Safaa H.
1990-01-01
AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.
The NASA space power technology program
NASA Technical Reports Server (NTRS)
Stephenson, R. Rhoads
1992-01-01
NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.
Space Architecture: The Role, Work and Aptitude
NASA Technical Reports Server (NTRS)
Griffin, Brand
2014-01-01
Space architecture has been an emerging discipline for at least 40 years. Has it arrived? Is space architecture a legitimate vocation or an avocation? If it leads to a job, what do employers want? In 2002, NASA Headquarters created a management position for a space architect whose job was to "lead the development of strategic architectures and identify high level requirements for systems that will accomplish the Nation's space exploration vision." This is a good job description with responsibility at the right level in NASA, but unfortunately, the office was discontinued two years later. Even though there is no accredited academic program or professional licensing for space architecture, there is a community of practitioners. They are civil servants, contractors and academicians supporting International Space Station and space exploration programs. In various ways, space architects currently contribute to human spaceflight, but there is a way for the discipline to be more effective in developing solutions to large scale complex problems. This paper organizes contributions from engineers, architects and psychologists into recommendations on the role of space architects in the organization, the process of creating and selecting options, and intrinsic personality traits including why they must have a high tolerance for ambiguity.
Progress Towards a Space-Based Gravitational-Wave Observatory Since 2010
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2015-01-01
Laser Interferometer Space Antenna (LISA): Focus of all work since 1993; Unchanged since 1997; Project in Phase A since 2004; Extensive formulation work and products; Reviewed and recommended in many major reviews: AANM (NRC, 2001), TRIP (HQ, 2003), Connecting Quarks with the Cosmos (NRC, 2003), AETD (GSFC, 2005). Beyond Einstein Program: (NRC, 2007), NWNH (NRC, 2010): Second in large space projects after WFIRST. Recommended for a new start. Contingent on Lisa Pathfinder success and a roughly 50-50 European partnership.
A soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Agronin, Michael L.; Jandura, Louise
1990-01-01
Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.
Earth orbital teleoperator mobility system evaluation program
NASA Technical Reports Server (NTRS)
Brye, R. G.; Shields, N. L., Jr.; Kirkpatrick, M., III
1977-01-01
The proximity translation and final docking of the space teleoperator evaluation vehicle (STEV) with large mass and small mass satellites was studied. Operations that may be performed by the STEV during the shuttle experiments are approximated.
Extravehicular Crewman Work System (ECWS) study program. Volume 2: Construction
NASA Technical Reports Server (NTRS)
Wilde, R. C.
1980-01-01
The construction portion of the Extravehicular Crewman Work System Study defines the requirements and selects the concepts for the crewman work system required to support the construction of large structures in space.
NASA Technical Reports Server (NTRS)
1977-01-01
NASA is drawing upon its food-preparation expertise to assist in solving a problem affecting a large segment of the American population. In preparation for manned space flight programs, NASA became experienced in providing astronauts simple, easily-prepared, nutritious meals. That experience now is being transferred to the public sector in a cooperative project managed by Johnson Space Center. Called Meal System for the Elderly, the project seeks to fill a gap by supplying nutritionally balanced meal packages to those who are unable to participate in existing meal programs. Many such programs are conducted by federal, state and private organizations, including congregate hot meal services and home-delivered "meals on wheels." But more than 3.5 million elderly Americans are unable to take advantage of these benefits. In some cases, they live in rural areas away from available services; in others, they are handicapped, temporarily ill, or homebound for other reasons. Meal System for the Elderly, a cooperative program in which the food-preparation expertise NASA acquired in manned space projects is being utilized to improve the nutritional status of elderly people. The program seeks to fill a gap by supplying nutritionally-balanced food packages to the elderly who are unable to participate b existing meal service programs.
Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)
NASA Technical Reports Server (NTRS)
Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.
1989-01-01
A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.
NASA Technical Reports Server (NTRS)
Omalley, T. A.
1984-01-01
The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. A flexible, three dimensional, axially symmetric, large signal computer program was developed for use on the IBM 370 time sharing system. A users' manual for this program is included.
Biomedical Monitoring and Countermeasures Facility
NASA Technical Reports Server (NTRS)
Stewart, Donald F.
1992-01-01
The Space Station Freedom Program (SSFP) represents the transition within the US Space program from the 'heroic' era of space flight (characterized most vividly by the Mercury and Apollo programs) to an epoch characterized by routine access to the space environment. In this new era, the unique characteristics of the microgravity environment will enable new types of research activities, primarily in the life sciences, materials science, and biotechnology fields. In addition to its role as a'microgravity science laboratory,' Space Station Freedom (SSF) constitutes the operational platform on which the knowledge and skills needed to continue our exploration of space will be acquired. In the area of spacecraft operations, these skills include the ability to assemble, operate, and maintain large structures in space. In the area of crew operations, the potentially harmful effects of extended exposure to microgravity must be understood in order to keep the crew mission capable. To achieve this goal, the complex process of physiological deconditioning must be monitored, and countermeasures utilized as needed to keep the individual crew members within acceptable physiological limits. The countermeasures program under development for the SSF Program is titled the Biomedical Monitoring and Countermeasures (BMAC) program. As implied by the name, this activity has two primary products, a biomedical monitoring element and a countermeasures development effort. The program is a critical path element in the overall SSF Program, and should be considered an essential element of operations on board the space station. It is readily apparent that the capability to both protect and optimize the health and performance of the human operators on board SSF will be a critical element in the overall success of the SSFP. Previous experience within the Russian space program has demonstrated that the time required for countermeasures on extended missions can become a monumental operational burden. Therefore, one of the primary objectives of the countermeasures development activity will be to design and implement countermeasures which are significantly more effective than the existing generation. Other primary objectives include the following: to set health and human performance standards for all mission phases; to determine critical issues that affect performance or return to flight status; to develop and implement monitoring systems to follow health and performance status; and to understand risk, and balance the resource costs of countermeasures vs. the benefit gained.
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..
NASA Technical Reports Server (NTRS)
Mckay, Charles; Auty, David; Rogers, Kathy
1987-01-01
System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.
Microgravity Combustion Research: 1999 Program and Results
NASA Technical Reports Server (NTRS)
Friedman, Robert (Editor); Gokoglu, Suleyman A. (Editor); Urban, David L. (Editor)
1999-01-01
The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion. This document reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields. and general measurements and diagnostics. The document also describes the opportunities for Principal Investigator participation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities available to researchers.
Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group
NASA Technical Reports Server (NTRS)
1988-01-01
Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.
An overview of DARPA's advanced space technology program
NASA Astrophysics Data System (ADS)
Nicastri, E.; Dodd, J.
1993-02-01
The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.
Antennas for the array-based Deep Space Network: current status and future designs
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Gama, Eric
2005-01-01
Development of very large arrays1,2 of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network DSN) by two or three orders of magnitude thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-m antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. NASA has undertaken a technology program to prove the performance and cost of a very large DSN array. Central to that program is a 3-element interferometer to be completed in 2005. This paper describes current status of the low cost 6-meter breadboard antenna to be used as part of the interferometer and the RF design of the 12-meter antenna.
An expert system executive for automated assembly of large space truss structures
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
1993-01-01
Langley Research Center developed a unique test bed for investigating the practical problems associated with the assembly of large space truss structures using robotic manipulators. The test bed is the result of an interdisciplinary effort that encompasses the full spectrum of assembly problems - from the design of mechanisms to the development of software. The automated structures assembly test bed and its operation are described, the expert system executive and its development are detailed, and the planned system evolution is discussed. Emphasis is on the expert system implementation of the program executive. The executive program must direct and reliably perform complex assembly tasks with the flexibility to recover from realistic system errors. The employment of an expert system permits information that pertains to the operation of the system to be encapsulated concisely within a knowledge base. This consolidation substantially reduced code, increased flexibility, eased software upgrades, and realized a savings in software maintenance costs.
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
Expendable launch vehicle transportation for the space station
NASA Technical Reports Server (NTRS)
Corban, Robert R.
1988-01-01
Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.
NASA Astrophysics Data System (ADS)
Butler, G. V.
1981-04-01
Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.
Dynamics of flexible bodies in tree topology - A computer oriented approach
NASA Technical Reports Server (NTRS)
Singh, R. P.; Vandervoort, R. J.; Likins, P. W.
1984-01-01
An approach suited for automatic generation of the equations of motion for large mechanical systems (i.e., large space structures, mechanisms, robots, etc.) is presented. The system topology is restricted to a tree configuration. The tree is defined as an arbitrary set of rigid and flexible bodies connected by hinges characterizing relative translations and rotations of two adjoining bodies. The equations of motion are derived via Kane's method. The resulting equation set is of minimum dimension. Dynamical equations are imbedded in a computer program called TREETOPS. Extensive control simulation capability is built in the TREETOPS program. The simulation is driven by an interactive set-up program resulting in an easy to use analysis tool.
LAD-C: A large area debris collector on the ISS
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.
2006-01-01
The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
Space age had its world premiere at the large-screen Spaceport Theater at Cape Canaveral/Kennedy Spaceport. The first program was screened for invited guests who, that morning, also witnessed a launch of the Space Shuttle. Since that mission carried the first Japanese astronaut, it was a nice tie-in to the substantial co-production participation of space age by NHK Japan. A special press conference for the series and a twenty-minute preview reel was screened for journalists who were also at the Cape for the shuttle launch. Numerous first-hand newspaper articles were generated. CNN ran part of the preview reel. The first episodemore » in the series, `The Quest for Planet Mars,` then ran twice a day for a week, prior to the Public Broadcasting Service broadcast on an Imax format screen at the Spaceport theater. The program was seen by thousands of visitors. Space age also had a special premier at the National Academy of Sciences in Washington, DC with some 400 special guests, including scientists and government agency representatives.« less
Scientific tradeoffs in pinhole/occulter facility accommodation
NASA Technical Reports Server (NTRS)
Hudson, Hugh S.
1988-01-01
The Pinhole/Occulter Facility (P/OF) consists of state-of-the-art instruments for the study of particle acceleration in the solar corona, and uses a large structure to obtain very high angular resolution. P/OF has been studied in the past as an attached payload for the Space Shuttle, and has been the subject of study by a NASA Science Working Group (P/OFSWG). Appendix A lists various technical studies and reports carried out under the auspices of P/OFSWG and the Program Development Office of NASA Marshall Space Flight Center. Under the rationalization of NASA flight opportunities following the Challenger disaster, and the beginning of the Space Station Freedom program, the sortie-mode deployment of P/OF seemed less efficient and desirable. Thus, NASA decided to reconsider P/OF for deployment on the Space Station Freedom. The technical studies for this deployment continue at the present and will evolve as our knowledge of Space Station architecture and capabilities increase. MSFC contracted with Teledyne Brown Engineering for these technical studies.
NASA Technical Reports Server (NTRS)
Gregory, J. W.
1975-01-01
Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.
Space Radiation Program Element Tissue Sharing Forum
NASA Technical Reports Server (NTRS)
Wu, H.; Mayeaux, B M.; Huff, J. L.; Simonsen, L. C.
2016-01-01
Over the years, a large number of animal experiments have been conducted at the NASA Space Radiation Laboratory and other facilities under the support of the NASA Space Radiation Program Element (SRPE). Studies using rodents and other animal species to address the space radiation risks will remain a significant portion of the research portfolio of the Element. In order to maximize scientific return of the animal studies, the SRPE has recently released the Space Radiation Tissue Sharing Forum. The Forum provides access to an inventory of investigator-stored tissue samples and enables both NASA SRPE members and NASA-funded investigators to exchange information regarding stored and future radiobiological tissues available for sharing. Registered users may review online data of available tissues, inquire about tissues posted, or request tissues for an upcoming study using an online form. Investigators who have upcoming sacrifices are also encouraged to post the availability of samples using the discussion forum. A brief demo of the forum will be given during the presentation
Nature-based strategies for improving urban health and safety
Michelle C. Kondo; Eugenia C. South; Charles C. Branas
2015-01-01
Place-based programs are being noticed as key opportunities to prevent disease and promote public health and safety for populations at-large. As one key type of place-based intervention, nature-based and green space strategies can play an especially large role in improving health and safety for dwellers in urban environments such as US legacy cities that lack nature...
NASA Technical Reports Server (NTRS)
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
NASA Technical Reports Server (NTRS)
Omalley, T. A.; Connolly, D. J.
1977-01-01
The use of the coupled cavity traveling wave tube for space communications has led to an increased interest in improving the efficiency of the basic interaction process in these devices through velocity resynchronization and other methods. To analyze these methods, a flexible, large signal computer program for use on the IBM 360/67 time-sharing system has been developed. The present report is a users' manual for this program.
NASA Astrophysics Data System (ADS)
Takashima, Takeshi; Ogawa, Emiko; Asamura, Kazushi; Hikishima, Mitsuru
2018-05-01
Arase is a small scientific satellite program conducted by the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency, which is dedicated to the detailed study of the radiation belts around Earth through in situ observations. In particular, the goal is to directly observe the interaction between plasma waves and particles, which cause the generation of high-energy electrons. To observe the waves and particles in detail, we must record large volumes of burst data with high transmission rates through onboard mission network systems. For this purpose, we developed a high-speed and highly reliable mission network based on SpaceWire, as well as a new and large memory data recorder equipped with a data search function based on observation time (the time index, TI, is the satellite time starting from when the spacecraft is powered on.) with respect to the orbital data generated in large quantities. By adopting a new transaction concept of a ring topology network with SpaceWire, we could secure a redundant mission network system without using large routers and having to suppress the increase in cable weight. We confirmed that their orbit performs as designed.[Figure not available: see fulltext.
Producing a Live HDTV Program from Space
NASA Technical Reports Server (NTRS)
Grubbs, Rodney; Fontanot, Carlos; Hames, Kevin
2007-01-01
By the year 2000, NASA had flown HDTV camcorders on three Space Shuttle missions: STS-95, STS-93 and STS-99. All three flights of these camcorders were accomplished with cooperation from the Japanese space agency (then known as NASDA and now known as JAXA). The cameras were large broadcast-standard cameras provided by NASDA and flight certified by both NASA and NASDA. The high-definition video shot during these missions was spectacular. Waiting for the return of the tapes to Earth emphasized the next logical step: finding a way to downlink the HDTV live from space. Both the Space Shuttle and the International Space Station (ISS) programs were interested in live HDTV from space, but neither had the resources to fully fund the technology. Technically, downlinking from the ISS was the most effective approach. Only when the Japanese broadcaster NHK and the Japanese space agency expressed interest in covering a Japanese astronaut's journey to the ISS did the project become possible. Together, JAXA and NHK offered equipment, technology, and funding toward the project. In return, NHK asked for a live HDTV downlink during one of its broadcast programs. NASA and the ISS Program sought a US partner to broadcast a live HDTV program and approached the Discovery Channel. The Discovery Channel had proposed a live HDTV project in response to NASA's previous call for offers. The Discovery Channel agreed to provide addItional resources. With the final partner in place, the project was under way. Engineers in the Avionics Systems Division at NASA's Johnson Space Center (JSC) had already studied the various options for downlinking HDTV from the ISS. They concluded that the easiest way was to compress the HDTV so that the resulting data stream would "look" like a payload data stream. The flight system would consist of a professional HDTV camcorder with live HD-SDI output, an HDTV MPEG-2 encoder, and a packetizer/protocol converter.
The International Space University
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1990-01-01
The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.
NASA funding opportunities for optical fabrication and testing technology development
NASA Astrophysics Data System (ADS)
Stahl, H. Philip
2013-09-01
NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.
NASA Funding Opportunities for Optical Fabrication and Testing Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs
NASA Funding Opportunities for Optical Fabrication and Testing Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.
IHY - An International Cooperative Program
NASA Astrophysics Data System (ADS)
Rabello-Soares, M. Cristina; Davila, J.; Gopalswamy, N.; Thompson, B.
2007-05-01
The International Heliophysical Year (IHY) in 2007/2008 involves thousands of scientists representing over 70 nations. It consists of four distinct elements that will be described here. Taking advantage of the large amount of heliophysical data acquired routinely by a vast number of sophisticated instruments aboard space missions and at ground-based observatories, IHY aims to develop the basic science of heliophysics through cross-disciplinary studies of universal processes by means of Coordinated Investigation Programs (CIPs). The second component is in collaboration with the United Nations Basic Space Science Initiative (UNBSSI) and consists of the deployment of arrays of small, inexpensive instruments such as magnetometers, radio antennas, GPS receivers, etc. around the world to provide global measurements. An important aspect of this partnership is to foster the participation of developing nations in heliophysics research. IHY coincides with the commemoration of 50 years of the space age that started with launch of Sputnik on October 4, 1957 and it is on the brink of a new age of space exploration where the Moon, Mars and the outer planets will be the focus of the space programs in the next years. As a result, it presents an excellent opportunity to create interest for science among young people with the excitement of discovery of space. The education and outreach program forms another cornerstone of IHY. Last but not least, an important part of the IHY activities, its forth component, is to preserve the history and memory of IGY 1957.
Conceptual spacecraft systems design and synthesis
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced Systems (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth designs is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze, and conduct parametric studies and modify earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Interactive systems design and synthesis of future spacecraft concepts
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.
1984-01-01
An interactive systems design and synthesis is performed on future spacecraft concepts using the Interactive Design and Evaluation of Advanced spacecraft (IDEAS) computer-aided design and analysis system. The capabilities and advantages of the systems-oriented interactive computer-aided design and analysis system are described. The synthesis of both large antenna and space station concepts, and space station evolutionary growth is demonstrated. The IDEAS program provides the user with both an interactive graphics and an interactive computing capability which consists of over 40 multidisciplinary synthesis and analysis modules. Thus, the user can create, analyze and conduct parametric studies and modify Earth-orbiting spacecraft designs (space stations, large antennas or platforms, and technologically advanced spacecraft) at an interactive terminal with relative ease. The IDEAS approach is useful during the conceptual design phase of advanced space missions when a multiplicity of parameters and concepts must be analyzed and evaluated in a cost-effective and timely manner.
Software Assurance Challenges for the Commercial Crew Program
NASA Technical Reports Server (NTRS)
Cuyno, Patrick; Malnick, Kathy D.; Schaeffer, Chad E.
2015-01-01
This paper will provide a description of some of the challenges NASA is facing in providing software assurance within the new commercial space services paradigm, namely with the Commercial Crew Program (CCP). The CCP will establish safe, reliable, and affordable access to the International Space Station (ISS) by purchasing a ride from commercial companies. The CCP providers have varying experience with software development in safety-critical space systems. NASA's role in providing effective software assurance support to the CCP providers is critical to the success of CCP. These challenges include funding multiple vehicles that execute in parallel and have different rules of engagement, multiple providers with unique proprietary concerns, providing equivalent guidance to all providers, permitting alternates to NASA standards, and a large number of diverse stakeholders. It is expected that these challenges will exist in future programs, especially if the CCP paradigm proves successful. The proposed CCP approach to address these challenges includes a risk-based assessment with varying degrees of engagement and a distributed assurance model. This presentation will describe NASA IV&V Program's software assurance support and responses to these challenges.
Innovative approach for low-cost quick-access small payload missions
NASA Astrophysics Data System (ADS)
Friis, Jan W., Jr.
2000-11-01
A significant part of the burgeoning commercial space industry is placing an unprecedented number of satellites into low earth orbit for a variety of new applications and services. By some estimates the commercial space industry now exceeds that of government space activities. Yet the two markets remain largely separate, with each deploying dedicated satellites and infrastructure for their respective missions. One commercial space firm, Final Analysis, has created a new program wherein either government, scientific or new technology payloads can be integrated on a commercial spacecraft on commercial satellites for a variety of mission scenarios at a fraction of the cost of a dedicated mission. NASA has recognized the advantage of this approach, and has awarded the Quick Ride program to provide frequent, low cost flight opportunities for small independent payloads aboard the Final Analysis constellation, and investigators are rapidly developing science programs that conform to the proposed payload accommodations envelope. Missions that were not feasible using dedicated launches are now receiving approval under the lower cost Quick Ride approach. Final Analysis has dedicated ten out of its thirty-eight satellites in support of the Quick Ride efforts. The benefit of this type of space access extend beyond NASA science programs. Commercial space firms can now gain valuable flight heritage for new technology and satellite product offerings. Further, emerging international space programs can now place a payload in orbit enabling the country to allocate its resources against the payload and mission requirements rather htan increased launch costs of a dedicated spacecraft. Finally, the low cost nature provides University-based research educational opportunities previously out of the reach of most space-related budgets. This paper will describe the motivation, benefits, technical features, and program costs of the Final Analysis secondary payload program. Payloads can be accommodated on up to thirty-eight separate satellites. Since the secondary payloads will fly on satellites designed for global wireless data services, each user can utilize low cost communication system already in place for sending and retrieving digital information from its payload.
Space Industry Study Industrial College of the Armed Forces National Defense University
2002-06-01
information technologies , especially fiber, cable, and cellular communications, which forced space systems away from old market roles and denied entry to... technologies fill market niches. As technology matures, small satellites have been viewed a partial solution to this cycle, enabling faster programs...years, the largely unforeseen growth in the internet has proven a valuable new market for satellite service providers. And over the past few years
Large Aperture Systems: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for next generation astronomical telescopes and detectors. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Space Assembly, Maintenance and Servicing Study. Volume 4: Concept Development Plan.
1986-01-01
development of the concept development program (COP) plan: 1) Develop the CDP candidate work sheets 2) Categorize by application 3) Prioritize by... categorized under the ORU change-out section of this report, the large system assembly area will attempt to cover the EVA aspects of SAMS not discussed...space assemblies involve the evolvement of technologies related to multilevel orbital operating platforms on which both individual and cooperative
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
NASA Technical Reports Server (NTRS)
Smith, M. C., Jr.; Heidelbaugh, N. D.; Rambaut, P. C.; Rapp, R. M.; Wheeler, H. O.; Huber, C. S.; Bourland, C. T.
1975-01-01
Large improvements and advances in space food systems achieved during the Apollo food program are discussed. Modifications of the Apollo food system were directed primarily toward improving delivery of adequate nutrition to the astronaut. Individual food items and flight menus were modified as nutritional countermeasures to the effects of weightlessness. Unique food items were developed, including some that provided nutritional completeness, high acceptability, and ready-to-eat, shelf-stable convenience. Specialized food packages were also developed. The Apollo program experience clearly showed that future space food systems will require well-directed efforts to achieve the optimum potential of food systems in support of the physiological and psychological well-being of astronauts and crews.
NASA Space Engineering Research Center for VLSI systems design
NASA Technical Reports Server (NTRS)
1991-01-01
This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.
Meteor Impact Model in the new Space Power Chambers
1962-09-21
S-65 Meteor Impact Model set up in the former Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center just days after the September 12, 1962 rededication of the facility as the Space Power Chamber. Although larger test chambers would later be constructed, the rapid conversion of the wind tunnel into two space tanks allowed the facility to play a vital role in the early years of the space program. The eastern section of the tunnel, seen here became a vacuum chamber capable of simulating 100 miles altitude. This space tank was envisioned for the study of small satellites like this one. The transfer of the Centaur Program to Lewis one month late, however, permanently changed this mission. NASA was undertaking an in depth study at the time on the effect of micrometeoroids on satellites. Large space radiators were particularly vulnerable to damage from the small particles of space debris. In order to determine the hazard from meteoroids researchers had to define the flux rate relative to the mass and the velocity distribution because the greater the mass or the velocity of a meteoroid the greater the damage.
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.
1989-01-01
The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.
Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle
NASA Technical Reports Server (NTRS)
Bergmann, E.; Weiler, P.
1983-01-01
An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.
Low Cost Large Core Vehicle Structures Assessment
NASA Technical Reports Server (NTRS)
Hahn, Steven E.
1998-01-01
Boeing Information, Space, and Defense Systems executed a Low Cost Large Core Vehicle Structures Assessment (LCLCVSA) under contract to NASA Marshall Space Flight Center (MSFC) between November 1997 and March 1998. NASA is interested in a low-cost launch vehicle, code named Magnum, to place heavy payloads into low earth orbit for missions such as a manned mission to Mars, a Next Generation Space Telescope, a lunar-based telescope, the Air Force's proposed space based laser, and large commercial satellites. In this study, structural concepts with the potential to reduce fabrication costs were evaluated in application to the Magnum Launch Vehicle (MLV) and the Liquid Fly Back Booster (LFBB) shuttle upgrade program. Seventeen concepts were qualitatively evaluated to select four concepts for more in-depth study. The four structural concepts selected were: an aluminum-lithium monocoque structure, an aluminum-lithium machined isogrid structure, a unitized composite sandwich structure, and a unitized composite grid structure. These were compared against a baseline concept based on the Space Shuttle External Tank (ET) construction. It was found that unitized composite structures offer significant cost and weight benefits to MLV structures. The limited study of application to LFBB structures indicated lower, but still significant benefits. Technology and facilities development roadmaps to prepare the approaches studied for application to MLV and LFBB were constructed. It was found that the cost and schedule to develop these approaches were in line with both MLV and LFBB development schedules. Current Government and Boeing programs which address elements of the development of the technologies identified are underway. It is recommended that NASA devote resources in a timely fashion to address the specific elements related to MLV and LFBB structures.
NASA Technical Reports Server (NTRS)
Szuszczewicz, Edward P.
1986-01-01
Large, permanently-manned space platforms can provide exciting opportunities for discoveries in basic plasma and geoplasma sciences. The potential for these discoveries will depend very critically on the properties of the platform, its subsystems, and their abilities to fulfill a spectrum of scientific requirements. With this in mind, the planning of space station research initiatives and the development of attendant platform engineering should allow for the identification of critical science and technology issues that must be clarified far in advance of space station program implementation. An attempt is made to contribute to that process, with a perspective that looks to the development of the space station as a permanently-manned Spaceborne Ionospheric Weather Station. The development of this concept requires a synergism of science and technology which leads to several critical design issues. To explore the identification of these issues, the development of the concept of an Ionospheric Weather Station will necessarily touch upon a number of diverse areas. These areas are discussed.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
Corporate sponsored education initiatives on board the ISS
NASA Astrophysics Data System (ADS)
Durham, Ian T.; Durham, Alyson S.; Pawelczyk, James A.; Brod, Lawrence B.; Durham, Thomas F.
1999-01-01
This paper proposes the creation of a corporate sponsored ``Lecture from Space'' program on board the International Space Station (ISS) with funding coming from a host of new technology and marketing spin-offs. This program would meld existing education initiatives in NASA with new corporate marketing techniques. Astronauts in residence on board the ISS would conduct short ten to fifteen minute live presentations and/or conduct interactive discussions carried out by a teacher in the classroom. This concept is similar to a program already carried out during the Neurolab mission on Shuttle flight STS-90. Building on that concept, the interactive simulcasts would be broadcast over the Internet and linked directly to computers and televisions in classrooms worldwide. In addition to the live broadcasts, educational programs and demonstrations can be recorded in space, and marketed and sold for inclusion in television programs, computer software, and other forms of media. Programs can be distributed directly into classrooms as an additional presentation supplement, as well as over the Internet or through cable and broadcast television, similar to the Canadian Discovery Channel's broadcasts of the Neurolab mission. Successful marketing and advertisement can eventually lead to the creation of an entirely new, privately run cottage industry involving the distribution and sale of educationally related material associated with the ISS that would have the potential to become truly global in scope. By targeting areas of expertise and research interest in microgravity, a large curriculum could be developed using space exploration as a unifying theme. Expansion of this concept could enhance objectives already initiated through the International Space University to include elementary and secondary school students. The ultimate goal would be to stimulate interest in space and space related sciences in today's youth through creative educational marketing initiatives while at the same time drawing funds almost entirely from the private sector.
The design of a commercial space infrastructure
NASA Technical Reports Server (NTRS)
1989-01-01
Space Services and Logistics, Inc. represents the complete engineering design of a technically and financially viable commercial space company. The final proposal offers an economically sound program of space vehicles and systems designed to substantially affect a variety of space markets and produce a vertically integrated structure within the next 20 years. Throughout this design process, particular stress has been placed on attaining the highest possible levels of safety and reliability. The final program financial design requires a considerable initial outlay, but promises a relatively quick return on invested capital, culminating in large annual profits by the end of the 20-year scope of the cost outlook. The overall design has been extensively researched and was primarily driven by the present and near-term projected market demands for services uniquely or competitively offered only by space-oriented operations. Heretofore, available capabilities, rather than these market demands, have determined the degree and type of commercial market access. Removing this limitation through extensive use of modularity and reconfigurability allows the company to gear itself to the market, while still remaining extremely competitive with existing systems. The markets identified as lucrative, and that have governed much of the design requirements, are: low-cost launch services to LEO over a wide range of payload masses and inclinations; upper stage payload delivery from LEO to GEO; manned space operations and human transport to and from orbit; EVA assembly and maintenance of large space structures; satellite servicing and repair by both humans and telerobotic operations; a line of customized satellites designed for extended life and capable of reconfiguration or technology upgrade on orbit; small-scale microgravity experimentation and manufacturing supported by spacecraft retrieval capabilities for experimental specimens and manufactured goods; and a full-range of payload integration, testing, design, and support services before launch and once in orbit.
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Polak, E.; Zadeh, L. A.
1974-01-01
A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.
Shuttle-era experiments in the area of plasma flow interactions with bodies in space
NASA Technical Reports Server (NTRS)
Samir, U.; Stone, N. H.
1980-01-01
A new experimental approach is discussed that can be adopted for studies in the area of plasma flow interactions with bodies in space. The potential use of the Space Shuttle/Orbiter as a near-earth plasma laboratory for studies in space plasma physics and particularly in solar system plasmas is discussed. This new experimental approach holds great promise for studies in the supersonic and sub-Alfvenic flow regime which has applications to the motion of natural satellites around their mother planets in the solar-system (e.g., the satellite Io around the planet Jupiter). A well conceived experimental and theoretical program can lead to a better physical understanding regarding the validity and range of applicability of using gasdynamic, kinetic, and fluid approaches in describing collisionless plasma flow interactions with bodies in a variety of flow regimes. In addition to the above scientific aspects of the program, significant technological advances can be achieved regarding the interaction of space probes in planetary atmospheres/ionospheres and the reliability of using various plasma diagnostic devices on board spacecraft and large space platforms.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, Thomas H.
1990-01-01
An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.
Scharf, Deborah M; Eberhart, Nicole K; Schmidt, Nicole; Vaughan, Christine A; Dutta, Trina; Pincus, Harold Alan; Burnam, M Audrey
2013-07-01
This article describes the characteristics and early implementation experiences of community behavioral health agencies that received Primary and Behavioral Health Care Integration (PBHCI) grants from the Substance Abuse and Mental Health Services Administration to integrate primary care into programs for adults with serious mental illness. Data were collected from 56 programs, across 26 states, that received PBHCI grants in 2009 (N=13) or 2010 (N=43). The authors systematically extracted quantitative and qualitative information about program characteristics from grantee proposals and semistructured telephone interviews with core program staff. Quarterly reports submitted by grantees were coded to identify barriers to implementing integrated care. Grantees shared core features required by the grant but varied widely in terms of characteristics of the organization, such as size and location, and in the way services were integrated, such as through partnerships with a primary care agency. Barriers to program implementation at start-up included difficulty recruiting and retaining qualified staff and issues related to data collection and use of electronic health records, licensing and approvals, and physical space. By the end of the first year, some problems, such as space issues, were largely resolved, but other issues, including problems with staffing and data collection, remained. New challenges, such as patient recruitment, had emerged. Early implementation experiences of PBHCI grantees may inform other programs that seek to integrate primary care into behavioral health settings as part of new, large-scale government initiatives, such as specialty mental health homes.
Seminar presentation on the economic evaluation of the space shuttle system
NASA Technical Reports Server (NTRS)
1973-01-01
The proceedings of a seminar on the economic aspects of the space shuttle system are presented. Emphasis was placed on the problems of economic analysis of large scale public investments, the state of the art of cost estimation, the statistical data base for estimating costs of new technological systems, and the role of the main economic parameters affecting the results of the analyses. An explanation of the system components of a space program and the present choice of launch vehicles, spacecraft, and instruments was conducted.
Multimission Software Reuse in an Environment of Large Paradigm Shifts
NASA Technical Reports Server (NTRS)
Wilson, Robert K.
1996-01-01
The ground data systems provided for NASA space mission support are discussed. As space missions expand, the ground systems requirements become more complex. Current ground data systems provide for telemetry, command, and uplink and downlink processing capabilities. The new millennium project (NMP) technology testbed for 21st century NASA missions is discussed. The program demonstrates spacecraft and ground system technologies. The paradigm shift from detailed ground sequencing to a goal oriented planning approach is considered. The work carried out to meet this paradigm for the Deep Space-1 (DS-1) mission is outlined.
2003-01-22
ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include non-invasive analysis of human skin to characterize wounds and wound healing rates (especially important for space travelers who heal more slowly), determining if burns are first-, second-, or third degree (rather than painful punch biopsies). The work is sponsored under NASA's Space Product Development (SPD) program.
Space Generic Open Avionics Architecture (SGOAA): Overview
NASA Technical Reports Server (NTRS)
Wray, Richard B.; Stovall, John R.
1992-01-01
A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.
2015-12-15
from the ground to space solar minimum and solar maximum 5a. CONTRACT NUMBER BAA-76-11-01 5b. GRANT NUMBER N00173-12-1G010 5c. PROGRAM ELEMENT...atmospheric behavior from the ground to space under solar minimum and solar maximum conditions (Contract No.: N00173-12-1-G010 NRL) Project Summary...Dynamical response to solar radiative forcing is a crucial and poorly understood mechanisms. We propose to study the impacts of large dynamical events
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. A dragonfly rests atop the highest stalk in foliage on the Merritt Island National Wildlife Refuge before resuming its daily activity. Large predatory insects with wingspans up to 5.5 inches, dragonflies snatch smaller insects from the air by means of their basket-like arrangement of legs. The refuge was established in 1963 on Kennedy Space Center land and water not used by NASA for the space program. It encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles.
Possible LISA Technology Applications for Other Missions
NASA Technical Reports Server (NTRS)
Livas, Jeffrey
2018-01-01
The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.
Advanced development of a programmable power processor
NASA Technical Reports Server (NTRS)
Lukens, F. E.; Lanier, J. R., Jr.; Kapustka, R. E.; Graves, J.
1980-01-01
The need for the development of a multipurpose flexible programmable power processor (PPP) has increased significantly in recent years to reduce ever rising development costs. One of the program requirements the PPP specification will cover is the 25 kW power module power conversion needs. The 25 kW power module could support the Space Shuttle program during the 1980s and 1990s and could be the stepping stone to future large space programs. Trades that led to selection of a microprocessor controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Component selection and design considerations are also discussed.
NASA Technical Reports Server (NTRS)
Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.
1990-01-01
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.
The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Roth, J. Reece
1990-01-01
An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.
Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System
NASA Technical Reports Server (NTRS)
Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)
2001-01-01
This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.
SpaceView (Viral Space Situational Awareness) One Year Update
NASA Astrophysics Data System (ADS)
Gleckler, A.; Butterfield, M.; Copenhaver, R.; Wade, A.; Apponi, A.
2013-09-01
Viral SSA takes advantage of the amateur astronomy community to provide an extremely low-cost and geographically-diverse network of optical SSA sites. In the spirit of programs such as DARPA's Grand Challenge and the National Weather Service's program of providing amateur meteorologists with weather stations linked to a central professional meteorological facility, we form a cooperative bond with a willing community of technicallyminded individuals. We term this program "viral" because we will qualify an initial set of astronomers for SSA operation and then use word of mouth in the astronomy community, as well as an outreach program, to pull in new observers. The use of modern remote controlled telescopes allows the incorporation of certified amateur, university, and commercial telescope systems. The availability of the local Viral SSA member for troubleshooting eliminates most significant costs of operating a large network. In this talk, we discuss the project's first year and the roadmap for the next two years.
NASA Technical Reports Server (NTRS)
1993-01-01
The NASA/USRA University Advanced Design Program was established in 1984 as an attempt to add more and better design education to primarily undergraduate engineering programs. The original focus of the pilot program encompassing nine universities and five NASA centers was on space design. Two years later, the program was expanded to include aeronautics design with six universities and three NASA centers participating. This year marks the last of a three-year cycle of participation by forty-one universities, eight NASA centers, and one industry participant. The Advanced Space Design Program offers universities an opportunity to plan and design missions and hardware that would be of usc in the future as NASA enters a new era of exploration and discovery, while the Advanced Aeronautics Design Program generally offers opportunities for study of design problems closer to the present time, ranging from small, slow-speed vehicles to large, supersonic and hypersonic passenger transports. The systems approach to the design problem is emphasized in both the space and aeronautics projects. The student teams pursue the chosen problem during their senior year in a one- or two-semester capstone design course and submit a comprehensive written report at the conclusion of the project. Finally, student representatives from each of the universities summarize their work in oral presentations at the Annual Summer Conference, sponsored by one of the NASA centers and attended by the university faculty, NASA and USRA personnel and aerospace industry representatives. As the Advanced Design Program has grown in size, it has also matured in terms of the quality of the student projects. The present volume represents the student work accomplished during the 1992-1993 academic year reported at the Ninth Annual Summer Conference hosted by NASA Lyndon B. Johnson Space Center, June 14-18, 1993.
Spacecraft Will Communicate "on the Fly"
NASA Technical Reports Server (NTRS)
Laufenberg, Lawrence
2003-01-01
As NASA probes deeper into space, the distance between sensor and scientist increases, as does the time delay. NASA needs to close that gap, while integrating more spacecraft types and missions-from near-Earth orbit to deep space. To speed and integrate communications from space missions to scientists on Earth and back again. NASA needs a comprehensive, high-performance communications network. To this end, the CICT Programs Space Communications (SC) Project is providing technologies for building the Space Internet which will consist of large backbone network, mid-size access networks linked to the backbones, and smaller, ad-hoc network linked to the access network. A key component will be mobile, wireless networks for spacecraft flying in different configurations.
Cancer Risk from Exposure to Galactic Cosmic Rays - Implications for Human Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Durant, marco
2006-01-01
Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. However, space radiation is a major barrier to human exploration of the solar system because the biological effects of high-energy and charge (HZE) ions, which are the main contributors to radiation risks in deep space, are poorly understood. Predictions of the nature and magnitude of the risks posed by space radiation are subject to very large uncertainties. Great efforts have been dedicated worldwide in recent years toward a better understanding of the oncogenic potential of galactic cosmic rays. A review of the new results in this field will be presented here.
Space Biology in the 21st century
NASA Technical Reports Server (NTRS)
Halstead, Thora W.; Krauss, Robert W.
1990-01-01
Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.
Artificial intelligence applications in space and SDI: A survey
NASA Technical Reports Server (NTRS)
Fiala, Harvey E.
1988-01-01
The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.
Research and technology annual report, FY 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.
Educational Impact of the Transit of Venus 2004
NASA Astrophysics Data System (ADS)
Mayo, L.
2004-11-01
The 2004 transit of Venus was viewed by millions of people around the world. For this historic event, the NASA Sun Earth Connection Education Forum developed and executed a large international education program with cross discipline ties to math, science, geography, history, and music. The program consisted of on site web casts, NASA TV programming, on line data and other resources, observatory and spacecraft images, science center activities, and materials and curricula for schools. Program sucess was driven by the large number of NASA and external partnerships including each of the Space Science education forums, amateur astronomers, observatories from Nova Scotia to Uraguay, Earth and Sky Radio, PlanetQuest, Library of Congress, Museum of American History, Astronomy Cafe, and many, many other science and education groups. Current impact estimates point to well over 20 million people that were touched by this program. In addition, the recent OSS Product Review identified the March PlanetQuest program as their number 1 rated product. This talk will outline the details of this extraordinary education program.
Radiometer requirements for Earth-observation systems using large space antennas
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Harrington, R. F.
1983-01-01
Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.
Literature survey for suppression of scattered light in large space telescopes
NASA Technical Reports Server (NTRS)
Tifft, W. G.; Fannin, B. B.
1973-01-01
A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.
2011-07-22
JSC2011-E-068761 (22 July 2011) --- A small portion of a large Ellington Field crowd is seen on July 22, 2011 through a door bearing a STS-135 sticker on its window. A short while later the crew of the space shuttle Atlantis' mission used this door for its entrance during a welcome home ceremony. STS-135 is the final mission of the NASA Space Shuttle Program. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool
System design of the Pioneer Venus spacecraft. Volume 2: Science
NASA Technical Reports Server (NTRS)
Acheson, L. K.
1973-01-01
The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included.
Study for identification of beneficial uses of space, phase 1. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The technological effects of the Space Shuttle Program are considered in terms of the development of improved products, processes, and services aimed at benefitting the public from economic and sociological points of view. As such, an outline is provided for a large number of private organizations to suggest and identify specific areas of research and development which can most effectively be exploited in an extraterrestrial environment.
Space Construction Experiment Definition Study (SCEDS), part 2. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Construction Experiment (SCE) was defined for integration into the Space Shuttle. This included development of flight assignment data, revision and update of preliminary mission timelines and test plans, analysis of flight safety issues, and definition of ground operations scenarios. New requirements for the flight experiment and changes for a large space antenna feed mask test article were incorporated. The program plan and cost estimates were updated. Revised SCE structural dynamics characteristics were provided for simulation and analysis of experimental tests to define and verify control limits and interactions effects between the SCE and the Orbiter digital automatic pilot.
The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy
NASA Astrophysics Data System (ADS)
Leon, N. J.; Fisher, D. K.
2008-12-01
The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry out activities to tie in with the IYA April topic, Galaxies and the Distant Universe. The infrared Spitzer Space Telescope, as well as the Galaxy Evolution Explorer (GALEX) spacecraft are strongly represented on The Space Place web site, with interactive games, images, and crafts that explore the wonders of and latest discoveries about galaxies. In addition, in our mailings and other partner communications throughout the year, we will feature special activities and projects on spaceplace.nasa.gov, and suggest ways to use these resources in IYA-related events.
Prime focus architectures for large space telescopes: reduce surfaces to save cost
NASA Astrophysics Data System (ADS)
Breckinridge, J. B.; Lillie, C. F.
2016-07-01
Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.
Overview study of Space Power Technologies for the advanced energetics program. [spacecraft
NASA Technical Reports Server (NTRS)
Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.
1981-01-01
Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
NASA Technical Reports Server (NTRS)
Rule, William Keith
1991-01-01
A computer program called BALLIST that is intended to be a design tool for engineers is described. BALLlST empirically predicts the bumper thickness required to prevent perforation of the Space Station pressure wall by a projectile (such as orbital debris) as a function of the projectile's velocity. 'Ballistic' limit curves (bumper thickness vs. projectile velocity) are calculated and are displayed on the screen as well as being stored in an ASCII file. A Whipple style of spacecraft wall configuration is assumed. The predictions are based on a database of impact test results. NASA/Marshall Space Flight Center currently has the capability to generate such test results. Numerical simulation results of impact conditions that can not be tested (high velocities or large particles) can also be used for predictions.
VizieR Online Data Catalog: Grism Lens-Amplified Survey from Space (GLASS). I. (Treu+, 2015)
NASA Astrophysics Data System (ADS)
Treu, T.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Wang, X.; Bradac, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; Henry, A. L.; Hoag, A.; Huang, K.-H.; Jones, T. A.; Kelly, P. L.; Malkan, M. A.; Mason, C.; Pentericci, L.; Poggianti, B.; Stiavelli, M.; Trenti, M.; von der Linden, A.
2016-02-01
In this paper we give an overview of Grism Lens Amplified Survey from Space (GLASS; PI Treu; GO 13459) and we present the first release of the data for MACS J0717.5+3745, the first cluster targeted by the survey. Spectra for 1151 galaxies down to magnitude HAB=24 (F140W) have been visually inspected by members of our team to ensure quality control. GLASS is a cycle-21 large program with the Hubble Space Telescope (HST), targeting 10 massive clusters, including the 6 Frontier Fields, using the WFC3 and ACS grisms. The program consists of 140 primary orbits (with the G102 and G141 grisms; range 0.81-1.69μm) and 140 parallel orbits (with the G800L grism). (2 data files).
NASA Astrophysics Data System (ADS)
Kriebel, Mary M.; Sanks, Terry M.
1992-02-01
Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study
Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-01-01
Objective The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.
Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-03-16
OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.
Toward automated biochemotype annotation for large compound libraries.
Chen, Xian; Liang, Yizeng; Xu, Jun
2006-08-01
Combinatorial chemistry allows scientists to probe large synthetically accessible chemical space. However, identifying the sub-space which is selectively associated with an interested biological target, is crucial to drug discovery and life sciences. This paper describes a process to automatically annotate biochemotypes of compounds in a library and thus to identify bioactivity related chemotypes (biochemotypes) from a large library of compounds. The process consists of two steps: (1) predicting all possible bioactivities for each compound in a library, and (2) deriving possible biochemotypes based on predictions. The Prediction of Activity Spectra for Substances program (PASS) was used in the first step. In second step, structural similarity and scaffold-hopping technologies are employed. These technologies are used to derive biochemotypes from bioactivity predictions and the corresponding annotated biochemotypes from MDL Drug Data Report (MDDR) database. About a one million (982,889) commercially available compound library (CACL) has been tested using this process. This paper demonstrates the feasibility of automatically annotating biochemotypes for large libraries of compounds. Nevertheless, some issues need to be considered in order to improve the process. First, the prediction accuracy of PASS program has no significant correlation with the number of compounds in a training set. Larger training sets do not necessarily increase the maximal error of prediction (MEP), nor do they increase the hit structural diversity. Smaller training sets do not necessarily decrease MEP, nor do they decrease the hit structural diversity. Second, the success of systematic bioactivity prediction relies on modeling, training data, and the definition of bioactivities (biochemotype ontology). Unfortunately, the biochemotype ontology was not well developed in the PASS program. Consequently, "ill-defined" bioactivities can reduce the quality of predictions. This paper suggests the ways in which the systematic bioactivities prediction program should be improved.
Integrated digital flight-control system for the space shuttle orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.
NASA Technical Reports Server (NTRS)
Hsia, Wei Shen
1989-01-01
A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.
Orbital Debris Quarterly News, Volume 13, Issue 4
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)
2009-01-01
Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).
2011-07-22
A large crowd of supporters welcomes home the crew of STS-135 during a ceremony for the crew of the space shuttle Atlantis, the final mission of the NASA shuttle program, at Ellington Field in Houston on Friday, July 22, 2011. ( NASA Photo / Houston Chronicle, Smiley N. Pool )
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.
Strategies for Validation Testing of Ground Systems
NASA Technical Reports Server (NTRS)
Annis, Tammy; Sowards, Stephanie
2009-01-01
In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)
NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.
NASA Astrophysics Data System (ADS)
Charania, A.
2002-01-01
At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.
Space resources. Volume 4: Social concerns
NASA Technical Reports Server (NTRS)
Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)
1992-01-01
Space resources must be used to support life on the Moon and exploration of Mars. This volume, Social Concerns, covers some of the most important issues which must be addressed in any major program for the human exploration of space. The volume begins with a consideration of the economics and management of large scale space activities. Then the legal aspects of these activities are discussed, particularly the interpretation of treaty law with respect to the Moon and asteroids. The social and cultural issues of moving people into space are considered in detail, and the eventual emergence of a space culture different from the existing culture is envisioned. The environmental issues raised by the development of space settlements are faced. Some innovative approaches are proposed to space communities and habitats and self-sufficiency is considered along with human safety at a lunar base or outpost.
Robotics Algorithms Provide Nutritional Guidelines
NASA Technical Reports Server (NTRS)
2009-01-01
On July 5, 1997, a small robot emerged from its lander like an insect from an egg, crawling out onto the rocky surface of Mars. About the size of a child s wagon, NASA s Sojourner robot was the first successful rover mission to the Red Planet. For 83 sols (Martian days, typically about 40 minutes longer than Earth days), Sojourner - largely remote controlled by NASA operators on Earth - transmitted photos and data unlike any previously collected. Sojourner was perhaps the crowning achievement of the NASA Space Telerobotics Program, an Agency initiative designed to push the limits of robotics in space. Telerobotics - devices that merge the autonomy of robotics with the direct human control of teleoperators - was already a part of NASA s efforts; probes like the Viking landers that preceded Sojourner on Mars, for example, were telerobotic applications. The Space Telerobotics Program, a collaboration between Ames Research Center, Johnson Space Center, Jet Propulsion Laboratory (JPL), and multiple universities, focused on developing remote-controlled robotics for three main purposes: on-orbit assembly and servicing, science payload tending, and planetary surface robotics. The overarching goal was to create robots that could be guided to build structures in space, monitor scientific experiments, and, like Sojourner, scout distant planets in advance of human explorers. While telerobotics remains a significant aspect of NASA s efforts, as evidenced by the currently operating Spirit and Opportunity Mars rovers, the Hubble Space Telescope, and many others - the Space Telerobotics Program was dissolved and redistributed within the Agency the same year as Sojourner s success. The program produced a host of remarkable technologies and surprising inspirations, including one that is changing the way people eat
NASA's mobile satellite communications program; ground and space segment technologies
NASA Technical Reports Server (NTRS)
Naderi, F.; Weber, W. J.; Knouse, G. H.
1984-01-01
This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.
Space Debris and Space Safety - Looking Forward
NASA Astrophysics Data System (ADS)
Ailor, W.; Krag, H.
Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.
How to tap NASA-developed technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzic, N.
The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less
NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992
NASA Technical Reports Server (NTRS)
Ma, Chopo; Ryan, James W.; Caprette, Douglas S.
1994-01-01
The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.
Zonal centrifuges and other separation systems.
Anderson, N G
1966-10-07
This discussion has included only a partial list of the systems now under development at Oak Ridge as part of the feasibility studies for the Molecular Anatomy Program. It is evident that we are still in the "Robert Goddard" phase of this work. It may not be premature, however, to suggest several conclusions. Biomedical scientists are discouraged on discovering that developmental efforts cost more, by one or two orders of magnitude, than pure research. In part this is because the full cost of development is generally shown, while in pure research some of the costs may be hidden, or the funds supplied by several sources. Regardless of the reason, the fact remains that development is expensive, as is well understood in nuclear physics and space science. The role and mission of the large national laboratories, and the kinds of research that should be done in them, have been discussed by Weinberg (63). The studies described here were in part stimulated by his ideas. We have been unable to find an environment outside a large national laboratory where a program like the Molecular Anatomy Program could be undertaken at the present rate. It appears that programs which attempt to make use of the multidisciplinary approach characteristic of national laboratories should be carefully designed and should evolve experimentally. There is less chance of success when a program is an administrative invention than when it evolves from scientific invention and discovery. It has been pointed out (64) that most program decisions in science are secret decisions in the sense that the scientific community as a whole does not participate in them. If a choice is to be made at some future time between large-scale expenditures for exploring space, for developing new weapons systems, for constructing new accelerators, for designing large reactors, or for systematically developing methods to explore the molecular basis of human disease, then we will need sufficient information to evaluate each alternative fully, and the information should be generally available. It appears desirable, therefore, to allow the Molecular Anatomy Program to proceed to a point where the full range of its contributions and its inherent limitations may be seen. A rational choice may then be made.
A Network Enabled Platform for Canadian Space Science Data
NASA Astrophysics Data System (ADS)
Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.
2008-12-01
The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE-based registry developed by Ray Walker et. al at UCLA, along with a common set of services and federation of CGSM data. An important aspect of the space science NEP is the development of scientific workflows that allow users to more easily develop data analysis tools that can be stored on their desktop for re-use. The presentation will include a high-level view of the methodology and software architecture to be implemented through the development of the CANARIE NEP for space science.
Expanding Public Outreach: The Solar System Ambassadors Program
NASA Astrophysics Data System (ADS)
Ferrari, K.
2001-12-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums. In 2001, 206 Ambassadors from almost all 50 states bring the excitement of space to the public. Ambassadors are space enthusiasts, who come from all walks of life. Last year, Ambassadors conducted almost 600 events that reached more than one-half million people in communities across the United States. The Solar System Ambassadors Program is sponsored by the Jet Propulsion Laboratory (JPL) in Pasadena, California, an operating division of the California Institute of Technology (Caltech) and a lead research and development center for the National Aeronautics and Space Administration (NASA). Participating JPL organizations include Cassini, Galileo, STARDUST, Outer Planets mission, Genesis, Ulysses, Voyager, Mars missions, Discovery missions NEAR and Deep Impact, Deep Space Network, Solar System Exploration Forum and the Education and Public Outreach Office. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of materials, online resource links and information. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large. >http://www.jpl.nasa.gov/ambassador/front.html
Vision for the Future of Lws TR&T
NASA Astrophysics Data System (ADS)
Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.
2014-12-01
The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that address the growing needs of user communities.
NASA Astrophysics Data System (ADS)
Nelson, G.; Cobabe-Ammann, E.
2004-12-01
Colorado MESA is an after school program operating throughout the state with a long track record in promoting science, math and engineering education to largely underserved K-12 student populations. Currently, 81 percent of MESA students are from groups underrepresented in the math/science careers, and 85 percent of MESA students come from low- and moderate-income families. Through a combination of weekly student programs, field trips to universities and industry partners, family orientations, individual academic counseling and required curriculum, Colorado MESA offers an opportunity for students to explore STEM subjects and careers that they might not otherwise have access to - with tangible results. In the Colorado MESA Class of 2003, 97 percent of students planned on entering college this fall, with 86 percent indicating that they will enroll in math/science-based majors. In the last year, the University of Colorado's Laboratory for Atmospheric and Space Physics, a large space and earth sciences institute, has relied on the Colorado MESA program as its primary K-12 partner in Education and Public Outreach. LASP incorporates MESA into its proposal writing opportunities, from E/PO additions to individual research proposals to mission-level educational programs. In addition to funding opportunities, LASP provides scientists and engineers in a variety of contexts and content areas, while MESA works to incorporate those resources into their after school programs. The interface between the after school programs and the research institution requires ongoing communication and coordination in order to evaluate and fine-tune curriculum and activities based on feedback from MESA advisors and teachers. Currently, the MESA/LASP partnership has funded programs in astrobiology, planetary sciences and engineering.
Astronomy and astrophysics for the 1980's, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
Astronomy and astrophysics for the 1980's, volume 1
NASA Astrophysics Data System (ADS)
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
Adaptive Full Aperture Wavefront Sensor Study
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches.
Space solar cell research - Problems and potential
NASA Technical Reports Server (NTRS)
Flood, Dennis J.
1986-01-01
The value of a passive, maintenance-free, renewable energy source was immediately recognized in the early days of the space program, and the silicon solar cell, despite its infancy, was quickly pressed into service. Efficiencies of those early space solar arrays were low, and lifetimes shorter than hoped for, but within a decade significant advances had been made in both areas. Better performance was achieved because of a variety of factors, ranging from improvements in silicon single crystal material, to better device designs, to a better understanding of the factors that affect the performance of a solar cell in space. Chief among the latter, particularly for the mid-to-high altitude (HEO) and geosynchronous (GEO) orbits, are the effects of the naturally occurring particulate radiation environment. Although not as broadly important to the photovoltaic community at large as increased efficiency, the topic of radiation damage is critically important to use of solar cells in space, and is a major component of the NASA research program in space photovoltaics. This paper will give a brief overview of some of the opportunities and challenges for space photovoltaic applications, and will discuss some of the current reseach directed at achieving high efficiency and controlling the effects of radiation damage in space solar cells.
Computational Aspects of Heat Transfer in Structures
NASA Technical Reports Server (NTRS)
Adelman, H. M. (Compiler)
1982-01-01
Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
14 CFR 91.533 - Flight attendant requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...
14 CFR 91.529 - Flight engineer requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...
DataWarrior: an open-source program for chemistry aware data visualization and analysis.
Sander, Thomas; Freyss, Joel; von Korff, Modest; Rufener, Christian
2015-02-23
Drug discovery projects in the pharmaceutical industry accumulate thousands of chemical structures and ten-thousands of data points from a dozen or more biological and pharmacological assays. A sufficient interpretation of the data requires understanding, which molecular families are present, which structural motifs correlate with measured properties, and which tiny structural changes cause large property changes. Data visualization and analysis software with sufficient chemical intelligence to support chemists in this task is rare. In an attempt to contribute to filling the gap, we released our in-house developed chemistry aware data analysis program DataWarrior for free public use. This paper gives an overview of DataWarrior's functionality and architecture. Exemplarily, a new unsupervised, 2-dimensional scaling algorithm is presented, which employs vector-based or nonvector-based descriptors to visualize the chemical or pharmacophore space of even large data sets. DataWarrior uses this method to interactively explore chemical space, activity landscapes, and activity cliffs.
The Ares Launch Vehicles: Critical Capabilities for America's Continued Leadership in Space
NASA Technical Reports Server (NTRS)
Cook, Stephen A.
2009-01-01
The Constellation Program renews the nation's commitment to human space exploration a) Access to ISS. b) Human explorers to the Moon and beyond. c) Large telescopes and other hardware to LEO . Hardware is being built today. Development made easier by applying lessons learned from 50 years of spaceflight experience. Ares V heavy-lift capability will be a strategic asset for the nation. Constellation provides a means for world leadership through inspiration and strategic capability.
NASA Technical Reports Server (NTRS)
Schmerling, E. R.
1977-01-01
Spacelab was developed by the European Space Agency for the conduction of scientific and technological experiments in space. Spacelab can be taken into earth orbit by the Space Shuttle and returned to earth after a period of 1-3 weeks. The Spacelab modular system of pallets, pressurized modules, and racks can contain large payloads with high power and telemetry requirements. A working group has defined the 'Atmospheres, Magnetospheres, and Plasmas-in-Space' project. The project objectives include the absolute measurement of solar flux in a number of carefully selected bands at the same time at which atmospheric measurements are made. NASA is committed to the concept that the scientist is to play a key role in its scientific programs.
1999-04-01
NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).
NASA Technical Reports Server (NTRS)
Ojalvo, I. U.; Austin, F.; Levy, A.
1974-01-01
An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).
Hyperspectral imaging from space: Warfighter-1
NASA Astrophysics Data System (ADS)
Cooley, Thomas; Seigel, Gary; Thorsos, Ivan
1999-01-01
The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, D.C.
1999-12-09
TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For conveniencemore » of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.« less
Fiber Optic Strain Measurements In Filament-Wound Graphite-Epoxy Tubes Containing Embedded Fibers
NASA Astrophysics Data System (ADS)
Rogowski, R. S.; Heyman, J. S.; Holben, M. S.; Egalon, C.; Dehart, D. W.; Doederlein, T.; Koury, J.
1989-01-01
Several planned United States Air Force (USAF) and National Aeronautics and Space Administration (NASA) space systems such as Space Based Radar (SBR), Space Based Laser (SBL), and Space Station, pose serious vibration and control issues. Their low system mass combined with their large size, precision pointing/shape control and rapid retargetting requirements, will result in an unprecedented degree of interaction between the system controller and the modes of vibration of the structure. The resulting structural vibrations and/or those caused by foreign objects impacting the space structure could seriously degrade system performance, making it virtually impossible for passive structural systems to perform their missions. Therefore an active vibration control system which will sense these natural and spurious vibrations, evaluate them and dampen them out is required. This active vibration control system must be impervious to the space environment and electromagnetic interference, have very low weight, and in essence become part of the structure itself. The concept of smart structures meets these criteria. Smart structures is defined as the embedment of sensors, actuators, and possibly microprocessors in the material which forms the structure, a concept that is particularly applicable to advanced composites. These sensors, actuators, and microprocessors will work interactively to sense, evaluate, and dampen those vibrations which pose a threat to large flexible space systems (LSS). The sensors will also be capable of sensing any degradation to the structure. The Air Force Astronautics Laboratory (AFAL) has been working in the area of dynamics and control of LSS for the past five years. Several programs involving both contractual and in-house efforts to develop sensors and actuators for controlling LSS have been initiated. Presently the AFAL is developing a large scale laboratory which will have the capacity of performing large angle retargetting manuevers and vibration analysis on LSS. Advanced composite materials have been fabricated for the last seven years, consisting mostly of rocket components such as: nozzles, payload shrouds, exit cones, and nose cones. Recently, however, AFAL has been fabricating composite components such as trusses, tubes and flat panels for space applications. Research on fiber optic sensors at NASA Langley Research Center (NASA LaRC) dates back to 1979. Recently an optical phase locked loop (OPLL) has been developed that can be used to make strain and temperature measurements. Static and dynamic strain measurements have been demonstrated using this device.' To address future space requirements, AFAL and NASA have initiated a program to design, fabricate, and experimentally test composite struts and panels with embedded sensors, actuators, and microprocessors that can be used to control vibration and motion in space structures.
A survey of spacecraft thermal design solutions
NASA Technical Reports Server (NTRS)
Humphries, R.; Wegrich, R.; Pierce, E.; Patterson, W.
1991-01-01
A review of activities at the NASA/Marshall Space Flight Center in the heat transfer and thermodynamics disciplines as well as attendant fluid mechanics, transport phenomena, and computer science applications is presented. Attention is focused on recent activities including the Hubble Space Telescope, and large space instruments, particularly telescope thermal control systems such as those flown aboard Spacelab 2 and the Astro missions. Emphasis is placed on defining the thermal control features, unique design schemes, and performance of selected programs. Results obtained both by ground testing and analytical means, as well as flight and postflight data are presented.
Solar electric propulsion and interorbital transportation
NASA Technical Reports Server (NTRS)
Austin, R. E.
1978-01-01
In-house MSFC and contracted systems studies have evaluated the requirements associated with candidate SEP missions and the results point to a standard system approach for both program flexibility and economy. The prospects for economical space transportation in the 1980s have already provided a stimulus for Space Industrialization (SI) planning. Two SI initiatives that are used as examples for interorbital transportation requirements are discussed - Public Service Platforms and Satellite Power System. The interorbital requirements for SI range from support of manned geosynchronous missions to transfers of bulk cargo and large-delicate space structures from low earth orbit to geosynchronous orbit.
Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.
Solar Sail Propulsion for Interplanetary Cubesats
NASA Technical Reports Server (NTRS)
Johnson, Les; Sobey, Alex; Sykes, Kevin
2015-01-01
NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.
A TREETOPS simulation of the Hubble Space Telescope-High Gain Antenna interaction
NASA Technical Reports Server (NTRS)
Sharkey, John P.
1987-01-01
Virtually any project dealing with the control of a Large Space Structure (LSS) will involve some level of verification by digital computer simulation. While the Hubble Space Telescope might not normally be included in a discussion of LSS, it is presented to highlight a recently developed simulation and analysis program named TREETOPS. TREETOPS provides digital simulation, linearization, and control system interaction of flexible, multibody spacecraft which admit to a point-connected tree topology. The HST application of TREETOPS is intended to familiarize the LSS community with TREETOPS by presenting a user perspective of its key features.
Hyperspectral Imaging of human arm
NASA Technical Reports Server (NTRS)
2003-01-01
ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include non-invasive analysis of human skin to characterize wounds and wound healing rates (especially important for space travelers who heal more slowly), determining if burns are first-, second-, or third degree (rather than painful punch biopsies). The work is sponsored under NASA's Space Product Development (SPD) program.
NASA Astrophysics Data System (ADS)
Levit, Creon; Gazis, P.
2006-06-01
The graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform (windows, linux, Apple OSX) application which leverages some of the power latent in the GPU to enable smooth interactive exploration and analysis of large high-dimensional data using a variety of classical and recent techniques. The targeted application area is the interactive analysis of complex, multivariate space science and astrophysics data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 10^6-10^8.
NASA Astrophysics Data System (ADS)
Heine, F.; Zech, H.; Motzigemba, M.
2017-12-01
Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.
Spectral Radiance of a Large-Area Integrating Sphere Source
Walker, James H.; Thompson, Ambler
1995-01-01
The radiance and irradiance calibration of large field-of-view scanning and imaging radiometers for remote sensing and surveillance applications has resulted in the development of novel calibration techniques. One of these techniques is the employment of large-area integrating sphere sources as radiance or irradiance secondary standards. To assist the National Aeronautical and Space Administration’s space based ozone measurement program, a commercially available large-area internally illuminated integrating sphere source’s spectral radiance was characterized in the wavelength region from 230 nm to 400 nm at the National Institute of Standards and Technology. Spectral radiance determinations and spatial mappings of the source indicate that carefully designed large-area integrating sphere sources can be measured with a 1 % to 2 % expanded uncertainty (two standard deviation estimate) in the near ultraviolet with spatial nonuniformities of 0.6 % or smaller across a 20 cm diameter exit aperture. A method is proposed for the calculation of the final radiance uncertainties of the source which includes the field of view of the instrument being calibrated. PMID:29151725
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1996-01-01
This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.
1987-08-01
take place in both contractor and government facilities. The on-orbit evaluation could utilize modified launch facilities depending on the launch...technological issues : o Telescope Optics: Verify that the distortions associated vith large optical elements satisfy detection and tracking requirements; verify...Validation program vould be car- ried out at contractor facilities that 1’ave not been identified and at six government facilities (Arnold Engineering
Transatlantic Relations: The Role of Nationalism in Multinational Space Cooperation
2009-06-01
Global Positioning System (GPS) and Russia’s Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS), is another program that has seen its...ESA official Web pages, as well as public documents, such as Reports to Congress (CRS) and European Policy Papers written by authors such as Carl...Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS). It is the first large program jointly funded by the EU and ESA and is also the first major
NASA Technical Reports Server (NTRS)
Newman, J. J.; Grimes, D. W.; Gaetano, F. W.
1973-01-01
Discussion of management techniques that make it possible to overcome inflationary and developmental cost rises while holding schedule and performance fixed in scientific space programs. The techniques reviewed pertain to high personnel motivation, continual review of contract rigidity for de facto modification by senior judgment, standardization vs design innovation, cooperative customer/contractor goal orientation vs task orientation, and deep real-time management visibility.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
Repeater in the sky. [public service communications satellite program
NASA Technical Reports Server (NTRS)
Cote, C. E.; Brown, J. P.
1977-01-01
The Public Service Communications Satellite (PSCS) program is intended to develop and demonstrate a space system aimed at stimulating future commercial markets in fixed and mobile applications. The services are envisioned for rural areas, regions beyond access to terrestrial systems, or for continuous cross-country applications. The system incorporates a UHF repeater for mobile voice and data experiments; 8 MHz of spectrum is specified for serving 70 channels. This paper describes the PSCS program and discusses some demonstration experiments. A future concept based on large structure multibeam antennas is also discussed.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2012-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2014-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John
2008-01-01
Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.
Space Station Freedom Water Recovery test total organic carbon accountability
NASA Technical Reports Server (NTRS)
Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary
1991-01-01
Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.
Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction
NASA Technical Reports Server (NTRS)
Pike, C. P.; Stevens, N. J.
1980-01-01
A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.
Status of the Combustion Devices Injector Technology Program at the NASA MSFC
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James
2005-01-01
To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.
An introduction to data reduction: space-group determination, scaling and intensity statistics.
Evans, Philip R
2011-04-01
This paper presents an overview of how to run the CCP4 programs for data reduction (SCALA, POINTLESS and CTRUNCATE) through the CCP4 graphical interface ccp4i and points out some issues that need to be considered, together with a few examples. It covers determination of the point-group symmetry of the diffraction data (the Laue group), which is required for the subsequent scaling step, examination of systematic absences, which in many cases will allow inference of the space group, putting multiple data sets on a common indexing system when there are alternatives, the scaling step itself, which produces a large set of data-quality indicators, estimation of |F| from intensity and finally examination of intensity statistics to detect crystal pathologies such as twinning. An appendix outlines the scoring schemes used by the program POINTLESS to assign probabilities to possible Laue and space groups.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry
2009-01-01
The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.
An innovative approach to space education
NASA Technical Reports Server (NTRS)
Marton, Christine; Berinstain, Alain B.; Criswick, John
1994-01-01
At present, Canada does not have enough scientists to be competitive in the global economy, which is rapidly changing from a reliance on natural resources and industry to information and technology. Space is the final frontier and it is a multidisciplinary endeavor. It requires a knowledge of science and math, as well as non-science areas such as architecture and law. Thus, it can attract a large number of students with a diverse range of interests and career goals. An overview is presented of the space education program designed by Canadian Alumni of the International Space University (CAISU) to encourage students to pursue studies and careers in science and technology and to improve science literacy in Canada.
Opportunities for the chemical industry in space, part 1
NASA Technical Reports Server (NTRS)
1984-01-01
The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.
Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig
2008-01-01
Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.
Space station needs attributes and architectural options study costing working group briefing
NASA Technical Reports Server (NTRS)
1983-01-01
Individuals in the United States who understand the promise of materials processing in space and who also are senior technical personnel associated with commercial firms that process materials: (1) endorsed the concept of a space station as a desirable national asset; (2) stated that a commercial MPS research program is mandatory to extend commericalization of space for materials processing; and (3) described in general terms a national research laboratory and free flying facilities that are needed. Participants agreed that industry R&D is motivated largely by market pull rather than by technology push, that initial interest is low-g materials research; and that to farther, commercial market assurance (a salable product) is a must.
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
The Great Observatories Origins Deep Survey
NASA Astrophysics Data System (ADS)
Dickinson, Mark
2008-05-01
Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
14 CFR 91.515 - Flight altitude rules.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules. (a...
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Matthew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.
Connecting Robots and Humans in Mars Exploration
NASA Astrophysics Data System (ADS)
Friedman, Louis
2000-07-01
Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned science and technology investigations, but the 2001 Mars Surveyor lander; and an international cooperative effort for robotic Mars sample return were also lost.
Hybrid propulsion technology program: Phase 1, volume 2
NASA Technical Reports Server (NTRS)
Schuler, A. L.; Wiley, D. R.
1989-01-01
The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop test beds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC Test Bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in operation and evolution of the SSF are addressed.
NASA Technical Reports Server (NTRS)
Soeder, James F.; Frye, Robert J.; Phillips, Rudy L.
1991-01-01
Since the beginning of the Space Station Freedom Program (SSFP), the NASA Lewis Research Center (LeRC) and the Rocketdyne Division of Rockwell International have had extensive efforts underway to develop testbeds to support the definition of the detailed electrical power system design. Because of the extensive redirections that have taken place in the Space Station Freedom Program in the past several years, the test bed effort was forced to accommodate a large number of changes. A short history of these program changes and their impact on the LeRC test beds is presented to understand how the current test bed configuration has evolved. The current test objectives and the development approach for the current DC test bed are discussed. A description of the test bed configuration, along with its power and controller hardware and its software components, is presented. Next, the uses of the test bed during the mature design and verification phase of SSFP are examined. Finally, the uses of the test bed in the operation and evolution of the SSF are addressed.
The Design of an Adaptive Attitude Control System
1992-09-01
spacecraft to reorient itself by rotating about the eigenaxis will be executing an optimal maneuver . [Ref. 9: pp. 375-3761 2. Quaternion Feedback Regulator...34% The below program will simulate the CER Control System for Large "% Angle (Slewing) Motion. The Control Law is a Quaternion Feedback "% Regulator...Equipment/Retriever (CER) during autonomous attitude hold and large angle or slewing maneuvers . The CER is a proposed space robot that deploys from
1992-05-01
and systems for developing , testing, and operating the system. A new, lightweight cable de- used this evolving technology base in the ensuing years...Funding Numbers. Development , Testing, and Operation of a Large Suspended Ocean Contrac Measurement Structure for Deep-Ocean Use Program Element No...Research L.aboratory Report Number. Ocean Acoutics and Technology Directorate PR 91:132:253 Stennis Space Center, MS 39529-5004 9. Sponsoring
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
Consortium for materials development in space interaction with Space Station Freedom
NASA Technical Reports Server (NTRS)
Lundquist, Charles A.; Seaquist, Valerie
1992-01-01
The Consortium for Materials Development in Space (CMDS) is one of seventeen Centers for the Commercial Development of Space (CCDS) sponsored by the Office of Commercial Programs of NASA. The CMDS formed at the University of Alabama in Huntsville in the fall of 1985. The Consortium activities therefore will have progressed for over a decade by the time Space Station Freedom (SSF) begins operation. The topic to be addressed here is: what are the natural, mutually productive relationships between the CMDS and SSF? For management and planning purposes, the Consortium organizes its activities into a number of individual projects. Normally, each project has a team of personnel from industry, university, and often government organizations. This is true for both product-oriented materials projects and for infrastructure projects. For various projects Space Station offers specific mutually productive relationships. First, SSF can provide a site for commercial operations that have evolved as a natural stage in the life cycle of individual projects. Efficiency and associated cost control lead to another important option. With SSF in place, there is the possibility to leave major parts of processing equipment in SSF, and only bring materials to SSF to be processed and return to earth the treated materials. This saves the transportation costs of repeatedly carrying heavy equipment to orbit and back to the ground. Another generic feature of commercial viability can be the general need to accomplish large through-put or large scale operations. The size of SSF lends itself to such needs. Also in addition to processing equipment, some of the other infrastructure capabilities developed in CCDS projects may be applied on SSF to support product activities. The larger SSF program may derive mutual benefits from these infrastructure abilities.
Cost effective management of space venture risks
NASA Technical Reports Server (NTRS)
Giuntini, Ronald E.; Storm, Richard E.
1986-01-01
The development of a model for the cost-effective management of space venture risks is discussed. The risk assessment and control program of insurance companies is examined. A simplified system development cycle which consists of a conceptual design phase, a preliminary design phase, a final design phase, a construction phase, and a system operations and maintenance phase is described. The model incorporates insurance safety risk methods and reliability engineering, and testing practices used in the development of large aerospace and defense systems.
NASA Technical Reports Server (NTRS)
Herzig, Howard; Fleetwood, Charles M., Jr.; Toft, Albert R.
1992-01-01
Sample window materials tested during the development of a domed magnesium fluoride detector window for the Hubble Space Telescope's Imaging Spectrograph are noted to exhibit wide variability in VUV transmittance; a test program was accordingly instituted to maximize a prototype domed window's transmittance. It is found that VUV transmittance can be maximized if the boule from which the window is fashioned is sufficiently large to allow such a component to be cut from the purest available portion of the boule.
A survey of experiments and experimental facilities for active control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Horner, Garnett C.; Juang, Jer-Nan; Klose, Gerhard
1989-01-01
A brief survey of large space structure control related experiments and facilities was presented. This survey covered experiments performed before and up to 1982, and those of the present period (1982-...). Finally, the future planned experiments and facilities in support of the control-structure interaction (CSI) program were reported. It was stated that new, improved ground test facilities are needed to verify the new CSI design techniques that will allow future space structures to perform planned NASA missions.
Technology Infusion of CodeSonar into the Space Network Ground Segment
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2009-01-01
This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, D. B. S.
1979-01-01
Production and support equipment specifications are described for the space manufacturing facility (SMF). Defined production equipment includes electromagnetic pumps for liquid metal, metal alloying furnaces, die casters, electron beam welders and cutters, glass forming for structural elements, and rolling. A cost analysis is presented which includes the development, the aquisition of all SMF elements, initial operating cost, maintenance and logistics cost, cost of terrestrial materials, and transportation cost for each major element. Computer program listings and outputs are appended.
The Hubble Space Telescope Servicing Mission 3A Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.
2000-01-01
After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration
NASA Astrophysics Data System (ADS)
Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc
As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.
NASA Technical Reports Server (NTRS)
1987-01-01
Three broad goals were presented by NASA as a guide to meet the challenges of the future: to advance scientific knowledge of the planet Earth, the solar system, and the universe; to expand human presence beyond the Earth into the solar system; and to strengthen aeronautics research and technology. Near-term and new-generation space transportation and propulsion systems are being analyzed that will assure the nation access to and presence in space. Other key advanced studies include large astronomical observatories, space platforms, scientific and commercial payloads, and systems to enhance operations in Earth orbit. Longer-range studies include systems that would allow humans to explore the Moon and Mars during the next century. Research programs, both to support the many space missions studied or managed by the Center and to advance scientific knowledge in selected areas, involve work in the areas of atmospheric science, earth science, space science (including astrophysics and solar, magnetospheric, and atomic physics), and low-gravity science. Programs and experiment design for flights on the Space Station, free-flying satellites, and the Space Shuttle are being planned. To maintain a leadership position in technology, continued advances in liquid and solid propellant engines, materials and processes; electronic, structural, and thermal investigations; and environmental control are required. Progress during the fiscal year 1987 is discussed.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Levin, Richard R.; Carpenter, Elisabeth J.
1990-01-01
The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most.
NASA Technical Reports Server (NTRS)
Johnson, Teresa A.
2006-01-01
Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.
Legacy of Biomedical Research During the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Hayes, Judith C.
2011-01-01
The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, < 16 days and routinely had 4 to 6 crewmembers for a total of 135 flights. Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
Following the cancellation of the Constellation program and retirement of the Space Shuttle, NASA initiated the Space Launch System (SLS) program to provide next-generation heavy lift cargo and crew access to space. A key constituent of the SLS architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). The RS-25 was selected to serve as the main propulsion system for the SLS core stage in conjunction with the solid rocket boosters. This selection was largely based on the maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle boat-tail and installing it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration details involving changes to significant areas such as the environments, interface conditions, technical performance requirements, operational constraints and so on, there were other challenges to be overcome in the area of replacing the obsolete engine control system (ECS). While the magnitude of accomplishing this effort was less than that needed to develop and field a new clean-sheet engine system, the path to the first flight of SLS has not been without unexpected challenges.
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
Symbolic Analysis of Concurrent Programs with Polymorphism
NASA Technical Reports Server (NTRS)
Rungta, Neha Shyam
2010-01-01
The current trend of multi-core and multi-processor computing is causing a paradigm shift from inherently sequential to highly concurrent and parallel applications. Certain thread interleavings, data input values, or combinations of both often cause errors in the system. Systematic verification techniques such as explicit state model checking and symbolic execution are extensively used to detect errors in such systems [7, 9]. Explicit state model checking enumerates possible thread schedules and input data values of a program in order to check for errors [3, 9]. To partially mitigate the state space explosion from data input values, symbolic execution techniques substitute data input values with symbolic values [5, 7, 6]. Explicit state model checking and symbolic execution techniques used in conjunction with exhaustive search techniques such as depth-first search are unable to detect errors in medium to large-sized concurrent programs because the number of behaviors caused by data and thread non-determinism is extremely large. We present an overview of abstraction-guided symbolic execution for concurrent programs that detects errors manifested by a combination of thread schedules and data values [8]. The technique generates a set of key program locations relevant in testing the reachability of the target locations. The symbolic execution is then guided along these locations in an attempt to generate a feasible execution path to the error state. This allows the execution to focus in parts of the behavior space more likely to contain an error.
NASA Astrophysics Data System (ADS)
Kilpatrick, Brian; Cubillos, Patricio; Bruno, Giovanni; Lewis, Nikole K.; Stevenson, Kevin B.; Wakeford, Hannah; Blecic, Jasmina; Burrows, Adam Seth; Deming, Drake; Heng, Kevin; Line, Michael R.; Madhusudhan, Nikku; Morley, Caroline; Waldmann, Ingo P.; Transiting Exoplanet Early Release Science Community
2017-06-01
We present observations of the Hubble Space Telescope (HST) ``A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science" for WASP-63b, one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. A large collaboration of transiting exoplanet scientists identified a set of ``community targets" which meet a certain set of criteria for ecliptic latitude, period, host star brightness, well constrained orbital parameters, and strength of spectroscopic features. WASP-63b was one of the targets identified as a potential candidate for the ERS program. It is presented as an inflated planet with a large signal. It will be accessible to JWST approximately six months after the planned start of Cycle 1/ERS in April 2019 making it an ideal candidate should there be any delays in the JWST timetable. Here, we observe WASP-63b to evaluate its suitability as the best target to test the capabilities of JWST. Ideally, a clear atmosphere will be best suited for bench marking the instruments ability to detect spectroscopic features. We can use the strength of the water absorption feature at 1.4 μm as a way to determine the presence of obscuring clouds/hazes. The results of atmospheric retrieval are presented along with a discussion on the suitability of WASP-63b as the best target to be observed during the ERS Program.
NASA Astrophysics Data System (ADS)
Ehrenfreund, P.; Peter, N.; Billings, L.
2010-08-01
Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.
Assuring data transparency through design methodologies
NASA Technical Reports Server (NTRS)
Williams, Allen
1990-01-01
This paper addresses the role of design methodologies and practices in the assurance of technology transparency. The development of several subsystems on large, long life cycle government programs was analyzed to glean those characteristics in the design, development, test, and evaluation that precluded or enabled the insertion of new technology. The programs examined were Minuteman, DSP, B1-B, and space shuttle. All these were long life cycle, technology-intensive programs. The design methodologies (or lack thereof) and design practices for each were analyzed in terms of the success or failure in incorporating evolving technology. Common elements contributing to the success or failure were extracted and compared to current methodologies being proposed by the Department of Defense and NASA. The relevance of these practices to the design and deployment of Space Station Freedom were evaluated. In particular, appropriate methodologies now being used on the core development contract were examined.
NASA's Space Launch System (SLS) Program: Mars Program Utilization
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2012-01-01
NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.
An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis
NASA Technical Reports Server (NTRS)
Giles, G. L.; Ballas, M.
1982-01-01
An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses
Russian Earth Science Research Program on ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armand, N. A.; Tishchenko, Yu. G.
1999-01-22
Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less
The NASA Constellation Program Procedure System
NASA Technical Reports Server (NTRS)
Phillips, Robert G.; Wang, Lui
2010-01-01
NASA has used procedures to describe activities to be performed onboard vehicles by astronaut crew and on the ground by flight controllers since Apollo. Starting with later Space Shuttle missions and the International Space Station, NASA moved forward to electronic presentation of procedures. For the Constellation Program, another large step forward is being taken - to make procedures more interactive with the vehicle and to assist the crew in controlling the vehicle more efficiently and with less error. The overall name for the project is the Constellation Procedure Applications Software System (CxPASS). This paper describes some of the history behind this effort, the key concepts and operational paradigms that the work is based upon, and the actual products being developed to implement procedures for Constellation
NASA Technical Reports Server (NTRS)
Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.
1991-01-01
The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.
A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities
NASA Astrophysics Data System (ADS)
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2013-01-01
A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message Passing Interface and a master-slaves dynamical load-balancing approach. Restrictions: The program uses two-body interaction in a restricted single-level basis. For example, GXPF1A in the pf-valence space. Running time: Depends on the system size and the number of processors used (from 1 min to several hours).
14 CFR 91.531 - Second in command requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...
14 CFR 91.531 - Second in command requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...
14 CFR 91.531 - Second in command requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...
14 CFR 91.531 - Second in command requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...
14 CFR 91.531 - Second in command requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Second in command requirements. 91.531...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.531 Second in command... following airplanes without a pilot who is designated as second in command of that airplane: (1) A large...
Using Technology to Promote Active and Social Learning Experiences in Health Professions Education
ERIC Educational Resources Information Center
Ruckert, Elizabeth; McDonald, Paige L.; Birkmeier, Marissa; Walker, Bryan; Cotton, Linda; Lyons, Laurie B.; Straker, Howard O.; Plack, Margaret M.
2014-01-01
Time and space constraints, large class sizes, competition for clinical internships, and geographic separation between classroom and clinical rotations for student interaction with peers and faculty pose challenges for health professions educational programs. This article presents a model for effectively incorporating technology to overcome these…
Emerging Array Antenna Technologies at JPL
NASA Technical Reports Server (NTRS)
Huang, J.
1998-01-01
JPL/NASA's Earth remote sensing and deep-space exploration programs have been placing emphasis on their spacecraft's high-gain and large-aperture antennas. At the same time, however, low mass and small storage volume are demanded in order to reduce payload weight and reduce shroud size and thus reduce launch cost.
Conference on Fire Resistant Materials: A compilation of presentations and papers
NASA Technical Reports Server (NTRS)
Kourtides, D. A. (Editor); Johnson, G. A. (Editor)
1979-01-01
The proceedings of the NASA IRE Resistant Materials Engineering (FIREMEN) Program held at Boeing Commercial Airplane Company, Seattle, Washington, on March 1-2, 1979 are reported. The conference was to discuss the results of research by the National Aeronautics and Space Administration in the field of aircraft fire safety and fire-resistant materials. The program topics include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) fire modeling.
NSF's Perspective on Space Weather Research for Building Forecasting Capabilities
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.
2017-12-01
Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.
NASA Technical Reports Server (NTRS)
Rosmait, Russell L.
1996-01-01
The development of a new space transportation system in a climate of constant budget cuts and staff reductions can be and is a difficult task. It is no secret that NASA's current launching system consumes a very large portion of NASA funding and requires a large army of people to operate & maintain the system. The new Reusable Launch Vehicle (RLV) project and it's programs are faced with a monumental task of making the cost of access to space dramatically lower and more efficient than NASA's current system. With pressures from congressional budget cutters and also increased competition and loss of market share from international agencies RLV's first priority is to develop a 'low-cost, reliable transportation to earth orbit.' One of the RLV's major focus in achieving low-cost, reliable transportation to earth orbit is to rely on the maturing of advanced technologies. The technologies for the RLV are numerous and varied. Trying to assess their current status, within the RLV development program is paramount. There are several ways to assess these technologies. One way is through the use of Technology Readiness Levels (TRL's). This project focused on establishing current (summer 95) 'worst case' TRL's for six selected technologies that are under consideration for use within the RLV program. The six technologies evaluated were Concurrent Engineering, Embedded Sensor Technology, Rapid Prototyping, Friction Stir Welding, Thermal Spray Coatings, and VPPA Welding.
Manufacture of Cryoshroud Surfaces for Space Simulation Chambers
NASA Technical Reports Server (NTRS)
Ash, Gary S.
2008-01-01
Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.
A forecast of space technology, 1980 - 2000
NASA Technical Reports Server (NTRS)
1976-01-01
The future of space technology in the United States during the period 1980-2000 was presented, in relation to its overall role within the space program. Conclusions were drawn and certain critical areas were identified. Three different methods to support this work were discussed: (1) by industry, largely without NASA or other government support, (2) partially by industry, but requiring a fraction of NASA or similar government support, (3) currently unique to space requirements and therefore relying almost totally on NASA support. The proposed work was divided into the following areas: (1) management of information (acquisition, transfer, processing, storing) (2) management of energy (earth-to-orbit operations, space power and propulsion), (3) management of matter (animate, inanimate, transfer, storage), (4) basic scientific resources for technological advancement (cryogenics, superconductivity, microstructures, coherent radiation and integrated optics technology).
Integrated Digital Flight Control System for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.
Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements
NASA Technical Reports Server (NTRS)
Aitchison, Lindsway; Ross, Amy; Matty, Jennifer
2009-01-01
Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
NASA's small planetary mission plan released
NASA Astrophysics Data System (ADS)
Jones, Richard M.
A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
Columbia Crew Survival Investigation Report
NASA Technical Reports Server (NTRS)
2009-01-01
NASA commissioned the Columbia Accident Investigation Board (CAIB) to conduct a thorough review of both the technical and the organizational causes of the loss of the Space Shuttle Columbia and her crew on February 1, 2003. The accident investigation that followed determined that a large piece of insulating foam from Columbia s external tank (ET) had come off during ascent and struck the leading edge of the left wing, causing critical damage. The damage was undetected during the mission. The CAIB's findings and recommendations were published in 2003 and are available on the web at http://caib.nasa.gov/. NASA responded to the CAIB findings and recommendations with the Space Shuttle Return to Flight Implementation Plan. Significant enhancements were made to NASA's organizational structure, technical rigor, and understanding of the flight environment. The ET was redesigned to reduce foam shedding and eliminate critical debris. In 2005, NASA succeeded in returning the space shuttle to flight. In 2010, the space shuttle will complete its mission of assembling the International Space Station and will be retired to make way for the next generation of human space flight vehicles: the Constellation Program. The Space Shuttle Program recognized the importance of capturing the lessons learned from the loss of Columbia and her crew to benefit future human exploration, particularly future vehicle design. The program commissioned the Spacecraft Crew Survival Integrated Investigation Team (SCSIIT). The SCSIIT was asked to perform a comprehensive analysis of the accident, focusing on factors and events affecting crew survival, and to develop recommendations for improving crew survival for all future human space flight vehicles. To do this, the SCSIIT investigated all elements of crew survival, including the design features, equipment, training, and procedures intended to protect the crew. This report documents the SCSIIT findings, conclusions, and recommendations.
2012-08-14
CAPE CANAVERAL, Fla. -- Florida's Lt. Gov. Jennifer Carroll, left, and NASA Commercial Crew Program Manager Ed Mango shake hands at the National Space Club Florida Committee's August luncheon at the Radisson Resort at the Port in Cape Canaveral, Fla. Mango was the event's guest speaker, discussing the innovative steps the agency is taking with industry partners to develop the next U.S. space transportation capability to and from low Earth orbit, which will eventually be available for use by the U.S. government and other commercial customers. To learn more about the Commercial Crew Program, visit www.nasa.gov/commercialcrew. Photo credit: Kim Shiflett NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each weighing six and a half million pounds and larger in size than a professional baseball infield, the crawler-transporters are powered by locomotive and large electrical power generator engines. The crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
Subgrid-scale models for large-eddy simulation of rotating turbulent flows
NASA Astrophysics Data System (ADS)
Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel
2016-11-01
This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.
NASA Technical Reports Server (NTRS)
Smith, W. W.
1981-01-01
The five major tasks of the program are reported. Task 1 is a literature search followed by selection and definition of seven generic spacecraft classes. Task 2 covers the determination and description of important disturbance effects. Task 3 applies the disturbances to the generic spacecraft and adds maneuver and stationkeeping functions to define total auxiliary propulsion systems requirements for control. The important auxiliary propulsion system characteristics are identified and sensitivities to control functions and large space system characteristics determined. In Task 4, these sensitivities are quantified and the optimum auxiliary propulsion system characteristics determined. Task 5 compares the desired characteristics with those available for both electrical and chemical auxiliary propulsion systems to identify the directions technology advances should take.
Top++: A program for the calculation of the top-pair cross-section at hadron colliders
NASA Astrophysics Data System (ADS)
Czakon, Michał; Mitov, Alexander
2014-11-01
We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user.
NASA Technical Reports Server (NTRS)
Phillips, Warren F.
1989-01-01
The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.
Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.
Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.
Large Crawler Crane for new lightning protection system
2007-10-25
A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.
NASA Technical Reports Server (NTRS)
Polk, James D.; Duncan, James M.; Davis, Jeffrey R.; Williams, Richard S.; Lindgren, Kjell N.; Mathes, Karen L.; Gillis, David B.; Scheuring, Richard A.
2009-01-01
From May of 1973 to February of 1974, the National Aeronautics and Space Administration conducted a series of three manned missions to the Skylab space station, a voluminous vehicle largely descendant of Apollo hardware, and America s first space station. The crewmembers of these three manned missions spent record breaking durations of time in microgravity (28 days, 59 days and 84 days, respectively) and gave the U.S. space program its first experiences with long-duration space flight. The program overcame a number of obstacles (including a significant crippling of the Skylab vehicle) to conduct a lauded scientific program that encompassed life sciences, astronomy, solar physics, materials sciences and Earth observation. Skylab has more to offer than the results of its scientific efforts. The operations conducted by the Skylab crews and ground personnel represent a rich legacy of operational experience. As we plan for our return to the moon and the subsequent manned exploration of Mars, it is essential to utilize the experiences and insights of those involved in previous programs. Skylab and SMEAT (Skylab Medical Experiments Altitude Test) personnel have unique insight into operations being planned for the Constellation Program, such as umbilical extra-vehicular activity and water landing/recovery of long-duration crewmembers. Skylab was also well known for its habitability and extensive medical suite; topics which deserve further reflection as we prepare for lunar habitation and missions beyond Earth s immediate sphere of influence. The Skylab Medical Operations Summit was held in January 2008. Crewmembers and medical personnel from the Skylab missions and SMEAT were invited to participate in a two day summit with representatives from the Constellation Program medical operations community. The purpose of the summit was to discuss issues pertinent to future Constellation operations. The purpose of this document is to formally present the recommendations of the Skylab and SMEAT participants.
Rideshare programs: a historical perspective
NASA Astrophysics Data System (ADS)
Horais, Brian J.
2000-11-01
In recent years there has been a significant increase in demand for testing, qualification and evaluation of satellite components in space. This will continue to be true with the dramatic growth in remote sensing and communication satellites and constellations. Finding ways to space qualify components and sensors without paying for expensive, dedicated space experiments has prompted a number of aerospace companies (large and small) and government organizations to increase their emphasis on providing low-cost access to space by means of secondary rides on primary payloads and launch vehicle structures. Proactive rideshare brokering is a process that supports space testing by actively providing the information, processes and equipment necessary to support successful space testing. As U.S. space programs have grown in scope and cost, the capacity to accetp risk as part of the development process has diminished - resulting in reduced levels of innovation and erosion of our space industry domination. In contrast, the international space community has instituted a number of innovative processes that support low cost entry to space for small programs. This has stimulated new space systems industries in many countries around the world. This growth is closely coupled with the dynamic growth in the International space launch industry. Proactive rideshare brokering takes a new approach to secondary payload integration. Many commercial and government payload integration services have taken the approach "If you build it they will come." This is not sufficiently aggressive to attract the new technologists who know very little about space testing. Proactive brokering must take a "You must go out and actively seek high-payoff technology payloads" approach to have a true impact on the implementation of new space system technologies. It should also include the application of proven practices from the international payload integration community. The paper draws conclusions by comparing what has been done historically and currently in the international space payload integration community versus what the current practices are in the U.S.. Observations and recommendations are made that reflect a reduced timeline approach and that acknowledge the close coupling between the technology base, the space systems industry, infrastructure and educational processes.
Role of Sports Facilities in the Process of Revitalization of Brownfields
NASA Astrophysics Data System (ADS)
Taraszkiewicz, Karolina; Nyka, Lucyna
2017-10-01
The paper gives an evidence that building a large sports facility can generate beneficial urban space transformation and a significant improvement in the dilapidated urban areas. On the basis of theoretical investigations and case studies it can be proved that sports facilities introduced to urban brownfields could be considered one of the best known large scale revitalization methods. Large urban spaces surrounding sport facilities such as stadiums and other sports arenas create excellent conditions for designing additional recreational function, such as parks and other green areas. Since sports venues are very often located on brownfields and post-industrial spaces, there are usually well related with canals, rivers and other water routes or reservoirs. Such spaces become attractors for large groups of people. This, in effect initiate the process of introducing housing estates to the area and gradually the development of multifunctional urban structure. As research shows such process of favourable urban transformation could be based on implementing several important preconditions. One of the most significant one is the formation of the new communication infrastructure, which links newly formed territories with the well-structured urban core. Well planned program of the new sports facilities is also a very important factor. As research shows multifunctional large sports venues may function in the city as a new kind of public space that stimulates new genres of social relations, offers entertainment and free time activities, not necessarily related with sport. This finally leads to the creation of new jobs and more general improvement of a widely understood image of the district, growing appreciation for the emerging new location and consequently new investments in the neighbouring areas. The research gives new evidence to the ongoing discussion on the drawbacks and benefits of placing stadiums and sports arenas in the urban core.
Li, Zhifei; Qin, Dongliang
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation. PMID:24790572
Li, Zhifei; Qin, Dongliang; Yang, Feng
2014-01-01
In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2007-01-01
NASA s Vision for Space Exploration outlines a very ambitious program for the next several decades of the Space Agency endeavors. Ahead is the completion of the International Space Station (ISS); safely flight the shuttle (STS) until 2010; develop and fly the Crew Exploration Vehicle (Orion) by no later than 2014; return to the moon by no later than 2020; extend human presence across the solar system and beyond; implement a sustainable and affordable human and robotic program; develop supporting innovative technologies, knowledge and infrastructure; and promote international and commercial participation in exploration. To achieve these goals, a series of enabling technologies must be developed or matured in a timely manner. Some of these technologies are: spacecraft RF technology (e.g., high power sources and large antennas which using surface receive arrays can get up to 1 Gbps from Mars), uplink arraying (reduce reliance on large ground-based antennas and high operation costs; single point of failure; enable greater data-rates or greater effective distance; scalable, evolvable, flexible scheduling), software define radio (i.e., reconfigurable, flexible interoperability allows for in flight updates open architecture; reduces mass, power, volume), and optical communications (high capacity communications with low mass/power required; significantly increases data rates for deep space). This presentation will discuss some of the work being performed at the NASA Glenn Research Center, Cleveland, Ohio, in antenna technology as well as other on-going RF communications efforts.
Metrication study for large space telescope
NASA Technical Reports Server (NTRS)
Creswick, F. A.; Weller, A. E.
1973-01-01
Various approaches which could be taken in developing a metric-system design for the Large Space Telescope, considering potential penalties on development cost and time, commonality with other satellite programs, and contribution to national goals for conversion to the metric system of units were investigated. Information on the problems, potential approaches, and impacts of metrication was collected from published reports on previous aerospace-industry metrication-impact studies and through numerous telephone interviews. The recommended approach to LST metrication formulated in this study cells for new components and subsystems to be designed in metric-module dimensions, but U.S. customary practice is allowed where U.S. metric standards and metric components are not available or would be unsuitable. Electrical/electronic-system design, which is presently largely metric, is considered exempt from futher metrication. An important guideline is that metric design and fabrication should in no way compromise the effectiveness of the LST equipment.
2010-09-21
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, construction crews lay large wooden mats on top of sand and reinforcing steel to protect the concrete under the rotating service structure (RSS) of Launch Pad 39B during deconstruction. In the background, space shuttle Discovery stands tall on Launch Pad 39A, awaiting its STS-133 mission to the International Space Station. Starting in 2009, the structure at Pad B was no longer needed for NASA's Space Shuttle Program, so it is being restructured for future use. The new design will feature a "clean pad" for rockets to come with their own launcher, making it more versatile for a number of vehicles. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Jim Grossmann
Space industrialization - Education. [via communication satellites
NASA Technical Reports Server (NTRS)
Joels, K. M.
1978-01-01
The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.
Benefits of NASA to the USA and Humanity
NASA Technical Reports Server (NTRS)
Duarte, Alberto
2017-01-01
During his 28+ as a NASA employee, Mr. Duarte has had the privilege to work in several programs and projects (Space Shuttle Main Engine; Advanced Solid Rocket Booster; X-33; X-34; X-36; External Tank for the Space Shuttle; Space Shuttle missions and others) related to the NASA aerospace exploration program. At the VIII version of F-AIR COLOMBIA, the organizers want to have Colombian born aerospace professionals with experience in aerospace matters to contribute as panelists for this years theme, Benefits of Space Development for A Country. For more than 50 years NASA has lead the world in exploration through continuous advancement in science and innovative technologies. The results have been not only of a service to the nation but to humankind, as well. Those remarkable developments have resulted in positive impact in social and economic growth, enhancements in academics and educational horizons, creation of numerous investment opportunities for large corporations and small business, and a more comprehensive understanding of the universe. NASA has layout path for space exploration and has been of inspiration for scientist, academics and students. Benefits of NASA to the USA and Humanity, will provide a relevant contribution to the theme and objectives of this national event in Colombia.
1984-01-01
An engineer at the Marshall Space Flight Center (MSFC) observes a model of the Space Shuttle Orbiter being tested in the MSFC's 14x14-Inch Trisonic Wind Tunnel. The 14-Inch Wind Tunnel is a trisonic wind tunnel. This means it is capable of running subsonic, below the speed of sound; transonic, at or near the speed of sound (Mach 1,760 miles per hour at sea level); or supersonic, greater than Mach 1 up to Mach 5. It is an intermittent blowdown tunnel that operates by high pressure air flowing from storage to either vacuum or atmospheric conditions. The MSFC 14x14-Inch Trisonic Wind Tunnel has been an integral part of the development of the United States space program Rocket and launch vehicles from the Jupiter-C in 1958, through the Saturn family up to the current Space Shuttle and beyond have been tested in this Wind Tunnel. MSFC's 14x14-Inch Trisonic Wind Tunnel, as with most other wind tunnels, is named after the size of the test section. The 14-Inch Wind Tunnel, as in the past, will continue to play a large but unseen role in the development of America's space program.
Using the ISS as a Testbed to Prepare for the Next Generation of Space-Based Telescopes
NASA Technical Reports Server (NTRS)
Ess, Kim; Thronson, Harley; Boyles, Mark; Sparks, William; Postman, Marc; Carpenter, Kenneth
2012-01-01
The ISS provides a unique opportunity to develop the technologies and operational capabilities necessary to assemble future large space telescopes that may be used to investigate planetary systems around neighboring stars. Assembling telescopes in space is a paradigm-shifting approach to space astronomy. Using the ISS as a testbed will reduce the technical risks of implementing this major scientific facility, such as laser metrology and wavefront sensing and control (WFSC). The Optical Testbed and Integration on ISS eXperiment (OpTIIX) will demonstrate the robotic assembly of major components, including the primary and secondary mirrors, to mechanical tolerances using existing ISS infrastructure, and the alignment of the optical elements to a diffraction-limited optical system in space. Assembling the optical system and removing and replacing components via existing ISS capabilities, such as the Special Purpose Dexterous Manipulator (SPDM) or the ISS flight crew, allows for future experimentation and repair, if necessary. First flight on ISS for OpTIIX, a small 1.5 meter optical telescope, is planned for 2015. In addition to demonstration of key risk-retiring technologies, the OpTIIX program includes a public outreach program to show the broad value of ISS utilization.
Space Station power system issues
NASA Technical Reports Server (NTRS)
Giudici, R. J.
1985-01-01
Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite.
Computer network access to scientific information systems for minority universities
NASA Astrophysics Data System (ADS)
Thomas, Valerie L.; Wakim, Nagi T.
1993-08-01
The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- NASA and United Space Alliance (USA) Space Shuttle program managers attend a briefing, part of activities during a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC. Starting third from left are NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, USA Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Space Shuttle Program Manager William Parsons, and USA Associate Program Manager of Ground Operations Andy Allen.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, United Space Alliance (USA) Vice President and Space Shuttle Program Manager Howard DeCastro, NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik, and a USA technician examine cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
1988-01-01
This photograph shows an overall view of the Marshall Space Flight Center's (MSFC's) 14x14-Inch Trisonic Wind Tunnel. The 14-Inch Wind Tunnel is a trisonic wind tunnel. This means it is capable of running subsonic, below the speed of sound; transonic, at or near the speed of sound (Mach 1, 760 miles per hour at sea level); or supersonic, greater than Mach 1 up to Mach 5. It is an intermittent blowdown tunnel that operates by high pressure air flowing from storage to either vacuum or atmospheric conditions. The MSFC 14x14-Inch Trisonic Wind Tunnel has been an integral part of the development of the United States space program Rocket and launch vehicles from the Jupiter-C in 1958, through the Saturn family up to the current Space Shuttle and beyond have been tested in this Wind Tunnel. MSFC's 14x14-Inch Trisonic Wind Tunnel, as with most other wind tunnels, is named after the size of the test section. The 14-Inch Wind Tunnel, as in the past, will continue to play a large but unseen role in the development of America's space program.
Space Launch System Complex Decision-Making Process
NASA Technical Reports Server (NTRS)
Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman,Stuart
2012-01-01
The Space Shuttle program has ended and elements of the Constellation Program have either been cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. From Fall 2010 until Spring 2011, an SLS decision-making framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper focuses on the various steps and methods of this process (rather than specific data) that allowed for competing concepts to be compared across a variety of launch vehicle metrics in support of the successful completion of the SLS Mission Concept Review (MCR) milestone.
Next-Generation RS-25 Engines for the NASA Space Launch System
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2017-01-01
The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
A simple modern correctness condition for a space-based high-performance multiprocessor
NASA Technical Reports Server (NTRS)
Probst, David K.; Li, Hon F.
1992-01-01
A number of U.S. national programs, including space-based detection of ballistic missile launches, envisage putting significant computing power into space. Given sufficient progress in low-power VLSI, multichip-module packaging and liquid-cooling technologies, we will see design of high-performance multiprocessors for individual satellites. In very high speed implementations, performance depends critically on tolerating large latencies in interprocessor communication; without latency tolerance, performance is limited by the vastly differing time scales in processor and data-memory modules, including interconnect times. The modern approach to tolerating remote-communication cost in scalable, shared-memory multiprocessors is to use a multithreaded architecture, and alter the semantics of shared memory slightly, at the price of forcing the programmer either to reason about program correctness in a relaxed consistency model or to agree to program in a constrained style. The literature on multiprocessor correctness conditions has become increasingly complex, and sometimes confusing, which may hinder its practical application. We propose a simple modern correctness condition for a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and the parallel programming system.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
Implementing a Reliability Centered Maintenance Program at NASA's Kennedy Space Center
NASA Technical Reports Server (NTRS)
Tuttle, Raymond E.; Pete, Robert R.
1998-01-01
Maintenance practices have long focused on time based "preventive maintenance" techniques. Components were changed out and parts replaced based on how long they had been in place instead of what condition they were in. A reliability centered maintenance (RCM) program seeks to offer equal or greater reliability at decreased cost by insuring only applicable, effective maintenance is performed and by in large part replacing time based maintenance with condition based maintenance. A significant portion of this program involved introducing non-intrusive technologies, such as vibration analysis, oil analysis and I/R cameras, to an existing labor force and management team.
A computerized compensator design algorithm with launch vehicle applications
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.
1976-01-01
This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.
New multivariable capabilities of the INCA program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1989-01-01
The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.
Commercial Research and Development: Power to Explore, Opportunities from Discovery
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)
2002-01-01
The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving force for strengthening the commercial space activities is not only the technological advances in launch vehicle, or newer satellites, but the myriad of enabling payloads technologies that could, as a goal, result in an almost transparent facilitation to regular CD a, -n access to space and microgravity environments by the future users from the existing Earth-based research and development organizations market segments. Rather than focusing only on developing high lift performance launch vehicles and then developing payloads to fit them, the real focus from a business model perspective should to be on the customer payloads requirements, and on designing launch vehicles and platforms systems for a space transportation and facility infrastructure to support all aspects of the business model for the user market. To harness the full potential of space commercialization, new efforts need to be made to comprehensively examine all the critical business model areas for commercial research, development, and manufacturing in space so as to identify specific products and efforts; to determine how such operations must be both similar to and different from current Earth-based activities; to evaluate the enabling technological devices, processes and efforts so that like efforts can be addressed in a synergistic fashion for maximum user cost effectiveness; to delineate the services that are both needed and can be provided by such activities; and to use this information to drive design and development of space commercialization efforts and policy.
Working With Solar System Ambassadors
NASA Astrophysics Data System (ADS)
Ferrari, K.
2001-11-01
The Solar System Ambassadors Program is a public outreach program designed to work with motivated volunteers across the nation. These competitively selected volunteers organize and conduct public events that communicate exciting discoveries and plans in Solar System research, exploration and technology through non-traditional forums; e.g. community service clubs, libraries, museums, planetariums, "star parties," mall displays, etc. Each Ambassador participates in on-line (web-based) training sessions that provide interaction with NASA scientists, engineers and project team members. As such, each Ambassador's experience with the space program becomes personalized. Training sessions provide Ambassadors with general background on each mission and educate them concerning specific mission milestones, such as launches, planetary flybys, first image returns, arrivals, and ongoing key discoveries. Additionally, projects provide limited supplies of videos, slide sets, booklets, pamphlets, posters, postcards, lithographs, on-line materials, resource links and information. In addition to participating in on-line trainings with Ambassadors, scientists will be given the opportunity to interact with, and mentor volunteer Ambassadors at regional, weekend conferences designed to strengthen the Ambassadors' knowledge of space science and exploration, thereby improving the space science message that goes out to the general public through these enthusiastic volunteers. Integrating volunteers across the country in a public-engagement program helps optimize project funding set aside for education and outreach purposes, establishing a nationwide network of regional contacts. At the same time, members of communities across the country become an extended part of each mission's team and an important interface between the space exploration community and the general public at large.
Programs Automate Complex Operations Monitoring
NASA Technical Reports Server (NTRS)
2009-01-01
Kennedy Space Center, just off the east coast of Florida on Merritt Island, has been the starting place of every human space flight in NASA s history. It is where the first Americans left Earth during Project Mercury, the terrestrial departure point of the lunar-bound Apollo astronauts, as well as the last solid ground many astronauts step foot on before beginning their long stays aboard the International Space Station. It will also be the starting point for future NASA missions to the Moon and Mars and temporary host of the new Ares series rockets designed to take us there. Since the first days of the early NASA missions, in order to keep up with the demands of the intricate and critical Space Program, the launch complex - host to the large Vehicle Assembly Building, two launch pads, and myriad support facilities - has grown increasingly complex to accommodate the sophisticated technologies needed to manage today s space missions. To handle the complicated launch coordination safely, NASA found ways to automate mission-critical applications, resulting in streamlined decision-making. One of these methods, management software called the Control Monitor Unit (CMU), created in conjunction with McDonnell Douglas Space & Defense Systems, has since left NASA, and is finding its way into additional applications.
Overview of the James Webb Space Telescope observatory
NASA Astrophysics Data System (ADS)
Clampin, Mark
2011-09-01
The James Webb Space Telescope (JWST) is a large aperture, space telescope designed to provide imaging and spectroscopy over the near and mid-infrared from 1.0 μm to 28 μm. JWST is a passively cooled infrared telescope, employing a five layer sunshield to achieve an operating temperature of ~40 K. JWST will be launched to an orbit at L2 aboard an Ariane 5 launcher in 2013. The Goddard Space Flight Center (GSFC) is the lead center for the JWST program and manages the project for NASA. The prime contractor for JWST is Northrop Grumman Aerospace Systems (NGST). JWST is an international partnership with the European Space Agency (ESA), and the Canadian Space Agency (CSA). ESA will contribute the Ariane 5 launch, and a multi-object infrared spectrograph. CSA will contribute the Fine Guidance Sensor (FGS), which includes the Tunable Filter Imager (TFI). A European consortium, in collaboration with the Jet Propulsion Laboratory (JPL), builds the mid-infrared imager (MIRI). In this paper we present an overview of the JWST science program, and discuss recent progress in the development of the observatory. In this paper we will discuss the scientific motivations for JWST, and discuss recent progress in the construction of the observatory, focusing on the telescope and its optics, which have recently completed polishing.
Experimental program for real gas flow code validation at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul
1989-01-01
The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.
Space shuttle program solid rocket booster decelerator subsystem
NASA Technical Reports Server (NTRS)
Barnard, J. W.
1985-01-01
The recovery of the Solid Rocket Boosters presented a major challenge. The SRB represents the largest payload ever recovered and presents the added complication that it is continually emitting hot gases and burning particles of insulation and other debris. Some items, such as portions of the nozzle, are large enough to burn through the nylon parachute material. The SRB Decelerator Subsystem program was highly successful in that no SRB has been lost as a result of inadequate performance of the DSS.
IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.
Ha, Vi Q; Lykotrafitis, George
2016-12-08
We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Additional application of the NASCAP code. Volume 1: NASCAP extension
NASA Technical Reports Server (NTRS)
Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.
1981-01-01
The NASCAP computer program comprehensively analyzes problems of spacecraft charging. Using a fully three dimensional approach, it can accurately predict spacecraft potentials under a variety of conditions. Several changes were made to NASCAP, and a new code, NASCAP/LEO, was developed. In addition, detailed studies of several spacecraft-environmental interactions and of the SCATHA spacecraft were performed. The NASCAP/LEO program handles situations of relatively short Debye length encountered by large space structures or by any satellite in low earth orbit (LEO).
Ma, Li; Runesha, H Birali; Dvorkin, Daniel; Garbe, John R; Da, Yang
2008-01-01
Background Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers provide opportunities to detect epistatic SNPs associated with quantitative traits and to detect the exact mode of an epistasis effect. Computational difficulty is the main bottleneck for epistasis testing in large scale GWAS. Results The EPISNPmpi and EPISNP computer programs were developed for testing single-locus and epistatic SNP effects on quantitative traits in GWAS, including tests of three single-locus effects for each SNP (SNP genotypic effect, additive and dominance effects) and five epistasis effects for each pair of SNPs (two-locus interaction, additive × additive, additive × dominance, dominance × additive, and dominance × dominance) based on the extended Kempthorne model. EPISNPmpi is the parallel computing program for epistasis testing in large scale GWAS and achieved excellent scalability for large scale analysis and portability for various parallel computing platforms. EPISNP is the serial computing program based on the EPISNPmpi code for epistasis testing in small scale GWAS using commonly available operating systems and computer hardware. Three serial computing utility programs were developed for graphical viewing of test results and epistasis networks, and for estimating CPU time and disk space requirements. Conclusion The EPISNPmpi parallel computing program provides an effective computing tool for epistasis testing in large scale GWAS, and the epiSNP serial computing programs are convenient tools for epistasis analysis in small scale GWAS using commonly available computer hardware. PMID:18644146
Ionizing Radiation Environments and Exposure Risks
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.
2015-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.
Quarter Scale RLV Multi-Lobe LH2 Tank Test Program
NASA Technical Reports Server (NTRS)
Blum, Celia; Puissegur, Dennis; Tidwell, Zeb; Webber, Carol
1998-01-01
Thirty cryogenic pressure cycles have been completed on the Lockheed Martin Michoud Space Systems quarter scale RLV composite multi-lobe liquid hydrogen propellant tank assembly, completing the initial phases of testing and demonstrating technologies key to the success of large scale composite cryogenic tankage for X33, RLV, and other future launch vehicles.
Golden Gardens: A Wildlife Gardening Program for Seniors.
ERIC Educational Resources Information Center
Pike, Judy
This document is a guide for older persons who are beginner gardeners. It provides 16 projects to choose from and explains what is needed for each before getting started. Each chapter contains projects suitable for small, medium, and large garden spaces. Contents include: (1) "Getting Started"; (2) "Beckoning Birds, Bees, and Butterflies"; (3)…
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a space shuttle era mobile launcher platform, on the left, sits on pedestals outside the Vehicle Assembly Building. To the right is the mobile launcher that will support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank
NASA Technical Reports Server (NTRS)
Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott
2012-01-01
Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.
Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita
2007-01-01
Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
Planning an Effective Speakers Outreach Program
NASA Technical Reports Server (NTRS)
McDonald, Malcolm W.
1996-01-01
The National Aeronautics and Space Administration (NASA) and, in particular, the Marshall Space Flight Center (MSFC) have played pivotal roles in the advancement of space exploration and space-related science and discovery since the early 1960's. Many of the extraordinary accomplishments and advancements of NASA and MSFC have gone largely unheralded to the general public, though they often border on the miraculous. This lack of suitable and deserved announcement of these "miracles" seems to have occurred because NASA engineers and scientists are inclined to regard extraordinary accomplishment as a normal course of events. The goal in this project has been to determine an effective structure and mechanism for communicating to the general public the extent to which our investment in our US civilian space program, NASA, is, in fact, a very wise investment. The project has involved discerning important messages of truth which beg to be conveyed to the public. It also sought to identify MSFC personnel who are particularly effective as messengers or communicators. A third aspect of the project was to identify particular target audiences who would appreciate knowing the facts about their NASA investment. The intent is to incorporate the results into the formation of an effective, proactive MSFC speakers bureau. A corollary accomplishment for the summer was participation in the formation of an educational outreach program known as Nasa Ambassadors. Nasa Ambassadors are chosen from the participants in the various MSFC summer programs including: Summer Faculty Fellowship Program (SFFP), Science Teacher Enrichment Program (STEP), Community College Enrichment Program (CCEP), Joint Venture (JOVE) program, and the NASA Academy program. NASA Ambassadors agree to make pre-packaged NASA-related presentations to non-academic audiences in their home communities. The packaged presentations were created by a small cadre of participants from the 1996 MSFC summer programs, volunteering their time beyond their normal NASA summer research commitment. A total of eight presentations were created and made available for use by NASA Ambassadors. A major segment of the research effort during the summer has been devoted to verifying and documenting certain "spinoff' contributions of NASA technology and in determining their relevance and impact to our society and our nation's economy. The purpose behind the verification/documentation research has been to shed light on the question of whether or not our NASA investment is a wise investment. It has revealed that NASA is a wise investment.
Parachute Testing for the NASA X-38 Crew Return Vehicle
NASA Technical Reports Server (NTRS)
Stein, Jenny M.
2005-01-01
NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.
2003-12-19
KENNEDY SPACE CENTER, FLA. -- From left, a United Space Alliance (USA) technician briefs NASA Deputy Program Manager of the Space Shuttle Program Michael Wetmore, USA Vice President and Space Shuttle Program Manager Howard DeCastro, and NASA Deputy Associate Administrator for Space Station and Shuttle Programs Michael Kostelnik on the use of cold plates in Orbiter Processing Facility Bay 2. NASA and USA Space Shuttle program management are participating in a leadership workday. The day is intended to provide management with an in-depth, hands-on look at Shuttle processing activities at KSC.
GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT
NASA Astrophysics Data System (ADS)
Strubbe, David A.
GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef
The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox willmore » provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.« less
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
View of Mission Control Center during Apollo 13 splashdown
NASA Technical Reports Server (NTRS)
1970-01-01
Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.
NASA Technical Reports Server (NTRS)
Pennington, D. F.; Man, T.; Persons, B.
1977-01-01
The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.
Activities of the Center for Space Construction
NASA Technical Reports Server (NTRS)
1993-01-01
The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers.
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
2012-11-05
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida the mobile launcher is being prepared to support the space agency's Space Launch System heavy-lift rocket and Orion spacecraft. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann
Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)
2000-01-01
HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).
Micro-technology for planetary exploration and education
NASA Technical Reports Server (NTRS)
Miller, David P.; Varsi, Giulio
1991-01-01
The use of combined miniaturization technology and distributed information systems in planetary exploration is discussed. Missions in which teams of microrovers collect samples from planetary surfaces are addressed, emphasizing the ability of rovers to provide coverage of large areas, reliability through redundancy, and participation of a large group of investigators. The latter could involve people from a variety of institutions, increasing the opportunity for wide education and the increased interest of society in general in space exploration. A three-phase program to develop the present approach is suggested.
2000-05-05
This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Space Product Development: NASA Partnering With Industry For Out of This World Results
NASA Technical Reports Server (NTRS)
Nall, Mark E.; Casas, Joe; Powers, Blake; Henderson, Robin N. (Technical Monitor)
2002-01-01
True space commercialization can only be achieved through having the broadest possible industrial participation. Commercial paradigms focused simply on commercial launch operations are not viable since there are limited payload launch opportunities in terms of satellites and similar vehicles, and there are not yet sufficient markets to support large-scale operations and innovation. What is required to expand commercial operations to the point of viability is a broad base of industry that understands the opportunities of commercial space and microgravity operations, and is eager to take advantage of it. Interesting non-aerospace companies in commercial space and microgravity research or operations is a major challenge, since these companies must be educated about the opportunities, introduced into the process in an effective and comfortable manner, and encouraged to continue and expand their work in this area. The NASA Space Product Development Program does this through fifteen Commercial Space Centers located across the United States, each focusing on a different area of interest to industry rather than of interest to NASA. These Centers serve as a consortium of industry, academia, and government, bringing the synergistic effects of membership to the benefit of all. This paper will discuss the guiding philosophies of this program, its organization, the successes obtained by industry in a variety of fields, and the success NASA is experiencing in building the broad base of industry needed to achieve true space commercialization.
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam
2013-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.
Exploration Space Suit Architecture and Destination Environmental-Based Technology Development
NASA Technical Reports Server (NTRS)
Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam
2013-01-01
This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars1 left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This paper addresses the space suit system architecture and technologies required based on human exploration (EVA) destinations, and describes how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and non-environmental design drivers that will become increasingly important as humans venture farther from Earth. This paper demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are in place on the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane swing the detached orbiter access arm, which ends in the White Room, away from the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
2009-06-20
CAPE CANAVERAL, Fla. – The slings from a large crane are being attached to the orbiter access arm, which ends in the White Room, that is part of the fixed service structure, or FSS, on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The White Room provided entry into space shuttles that were on the pad. The arm is being removed from the FSS for the pad's conversion as launch site for the Constellation Program's Ares I-X. The launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Foyle, David C.; Shafto, Michael G.; Hart, Sandra G. (Technical Monitor)
1994-01-01
The National Aeronautics and Space Administration (NASA) is well known for its roles in the space program and in aeronautics. Because teamwork is essential for most NASA missions, NASA has experience in both research on teamwork and implementation of team projects. The purpose of this chapter is not to summarize research results on teamwork. This chapter will summarize our insight into teamwork as it applies to the large institutions and organizations with which we have been associated: University academic systems, Navy research laboratories, and NASA. These organizations represent a variety of systems in which teamwork is commonplace.
Optics at langley research center.
Crumbly, K H
1970-02-01
The specialized tools of optics have played an important part in Langley's history of aeronautical and space research. Schlieren systems for photographing aeronautics and space models in wind-tunnel investigations have contributed to the available knowledge of aerodynamics. Optics continues to be an important part of Langley's research program, including new techniques for measuring the sensitivity of photomultiplier tubes, spectrographic techniques for radiation measurements of wind-tunnel models, research into large orbiting telescopes, horizon definition by ir radiation measurements, spectra of natural and artificial meteors, measurement of clear air turbulence utilizing lasers, and many others.
Streamlined design and self reliant hardware for active control of precision space structures
NASA Technical Reports Server (NTRS)
Hyland, David C.; King, James A.; Phillips, Douglas J.
1994-01-01
Precision space structures may require active vibration control to satisfy critical performance requirements relating to line-of-sight pointing accuracy and the maintenance of precise, internal alignments. In order for vibration control concepts to become operational, it is necessary that their benefits be practically demonstrated in large scale ground-based experiments. A unique opportunity to carry out such demonstrations on a wide variety of experimental testbeds was provided by the NASA Control-Structure Integration (CSI) Guest Investigator (GI) Program. This report surveys the experimental results achieved by the Harris Corporation GI team on both Phases 1 and 2 of the program and provides a detailed description of Phase 2 activities. The Phase 1 results illustrated the effectiveness of active vibration control for space structures and demonstrated a systematic methodology for control design, implementation test. In Phase 2, this methodology was significantly streamlined to yield an on-site, single session design/test capability. Moreover, the Phase 2 research on adaptive neural control techniques made significant progress toward fully automated, self-reliant space structure control systems. As a further thrust toward productized, self-contained vibration control systems, the Harris Phase II activity concluded with experimental demonstration of new vibration isolation hardware suitable for a wide range of space-flight and ground-based commercial applications.The CSI GI Program Phase 1 activity was conducted under contract NASA1-18872, and the Phase 2 activity was conducted under NASA1-19372.
Space research - At a crossroads
NASA Technical Reports Server (NTRS)
Mcdonald, Frank B.
1987-01-01
Efforts which must be expended if U.S. space research is to regain vitality in the next few years are discussed. Small-scale programs are the cornerstone for big science projects, giving both researchers and students a chance to practice the development of space missions and hardware and identify promising goals for larger projects. Small projects can be carried aloft by balloons, sounding rockets, the Shuttle and ELVs. It is recommended that NASA continue the development of remote sensing systems, and join with other government agencies to fund space-based materials science, space biology and medical research. Increased international cooperation in space projects is necessary for affording moderate to large scale missions, for political reasons, and to maximize available space resources. Finally, the establishment and funding of long-range goals in space, particularly the development of the infrastructure and technologies for the exploration and colonization of the planets, must be viewed as the normal outgrowth of the capabilities being developed for LEO operations.
NASA Space Launch System Operations Strategy
NASA Technical Reports Server (NTRS)
Singer, Joan A.; Cook, Jerry R.
2012-01-01
The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Anderson, B. Jeffrey
2005-01-01
In modern government and aerospace industry institutions the necessity of controlling current year costs often leads to high mobility in the technical workforce, "one-deep" technical capabilities, and minimal mentoring for young engineers. Thus, formal recording, use, and teaching of lessons learned are especially important in the maintenance and improvement of current knowledge and development of new technologies, regardless of the discipline area. Within the NASA Technical Standards Program Website http://standards.nasa.gov there is a menu item entitled "Lessons Learned/Best Practices". It contains links to a large number of engineering and technical disciplines related data sets that contain a wealth of lessons learned information based on past experiences. This paper has provided a small sample of lessons learned relative to the atmospheric and space environment. There are many more whose subsequent applications have improved our knowledge of the atmosphere and space environment, and the application of this knowledge to the engineering and operations for a variety of aerospace programs.
Freeing Space for NASA: Incorporating a Lossless Compression Algorithm into NASA's FOSS System
NASA Technical Reports Server (NTRS)
Fiechtner, Kaitlyn; Parker, Allen
2011-01-01
NASA's Fiber Optic Strain Sensing (FOSS) system can gather and store up to 1,536,000 bytes (1.46 megabytes) per second. Since the FOSS system typically acquires hours - or even days - of data, the system can gather hundreds of gigabytes of data for a given test event. To store such large quantities of data more effectively, NASA is modifying a Lempel-Ziv-Oberhumer (LZO) lossless data compression program to compress data as it is being acquired in real time. After proving that the algorithm is capable of compressing the data from the FOSS system, the LZO program will be modified and incorporated into the FOSS system. Implementing an LZO compression algorithm will instantly free up memory space without compromising any data obtained. With the availability of memory space, the FOSS system can be used more efficiently on test specimens, such as Unmanned Aerial Vehicles (UAVs) that can be in flight for days. By integrating the compression algorithm, the FOSS system can continue gathering data, even on longer flights.
Manned Mars mission accommodation: Sprint mission
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.
1988-01-01
The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.
Aerocapture Technology Developments from NASA's In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; Moon, Steven A.
2007-01-01
This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA's Ames Research Center, and NASA's Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.
Superfluid helium on orbit transfer (SHOOT)
NASA Technical Reports Server (NTRS)
Dipirro, Michael J.
1987-01-01
A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.
NASA Technical Reports Server (NTRS)
Ferebee, R. C.
1982-01-01
A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.
Performance predictions for an SSME configuration with an enlarged throat
NASA Technical Reports Server (NTRS)
Nickerson, G. R.; Dang, L. D.
1985-01-01
The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.
Technology Transition a Model for Infusion and Commercialization
NASA Technical Reports Server (NTRS)
McMillan, Vernotto C.
2006-01-01
The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.
NASA Astrophysics Data System (ADS)
Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.
2012-08-01
The primary purpose of this paper is to review currently existing cost estimation methods, models, tools and resources applicable to the space sector. While key space sector methods are outlined, a specific focus is placed on hardware cost estimation on a system level, particularly for early mission phases during which specifications and requirements are not yet crystallised, and information is limited. For the space industry, cost engineering within the systems engineering framework is an integral discipline. The cost of any space program now constitutes a stringent design criterion, which must be considered and carefully controlled during the entire program life cycle. A first step to any program budget is a representative cost estimate which usually hinges on a particular estimation approach, or methodology. Therefore appropriate selection of specific cost models, methods and tools is paramount, a difficult task given the highly variable nature, scope as well as scientific and technical requirements applicable to each program. Numerous methods, models and tools exist. However new ways are needed to address very early, pre-Phase 0 cost estimation during the initial program research and establishment phase when system specifications are limited, but the available research budget needs to be established and defined. Due to their specificity, for vehicles such as reusable launchers with a manned capability, a lack of historical data implies that using either the classic heuristic approach such as parametric cost estimation based on underlying CERs, or the analogy approach, is therefore, by definition, limited. This review identifies prominent cost estimation models applied to the space sector, and their underlying cost driving parameters and factors. Strengths, weaknesses, and suitability to specific mission types and classes are also highlighted. Current approaches which strategically amalgamate various cost estimation strategies both for formulation and validation of an estimate, and techniques and/or methods to attain representative and justifiable cost estimates are consequently discussed. Ultimately, the aim of the paper is to establish a baseline for development of a non-commercial, low cost, transparent cost estimation methodology to be applied during very early program research phases at a complete vehicle system level, for largely unprecedented manned launch vehicles in the future. This paper takes the first step to achieving this through the identification, analysis and understanding of established, existing techniques, models, tools and resources relevant within the space sector.
Commercialization is Required for Sustainable Space Exploration and Development
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Olson, John M.
2009-01-01
The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government developed and operated facilities and services to commercial supplied facilities and services should be considered from the very earliest stages of planning. This paper will first discuss the importance of space commercialization to fulfilling national goals and the associated policy and strategic objectives that will enable space exploration and development. Then the paper will offer insights into how government can provide leadership to promote the nascent commercial space industry. In addition, the paper describes programs and policies already in place at NASA and offers five important principles government can use to strengthen space industry.