Science.gov

Sample records for large strain bulk

  1. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  2. Bulk Nanolayered Composites: Interfacial Influence on Microstructural Evolution at Large Plastic Strains

    SciTech Connect

    Mara, Nathan A.; Carpenter, John S.; Han, Weizhong; Zheng, Shijian; McCabe, Rodney J.; Wang, Jian; Beyerlein, Irene J.

    2012-07-31

    Conclusions are: (1) As-processed ARB material has similar morphology, chemistry as PVD, but different interfacial structure; (2) Density of interfaces AND interfacial structure play a role in determining hardness, an example is twinning in Cu at the {l_brace}112{r_brace}Cu//{l_brace}112{r_brace}Nb interface and higher strength, no twinning in Cu in the {l_brace}111{r_brace}Cu//{l_brace}110{r_brace}Nb interface; and (3) Need to understand effects of processing history to predict the effects on the interfaces we produce - Amount of strain, Strain Path, Annealing.

  3. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  4. Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk

    PubMed Central

    Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.

    2005-01-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822

  5. Large bulk Micromegas detectors for TPC applications

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Baron, P.; Boyer, M.; Beucher, J.; Calvet, D.; Colas, P.; De La Broise, X.; Delagnes, E.; Delbart, A.; Druillole, F.; Emery, S.; Giganti, C.; Giomataris, I.; Mazzucato, E.; Monmarthe, E.; Nizery, F.; Pierre, F.; Ritou, J.-L.; Sarrat, A.; Zito, M.; Catanesi, M. G.; Radicioni, E.; De Oliveira, R.; Blondel, A.; Di Marco, M.; Ferrere, D.; Perrin, E.; Ravonel, M.; Jover, G.; Lux, T.; Rodriguez, A. Y.; Sanchez, F.; Cervera, A.; Hansen, C.; Monfregola, L.

    2009-04-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors ( 36×34 cm2) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved.

  6. Bulk micromegas detectors for large TPC applications

    NASA Astrophysics Data System (ADS)

    Bouchez, J.; Burke, D. R.; Cavata, Ch.; Colas, P.; De La Broise, X.; Delbart, A.; Giganon, A.; Giomataris, I.; Graffin, P.; Mols, J.-Ph.; Pierre, F.; Ritou, J.-L.; Sarrat, A.; Virique, E.; Zito, M.; Radicioni, E.; De Oliveira, R.; Dumarchez, J.; Abgrall, N.; Bene, P.; Blondel, A.; Cervera, A.; Ferrere, D.; Maschiocchi, F.; Perrin, E.; Richeux, J.-P.; Schroeter, R.; Jover, G.; Lux, T.; Rodriguez, A. Y.; Sanchez, F.

    2007-05-01

    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space between modules is of particular interest for these applications. We have built several large bulk Micromegas detectors (27×26 cm2) and we have tested them in the former HARP field cage setup with a magnetic field. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances and space point resolution have been achieved.

  7. Bulk Micromegas detectors for large TPC applications

    NASA Astrophysics Data System (ADS)

    Sarrat, A.

    2007-10-01

    A large volume TPC will be used in the near future for a variety of experiments, including T2K and possibly the Linear Collider detector. The bulk Micromegas detector is a novel construction technique suited for building compact and robust low mass detectors. The ability to pave a large surface with a simple mechanical solution and negligible dead space between modules is of particular interest for these applications, offering a simple and low cost alternative to wire chambers. We have built and tested two large bulk detectors (26×27 cm2 with 8×8 mm2 pads) in the former HARP field cage setup at CERN, with cosmic ray data in a magnetic field up to 0.4 T. We present the excellent detector performances, with gains in excess of 104, space point resolution of 700 μm at 1 m drift, and dE/dx resolution of 12%. Improvement on the point resolution with the use of a resistive anode is also discussed.

  8. Evolution of bulk strain solitons in cylindrical inhomogeneous shells

    SciTech Connect

    Shvartz, A. Samsonov, A.; Dreiden, G.; Semenova, I.

    2015-10-28

    Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.

  9. Spin Splitting and Spin Current in Strained Bulk Semiconductors

    SciTech Connect

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We present a theory for two recent experiments in bulk strained semiconductors and show that a new, previously overlooked, strain spin-orbit coupling term may play a fundamental role. We propose simple experiments that could clarify the origin of strain-induced spin-orbit coupling terms in inversion asymmetric semiconductors. We predict that a uniform magnetization parallel to the electric field will be induced in the samples studied in for specific directions of the applied electric field. We also propose special geometries to detect spin currents in strained semiconductors.

  10. On the origin of elastic strain limit of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Ding, J.; Cheng, Y. Q.; Ma, E.

    2014-01-01

    All bulk metallic glasses exhibit a large and almost universal elastic strain limit. Here, we show that the magnitude of the yield strain of the glass state can be quantitatively derived from a characteristic property of the flow state typical in running shear bands (the root cause of yielding). The strain in the shear flow is mostly plastic, but associated with it there is an effective elastic atomic strain. The latter is almost identical for very different model systems in our molecular dynamics simulations, such that the corresponding yield strain is universal at any given homologous temperature.

  11. Plasticity in bulk metallic glasses investigated via the strain distribution

    SciTech Connect

    Das, Jayanta; Mattern, Norbert; Eckert, Juergen; Bostroem, Magnus; Kvick, Aake; Yavari, Alain Reza; Greer, Alan Lindsay

    2007-09-01

    We measured the atomic-scale elastic strain in order to investigate the yielding of Zr{sub 55}Cu{sub 20}Ni{sub 10}Al{sub 10}Ti{sub 5} and Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} bulk metallic glasses (BMGs) by x-ray synchrotron radiation at room temperature. High resolution strain scanning reveals a deviation from the linear stress-strain relationship at the onset of macroplastic flow. Similar to polycrystalline metals, a saturation of the elastic strain components has been revealed in the case of the ''plastic'' Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} BMG. The results show that the atomic-level elastic strains of the plastic Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} BMG are more homogeneous compared to the 'brittle' Zr{sub 55}Cu{sub 20}Ni{sub 10}Al{sub 10}Ti{sub 5} glass.

  12. Soft metal constructs for large strain sensor membrane

    NASA Astrophysics Data System (ADS)

    Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.

    2015-03-01

    Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.

  13. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGES

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  14. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  15. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  16. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  17. Shear bands in a bulk metallic glass after large plastic deformation

    SciTech Connect

    Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J.

    2012-10-23

    A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.

  18. Impacts of additive uniaxial strain on hole mobility in bulk Si and strained-Si p-MOSFETs

    NASA Astrophysics Data System (ADS)

    Shuo, Zhao; Lei, Guo; Jing, Wang; Jun, Xu; Zhihong, Liu

    2009-10-01

    Hole mobility changes under uniaxial and combinational stress in different directions are characterized and analyzed by applying additive mechanical uniaxial stress to bulk Si and SiGe-virtual-substrate-induced strained-Si (s-Si) p-MOSFETs (metal-oxide-semiconductor field-effect transistors) along (110) and (100) channel directions. In bulk Si, a mobility enhancement peak is found under uniaxial compressive strain in the low vertical field. The combination of (100) direction uniaxial tensile strain and substrate-induced biaxial tensile strain provides a higher mobility relative to the (110) direction, opposite to the situation in bulk Si. But the combinational strain experiences a gain loss at high field, which means that uniaxial compressive strain may still be a better choice. The mobility enhancement of SiGe-induced strained p-MOSFETs along the (110) direction under additive uniaxial tension is explained by the competition between biaxial and shear stress.

  19. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation

    SciTech Connect

    Dalla Torre, Florian H.; Dubach, Alban; Siegrist, Marco E.; Loeffler, Joerg F.

    2006-08-28

    Detailed investigations were carried out on the deformation behavior of Zr-based monolithic bulk metallic glass and bulk metallic glass matrix composites. The latter, due to splitting and multiplication of shear bands, exhibits larger compressive strains than the former, without significant loss of strength. Serrated flow in conjunction with a negative strain rate sensitivity was observed in both materials. This observation, together with an increase in stress drops with increasing strain and their decrease with increasing strain rate, indicates phenomenologically close similarities with the dynamic strain aging deformation mechanism known for crystalline solids. The micromechanical mechanism of a shear event is discussed in light of these results.

  20. Metripol analysis as a tool for measuring iceberg sub-scour bulk strain in sediment

    NASA Astrophysics Data System (ADS)

    Linch, Lorna D.; van der Meer, Jaap J. M.

    2014-05-01

    Iceberg scour deforms sediment, realigning clays and silts into particular birefringent optical arrangements called plasmic fabrics that can be identified using a petrological microscope. Plasmic fabrics provide valuable information on the style and intensity of bulk strain in sediment, which is critical to engineering analysis when evaluating the effect of iceberg scour on pipelines. In the past, the analysis of plasmic fabrics and thus strain in sediment has been largely subjective by adopting descriptive methods. Now however, with 'Metripol' analysis we are able to move to a more quantitative, objective approach for assessing strain in sediment and sedimentary rocks. Here Metripol is pioneered as a new, non-destructive, optical microscopy technique for automatically recording and quantifying plasmic fabrics, providing digitised, empirical measures of sub-scour bulk strain in iceberg scoured sediment from former Glacial Lake Agassiz (Manitoba, Canada). Colour-coded images are produced where colour represents birefringence (relative optical retardation) and azimuth lines represent optical orientation. Results show that the better developed the plasmic fabric (as seen under a standard petrological microscope) the higher the birefringence, the larger the areas of high birefringence, and the longer and more densely populated the azimuths under Metripol - all of which indicate high strain deformation associated to iceberg scour. However, some plasmic fabrics that are subjectively 'perceived' as highly birefringent under a standard petrological microscope demonstrate weaker birefringence when objectively measured under Metripol. This is particularly true in clay-rich sub-scour sediment and holds implications for the way we currently describe and interpret plasmic fabrics and strain in sediment. Finally, identification and quantification of additional structures in iceberg scoured sediment that would otherwise have gone undetected using a standard petrological

  1. Fabrication of Large Bulk High Temperature Superconducting Articles

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald (Inventor); Hiser, Robert A. (Inventor)

    2003-01-01

    A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.

  2. Strain dependent electron spin dynamics in bulk cubic GaN

    SciTech Connect

    Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.

    2015-03-07

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  3. Strain dependent electron spin dynamics in bulk cubic GaN

    NASA Astrophysics Data System (ADS)

    Schaefer, A.; Buß, J. H.; Schupp, T.; Zado, A.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-03-01

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  4. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    PubMed Central

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-01-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components. PMID:25749549

  5. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  6. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  7. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  8. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  9. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  10. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  11. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Seed in bulk or large quantities; seed for cleaning or... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling in General § 201.33 Seed in bulk or large quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required...

  12. Strain-controlled fundamental gap and structure of bulk black phosphorus

    NASA Astrophysics Data System (ADS)

    Guan, Jie; Song, Wenshen; Yang, Li; Tománek, David

    2016-07-01

    We study theoretically the structural and electronic response of layered bulk black phosphorus to in-layer strain. Ab initio density functional theory (DFT) calculations reveal that the strain energy and interlayer spacing display a strong anisotropy with respect to the uniaxial strain direction. To correctly describe the dependence of the fundamental band gap on strain, we used the computationally more involved GW quasiparticle approach that is free of parameters and is superior to DFT studies, which are known to underestimate gap energies. We find that the band gap depends sensitively on the in-layer strain and even vanishes at compressive strain values exceeding ≈2 %, thus suggesting a possible application of black P in strain-controlled infrared devices.

  13. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  14. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  15. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  16. Bulk strain solitary waves in bonded layered polymeric bars with delamination

    NASA Astrophysics Data System (ADS)

    Dreiden, G. V.; Khusnutdinova, K. R.; Samsonov, A. M.; Semenova, I. V.

    2012-09-01

    We report the registration of delamination induced variations in the dynamics of bulk strain solitary waves in layered polymeric bars with the glassy and rubber-like adhesives, for the layers made of the same material. The key phenomenon in a layered structure with the glassy bonding is the delamination caused fission of a single incident soliton into a wave train of solitons, with the detectable increase in the amplitude of the leading solitary wave. The significant feature of bulk strain solitons in structures bonded with the rubber-like adhesive is the generation of radiating solitary waves, whilst co-propagating ripples disappear in the delaminated area. The observed variations may be used for the detection of delamination in lengthy layered structures.

  17. Effect of mechanical strain on electronic properties of bulk MoS2

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Kumar, Jagdish; Sastri, O. S. K. S.

    2015-05-01

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS2) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS2 has indirect band gap of 0.97 eV and mono-layer MoS2 has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS2 has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  18. Effect of mechanical strain on electronic properties of bulk MoS{sub 2}

    SciTech Connect

    Kumar, Sandeep Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS{sub 2}) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS{sub 2} has indirect band gap of 0.97 eV and mono-layer MoS{sub 2} has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS{sub 2} has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  19. Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation

    SciTech Connect

    Simon, Roland B.; Anaya, Julian; Kuball, Martin

    2014-11-17

    The effect of oxygen doping (n-type) and oxygen (O)-magnesium (Mg) co-doping (semi-insulating) on the thermal conductivity of ammonothermal bulk GaN was studied via 3-omega measurements and a modified Callaway model. Oxygen doping was shown to significantly reduce thermal conductivity, whereas O-Mg co-doped GaN exhibited a thermal conductivity close to that of undoped GaN. The latter was attributed to a decreased phonon scattering rate due the compensation of impurity-generated strain fields as a result of dopant-complex formation. The results have great implications for GaN electronic and optoelectronic device applications on bulk GaN substrates.

  20. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  1. Large anisotropic deformation of skyrmions in strained crystal.

    PubMed

    Shibata, K; Iwasaki, J; Kanazawa, N; Aizawa, S; Tanigaki, T; Shirai, M; Nakajima, T; Kubota, M; Kawasaki, M; Park, H S; Shindo, D; Nagaosa, N; Tokura, Y

    2015-07-01

    Mechanical control of magnetism is an important and promising approach in spintronics. To date, strain control has mostly been demonstrated in ferromagnetic structures by exploiting a change in magnetocrystalline anisotropy. It would be desirable to achieve large strain effects on magnetic nanostructures. Here, using in situ Lorentz transmission electron microscopy, we demonstrate that anisotropic strain as small as 0.3% in a chiral magnet of FeGe induces very large deformations in magnetic skyrmions, as well as distortions of the skyrmion crystal lattice on the order of 20%. Skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction, originating from a chiral crystal structure. Our results show that the change in the modulation of the strength of this interaction is amplified by two orders of magnitude with respect to changes in the crystal lattice due to an applied strain. Our findings may provide a mechanism to achieve strain control of topological magnetic structures based on the Dzyaloshinskii-Moriya interaction. PMID:26030654

  2. Wideband model of a reflective tensile-strained bulk semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Connelly, M. J.

    2014-05-01

    Reflective semiconductor optical amplifiers (RSOAs) have shown promise for applications in WDM optical networks and in fiber ring mode-locked lasers. Polarization insensitive SOAs can be fabricated using tensile-strained bulk material and a rectangular cross section waveguide. The introduction of tensile strain can be used to compensate for the different confinement factors experienced by the waveguide TE and TM modes. There is a need for models that can be used to predict RSOA static characteristics such as the dependency of the signal gain on bias current and input optical power, the amplified spontaneous emission spectrum and noise figure. In this paper we extend our prior work on non-reflective SOAs to develop a static model that includes facet reflections. The model uses a detailed band structure description, which is used to determine the wavelength and carrier density dependency of the material gain and additive spontaneous emission. The model and includes a full geometrical description of the amplifier waveguide, including the input taper and the position dependency of the TE/TM confinement factors. The amplified signal and spontaneous emission are described by detailed travelling-wave equations and numerically solved in conjunction with a carrier density rate equation. The model uses material and geometric parameters for a commercially available RSOA. The versatility of the model is shown by several simulations that are used to predict the SOA operational characteristics as well as internal variables such as the amplified spontaneous emission and signal and the carrier density.

  3. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates

    SciTech Connect

    Song, Shuangxi; Bei, Hongbin; Wadsworth, J.; Nieh, Tai-Gang

    2008-01-01

    It is demonstrated that at slow strain rates ({approx} 10{sup -4} s{sup -1}) in compression, the dominant room temperature macroscopic deformation mode in a ductile Zr-based bulk metallic glass is single shear along the principal shear plane. The stress-strain curve exhibited serrated flow in the plastic region. Scanning electron micrographs of the deformed samples revealed regularly spaced striations on the shear surface. A detailed analysis of the observed serrations disclosed that they were intimately related to the striations on the shear surface, suggesting that the serrations were mainly caused by intermittent sample sliding. Further investigations were conducted using in situ compression experiments; video images showed that there was indeed a one-to-one correspondence between the intermittent sliding and flow serration. The current study therefore suggests that flow serration is a result of intermittent sample sliding. This result also implies that the principal shear plane, once formed, is the preferential site for additional shear band formation

  4. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc

    NASA Astrophysics Data System (ADS)

    Cao, Wenrong; Paterson, Scott; Saleeby, Jason; Zalunardo, Sean

    2016-03-01

    Quantifying crustal deformation is important for evaluating mass balance, material transfer, and the interplay between tectonism and magmatism in continental arcs. We present a dataset of >650 finite strain analyses compiled from published works and our own studies with associated structural, geochronologic, and geobarometric information in central and southern Sierra Nevada, California, to quantify the arc crust deformation. Our results show that Mesozoic tectonism results in 65% arc-perpendicular bulk crust shortening under a more or less plane strain condition. Mesozoic arc magmatism replaced ∼80% of this actively deforming arc crust with plutons requiring significantly greater crustal thickening. We suggest that by ∼85 Ma, the arc crust thickness was ∼80 km with a 30-km-thick arc root, resulting in a ∼5 km elevation. Most tectonic shortening and magma emplacement must be accommodated by downward displacements of crustal materials into growing crustal roots at the estimated downward transfer rate of 2-13 km/Myr. The downward transfer of crustal materials must occur in active magma channels, or in "escape channels" in between solidified plutons that decrease in size with time and depth resulting in an increase in the intensity of constrictional strain with depth. We argue that both tectonism and magmatism control the thickness of the crust and surface elevation with slight modification by surface erosion. The downward transported crustal materials initially fertilize the MASH zone thus enhancing to the generation of additional magmas. As the crustal root grows it may potentially pinch out and cool the mantle wedge and thus cause reduction of arc magmatism.

  5. Electronic properties of polycrystalline graphene under large local strain

    SciTech Connect

    He, Xin; Tang, Ning E-mail: geweikun@mail.tsinghua.edu.cn Duan, Junxi; Mei, Fuhong; Meng, Hu; Lu, Fangchao; Xu, Fujun; Yang, Xuelin; Gao, Li; Wang, Xinqiang; Shen, Bo E-mail: geweikun@mail.tsinghua.edu.cn; Ge, Weikun E-mail: geweikun@mail.tsinghua.edu.cn

    2014-06-16

    To explore the transport properties of polycrystalline graphene under large tensile strain, a strain device has been fabricated using piezocrystal to load local strain onto graphene, up to 22.5%. Ionic liquid gate whose capability of tuning carrier density being much higher than that of a solid gate is used to survey the transfer characteristics of the deformed graphene. The conductance of the Dirac point and field effect mobility of electrons and holes is found to decrease with increasing strain, which is attributed to the scattering of the graphene grain boundaries, the strain induced change of band structure, and defects. However, the transport gap is still not opened. Our study is helpful to evaluate the application of graphene in stretchable electronics.

  6. Measurement of large strains in ropes using plastic optical fibers

    DOEpatents

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  7. Rheological transition during large strain deformation of melting and crystallizing metapelites

    NASA Astrophysics Data System (ADS)

    Misra, Santanu; Burg, Jean-Pierre; Vigneresse, Jean-Louis; Mainprice, David

    2014-05-01

    Torsion experiments (γ>˙ =3 × 10-4 s-1) were performed to investigate the large strain (γmax = 15) rheology on quartz-muscovite aggregate as analogue to pelitic rocks undergoing melting and crystallization during deformation at 300 MPa confining pressure and 750°C temperature. Microstructures reveal four distinct but gradational stages of crystal-melt interactions during deformation—(a) solid state deformation, (b) initiation and domination of partial melting, (c) simultaneous partial melting and crystallization, and (d) domination of crystallization. The microstructural stages are linked to the rheology of the deforming samples. Partial melting starts at relatively low finite shear strains (γ = 1-3) showing approximately 60% strain softening. At γ = 4-10 the partially molten bulk material shows a steady state flow at low stress. Further crystallization of new crystals at the expense of melt between γ = 10 and 15 causes weak strain hardening until the material fails by developing brittle fractures. The stress exponent (n), calculated at γ = 1, 5, and 10, increases from ˜ 3 to ˜ 43, indicating a transition from power to power law breakdown or exponential flow of the bulk system. Hydrostatic experiments for equivalent times and conditions of the torsion experiments were also conducted to evaluate the reaction kinetics and microstructures under static conditions. The new experimental data establish that partially molten rock does not flow according to a constant strain rate-dependent power law (steady state) rheology. The rheological transition from strain rate sensitive to strain rate insensitive flow is interpreted as a function of melt-crystal ratio, their mutual interactions, and the evolution of microstructures in the partially molten rock.

  8. Fabrication of pixilated architecture large panel organic flexible solar cell by reducing bulk electrical resistance

    NASA Astrophysics Data System (ADS)

    Panag, Jasmeet Singh

    This study investigates experimentally the photovoltaic behavior and performance of a new pixilated architecture of large organic photovoltaic panels made of a large array of high-aspect ratio three-dimensional pillars surrounded by a matrix of polymer photoactive material. A least addressed problem in organic and thin-film solar cells is the high bulk resistance of cathodic and anodic layers that result in drastic reduction of currents and power conversion efficiency (PCE). For such panels to be practical and commercially competitive, this huge bulk-resistance has to be minimized as much as possible. In this study, therefore, we introduce a new novel architecture that essentially compartmentalizes large panels into smaller modules that are connected to each other in a parallel fashion. In this architecture, the metal cathode layer is applied on the top as a series of lines whereas the anodic layer is independently connected to the pixilated cells at the bottom. As a result, these modules act like independent pixel cells wherein the damage from process and operation is limited individual pixel cells. The factors considered in validating the pixilated architecture presented here consisted of effect of number of pixels on efficiency and bulk electrical resistance. In addition, the study shows that pixilated architecture offers more uniform photoactive layers, and hence better photovoltaic performance because of the compartmentalization.

  9. Large Strain Transparent Magneto-Active Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra (Inventor); Meador, Michael A (Inventor)

    2016-01-01

    A large strain polymer nanocomposite actuator is provided that upon subjected to an external stimulus, such as a magnetic field (static or electromagnetic field), an electric field, thermal energy, light, etc., will deform to thereby enable mechanical manipulations of structural components in a remote and wireless manner.

  10. WIPP Benchmark calculations with the large strain SPECTROM codes

    SciTech Connect

    Callahan, G.D.; DeVries, K.L.

    1995-08-01

    This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.

  11. Electrospun Fibrous Membranes with Super-large-strain Electric Superhydrophobicity

    PubMed Central

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2015-01-01

    Large-strain elastic superhydrophobicity is highly desirable for its enhanced use performance and functional reliability in mechanically dynamic environments, but remains challenging to develop. Here we have, for the first time, proven that an elastic fibrous membrane after surface hydrophobization can maintain superhydrophobicity during one-directional (uniaxial) stretching to a strain as high as 1500% and two-direction (biaxial) stretching to a strain up to 700%. The fibrous membrane can withstand at least 1,000 cycles of repeated stretching without losing the superhydrophobicity. Stretching slightly increases the membrane air permeability and reduces water breakthrough pressure. It is highly stable in acid and base environments. Such a permeable, highly-elastic superhydrophobic membrane may open up novel applications in membrane separation, healthcare, functional textile and energy fields. PMID:26511520

  12. Electrospun Fibrous Membranes with Super-large-strain Electric Superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2015-10-01

    Large-strain elastic superhydrophobicity is highly desirable for its enhanced use performance and functional reliability in mechanically dynamic environments, but remains challenging to develop. Here we have, for the first time, proven that an elastic fibrous membrane after surface hydrophobization can maintain superhydrophobicity during one-directional (uniaxial) stretching to a strain as high as 1500% and two-direction (biaxial) stretching to a strain up to 700%. The fibrous membrane can withstand at least 1,000 cycles of repeated stretching without losing the superhydrophobicity. Stretching slightly increases the membrane air permeability and reduces water breakthrough pressure. It is highly stable in acid and base environments. Such a permeable, highly-elastic superhydrophobic membrane may open up novel applications in membrane separation, healthcare, functional textile and energy fields.

  13. Fabric strain sensor integrated with CNPECs for repeated large deformation

    NASA Astrophysics Data System (ADS)

    Yi, Weijing

    Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of

  14. Role of cultivation media in the development of yeast strains for large scale industrial use

    PubMed Central

    Hahn-Hägerdal, Bärbel; Karhumaa, Kaisa; Larsson, Christer U; Gorwa-Grauslund, Marie; Görgens, Johann; van Zyl, Willem H

    2005-01-01

    The composition of cultivation media in relation to strain development for industrial application is reviewed. Heterologous protein production and pentose utilization by Saccharomyces cerevisiae are used to illustrate the influence of media composition at different stages of strain construction and strain development. The effects of complex, defined and industrial media are compared. Auxotrophic strains and strain stability are discussed. Media for heterologous protein production and for bulk bio-commodity production are summarized. PMID:16283927

  15. Sub-micron strain analysis of local stick-slip motion of individual shear bands in a bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Binkowski, I.; Schlottbom, S.; Leuthold, J.; Ostendorp, S.; Divinski, S. V.; Wilde, G.

    2015-11-01

    Nanodot deposition on a side surface of a rectangular sample and digital image correlation are used to quantify the in-plane strain fields associated with the propagation of a shear band in a PdNiP bulk metallic glass, induced by rolling. Within the resolution of the method related to an average inter-dot distance of 100 nm, deformation is found to be highly localized at the shear bands, while alternating areas with a size of 100-400 nm with opposite local shear strains are found. This phenomenon substantiates a local stick-slip nature of shear band propagation during the metallic glass deformation, even during rolling.

  16. FEM assessment of large-strain thaw consolidation

    SciTech Connect

    Foriero, A.; Ladanyi, B.

    1995-02-01

    Finite-element simulations using a large-strain thaw-consolidation model, formulated by the writers, are presented and compared with the data obtained from a warm-oil test pipeline at Inuvik, Northwest Territory, Canada. Nondimensional design charts generated by the method are used to predict thaw-consolidation settlements. A good agreement is found between observed and predicted settlement values giving encouragement for future thaw-settlement predictions, based on finite-element-generated nondimensional charts.

  17. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  18. Compliant composite electrodes and large strain bistable actuation

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Yu, Zhibin; Niu, Xiaofan; Hu, Weili; Li, Lu; Brochu, Paul; Pei, Qibing

    2012-04-01

    Dielectric elastomer actuators (DEA) and bistable electroactive polymers (BSEP) both require compliant electrodes with rubbery elasticity and high conductivity at large strains. Stretchable opto-electronic devices additionally require the compliant electrodes to be optically transparent. Many candidate materials have been investigated. We report a new approach to mechanically robust, stretchable compliant electrodes. A facile in-situ composite synthesis and transfer technique is employed, and the resulting composite electrodes retain the high surface conductivity of the original conductive network formed by nanowires or nanotubes, while exhibiting the mechanical flexibility of the matrix polymer. The composite electrodes have high transparency and low surface roughness useful for the fabrication of polymer thinfilm electronic devices. The new electrodes are suitable for high-strain actuation, as a complaint resistive heating element to administer the temperature of shape memory polymers, and as the charge injection electrodes for flexible/stretchable polymer light emitting diodes. Bistable electroactive polymers employing the composite electrodes can be actuated to large strains via heating-actuation-cooling cycles.

  19. Structures in an anhydrite layer embedded in halite matrix: Results from thermomechanical experiments under bulk plain strain

    NASA Astrophysics Data System (ADS)

    Mertineit, M.; Zulauf, G.; Peinl, M.; Zanella, F.; Bornemann, O.

    2009-04-01

    considers rheological parameters. Moreover experiments carried out under bulk constrictional strain (Zulauf et al., 2007, 2009) show a similar dependency of the initial layer thickness and boudin width. For microstructual investigations of the halite matrix, thin sections (XZ- and YZ-sections) were prepared and etched following the method of Urai et al. (1987). First microfabric data show that halite behaves viscous whereas anhydrite deforms by fracturing or rare folding under the chosen deformation conditions. Halite deforms by climb-controlled dislocation creep with strain hardening (Carter et al., 1993). Anhydrite, on the other hand, was deformed in the brittle-plastic regime, characterized by twinning, kinking and fracturing. The subgrain size of halite has been used to estimate the differential stress (Schléder & Urai, 2005, 2007), that was compared with the stress recorded by the load cells. The subgrain size of deformed halite varies between 0.04 and 0.07mm, resulting in differential stresses between 3.3 +1.5/-0.8 MPa (S⊥X) and 4.2 +3.0/-1.2 MPa (S⊥Z), although the conditions for piezometry are not completely fulfilled (e.g. lack of steady state during deformation in some samples). These stress values in the matrix fit with the stress values recorded during deformation. Close to rigid anhydrite the subgrain size decreases to values of 0.02 - 0.03 mm, reflecting peak stress up to 6.7 +3.7/-0.7 MPa. We do not know the reasons why folding of the anhydrite layer is largely lacking, although the viscosity contrast between halite and anhydrite should be appropriate for folding. Possible reasons are the lack in confining pressure or mechanical anisotropies in the undeformed anhydrite. Further investigations will focus on the texture of halite and on microfabrics of the anhydrite. References Carter, N.L., Horseman, S.T., Russel, J.E. & Handin, J (1993): Rheology of rocksalt, J. Struct. Geol., Vol. 15, No. 9/10, p. 1257-1271 Price, N.J.; Cosgrove, J.W. (1990

  20. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors.

    PubMed

    Egan, R; Philippe, M; Wera, L; Fagnard, J F; Vanderheyden, B; Dennis, A; Shi, Y; Cardwell, D A; Vanderbemden, P

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm(3)) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m(2) (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K). PMID:25725888

  1. A flux extraction device to measure the magnetic moment of large samples; application to bulk superconductors

    NASA Astrophysics Data System (ADS)

    Egan, R.; Philippe, M.; Wera, L.; Fagnard, J. F.; Vanderheyden, B.; Dennis, A.; Shi, Y.; Cardwell, D. A.; Vanderbemden, P.

    2015-02-01

    We report the design and construction of a flux extraction device to measure the DC magnetic moment of large samples (i.e., several cm3) at cryogenic temperature. The signal is constructed by integrating the electromotive force generated by two coils wound in series-opposition that move around the sample. We show that an octupole expansion of the magnetic vector potential can be used conveniently to treat near-field effects for this geometrical configuration. The resulting expansion is tested for the case of a large, permanently magnetized, type-II superconducting sample. The dimensions of the sensing coils are determined in such a way that the measurement is influenced by the dipole magnetic moment of the sample and not by moments of higher order, within user-determined upper bounds. The device, which is able to measure magnetic moments in excess of 1 A m2 (1000 emu), is validated by (i) a direct calibration experiment using a small coil driven by a known current and (ii) by comparison with the results of numerical calculations obtained previously using a flux measurement technique. The sensitivity of the device is demonstrated by the measurement of flux-creep relaxation of the magnetization in a large bulk superconductor sample at liquid nitrogen temperature (77 K).

  2. Centre seeded infiltration and growth process for fabrication of large grain bulk YBCO/Ag superconducting composites

    NASA Astrophysics Data System (ADS)

    Parthasarathy, R.; Seshubai, V.

    2012-06-01

    We report the fabrication of a large grain bulk YBCO/Ag superconductor using a novel technique which we call Centre Seeded Infiltration and Growth Process (CSIGP). Using this technique, it has been made possible to get bulk YBCO/Ag composite sample with uniform grain growth textured along the c-axis. The resulting large grain sample has been found to have high critical current densities up to large magnetic fields. We correlate the improved superconducting and magnetic properties to the modified grain growth conditions employed in this fabrication technique.

  3. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  4. Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures.

    PubMed

    Tsouknidas, Alexander; Maliaris, Georgios; Savvakis, Savvas; Michailidis, Nikolaos

    2015-01-01

    During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone-implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress-strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress-strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum. PMID:24156688

  5. Anisotropic post-yield response of cancellous bone simulated by stress-strain curves of bulk equivalent structures.

    PubMed

    Tsouknidas, Alexander; Maliaris, Georgios; Savvakis, Savvas; Michailidis, Nikolaos

    2015-01-01

    During the last decade, finite element (FE) modelling has become ubiquitous in understanding complex mechanobiological phenomena, e.g. bone-implant interactions. The extensive computational effort required to achieve biorealistic results when modelling the post-yield behaviour of microstructures like cancellous bone is a major limitation of these techniques. This study describes the anisotropic biomechanical response of cancellous bone through stress-strain curves of equivalent bulk geometries. A cancellous bone segment, reverse engineered by micro computed tomography, was subjected to uniaxial compression. The material's constitutive law, obtained by nano-indentations, was considered during the simulation of the experimental process. A homodimensionally bulk geometry was employed to determine equivalent properties, resulting in a similar anisotropic response to the trabecular structure. The experimental verification of our model sustained that the obtained stress-strain curves can adequately reflect the post-yield behaviour of the sample. The introduced approach facilitates the consideration of nonlinearity and anisotropy of the tissue, while reducing the geometrical complexity of the model to a minimum.

  6. On the anelasticity and strain induced structural changes in a Zr-based bulk metallic glass

    SciTech Connect

    Caron, A.; Louzguine-Luzguin, D. V.; Kawashima, A.; Inoue, A.; Fecht, H.-J.

    2011-10-24

    We report on the anelastic behavior of a cyclically loaded Zr{sub 62.5}Fe{sub 5}Cu{sub 22.5}Al{sub 10} bulk metallic glass well below its yield strength. The dynamic mechanical behavior of the glass is discussed on the basis of its structural and thermodynamic properties before and after tests. We show how the kinetically frozen anelastic deformation accumulates at room temperature and causes a structural relaxation and densification of the glass and further leads to its partial crystallization.

  7. Modeling KDP Bulk Damage Curves for Prediction of Large-Area Damage Performance

    SciTech Connect

    Runkel, M.; Sharp, R.

    1999-12-16

    Over the past two years extensive experimentation has been carded out to determine the nature of bulk damage in KDP. Automated damage testing with small beams has made it possible to rapidly investigate damage statistics and its connection to growth parameter Variation. Over this time we have built up an encyclopedia of many damage curves but only relatively few samples have been tested with large beams. The scarcity of data makes it difficult to estimate how future crystals will perform on the NIF, and the campaign nature of large beam testing is not suitable for efficient testing of many samples with rapid turn-around, it is therefore desirable to have analytical tools in place that could make reliable predictions of large-beam performance based on small-beam damage probability measurements. To that end, we discuss the application of exponential and power law damage evolution within the framework of Poisson statistics in this memo. We describe the results of fitting these models to various damage probability curves on KDP including the heavily investigated KDP214 samples. We find that both models are capable of fitting the damage probability S-curves quite well but there are multiple parameter sets for each model that produce comparable {chi}{sup 2} values. In addition, the fit parameters from the exponential model do not agree well with the measured evolution from large-beam OSL experiments where pinpoint density was shown to evolve according to n(F)=n{sub 0}exp(bF). The largest discrepancy is in determination of the b values. For the O'Connell formalism the power law case developed here, we find that the best-fit powers have approximately the same magnitude as the Weibull exponent of Feit's formalism, but it is difficult to extract information about the defect concentration using the O'Connell approach. In addition, we found that the power law case provides slightly better {chi}{sup 2} values in roughly half of the cases. We discuss these results in terms of

  8. Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael

    2010-01-01

    Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.

  9. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    SciTech Connect

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  10. Structure and Strength of IF Steel After Large Strain Deformation

    NASA Astrophysics Data System (ADS)

    Hansen, Niels; Huang, Xiaoxu; Kamikawa, Naoya

    Interstitial free (IF) steel with an ultrafine microstructure has been produced by three different routes: (i) cold rolling, (ii) accumulative roll-bonding (ARB) and (iii) martensitic transformation followed by cold rolling. The microstructure refines with increasing strain without saturation to a value of about 100 nm at an equivalent strain (ɛVM) of 8, which is the maximum strain investigated. At all strains a microscopic analysis by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) shows that the microstructure is subdivided by dislocation boundaries and high-angle boundaries. For both cold rolled samples and ARB samples the flow stress increases as the boundary spacing decreases. For the finest structures this leads to a flow stress at room temperature in the range 900-1000 MPa. Finally structure-property relationships are discussed especially the effect of post-processing treatments by annealing and by low strain deformation.

  11. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.

    PubMed

    Kefalas, V; Eftaxiopoulos, D A

    2012-02-01

    Experimental study of bovine cancellous bone up to compaction under uniaxial compression and up to fracture under tension, has been pursued in this article. Compression experiments have revealed the known three stages of the constitutive response, namely the initial increasing and softening branches at moderate strains, the plateau region at large strains and the hardening part at very large strains under compaction. Tension tests have quantified the increasing and softening branches of the stress-strain curve up to fracture. Subsequently, a constitutive mechanical model, for the simulation of the experimental findings up to very large strains (75% engineering strain under compression), is proposed. The model is based on the statistical description of (a) the failure process of the trabecular structure at small and moderate strains and (b) the compaction process of the trabecular mass at very large strains under compression. Several fitting cases indicated that the presented constitutive law can capture the evolution of the experimental results. PMID:22301172

  12. Stabilization of laser-induced plasma in bulk water using large focusing angle

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2016-08-01

    Laser focusing geometry effects on plasma emissions in bulk water were investigated with five focusing angles ranging from 11.9° to 35.4°. Fast imaging and space-resolved spectroscopy techniques were used to observe the plasma emission distributions and fluctuations. We demonstrated that by increasing the focusing angle, discrete and irregular plasma formed in multiple sites could be turned into continuous and stable plasma with single core fixed at the laser focal point. This indicates the key role of laser focusing angle in the stabilization of plasma positions, which is crucial to the improvement of laser-induced breakdown spectroscopy repeatability in bulk water.

  13. Large epitaxial bi-axial strain induces a Mott-like phase transition in VO{sub 2}

    SciTech Connect

    Kittiwatanakul, Salinporn; Wolf, Stuart A.; Lu, Jiwei

    2014-08-18

    The metal insulator transition (MIT) in vanadium dioxide (VO{sub 2}) has been an important topic for recent years. It has been generally agreed upon that the mechanism of the MIT in bulk VO{sub 2} is considered to be a collaborative Mott-Peierls transition, however, the effect of strain on the phase transition is much more complicated. In this study, the effect of the large strain on the properties of VO{sub 2} films was investigated. One remarkable result is that highly strained epitaxial VO{sub 2} thin films were rutile in the insulating state as well as in the metallic state. These highly strained VO{sub 2} films underwent an electronic phase transition without the concomitant Peierls transition. Our results also show that a very large tensile strain along the c-axis of rutile VO{sub 2} resulted in a phase transition temperature of ∼433 K, much higher than in any previous report. Our findings elicit that the metal insulator transition in VO{sub 2} can be driven by an electronic transition alone, rather the typical coupled electronic-structural transition.

  14. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction

    NASA Astrophysics Data System (ADS)

    Gamcová, J.; Mohanty, G.; Michalik, Š.; Wehrs, J.; Bednarčík, J.; Krywka, C.; Breguet, J. M.; Michler, J.; Franz, H.

    2016-01-01

    A pioneer in-situ synchrotron X-ray nanodiffraction approach for characterization and visualization of strain fields induced by nanoindentation in amorphous materials is introduced. In-situ nanoindentation experiments were performed in transmission mode using a monochromatic and highly focused sub-micron X-ray beam on 40 μm thick Zr-based bulk metallic glass under two loading conditions. Spatially resolved X-ray diffraction scans in the deformed volume of Zr-based bulk metallic glass covering an area of 40 × 40 μm2 beneath the pyramidal indenter revealed two-dimensional map of elastic strains. The largest value of compressive elastic strain calculated from diffraction data at 1 N load was -0.65%. The region of high elastic compressive strains (<-0.3%) is located beneath the indenter tip and has radius of 7 μm.

  15. Determining meteoroid bulk densities using a plasma scattering model with high-power large-aperture radar data

    NASA Astrophysics Data System (ADS)

    Close, Sigrid; Volz, Ryan; Loveland, Rohan; Macdonell, Alex; Colestock, Patrick; Linscott, Ivan; Oppenheim, Meers

    2012-09-01

    We present an improved technique for calculating bulk densities of low-mass (<1 g) meteoroids using a scattering model applied to the high-density plasma formed around the meteoroid as it enters Earth’s atmosphere. These plasmas, referred to as head echoes, travel at or near the speed of the meteoroid, thereby allowing the determination of the ballistic coefficient (mass divided by physical cross-section), which depends upon speed and deceleration. Concurrently, we apply a scattering model to the returned signal strength of the head echo in order to correlate radar-cross-section (RCS) to plasma density and meteoroid mass. In this way, we can uniquely solve for the meteoroid mass, radius and bulk density independently. We have applied this new technique to head echo data collected in 2007 and 2008 simultaneously at VHF (160 MHz) and UHF (422 MHz) at ALTAIR, which is a high-power large-aperture radar located on the Kwajalein Atoll. These data include approximately 20,000 detections with dual-frequency, dual-polarization, and monopulse (i.e. angle) returns. From 2000 detections with the smallest monopulse errors, we find a mean meteoroid bulk density of 0.9 g/cm3 with observations spanning almost three orders of magnitude from 0.01 g/cm3 to 8 g/cm3. Our results show a clear dependence between meteoroid bulk density and altitude of head echo formation, as well as dependence between meteoroid bulk density and 3D speed. The highest bulk densities are detected at the lowest altitudes and lowest speeds. Additionally, we stipulate that the approximations used to derive the ballistic parameter, in addition to neglecting fragmentation, suggest that the traditional ballistic parameter must be used with caution when determining meteoroid parameters.

  16. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    NASA Astrophysics Data System (ADS)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  17. Large area strain analysis using scanning transmission electron microscopy across multiple images

    SciTech Connect

    Oni, A. A.; Sang, X.; LeBeau, J. M.; Raju, S. V.; Saxena, S.; Dumpala, S.; Broderick, S.; Rajan, K.; Kumar, A.; Sinnott, S.

    2015-01-05

    Here, we apply revolving scanning transmission electron microscopy to measure lattice strain across a sample using a single reference area. To do so, we remove image distortion introduced by sample drift, which usually restricts strain analysis to a single image. Overcoming this challenge, we show that it is possible to use strain reference areas elsewhere in the sample, thereby enabling reliable strain mapping across large areas. As a prototypical example, we determine the strain present within the microstructure of a Ni-based superalloy directly from atom column positions as well as geometric phase analysis. While maintaining atomic resolution, we quantify strain within nanoscale regions and demonstrate that large, unit-cell level strain fluctuations are present within the intermetallic phase.

  18. Retaining Large and Adjustable Elastic Strains of Kilogram-Scale Nb Nanowires.

    PubMed

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E; Li, Ju

    2016-02-10

    Individual metallic nanowires can sustain ultralarge elastic strains of 4-7%. However, achieving and retaining elastic strains of such magnitude in kilogram-scale nanowires are challenging. Here, we find that under active load, ∼ 5.6% elastic strain can be achieved in Nb nanowires embedded in a metallic matrix deforming by detwinning. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the external load was fully removed, and adjustable in magnitude by processing control. It is then demonstrated that the retained tensile elastic strains of Nb nanowires can increase their superconducting transition temperature and critical magnetic field, in comparison with the unstrained original material. This study opens new avenues for retaining large and tunable elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.

  19. Large-strain shear response of unidirectional boron/aluminum

    SciTech Connect

    Reedy, E.D. Jr.

    1982-01-01

    Data characterizing the shear response of unidirectionally reinforced boron/aluminum are presented. The symmetric rail shear test method was used to make the measurements. Results are given for 5.6 mil diameter boron fibers in either an 1100 or a 6061 aluminum matrix. The boron/6061 aluminum was tested in both the as-fabricated and a heat-treated condition. The composite data are used to define matrix shear stress-strain relations in a manner suitable for shear-lag analyses of flawed composites. Analyses of center-notched tensile specimens are in excellent agreement with experiment.

  20. The Taylor Impact and Large Strain Response of Poly(Ether-Etherketone) (PEEK)

    NASA Astrophysics Data System (ADS)

    Rae, Philip J.; Brown, Eric N.

    2006-07-01

    Taylor impacts experiments were conducted on PEEK at velocities between 150 & 360 m s-1. The material was found to respond in a ductile manner and exhibit a color change later found to be associated with large compressive strains in PEEK, irrespective of strain-rate. No changes in molecular weight were detected as a result of high-strain rate or large strain deformation. Melting has been shown not to be responsible for the ductile deformation and limited tearing response of PEEK subject to Taylor impact.

  1. Strain localization in usnaturated soils with large deformation

    NASA Astrophysics Data System (ADS)

    Song, X.; Borja, R. I.

    2014-12-01

    Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability

  2. Isothermal internal friction behaviour of a Zr based bulk metallic glass with large supercooled liquid region

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Lu, J.; Gu, F. J.; Xu, H.; Dong, Y. D.

    2006-07-01

    In this paper, the internal friction behaviour of Zr-Ti-Cu-Ni-Be bulk metallic glass (BMG) containing 2 at% Fe at elevated temperatures has been studied in isothermal dynamic mechanical analysis experiments. The experiments lead to the determination of metastable equilibrium internal friction Q_{\\rme}^{-1} , as a function of temperature, which can be well described by the Maxwell model with viscosity, η(T), following a Vogel-Fulcher-Tammann (VFT) relation or Arrehnius law. Comparison with the Zr-Ti-Cu-Ni-Be glass-forming liquid shows that a small addition of Fe results in a stronger liquid behaviour of the alloy, exhibiting a higher strength parameter as well as lower VFT temperature and therefore correlates better glass forming ability and thermal stability. From the isothermal internal friction data, the activation energies for viscous flow and primary crystallization of the Zr based supercooled metallic liquid are also derived. It is found that the former is comparable to the activation energy controlling the diffusion process of atoms, e.g. the Ni element of medium size and higher mobility among the components of this alloy, while the latter to that of atoms, e.g. the Ti element of larger size and lower mobility. Thus, it is proposed that both isothermal viscous flow and primary crystallization of the alloy in the supercooleld liquid region are atom diffusion-controlled processes. However, the dominating atomic species are different from each other in the multicomponent Zr based BMG.

  3. A simple multi-seeding approach to growth of large YBCO bulk with a diameter above 53 mm

    NASA Astrophysics Data System (ADS)

    Tang, Tian-wei; Wu, Dong-jie; Wu, Xing-da; Xu, Ke-Xi

    2015-12-01

    A successful simple multi-seeding approach to growing large size Y-Ba-C-O (YBCO) bulks is reported. Compared with the common single seeding method, our multi-seeding method is more efficient. By using four SmBa2Cu3O7-δ (Sm-123) seeds cut from a large size Sm-Ba-C-O (SmBCO) single domain, large YBCO samples up to 53 mm in diameter could be produced successfully and 100 mm diameter samples can also be grown. Experimental results show that the processing time can be shortened greatly by using this new approach, and the superconducting properties can also be improved. The Hall probe mapping shows that the trapped field distribution of 53 mm diameter multi-seeded sample is homogeneous and the peak value is up to 0.53 T. The magnetic levitation force density reaches to 14.7 N/cm2 (77 K, 0.5 T).

  4. Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets, appendix B

    NASA Technical Reports Server (NTRS)

    Yanai, M.; Esbensen, S.; Chu, J.

    1972-01-01

    The bulk properties of tropical cloud clusters, as the vertical mass flux, the excess temperature, and moisture and the liquid water content of the clouds, are determined from a combination of the observed large-scale heat and moisture budgets over an area covering the cloud cluster, and a model of a cumulus ensemble which exchanges mass, heat, vapor and liquid water with the environment through entrainment and detrainment. The method also provides an understanding of how the environmental air is heated and moistened by the cumulus convection. An estimate of the average cloud cluster properties and the heat and moisture balance of the environment, obtained from 1956 Marshall Islands data, is presented.

  5. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain

    NASA Astrophysics Data System (ADS)

    Xie, Han; Ouyang, Tao; Germaneau, Éric; Qin, Guangzhao; Hu, Ming; Bao, Hua

    2016-02-01

    Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform biaxial tension is computed by solving the phonon Boltzmann transport equation with interatomic force constants extracted from first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene can increase dramatically with strain. Depending on the size, the maximum thermal conductivity of strained silicene can be a few times higher than that of the unstrained case. Such an unusual strain dependence is mainly attributed to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with other common two-dimensional materials. Our findings offer perspectives on modulating the thermal properties of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.

  6. Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing

    2010-04-01

    Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.

  7. Characterization of the Bauschinger effect in sheet metal undergoing large strain reversals in bending

    NASA Astrophysics Data System (ADS)

    Hanzon, Drew Wyatt

    This work consists on the quantification of sheet metal uniaxial stress-strain reversals from pure bending tests. Bending strains to approximately 10% were measured by strain gages and interferometry. Bending-unbending moments and strains were modeled and compared closely to the experimental data. The reverse uniaxial stress-strains curves were determined from the optimal fit of the model. Bauschinger effects were described by the reverse uniaxial response at the elasto-plastic range, between the elastic and the large strain, power fit ranges. Arc and straight line fittings on the lnsigma-lnepsilon scale proved accurate to describe the elasto-plastic behavior. Reverse uniaxial data determined for DP590 and DP780 steels and two Aluminum alloys showed significant Bauschinger effects with distinct features. For the DP steels the magnitudes of the reverse compressive sigma-epsilon curves compared moderately higher, and merging to a power curve with parameters K, n previously defined by tension testing. Bauschinger effects at small reversed strains were less pronounced for the aluminum alloys. However, at higher strains the reverse elasto-plastic response softened considerably, and during the unbending span the magnitudes of the reverse compressive strains remained below the corresponding K, n tensile values. The results showed pure bending as an efficient, simple to use technique to generate sigma-epsilon data for sheet metal at large reverse strains without the complicating restraining hardware required by direct compression methods.

  8. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys.

    PubMed

    Makongo, Julien P A; Misra, Dinesh K; Zhou, Xiaoyuan; Pant, Aditya; Shabetai, Michael R; Su, Xianli; Uher, Ctirad; Stokes, Kevin L; Poudeu, Pierre F P

    2011-11-23

    Large reductions in the thermal conductivity of thermoelectrics using nanostructures have been widely demonstrated. Some enhancements in the thermopower through nanostructuring have also been reported. However, these improvements are generally offset by large drops in the electrical conductivity due to a drastic reduction in the mobility. Here, we show that large enhancements in the thermopower and electrical conductivity of half-Heusler (HH) phases can be achieved simultaneously at high temperatures through coherent insertion of nanometer scale full-Heusler (FH) inclusions within the matrix. The enhancements in the thermopower of the HH/FH nanocomposites arise from drastic reductions in the "effective" carrier concentration around 300 K. Surprisingly, the mobility increases drastically, which compensates for the decrease in the carrier concentration and minimizes the drop in the electrical conductivity. Interestingly, the carrier concentration in HH/FH nanocomposites increases rapidly with temperature, matching that of the HH matrix at high temperatures, whereas the temperature dependence of the mobility significantly deviates from the typical T(-α) law and slowly decreases (linearly) with rising temperature. This remarkable interplay between the temperature dependence of the carrier concentration and mobility in the nanocomposites results in large increases in the power factor at 775 K. In addition, the embedded FH nanostructures also induce moderate reductions in the thermal conductivity leading to drastic increases in the ZT of HH(1 - x)/FH(x) nanocomposites at 775 K. By combining transmission electron microscopy and charge transport data, we propose a possible charge carrier scattering mechanism at the HH/FH interfaces leading to the observed anomalous electronic transport in the synthesized HH(1 - x)/FH(x) nanocomposites.

  9. FeCoSiBNbCu bulk metallic glass with large compressive deformability studied by time-resolved synchrotron X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stoica, Mihai; Scudino, Sergio; Bednarčik, Jozef; Kaban, Ivan; Eckert, Jürgen

    2014-02-01

    By adding 0.5 at. % Cu to the strong but brittle [(Fe0.5Co0.5)0.75Si0.05B0.20]96Nb4 bulk metallic glass, fully amorphous rods with diameters up to 2 mm were obtained. The monolithic samples with 1 mm diameter revealed a fracture strain of 3.80% and a maximum stress of 4143 MPa upon compression, together with a slight work-hardening behavior. SEM micrographs of fractured samples did neither reveal any shear bands on the lateral surface nor the typical vein patterns which characterize ductile fracture. However, some layers appear to have flowed and this phenomenon took place before the brittle final fracture. An estimate of the temperature rise ΔT in the shear plane gives 1039 K, which is large enough to melt a layer of 120 nm. The overall performance and the macroscopic plastic strain depend on the interaction between cleavage-like and viscous flow-like features. Mechanical tests performed in-situ under synchrotron radiation allowed the calculation of the strain tensor components, using the reciprocal-space data and analyzing the shift of the first (the main) and the second broad peak positions in the X-ray diffraction patterns. The results revealed that each atomic shell may have a different stiffness, which may explain the macroscopic compressive plastic deformation. Also, there were no signs of (nano) crystallization induced by the applied stress, but the samples preserve a monolithic amorphous structure until catastrophic failure occurs.

  10. Large-Strain Time-Temperature Equivalence and Adiabatic Heating of Polyethylene

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Cady, Carl M.

    2012-06-06

    Time-temperature equivalence is a well-known phenomenon in time-dependent material response, where rapid events at a moderate temperature are indistinguishable from some occurring at modest rates but elevated temperatures. However, there is as-yet little elucidation of how well this equivalence holds for substantial plastic strains. In this work, we demonstrate time-temperature equivalence over a large range in a previously studied high-density polyethylene formulation (HDPE). At strain-rates exceeding 0.1/s, adiabatic heating confounds the comparison of nominally isothermal material response, apparently violating time-temperature equivalence. Strain-rate jumps can be employed to access the instantaneous true strain rate without heating. Adiabatic heating effects were isolated by comparing a locus of isothermal instantaneous flow stress measurements from strain-rate jumps up to 1/s with the predicted equivalent states at 0.01/s and 0.001/s in compression. Excellent agreement between the isothermal jump condition locus and the quasi-static tests was observed up to 50% strain, yielding one effective isothermal plastic response for each material for a given time-temperature equivalent state. These results imply that time-temperature equivalence can be effectively used to predict the deformation response of polymers during extreme mechanical events (large strain and high strain-rate) from measurements taken at reduced temperatures and nominal strain-rates in the laboratory.

  11. Cold work hardening of Al from shear deformation up to large strains

    SciTech Connect

    Les, P.; Zehetbauer, M.; Kopacz, I.; Rauch, E.F.

    1999-08-06

    Several deformation modes have been applied so far which exhibited stage IV and stage V hardening in large strain cold working. However, some deformation modes especially if applied to single crystals failed (1) because of limited deformation (tensile test and compression), (2) inhomogeneous deformation (torsion), (3) iterative deformation (wire drawing, rolling) allowing for recovery processes in between small deformation steps. Moreover, except for torsion test, none of the deformation modes is capable of measuring the strain rate sensitivity up to large strains at low deformation temperatures. Thus it was the aim of the present work to deform single and polycrystalline samples of Al 99.99% in a simple shear test which has been shown to achieve also the late stages of deformation. Moreover, it should make possible strain rate sensitivity measurements in parallel to the shear stress-strain characteristics. For single crystals at room temperature the shear test seems to be the only method which can provide such data.

  12. Mechanical properties of bulk polydimethylsiloxane for microfluidics over a large range of frequencies and aging times

    NASA Astrophysics Data System (ADS)

    Placet, V.; Delobelle, P.

    2015-03-01

    The dynamic mechanical characterization of polydimethylsiloxane (PDMS) over a large range of frequencies (10-2 < f < 105 Hz) and long aging times at room temperature (4 h < tv < ~60 000 h) has been presented. Three samples with different curing conditions have been studied and three different techniques, dynamic mechanical analysis at different temperatures, nano-indentation and scanning micro-deformation microscopy, have been used. Although the three techniques work at different scales and at different frequencies all the results match the same master curve. As expected, the storage and the loss moduli greatly increase with the frequency. Moreover, these moduli moderately increase with the aging time tv depending on the curing temperature. A simple model which takes the frequency and the aging time into account, and which is based on the Havriliak-Negami model, has been presented and identified. Hence, values of the relaxed and instantaneous moduli at tv = 0 and tv = ∞ are proposed. Only the relaxed moduli depend on the curing conditions and moreover it has been shown that the tangent of the phase lag is independent of the aging time and thus of the curing process.

  13. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.

    PubMed

    Ishikawa, Ryo; Mishra, Rohan; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pantelides, Sokrates T; Pennycook, Stephen J

    2014-10-10

    Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials.

  14. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; Jiang, Daqiang; Liu, Yinong; Yan, Jiaqiang; Ren, Yang; Han, Xiaodong; Brown, Dennis E.; Li, Ju

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  15. A new RE + 011 TSIG method for the fabrication of high quality and large size single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chen, L. P.; Wang, X. J.

    2016-02-01

    High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.

  16. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  17. CS2: a Piecewise-Linear Model for Large Strain Consolidation

    NASA Astrophysics Data System (ADS)

    Fox, Patrick J.; Berles, James D.

    1997-07-01

    This paper presents a piecewise-linear finite-difference model for one-dimensional large strain consolidation called CS2. CS2 is developed using a fixed Eulerian co-ordinate system and constitutive relationships which are defined by discrete data points. The model is dimensionless such that solutions are independent of the initial height of the compressible layer and the absolute magnitude of the hydraulic conductivity of the soil. The capability of CS2 is illustrated using four example problems involving small strain, large strain, self-weight, and non-linear constitutive relationships. In each case, the performance of the model is comparable to other available analytical and numerical solutions. Using CS2, correction factors are developed for the conventional Terzaghi theory which account for the effect of vertical strain on computed values by elapsed time and maximum excess pore pressure during consolidation.

  18. Development of measurement method of work hardeningbehavior in large plastic strain for sheet metal forging

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Nobuo; Yamashita, Tomohiro; Shirakami, Satoshi; kada, Osamu; Yoshida, Tohru; Hiwatashi, Shunji

    2016-08-01

    For the purpose of accuracy improvement of sheet metal forging FE analysis, we have developed a new measurement method of work hardening behavior in large plastic strain by repeatedly performing simple shear test using pre-strained steel sheet. In this method, it is possible to measure work hardening behavior more than equivalent plastic strain 2.0. In addition, it was carried out a comparison between developed method and compression test in order to verify the validity of the results by the developed method. As a result, both results were in good agreement. The validity of developed method has been verified.

  19. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch.

    PubMed

    Kim, Jang-Yong; Yao, Lide; van Dijken, Sebastiaan

    2013-02-27

    Strain control of epitaxial films using piezoelectric substrates has recently attracted significant scientific interest. Despite its potential as a powerful test bed for strain-related physical phenomena and strain-driven electronic, magnetic, and optical technologies, detailed studies on the efficiency and uniformity of piezoelectric strain transfer are scarce. Here, we demonstrate that full and uniform piezoelectric strain transfer to epitaxial films is not limited to systems with small lattice mismatch or limited film thickness. Detailed transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements of 100 nm thick CoFe(2)O(4) and La(2/3)Sr(1/3)MnO(3) epitaxial films on piezoelectric 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) substrates (+4.3% and -3.8% lattice mismatch) indicate that misfit dislocations near the interface do not hamper the transfer of piezoelectric strain. Instead, the epitaxial magnetic oxide films and PMN-PT substrates are strained coherently and their lattice parameters change linearly as a function of applied electric field when their remnant growth-induced strain state is negligible. As a result, ferromagnetic properties such as the coercive field, saturation magnetization, and Curie temperature can be reversibly tuned by electrical means. The observation of efficient piezoelectric strain transfer in large-mismatch heteroepitaxial structures opens up new possibilities for the engineering of strain-controlled physical properties in a broad class of hybrid material systems. PMID:23370268

  20. The role of fabric in the large strain compressive behavior of human trabecular bone.

    PubMed

    Charlebois, Mathieu; Pretterklieber, Michael; Zysset, Philippe K

    2010-12-01

    Osteoporosis-related vertebral body fractures involve large compressive strains of trabecular bone. The small strain mechanical properties of the trabecular bone such as the elastic modulus or ultimate strength can be estimated using the volume fraction and a second order fabric tensor, but it remains unclear if similar estimations may be extended to large strain properties. Accordingly, the aim of this work is to identify the role of volume fraction and especially fabric in the large strain compressive behavior of human trabecular bone from various anatomical locations. Trabecular bone biopsies were extracted from human T12 vertebrae (n=31), distal radii (n=43), femoral head (n=44), and calcanei (n=30), scanned using microcomputed tomography to quantify bone volume fraction (BV/TV) and the fabric tensor (M), and tested either in unconfined or confined compression up to very large strains (∼70%). The mechanical parameters of the resulting stress-strain curves were analyzed using regression models to examine the respective influence of BV/TV and fabric eigenvalues. The compressive stress-strain curves demonstrated linear elasticity, yielding with hardening up to an ultimate stress, softening toward a minimum stress, and a steady rehardening followed by a rapid densification. For the pooled experiments, the average minimum stress was 1.89 ± 1.77 MPa, while the corresponding mean strain was 7.15 ± 1.84%. The minimum stress showed a weaker dependence with fabric as the elastic modulus or ultimate strength. For the confined experiments, the stress at a logarithmic strain of 1.2 was 8.08 ± 7.91 MPa, and the dissipated energy density was 5.67 ± 4.42 MPa. The latter variable was strongly related to the volume fraction (R(2)=0.83) but the correlation improved only marginally with the inclusion of fabric (R(2)=0.84). The influence of fabric on the mechanical properties of human trabecular bone decreases with increasing strain, while the role of volume fraction remains

  1. Strain-based self assembly of nanostructures for non-destructive large-scale integration

    NASA Astrophysics Data System (ADS)

    Moiseeva, E. V.; Senousy, Y. M.; Harnett, C. K.

    2007-03-01

    New types of curved nanostructures, departing from the plane of the substrate yet integrated with microscale contact pads, may be formed by using a strain-based assembly method. This process relies on the strain mismatch between thin films in a bilayer (in our case, metal/insulator or two different metals). By incorporating conducting and insulating materials, this method will be able to integrate active electromechanical micro- and nanostructures into microdevices, such as steerable antenna arrays, thermal nanoactuators, strain-sensitive inductors, electromagnetically resonant metamaterials, and bistable nanomechanical switches. ``Top-down'' lithography and the highly selective XeF2 silicon dry etching process are used to obtain our released structures. The strain-based assembly technique requires no alignment step for combining nanostructures with large features, including electrical contacts and other interconnects with the outside world. We will discuss the prospects and limits for obtaining smaller thickness dimensions and lateral dimensions through electron beam lithography.

  2. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  3. Influence of large-strain deformation on the microstructure, texture, and mechanical response of tantalum bar

    SciTech Connect

    Gray, G.T. III; Bingert, S.R.; Chen, S.R.; Bingert, J.F.; Wright, S.I.

    1996-03-01

    Numerous studies have established the influence of impurities, crystallographic texture, temperature, and strain rate separately or collectively on the constitutive response of annealed tantalum, in particular plate Ta-stock. However, fewer detailed studies have examined the evolution of crystallographic texture and the mechanical response of tantalum bar or rod material following prestraining to large strains {epsilon} > I. In this paper the influence of large plastic prestraining on the microstructure evolution, texture evolution, and mechanical response of high-purity tantalum bar material is presented. Tantalum cylinders annealed at 1200 {degrees}C were quasi-statically upset forged, with intermediate lubrication, to true strains of 0.4, 0.95, and 1.85. Microstructural and textural banding within the starting Ta-bar was characterized in detail. It was found that different oriented bands evolved differently during large-strain forging leading to significant scatter in the mechanical response. Aspects of defect storage, work-hardening response, and texture evolution in Ta-bar as a function of forging strain are discussed.

  4. Whole-genome mapping reveals a large chromosomal inversion on Iberian Brucella suis biovar 2 strains.

    PubMed

    Ferreira, Ana Cristina; Dias, Ricardo; de Sá, Maria Inácia Corrêa; Tenreiro, Rogério

    2016-08-30

    Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2.

  5. Whole-genome mapping reveals a large chromosomal inversion on Iberian Brucella suis biovar 2 strains.

    PubMed

    Ferreira, Ana Cristina; Dias, Ricardo; de Sá, Maria Inácia Corrêa; Tenreiro, Rogério

    2016-08-30

    Optical mapping is a technology able to quickly generate high resolution ordered whole-genome restriction maps of bacteria, being a proven approach to search for diversity among bacterial isolates. In this work, optical whole-genome maps were used to compare closely-related Brucella suis biovar 2 strains. This biovar is the unique isolated in domestic pigs and wild boars in Portugal and Spain and most of the strains share specific molecular characteristics establishing an Iberian clonal lineage that can be differentiated from another lineage mainly isolated in several Central European countries. We performed the BamHI whole-genome optical maps of five B. suis biovar 2 field strains, isolated from wild boars in Portugal and Spain (three from the Iberian lineage and two from the Central European one) as well as of the reference strain B. suis biovar 2 ATCC 23445 (Central European lineage, Denmark). Each strain showed a distinct, highly individual configuration of 228-231 BamHI fragments. Nevertheless, a low divergence was globally observed in chromosome II (1.6%) relatively to chromosome I (2.4%). Optical mapping also disclosed genomic events associated with B. suis strains in chromosome I, namely one indel (3.5kb) and one large inversion (944kb). By using targeted-PCR in a set of 176 B. suis strains, including all biovars and haplotypes, the indel was found to be specific of the reference strain ATCC 23445 and the large inversion was shown to be an exclusive genomic marker of the Iberian clonal lineage of biovar 2. PMID:27527786

  6. Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain.

    PubMed

    Nguyen, Chuong V; Hieu, Nguyen N; Nguyen, Duong T

    2015-12-01

    Strain-dependent structural and electronic properties of MoS2 materials are investigated using first principles calculations. The structural and electronic band structures of the MoS2 with relaxed unit cells are optimized and calculated by the dispersion-corrected density functional theory (DFT-D2). Calculations within the local density approximation (LDA) and GGA using PAW potentials were also performed for specific cases for the purpose of comparison. The effect of strain on the band gap and the dependence of formation energy on strain of MoS2 are also studied and discussed using the DFT-D2 method. In bulk MoS2, the orbitals shift towards the higher/lower energy area when strain is applied along the z/x direction, respectively. The energy splitting of Mo4d states is in the range from 0 to 2 eV, which is due to the reduction of the electronic band gap of MoS2.

  7. Facile strain analysis of largely bending films by a surface-labelled grating method.

    PubMed

    Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi

    2014-01-01

    Mechanical properties of flexible films, for example surface strain of largely bending films, are key to design of stretchable electronic devices, wearable biointegrated devices, and soft microactuators/robots. However, existing methods are mainly based on strain-gauge measurements that require miniaturized array sensors, lead wires, and complicated calibrations. Here we introduce a facile method, based on surface-labelled gratings, for two-dimensional evaluation of surface strains in largely bending films. With this technique, we demonstrate that soft-matter mechanics can be distinct from the mechanics of hard materials. In particular, liquid-crystalline elastomers may undergo unconventional bending in three dimensions, in which both the inner and outer surfaces of the bending film are compressed. We also show that this method can be applied to amorphous elastomeric films, which highlights the general importance of this new mechanical evaluation tool in designing soft-matter-based electronic/photonic as well as biointegrated materials.

  8. Facile strain analysis of largely bending films by a surface-labelled grating method

    PubMed Central

    Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi

    2014-01-01

    Mechanical properties of flexible films, for example surface strain of largely bending films, are key to design of stretchable electronic devices, wearable biointegrated devices, and soft microactuators/robots. However, existing methods are mainly based on strain-gauge measurements that require miniaturized array sensors, lead wires, and complicated calibrations. Here we introduce a facile method, based on surface-labelled gratings, for two-dimensional evaluation of surface strains in largely bending films. With this technique, we demonstrate that soft-matter mechanics can be distinct from the mechanics of hard materials. In particular, liquid-crystalline elastomers may undergo unconventional bending in three dimensions, in which both the inner and outer surfaces of the bending film are compressed. We also show that this method can be applied to amorphous elastomeric films, which highlights the general importance of this new mechanical evaluation tool in designing soft-matter-based electronic/photonic as well as biointegrated materials. PMID:24948462

  9. Facile strain analysis of largely bending films by a surface-labelled grating method

    NASA Astrophysics Data System (ADS)

    Akamatsu, Norihisa; Tashiro, Wataru; Saito, Keisuke; Mamiya, Jun-Ichi; Kinoshita, Motoi; Ikeda, Tomiki; Takeya, Jun; Fujikawa, Shigenori; Priimagi, Arri; Shishido, Atsushi

    2014-06-01

    Mechanical properties of flexible films, for example surface strain of largely bending films, are key to design of stretchable electronic devices, wearable biointegrated devices, and soft microactuators/robots. However, existing methods are mainly based on strain-gauge measurements that require miniaturized array sensors, lead wires, and complicated calibrations. Here we introduce a facile method, based on surface-labelled gratings, for two-dimensional evaluation of surface strains in largely bending films. With this technique, we demonstrate that soft-matter mechanics can be distinct from the mechanics of hard materials. In particular, liquid-crystalline elastomers may undergo unconventional bending in three dimensions, in which both the inner and outer surfaces of the bending film are compressed. We also show that this method can be applied to amorphous elastomeric films, which highlights the general importance of this new mechanical evaluation tool in designing soft-matter-based electronic/photonic as well as biointegrated materials.

  10. Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions

    DOE PAGES

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; et al

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 ± 0.9%, whichmore » are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less

  11. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    SciTech Connect

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  12. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    DOE PAGES

    Zhao, Xin; Ciovati, G.; Bieler, T. R.

    2010-12-15

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced bymore » crystal defects (e.g. dislocations). All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. In conclusion, the local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.« less

  13. Perovskite Solar Cells with Near 100% Internal Quantum Efficiency Based on Large Single Crystalline Grains and Vertical Bulk Heterojunctions

    SciTech Connect

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Puretzky, Alexander; Das, Sanjib; Ivanov, Ilia; Rouleau, Christopher; Duscher, Gerd; Geohegan, David; Xiao, Kai

    2015-07-09

    Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH3NH3PbI3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH3NH3PbI3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded average PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH3NH3PbI3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.

  14. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility.

    PubMed

    Fu, Jie; Yamamoto, Akiko; Kim, Hee Young; Hosoda, Hideki; Miyazaki, Shuichi

    2015-04-01

    In this study, a new Ti-Zr-Nb-Sn alloy system was developed as Ni-free biomedical superelastic alloys with a large recovery strain and excellent biocompatibility. Ti-18Zr-(9-16)Nb-(0-4)Sn alloys were prepared by an Ar arc melting method and the effect of composition on the crystal structure and superelastic properties was investigated. A large superelastic recovery strain of 6.0% was observed in Ti-18Zr-12.5Nb-2Sn, Ti-18Zr-11Nb-3Sn, and Ti-18Zr-9.5Nb-4Sn alloys subjected to cold-rolling and solution treatment. XRD results showed that the large recovery strain of Sn-added alloys is due to a combination effect of a large transformation strain and a strong recrystallization texture. The Ti-18Zr-11Nb-3Sn alloy exhibited excellent cyclic stability with an extremely narrow stress hysteresis about 20MPa. Cytocompatibility was also examined using three types of cell lines, murine fibroblast L929, human osteosarcoma SaOS-2, and human umbilical vein endothelial cell HUVEC and the results showed that the Ti-18Zr-11Nb-3Sn alloy exhibited larger cell covering ratios when compared with those of the Ti-50.5Ni alloy for all kinds of cells.

  15. Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe

    SciTech Connect

    Lower, Mark D.

    2014-04-01

    Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because their use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects

  16. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  17. Large human YACs constructed in a rad52 strain show a reduced rate of chimerism

    SciTech Connect

    Haldi, M.; Perrot, V.; Saumier, M.

    1994-12-01

    Current YAC libraries are plagued by a high frequency of chimeras - that is, clones containing fragments from multiple genomic regions. Chimeras are thought to arise largely through recombination in the yeast host cell. If so, the use of recombination-deficient yeast strains, such as rad52 mutants, might be expected to alleviate the problem. Here, we report the construction of megabase-sized human YACs in the rad52 strain MHY5201 and the determination of their rate of chimerism by fluorescence in situ hybridization analysis. Examination of 48 YACs showed a rate of chimerism of at most 8%, whereas YACs constructed in the wildtype host AB1380 showed a rate of about 50%. These results show that it is possible to significantly decrease the rate of YAC chimerism through the use of appropriate yeast host strains. 27 refs., 3 figs., 3 tabs.

  18. Stored energy function and compressibility of compressible rubberlike materials under large strain

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.; Landel, R. F.

    1975-01-01

    By using new invariants in the theory of finite elasticity an expression is obtained for the stored energy function of slightly compressible materials in which the effects of the distortional change (change of shape) and of the volume change are clearly separated. The volume-related terms are expressed as a function of the third invariant, the classical compressibility, and an induced anisotropy of the effective compressibility which is due to the large deformations. After evaluating the terms, using data on pressure, volume, uniaxial strain, and fractional volume change vs strain data on natural rubber from the literature, it is shown that the volume change contribution to the total stress observed in a simple tensile experiment can be clearly separated from the distortional contribution, even at finite strains.

  19. Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication

    NASA Astrophysics Data System (ADS)

    Ahmmad, Bashir; Kanomata, Kensaku; Koike, Kunihiro; Kubota, Shigeru; Kato, Hiroaki; Hirose, Fumihiko; Billah, Areef; Jalil, M. A.; Basith, M. A.

    2016-07-01

    The ceramic pellets of the nominal compositions Bi0.7Ba0.3Fe1‑x Ti x O3 (x  =  0.00–0.20) were prepared initially by standard solid state reaction technique. The pellets were then ground into micrometer-sized powders and mixed with isopropanol in an ultrasonic bath to prepare nanoparticles. The x-ray diffraction patterns demonstrate the presence of a significant number of impurity phases in bulk powder materials. Interestingly, these secondary phases were completely removed due to the sonication of these bulk powder materials for 60 minutes. The field and temperature dependent magnetization measurements exhibited significant difference between the magnetic properties of the bulk materials and their corresponding nanoparticles. We anticipate that the large difference in the magnetic behavior may be associated with the presence and absence of secondary impurity phases in the bulk materials and their corresponding nanoparticles, respectively. The leakage current density of the bulk materials was also found to suppress in the ultrasonically prepared nanoparticles compared to that of bulk counterparts.

  20. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model.

    PubMed

    D׳Amore, Antonio; Soares, Joao S; Stella, John A; Zhang, Will; Amoroso, Nicholas J; Mayer, John E; Wagner, William R; Sacks, Michael S

    2016-09-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments.

  1. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model.

    PubMed

    D׳Amore, Antonio; Soares, Joao S; Stella, John A; Zhang, Will; Amoroso, Nicholas J; Mayer, John E; Wagner, William R; Sacks, Michael S

    2016-09-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments. PMID:27344402

  2. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene.

    PubMed

    Oka, Tomoichiro; Saif, Linda J; Marthaler, Douglas; Esseili, Malak A; Meulia, Tea; Lin, Chun-Ming; Vlasova, Anastasia N; Jung, Kwonil; Zhang, Yan; Wang, Qiuhong

    2014-10-10

    The highly contagious and deadly porcine epidemic diarrhea virus (PEDV) first appeared in the US in April 2013. Since then the virus has spread rapidly nationwide and to Canada and Mexico causing high mortality among nursing piglets and significant economic losses. Currently there are no efficacious preventive measures or therapeutic tools to control PEDV in the US. The isolation of PEDV in cell culture is the first step toward the development of an attenuated vaccine, to study the biology of PEDV and to develop in vitro PEDV immunoassays, inactivation assays and screen for PEDV antivirals. In this study, nine of 88 US PEDV strains were isolated successfully on Vero cells with supplemental trypsin and subjected to genomic sequence analysis. They differed genetically mainly in the N-terminal S protein region as follows: (1) strains (n=7) similar to the highly virulent US PEDV strains; (2) one similar to the reportedly US S INDEL PEDV strain; and (3) one novel strain most closely related to highly virulent US PEDV strains, but with a large (197aa) deletion in the S protein. Representative strains of these three genetic groups were passaged serially and grew to titers of ∼5-6log10 plaque forming units/mL. To our knowledge, this is the first report of the isolation in cell culture of an S INDEL PEDV strain and a PEDV strain with a large (197aa) deletion in the S protein. We also designed primer sets to detect these genetically diverse US PEDV strains.

  3. The microstructure origin of large strain plastically deformed SiC nanowires

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jiang, J.; Hu, X.; Yuan, J.; Zhang, Y.; Han, X.; Zhang, Z.

    2008-08-01

    Surprisingly large strain plasticity has been demonstrated for ceramic SiC nanowires through in-situ deformation experiments near room temperature. This article reports a detailed electron energy-loss spectroscopy (EELS) study of deformation-induced localized plastic zones in a bent SiC nanowire. Both the 'red shift' of the plasmon peak and the characteristic fine structure at Si L-edge absorption are consistent with local amorphisation of SiC. The recorded C K-edge fine structure is processed to remove the contribution from the surface amorphous carbon and the extracted C K-edge fine structure has no characteristic sp2-related pre-edge peak and hence is also consistent with amorphous SiC. These results suggest that the large strain plasticity in SiC nanowires is enabled by crystalline-to-amorphous transition.

  4. Influence of the Crystalline Phase on Strain-Rate Sensitivity of a Zr-Cu-Ni-Al Bulk Metallic Glass at Room Temperature

    NASA Astrophysics Data System (ADS)

    Huang, Yongjiang; Zheng, Wei; Shen, Jun

    2012-12-01

    In this work, Zr53Cu18.7Ni12Al16.3 alloy has been cast into rod samples with different diameters. Glassy composites with various volume fractions of quenched-in crystalline are obtained. Their mechanical behaviors and fracture mechanisms have been investigated upon both quasistatic and dynamic loading. As the volume fraction of crystalline phase increases, the increase in the strain-rate sensitivity exponent could be attributed to the combination of the reduction of the shear band-related deformability and the enhancement of the dislocation-related deformability. These results may shed more insight on optimizing the microstructure and performance of bulk metallic glass composites in the future.

  5. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  6. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  7. Shape Measurement of Large Aerospace Structures Using Sensitivity Electrical TDR Distributed Strain Sensor

    NASA Technical Reports Server (NTRS)

    Lin, Mark W.; Meador, Michael A. (Technical Monitor)

    2000-01-01

    Electrical time domain reflectometry (ETDR) sensing technique can be best described as "closed-loop radar," where the information is derived from the reflections of a voltage pulse sent through a transmission medium. The ETDR sensing technique is a well-developed method and has been widely used to locate and evaluate discontinuities in long coaxial power transmission cables. The ETDR technique provides a true distributed sensing capability which can not only sense the distributed loading condition of the structure but also can pin-point the location of disturbance, such as the locations of stress concentration and structural damages. Proof-of-concept experiments have been conducted using photoelastic specimens with embedded commercial coaxial cables, i.e., RG85/U and RG174, to demonstrate the stress/strain sensing capability of ETDR sensors for structural health monitoring application. Although the test results showed that the ETDR sensor signals capture specimen deformation pattern both in bending and tension and indicate the location and type of crack damages of the photoelastic specimen; yet, the low signal-to-noise ratio of the sensor signal smears the details of the strain measurement that the ETDR signals can convey. A high-sensitivity ETDR coaxial strain sensor prototype newly developed at Clark Atlanta University will be presented. The construction of the prototype sensing cable as well as its electrical properties relevant to distributed strain sensing application will be shown in details. Test results of the sensitivity and tension responses of the ETDR signal of the prototype sensor will be presented and compared with those of commercial coaxial cables. Promising potentials of the ETDR distributed strain sensing method for shape measurement application of large aerospace structures will also be demonstrated using long slender beam with surface-bonded ETDR distributed strain sensor.

  8. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  9. Large-size ultrahigh strength Ni-based bulk metallic glassy matrix composites with enhanced ductility fabricated by spark plasma sintering

    SciTech Connect

    Xie Guoqiang; Louzguine-Luzgin, Dmitri V.; Kimura, Hisamichi; Inoue, Akihisa; Wakai, Fumihiro

    2008-03-24

    Ni-based bulk glassy alloy composites (GACs) simultaneously with ultrahigh strength and enhanced ductility and satisfying large-size requirements were fabricated by spark plasma sintering of gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} glassy alloy powder blend with ceramic or metal powders. No crystallization of metallic glassy matrix and good bonding state between the particles are responsible for good mechanical properties of the fabricated bulk GACs. The improvement of plastic ductility of the fabricated bulk GACs originates from the structural inhomogeneity caused by the particles inclusion. The additional particulates act as a resisting media causing deviation, branching, and multiplication of shear bands.

  10. Large-size ultrahigh strength Ni-based bulk metallic glassy matrix composites with enhanced ductility fabricated by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Xie, Guoqiang; Louzguine-Luzgin, Dmitri V.; Kimura, Hisamichi; Inoue, Akihisa; Wakai, Fumihiro

    2008-03-01

    Ni-based bulk glassy alloy composites (GACs) simultaneously with ultrahigh strength and enhanced ductility and satisfying large-size requirements were fabricated by spark plasma sintering of gas-atomized Ni52.5Nb10Zr15Ti15Pt7.5 glassy alloy powder blend with ceramic or metal powders. No crystallization of metallic glassy matrix and good bonding state between the particles are responsible for good mechanical properties of the fabricated bulk GACs. The improvement of plastic ductility of the fabricated bulk GACs originates from the structural inhomogeneity caused by the particles inclusion. The additional particulates act as a resisting media causing deviation, branching, and multiplication of shear bands.

  11. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs.

  12. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via High‐Speed Operando Tomography and Digital Volume Correlation

    PubMed Central

    Finegan, Donal P.; Tudisco, Erika; Scheel, Mario; Robinson, James B.; Taiwo, Oluwadamilola O.; Eastwood, David S.; Lee, Peter D.; Di Michiel, Marco; Bay, Brian; Hall, Stephen A.; Hinds, Gareth; Brett, Dan J. L.

    2015-01-01

    Tracking the dynamic morphology of active materials during operation of lithium batteries is essential for identifying causes of performance loss. Digital volume correlation (DVC) is applied to high‐speed operando synchrotron X‐ray computed tomography of a commercial Li/MnO2 primary battery during discharge. Real‐time electrode material displacement is captured in 3D allowing degradation mechanisms such as delamination of the electrode from the current collector and electrode crack formation to be identified. Continuum DVC of consecutive images during discharge is used to quantify local displacements and strains in 3D throughout discharge, facilitating tracking of the progression of swelling due to lithiation within the electrode material in a commercial, spiral‐wound battery during normal operation. Displacement of the rigid current collector and cell materials contribute to severe electrode detachment and crack formation during discharge, which is monitored by a separate DVC approach. Use of time‐lapse X‐ray computed tomography coupled with DVC is thus demonstrated as an effective diagnostic technique to identify causes of performance loss within commercial lithium batteries; this novel approach is expected to guide the development of more effective commercial cell designs. PMID:27610334

  13. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application.

    PubMed

    Ciarletta, Pasquale; Izzo, Ivano; Micera, Silvestro; Tendick, Frank

    2011-10-01

    This work defines an incompressible, hyperelastic theory of anisotropic soft materials at finite strains, which is tested by application to the experimental response of fiber-reinforced rubber materials. The experimental characterization is performed using a uniaxial testing device with optical measures of the deformation, using two different reinforcing materials on a ground rubber matrix. In order to avoid non-physical responses of the underlying structural components of the material, the kinematics of the deformation are described using a novel deformation tensor, which ensures physical consistency at large strains. A constitutive relation for incompressible fiber-reinforced materials is presented, while issues of stability and ellipticity for the hyperelastic solution are considered to impose necessary restrictions on the constitutive parameters. The theoretical predictions of the proposed model are compared with the anisotropic experimental responses, showing high fitting accuracy in determining the mechanical parameters of the model. The constitutive theory is suitable to account for the anisotropic response at large compressive strains, opening perspectives for many applications in tissue engineering and biomechanics.

  14. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application.

    PubMed

    Ciarletta, Pasquale; Izzo, Ivano; Micera, Silvestro; Tendick, Frank

    2011-10-01

    This work defines an incompressible, hyperelastic theory of anisotropic soft materials at finite strains, which is tested by application to the experimental response of fiber-reinforced rubber materials. The experimental characterization is performed using a uniaxial testing device with optical measures of the deformation, using two different reinforcing materials on a ground rubber matrix. In order to avoid non-physical responses of the underlying structural components of the material, the kinematics of the deformation are described using a novel deformation tensor, which ensures physical consistency at large strains. A constitutive relation for incompressible fiber-reinforced materials is presented, while issues of stability and ellipticity for the hyperelastic solution are considered to impose necessary restrictions on the constitutive parameters. The theoretical predictions of the proposed model are compared with the anisotropic experimental responses, showing high fitting accuracy in determining the mechanical parameters of the model. The constitutive theory is suitable to account for the anisotropic response at large compressive strains, opening perspectives for many applications in tissue engineering and biomechanics. PMID:21783146

  15. Anisotropic work-hardening behaviour ofstructural steels and aluminium alloys at large strains

    NASA Astrophysics Data System (ADS)

    Bouvier, S.; Teodosiu, C.; Haddadi, H.; Tabacaru, V.

    2003-03-01

    Sheet metal forming processes may often involve intense forming sequences, leading to large strains and severe strain-path changes. Optimizing such technologies requires a good understanding and description of the anisotropic plastic behaviour of the deformed material, in connection with the evolution of its texture and microstructure. In this paper, we present the predictions provided by a model involving isotropic and kinematioc hardening and by a physically-based microstructural model, which introduces additional internal variables taking into accounthe directional strength of dislocation structures and their polarity. These models have been identified by using sequences of uniaxial traction and simple shear experiments, carried out on various steels (DC06, DP600, HSLA340) and aluminium alloys (AA5182-O, AA6016-T4). The microstructural model proved able predict the complex hardening behaviour displayed, especially by the ferritic steels, namely the transient work-hardening stagnation during reversed deformation in Bauschinger tests, the temporary work-softening during orthogonal tests, and the grain fragmentation at large monotonie strains.

  16. An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kuykendall, Katherine

    2011-07-01

    Constitutive laws commonly used to model friction stir welding have been evaluated, both qualitatively and quantitatively, and a new application of a constitutive law which can be extended to materials commonly used in FSW is presented. Existing constitutive laws have been classified as path-dependent or path-independent. Path-independent laws have been further classified according to the physical phenomena they capture: strain hardening, strain rate hardening, and/or thermal softening. Path-dependent laws can track gradients in temperature and strain rate characteristic to friction stir welding; however, path-independent laws cannot. None of the path-independent constitutive laws evaluated has been validated over the full range of strain, strain rate, and temperature in friction stir welding. Holding all parameters other than constitutive law constant in a friction stir weld model resulted in temperature differences of up to 21%. Varying locations for maximum temperature difference indicate that the constitutive laws resulted in different temperature profiles. The Sheppard and Wright law is capable of capturing saturation but incapable of capturing strain hardening with errors as large as 57% near yield. The Johnson-Cook law is capable of capturing strain hardening; however, its inability to capture saturation causes over-predictions of stress at large strains with errors as large as 37% near saturation. The Kocks and Mecking model is capable of capturing strain hardening and saturation with errors less than 5% over the entire range of plastic strain. The Sheppard and Wright and Johnson-Cook laws are incapable of capturing transients characteristic of material behavior under interrupted temperature or strain rate. The use of a state variable in the Kocks and Mecking law allows it to predict such transients. Constants for the Kocks and Mecking model for AA 5083, AA 3004, and Inconel 600 were determined from Atlas of Formability data. Constants for AA 5083 and AA

  17. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    PubMed

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402932

  18. Large elastic strain and elastocaloric effect caused by lattice softening in an iron-palladium alloy.

    PubMed

    Kakeshita, Tomoyuki; Xiao, Fei; Fukuda, Takashi

    2016-08-13

    A Fe-31.2Pd (at.%) alloy exhibits a weak first-order martensitic transformation from a cubic structure to a tetragonal structure near 230 K. This transformation is associated with significant softening of elastic constant C'. Because of the softening, the alloy shows a large elastic strain of more than 6% in the [001] direction. In addition, the alloy has a critical point and shows a high elastocaloric effect in a wide temperature range for both the parent and the martensite phases.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  19. Catastrophic optical bulk damage (COBD) processes in aged and proton-irradiated high power InGaAs-AlGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; LaLumondiere, Stephen; Foran, Brendan; Lotshaw, William; Moss, Steven C.

    2013-02-01

    Recent remarkable success of fiber lasers and amplifiers results from continued improvements in performance characteristics of broad-area InGaAs-AlGaAs strained quantum well (QW) lasers. Unprecedented characteristics of single emitters include optical output powers of over 20 W and power conversion efficiencies of over 70% under CW operation. Leading high power laser diode manufacturers have recently demonstrated encouraging reliability in these lasers mainly targeted for industrial applications, but long-term reliability of these lasers has never been demonstrated for satellite communication systems in the space environment. Furthermore, as reported by two groups in 2009, the dominant failure mode of these lasers is catastrophic optical bulk damage (COBD), which is a new failure type that requires physics of failure investigation to understand its root causes. For the present study, we investigated reliability, proton radiation effects, and the root causes of COBD processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various failure mode analysis (FMA) techniques. Two different approaches, accelerated life-testing and proton irradiation, were taken to generate lasers at different stages of degradation. Our objectives were to (i) study the effects of point defects introduced during crystal growth and those induced by proton irradiation with different energies and fluences in the lasers on degradation processes and to (ii) compare trap characteristics and carrier dynamics in pre- and post-stressed lasers with those in pre- and post-proton irradiated lasers. During entire accelerated life-tests, time resolved electroluminescence (TREL) techniques were employed to observe formation of a hot spot and subsequent formation and progression of dark spots and dark lines through windowed n-contacts.

  20. A computational framework for polyconvex large strain elasticity for geometrically exact beam theory

    NASA Astrophysics Data System (ADS)

    Ortigosa, Rogelio; Gil, Antonio J.; Bonet, Javier; Hesch, Christian

    2016-02-01

    In this paper, a new computational framework is presented for the analysis of nonlinear beam finite elements subjected to large strains. Specifically, the methodology recently introduced in Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) in the context of three dimensional polyconvex elasticity is extended to the geometrically exact beam model of Simo (Comput Methods Appl Mech Eng 49:55-70, 1985), the starting point of so many other finite element beam type formulations. This new variational framework can be viewed as a continuum degenerate formulation which, moreover, is enhanced by three key novelties. First, in order to facilitate the implementation of the sophisticated polyconvex constitutive laws particularly associated with beams undergoing large strains, a novel tensor cross product algebra by Bonet et al. (Comput Methods Appl Mech Eng 283:1061-1094, 2015) is adopted, leading to an elegant and physically meaningful representation of an otherwise complex computational framework. Second, the paper shows how the novel algebra facilitates the re-expression of any invariant of the deformation gradient, its cofactor and its determinant in terms of the classical beam strain measures. The latter being very useful whenever a classical beam implementation is preferred. This is particularised for the case of a Mooney-Rivlin model although the technique can be straightforwardly generalised to other more complex isotropic and anisotropic polyconvex models. Third, the connection between the two most accepted restrictions for the definition of constitutive models in three dimensional elasticity and beams is shown, bridging the gap between the continuum and its degenerate beam description. This is carried out via a novel insightful representation of the tangent operator.

  1. Dislocation accumulation at large plastic strains -- An approach to the theoretical strength of materials

    SciTech Connect

    Embury, J.D. |; Han, K.

    1999-04-01

    The usual method of introducing engineers to the concept of dislocations and their role in plastic flow is to compare an estimate of the theoretical strength of solid (of order {micro}/30 where {micro} is the shear modulus) and the observed strength of either single crystals ({mu}/10{sup 4}) or practical engineering material such as structural steels where the yield stress in shear is of order {mu}/10{sup 3}. However, if one considers the problem in reverse, one can consider the accumulation of dislocations as an important mechanism by which one can produce engineering materials in which the strength level approaches the theoretical strength. If one assumes that the flow stress can be expressed in terms of te mean free path between stored dislocations or as the square root of the global dislocation density, then one can see the influence of dislocation density in a diagrammatic form. It is clear that the strengthening by dislocation accumulation due to large imposed plastic strains represents an important approach both to the development of new, potentially valuable, engineering materials and an important area of basic understanding in terms of the mechanical response of materials close to their theoretical strength. Thus, this article will survey some of the factors which influence dislocation accumulation at large strains and the consequences of such accumulation processes.

  2. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique.

    PubMed

    Liu, Qingwen; Tokunaga, Tomochika; He, Zuyuan

    2011-10-15

    We report the realization of a fiber-optic static strain sensor with ultrahigh resolution and large dynamic range for the applications of geophysical research. The sensor consists of a pair of fiber-Bragg-grating-based Fabry-Perot interferometers as sensor heads for strain sensing and reference, respectively. The Pound-Drever-Hall technique is employed to interrogate the sensor heads, and a cross-correlation algorithm is used to figure out the strain information with high precision. Static strain resolution down to 5.8 nanostrains is demonstrated. The dynamic range can be extended up to hundreds of microstrains, and the measuring period is a few tens of seconds.

  3. Large magnetic entropy change of Gd-based ternary bulk metallic glass in liquid-nitrogen temperature range

    NASA Astrophysics Data System (ADS)

    Fu, H.; Zhang, X. Y.; Yu, H. J.; Teng, B. H.; Zu, X. T.

    2008-01-01

    Gd 60Co 26Al 14 bulk metallic glass (BMG) with a diameter of 3 mm was prepared by arc-melting and copper-mold suck-casting. X-ray diffraction (XRD) results show that the as-cast Gd 60Co 26Al 14 rod consists of a wholly amorphous phase. Differential scanning calorimetry (DSC) measurements indicated that one glass transition temperature (Tg) and two crystallization temperatures (TX) occur at 570, 602, and 642 K, respectively. Moreover, two Curie temperatures of 82 and 128 K, which correspond to the two amorphous phases in the DSC trace, were determined from the thermo-magnetization curve. The maximal magnetic entropy change (ΔSM) under 0-5 T is about 10.1 J/kg K at 75 K and the refrigerant capacity (RC) is about 556 J/kg, which makes Gd 60Co 26Al 14 BMG a promising candidate for magnetic refrigerant near liquid-nitrogen temperatures.

  4. Influence of crossed fields in structures combining large grain, bulk (RE)BCO superconductors and soft ferromagnetic discs

    NASA Astrophysics Data System (ADS)

    Philippe, M. P.; Fagnard, J. F.; Wéra, L.; Morita, M.; Nariki, S.; Teshima, H.; Caps, H.; Vanderheyden, B.; Vanderbemden, P.

    2016-03-01

    Bulk (RE)BCO superconductors are able to trap record magnetic fields and can be used as powerful permanent magnets in various engineering applications such as rotating machines and magnetic bearings. When such superconducting (SC) “trapped field magnets” are combined to a ferromagnetic (FM) disc, the total magnetic moment is increased with respect to that of the superconductor alone. In the present work, we study experimentally the magnetic behaviour of such hybrid FM/SC structures when they are subjected to cycles of applied field that are orthogonal to their permanent magnetization, i.e. a “crossed-field” configuration. Experimental results show that the usual “crossed-field demagnetization” caused by the cycles of transverse field is strongly reduced in the presence of the ferromagnet.

  5. Manifestation of nonlinear elasticity in rock: Convincing evidence over large frequency and strain intervals from laboratory studies

    SciTech Connect

    Johnson, P.A. |; Rasolofosaon, P.N.J.

    1995-11-01

    Nonlinear elastic response in rock is established as a robust and representative characteristic of rock rather than a curiosity. This behavior is illustrated from a variety of experiments conducted over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behavior in rock: (1) Nonlinear response in rock is enormous; (2) the response takes place over a large frequency interval (dc--10{sup 6} Hz at least); (3) the response not only occurs, as is commonly appreciated, at large strains but also at small strains where nonlinear response and the manifestations of this behavior are commonly disregarded. Nonlinear response may manifest itself in a variety of manners, including a nonlinear stress{minus}strain relation (hysteretic/discrete memory), nonlinear dissipation, harmonic generation, and resonant peak shift, all of which are related. The experiments described include: quasistatic stress{minus}strain tests (strains of 10{sup -4}--10{sup -1} at frequencies near dc-1Hz); torsional oscillator experiments (strains of 10{sup {minus}4}--10{sup {minus}7}, frequencies between 0.1 and 100Hz); resonant bar experiments (strains of 10{sup {minus}4}--10{sup {minus}8}, frequencies between 10{sup 3} and 10{sup 4} Hz); and dynamic, propagating wave experiments (strains of 10{sup {minus}6}--10{sup {minus}9}, frequencies between 10{sup 3} and 10{sup 6} Hz). [Work supported by OBES/DOE through the University of California and the Institut Francais du Petrole.

  6. The response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress

    NASA Astrophysics Data System (ADS)

    Holmquist, T. J.; Bradley, J.; Dwivedi, A.; Casem, D.

    2016-05-01

    This article presents the response of polymethyl methacrylate (PMMA) subjected to large strains, high strain rates, high pressures, a range in temperatures, and variations in the intermediate principal stress. Laboratory data from the literature, and new test data provided here, are used in the evaluation. The new data include uniaxial stress compression tests (at various strain rates and temperatures) and uniaxial stress tension tests (at low strain rates and ambient temperatures). The compression tests include experiments at ˙ɛ = 13,000 s-1, significantly extending the range of known strain rate data. The observed behavior of PMMA includes the following: it is brittle in compression at high rates, and brittle in tension at all rates; strength is dependent on the pressure, strain, strain rate, temperature, and the intermediate principal stress; the shear modulus increases as the pressure increases; and it is highly compressible. Also presented are novel, high velocity impact tests (using high-speed imaging) that provide insight into the initiation and evolution of damage. Lastly, computational constitutive models for pressure, strength, and failure are presented that provide responses that are in good agreement with the laboratory data. The models are used to compute several ballistic impact events for which experimental data are available.

  7. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  8. Fluid-like flows in large-strain deformation of metals

    NASA Astrophysics Data System (ADS)

    Yeung, Ho; Sagapuram, Dinakar; Viswanathan, Koushik; Sundaram, Narayan; Mahato, Anirban; Trumble, Kevin; Chandrasekar, Srinivasan

    Laminar or smooth plastic flow, commonly observed in large deformation of metals, becomes unstable under certain conditions, resulting in inhomogeneous plastic flow. Using in situ imaging, we demonstrate the unique features of two inhomogeneous flow modes in metal plasticity -- the well-known shear band flow and the recently discovered sinuous flow -- and methods for suppressing them. Both modes occur via a two stage process -- nucleation and flow development. The nucleation stage results in a weak material zone and the development stage involves imposition of significant strains. In the case of shear bands, using additional micro-marker techniques, we show that the second stage is well described by a viscous slider model. As a result, controlling the second stage causes band formation to cease. We demonstrate the use of this method -- Passive Geometric Flow control -- to form long strips from metallic alloys that are difficult to form conventionally. For sinuous flow, nucleation and flow formation kinematics show remarkable resemblance with flows in complex fluids. The nucleation stage can be altered using suitable ink coatings on the free surface or by surface pre-straining, and we use this idea to demonstrate complete sinuous flow suppression. Membership pending.

  9. The large strain response of polypropylene in multiaxial stretching and stress relaxation

    NASA Astrophysics Data System (ADS)

    Sweeney, J.; Caton-Rose, P.; Spencer, P. E.; O'Conner, C.; Martin, P. J.; Menary, G.

    2011-05-01

    In this study, a biaxial testing machine is used to stretch polypropylene sheet at elevated temperatures (150-160° C) in a number of modes, including simultaneous equibiaxial and a sequential mode that consists of planar extension followed by a second perpendicular extension to achieve a final equibiaxial state. On completion of the stretching process the applied forces continue to be monitored to give further data on stress relaxation. A constitutive model is devised that combines the Eyring process and large strain elastic theory. A Guiu-Pratt model, including a single Eyring process, is fitted to the stress relaxation curves and produces values of Eyring parameters. Fits are improved if the initial part of the curve is excluded, indicating that the activation volume derived relates to a process in the relatively long term. In support of this, the strain rate dependence of the loading curves indicates a quite different value of activation volume. A two-process model is derived with parameter values deduced from these two types of fit, and implemented in a finite element package. Its capability of modelling the whole of the stress relaxation curve is explored.

  10. A quasi-distributed optical fiber sensor network for large strain and high-temperature measurements of structures

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Chen, Genda; Xiao, Hai; Zhang, Yinan; Zhou, Zhi

    2011-04-01

    Due to earthquake effects, buildings often experience large strains, leading to progressive collapses. Monitoring and assessing the large strain condition of critical buildings is of paramount importance to post-earthquake responses and evacuations in earthquake-prone regions. However, few monitoring system can work under such harsh environments. For their unique attributes such as compactness, immunity to electromagnetic interference and capability integrated within various types of structures and materials, optical fiber sensors are especially attractive for quasi-distributed strain sensing purposes in harsh environments. Nevertheless, the dynamic range of strain measurements of an optical sensor is limited by the elasticity of the optical fiber. In this paper, a quasi-distributed optical fiber sensor network based on extrinsic Fabry-Perot interferometer (EFPI) and long-period fiber grating (LPFG) sensors for both large strain and high temperature measurements has been developed. The sensor network combined several inline EFPIs and LPFGs by various couplers. Each EFPI sensor in the sensor network system has the capacity of large strain measurement up to 12% and each LPFG sensor here has a temperature measurement range of up to 700°C. To obtain strain and temperature information for multiple locations more efficiently, a hybrid LPFG/EFPI optical fiber sensor based sensor network system has been studied in this paper. Experimental results demonstrate that the proposed quasi-distributed optical fiber sensor network system is capable for both large strain and high temperature measurements. Therefore, the proposed optical fiber sensor network system can be applied to monitor the quasi-distributed strain of civil infrastructure in harsh environments.

  11. Multiscale Characterization of bcc Crystals Deformed to Large Extents of Strain

    SciTech Connect

    Florando, J; LeBlanc, M; Lassila, D; Bulatov, V; Rhee, M; Arsenlis, A; Becker, R; Jr., J M; Magid, K

    2007-02-20

    In an effort to help advance the predictive capability of LLNL's multiscale modeling program a new experimental technique has been developed to provide high fidelity data on metallic single crystals out to relatively large extents of strain. The technique uses a '6 Degrees of Freedom' testing apparatus in conjunction with a 3-D image correlation system. Utilizing this technique, a series of experiments have been performed that reveal unexpected behavior which cannot be explained using traditional crystal plasticity theory. In addition, analysis and characterization techniques have also been developed to help quantify the unexpected behavior. Interactions with multiscale modelers include the development of a possible mechanism that might explain the anomalous behavior, as well as the discovery of a new 4-node dislocation junction.

  12. Phase field approach with anisotropic interface energy and interface stresses: Large strain formulation

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.; Warren, James A.

    2016-06-01

    A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics

  13. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-01

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications. PMID:25884131

  14. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states.

    PubMed

    Bilc, Daniel I; Hautier, Geoffroy; Waroquiers, David; Rignanese, Gian-Marco; Ghosez, Philippe

    2015-04-01

    Thermoelectrics are promising for addressing energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures and the introduction of resonant states were suggested as possible solutions to this paradox, but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly directional character of some orbitals to engineer the band structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principle calculations, the theoretical concept is demonstrated in Fe2YZ Heusler compounds, yielding power factors 4 to 5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting, or photovoltaic applications.

  15. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  16. The large shear strain dynamic behaviour of in-vitro porcine brain tissue and a silicone gel model material.

    PubMed

    Brands, D W; Bovendeerd, P H; Peters, G W; Wismans, J S

    2000-11-01

    The large strain dynamic behaviour of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behaviour was characterised using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behaviour was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behaviour of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue. Nevertheless the brain tissue response will not be captured exactly due to increased viscous damping at high frequencies and the absence of shear softening in the silicone gel. For trend studies and benchmarking of numerical models the gel can be a good model material.

  17. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers

    PubMed Central

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M. C.; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-01-01

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm2 at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices. PMID:26442909

  18. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers.

    PubMed

    Xu, Jin-Long; Sun, Yi-Jian; He, Jing-Liang; Wang, Yan; Zhu, Zhao-Jie; You, Zhen-Yu; Li, Jian-Fu; Chou, Mitch M C; Lee, Chao-Kuei; Tu, Chao-Yang

    2015-10-07

    Dirac-like topological insulators have attracted strong interest in optoelectronic application because of their unusual and startling properties. Here we report for the first time that the pure topological insulator Bi2Te3 exhibited a naturally ultrasensitive nonlinear absorption response to photoexcitation. The Bi2Te3 sheets with lateral size up to a few micrometers showed extremely low saturation absorption intensities of only 1.1 W/cm(2) at 1.0 and 1.3 μm, respectively. Benefiting from this sensitive response, a Q-switching pulsed laser was achieved in a 1.0 μm Nd:YVO4 laser where the threshold absorbed pump power was only 31 mW. This is the lowest threshold in Q-switched solid-state bulk lasers to the best of our knowledge. A pulse duration of 97 ns was observed with an average power of 26.1 mW. A Q-switched laser at 1.3 μm was also realized with a pulse duration as short as 93 ns. Moreover, the mode locking operation was demonstrated. These results strongly exhibit that Bi2Te3 is a promising optical device for constructing broadband, miniature and integrated high-energy pulsed laser systems with low power consumption. Our work clearly points out a significantly potential avenue for the development of two-dimensional-material-based broadband ultrasensitive photodetector and other optoelectronic devices.

  19. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  20. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  1. Microstructural characterization of in situ MXCT images of high density foams under large strains

    SciTech Connect

    Patterson, Brian M; Gleiman, Seth; Marks, Trevor G; Milstein, Fredrick

    2009-01-01

    relative-density of the foam; however, there exists a gap in the understanding of how the foam microstructure affects the mechanical response of the foam. This is due in large part to the difficulty of characterizing foam structures in 3D, especially foams of high relative-density. Most elastomeric foams are manufactured by the introduction of a gas into a cross-linking polymer. The developing foam microstructure has a complex dependence on the polymer viscosity and rate of polymerization, resulting in a randomly arranged pore structure with a large distribution of pore sizes. One approach is to characterize foam microstructures solely in terms of the cross-sectional shape and vector arrangement of the strut matrix, since it is this matrix that supports the stresses upon loading of the foam; yet as the density of a foam is increased, the very definition of what constitutes a strut brakes down. Another, perhaps easier to visualize, characterization of foam microstructure can come from a description of the pore shape and arrangement. Given the random nature of the microstructures of blown foam, both approaches are useful and valid. This paper describes our work aimed at linking the mechanical response and microstructural evolution of high relative-density foam as it undergoes large deformation. This work consists of several inter-related parts, including (i) measuring the compressive stress-strain response, as illustrated in Fig. 1, (ii) obtaining in situ micro X-ray computed tomography (MXCT) images of high relative-density foams undergoing large strains, and (iii) developing mathematical, computer aided, methodologies to perform image analysis and calculations of parameters that characterize the pores and struts. By using MXCT, a non-invasive technique for imaging the internal structure of materials, we are able to observe, internally, individual struts and pores as they undergo large deformation. Here we describe our computer aided image analysis methodologies and present

  2. Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Bing-Chang; Wang, Hui; Zhao, Yu; Li, Fan; Ou, Xue-Mei; Sun, Bao-Quan; Zhang, Xiao-Hong

    2016-01-01

    Silicon is the dominant semiconductor in modern society, but the rigid nature of most Si structures hinders its applications in flexible electronics. In this work, Si-based flexible strain sensors are fabricated with Si fabric consisting of long Si nanowires. The as-obtained sensors demonstrate a large strain range of 50% and a gauge factor of up to 350, which are sufficient to detect human motions with superior performance over traditional sensors. The results reveal that the assembling strategy may potentially be applied to large-scale fabrication of highly sensitive, flexible strain sensors for emerging applications such as healthcare and sports monitoring. Moreover, the Si fabric would also enable broad applications of Si materials in other flexible and wearable devices such as flexible optoelectronics and displays.Silicon is the dominant semiconductor in modern society, but the rigid nature of most Si structures hinders its applications in flexible electronics. In this work, Si-based flexible strain sensors are fabricated with Si fabric consisting of long Si nanowires. The as-obtained sensors demonstrate a large strain range of 50% and a gauge factor of up to 350, which are sufficient to detect human motions with superior performance over traditional sensors. The results reveal that the assembling strategy may potentially be applied to large-scale fabrication of highly sensitive, flexible strain sensors for emerging applications such as healthcare and sports monitoring. Moreover, the Si fabric would also enable broad applications of Si materials in other flexible and wearable devices such as flexible optoelectronics and displays. Electronic supplementary information (ESI) available: The morphological and structural characterization of the silicon nanowires, the plot of the relative resistance change versus cubic strain, and the relationship between the width of the gap and the exerted strain. See DOI: 10.1039/c5nr07546g

  3. Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenol.

    PubMed

    Bakan, B; Giraud-Delville, C; Pinson, L; Richard-Molard, D; Fournier, E; Brygoo, Y

    2002-11-01

    Thirty deoxynivalenol-producing F. culmorum strains, isolated from wheat grains, were incubated in vitro and analyzed for trichothecene production. Seventeen strains produced more than 1 ppm of deoxynivalenol and acetyldeoxynivalenol and were considered high-deoxynivalenol-producing strains, whereas 13 F. culmorum strains produced less than 0.07 ppm of trichothecenes and were considered low-deoxynivalenol-producing strains. For all strains, a 550-base portion of the trichodiene synthase gene (tri5) was amplified and sequenced. According to the tri5 data, the F. culmorum strains tested clustered into two groups that correlated with in vitro deoxynivalenol production. For three high-producing and three low-producing F. culmorum strains, the tri5-tri6 intergenic region was then sequenced, which confirmed the two separate clusters within the F. culmorum strains. According to the tri5-tri6 sequence data, specific PCR primers were designed to allow differentiation of high-producing from low-producing F. culmorum strains. PMID:12406740

  4. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %.

  5. Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cells.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Verstappen, Pieter; Govaerts, Sanne; Manca, Jean; Lutsen, Laurence; Vanderzande, Dirk; Maes, Wouter

    2015-10-12

    Organic photovoltaics (OPV) have attracted great interest as a solar cell technology with appealing mechanical, aesthetical, and economies-of-scale features. To drive OPV toward economic viability, low-cost, large-scale module production has to be realized in combination with increased top-quality material availability and minimal batch-to-batch variation. To this extent, continuous flow chemistry can serve as a powerful tool. In this contribution, a flow protocol is optimized for the high performance benzodithiophene-thienopyrroledione copolymer PBDTTPD and the material quality is probed through systematic solar-cell evaluation. A stepwise approach is adopted to turn the batch process into a reproducible and scalable continuous flow procedure. Solar cell devices fabricated using the obtained polymer batches deliver an average power conversion efficiency of 7.2 %. Upon incorporation of an ionic polythiophene-based cathodic interlayer, the photovoltaic performance could be enhanced to a maximum efficiency of 9.1 %. PMID:26388210

  6. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching

    NASA Astrophysics Data System (ADS)

    Ren, Xiaobing

    2004-02-01

    Ferroelectric crystals are characterized by their asymmetric or polar structures. In an electric field, ions undergo asymmetric displacement and result in a small change in crystal dimension, which is proportional to the applied field. Such electric-field-induced strain (or piezoelectricity) has found extensive applications in actuators and sensors. However, the effect is generally very small and thus limits its usefulness. Here I show that with a different mechanism, an aged BaTiO3 single crystal can generate a large recoverable nonlinear strain of 0.75% at a low field of 200 V mm-1. At the same field this value is about 40 times higher than piezoelectric Pb(Zr, Ti)O3 (PZT) ceramics and more than 10 times higher than the high-strain Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) single crystals. This large electro-strain stems from an unusual reversible domain switching (most importantly the switching of non-180° domains) in which the restoring force is provided by a general symmetry-conforming property of point defects. This mechanism provides a general method to achieve large electro-strain effect in a wide range of ferroelectric systems and the effect may lead to novel applications in ultra-large stroke and nonlinear actuators.

  7. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries.

    PubMed

    Wen, Y H; Peng, H B; Raabe, D; Gutierrez-Urrutia, I; Chen, J; Du, Y Y

    2014-01-01

    Shape memory alloys are a unique class of materials that can recover their original shape upon heating after a large deformation. Ti-Ni alloys with a large recovery strain are expensive, while low-cost conventional processed Fe-Mn-Si-based steels suffer from a low recovery strain (<3%). Here we show that the low recovery strain results from interactions between stress-induced martensite and a high density of annealing twin boundaries. Reducing the density of twin boundaries is thus a critical factor for obtaining a large recovery strain in these steels. By significantly suppressing the formation of twin boundaries, we attain a tensile recovery strain of 7.6% in an annealed cast polycrystalline Fe-20.2Mn-5.6Si-8.9Cr-5.0Ni steel (weight%). Further attractiveness of this material lies in its low-cost alloying components and simple synthesis-processing cycle consisting only of casting plus annealing. This enables these steels to be used at a large scale as structural materials with advanced functional properties.

  8. Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses.

    PubMed

    Fasoli, Giuseppe; Barrio, Eladio; Tofalo, Rosanna; Suzzi, Giovanna; Belloch, Carmela

    2016-09-16

    In the present study, we have analysed the genetic diversity in Kluyveromyces marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola cheesemaking environment. Molecular typing methods inter-RTL fingerprint and mtDNA RFLPs, as well as, sequence diversity and heterozygosity in the intergenic region between KmSSB1 and KmRIO2 genes and analysis of the mating locus were applied to 54 K. marxianus strains. Inter-RTL fingerprint revealed a large degree of genetic heterogeneity and clustering allowed differentiation of K. marxianus strains from different geographical origins. In general, inter-LTR profiles were more discriminating than RFLPs of mtDNA; however our results also indicate that both techniques could be complementary unveiling different degrees of genetic diversity. Sequence analysis of the intergenic region between KmSSB1 and KmRIO2 genes revealed 26 variable positions in which a double peak could be observed in the sequence chromatogram. Further analysis revealed the presence of heterozygous strains in the K. marxianus population isolated from Parmigiano Reggiano. On the other hand, all strains isolated from Pecorino di Farindola were homozygous. Two very different groups of haplotypes could be observed as well as mixtures between them. Phylogenetic reconstruction divided K. marxianus dairy strains into two separate populations. A few heterozygous strains in an intermediate position between them could also be observed. Mating type locus analysis revealed a large population of diploid strains containing both MATa and MATα alleles and few haploid strains, most of them presenting the MATα allele. Different scenarios explaining the presence and maintaining of homozygous and heterozygous diploids as well as hybrids between them in the Parmigiano Reggiano K. marxianus population are proposed. A principal component analysis supported the large differences between K. marxianus isolated from Parmigiano Reggiano and Pecorino di Farindola. PMID:27294555

  9. A large strain material model for soft tissues with functionally graded properties.

    PubMed

    Görke, Uwe-Jens; Günther, Hubert; Nagel, Thomas; Wimmer, Markus A

    2010-07-01

    The reaction of articular cartilage and other soft tissues to mechanical loads has been characterized by coupled hydraulic (H) and mechanical (M) processes. An enhanced biphasic material model is presented, which may be used to describe the load response of soft tissue. A large-strain numerical approach of HM coupled processes has been applied. Physical and geometrical nonlinearities, as well as anisotropy and intrinsic rate-dependency of the solid skeleton have been realized using a thermodynamically consistent approach. The presented material model has been implemented into the commercially available finite element code MSC MARC. Initial verification of the model has been conducted analytically in tendonlike structures. The poroelastic and intrinsic viscoelastic features of the model were compared with the experimental data of an unconfined compression test of agarose hydrogel. A recent example from the area of cartilage research has been modeled, and the mechanical response was compared with cell viability. All examples showed good agreement between numerical and analytical/experimental results.

  10. Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining

    NASA Astrophysics Data System (ADS)

    Cai, S. L.; Dai, L. H.

    2014-12-01

    High speed machining (HSM) is an advanced production technology with great future potential. Chip serration or segmentation is a commonly observed phenomenon during high speed machining of metals, which is found to be ascribed to a repeated shear band formation fueled by thermo-plastic instability occurring within the primary shear zone. The occurrence of serrated chips leads to the cutting force fluctuation, decreased tool life, degradation of the surface finish and less accuracy in machine parts during high speed machining. Hence, understanding and controlling serrated chip formation in HSM are extremely important. In this work, a novel dynamic large strain extrusion machining (DLSEM) technique is developed for suppressing formation of serrated chips. The systematic DLSEM experiments of Ti-6Al-4V and Inconel 718 alloy with varying degrees of imposed extrusion constraint were carried out. It is found that there is a prominent chip morphology transition from serrated to continuous state and shear band spacing decreases with the constraint degree increasing. In order to uncover underlying mechanism of the imposed extrusion constraint suppressing repeated adiabatic shear banding in DLSEM, new theoretical models are developed where the effects of extrusion constraint, material convection due to chip flow and momentum diffusion during shear band propagation are included. The analytical expressions for the onset criterion of adiabatic shear band and shear band spacing in DLSEM are obtained. The theoretical predictions are in agreement with the experimental results.

  11. Fiber Optic Rosette Strain Gauge Development and Application on a Large-Scale Composite Structure

    NASA Technical Reports Server (NTRS)

    Moore, Jason P.; Przekop, Adam; Juarez, Peter D.; Roth, Mark C.

    2015-01-01

    A detailed description of the construction, application, and measurement of 196 FO rosette strain gauges that measured multi-axis strain across the outside upper surface of the forward bulkhead component of a multibay composite fuselage test article is presented. A background of the FO strain gauge and the FO measurement system as utilized in this application is given and results for the higher load cases of the testing sequence are shown.

  12. Constitutive Equations and Flow Behavior of an As-Extruded AZ31 Magnesium Alloy Under Large Strain Condition

    NASA Astrophysics Data System (ADS)

    Dong, Yuanyuan; Zhang, Cunsheng; Lu, Xing; Wang, Cuixue; Zhao, Guoqun

    2016-06-01

    A reasonable constitutive model is the key to achieving the accurate numerical simulation of magnesium alloy extrusion process. Based on the hot compression tests of the as-extruded AZ31 magnesium alloy, the strain-compensated Arrhenius equation, the constitutive equation taking into account dynamic recovery (DRV) and dynamic recrystallization (DRX), and the modified Fields-Backofen equation (FB) are established to describe the deformation behavior of this alloy under large strain condition (strain level greater than 1.0) and wide strain rate range (0.01 to 10 s-1), respectively. Then material parameters in each constitutive model are determined by linear fitting method. The comparison of these three kinds of equations shows that the strain-compensated Arrhenius model provides the best prediction of flow stress, and the calculated value of correlation coefficient ( R) is the highest as 0.9945 and the average absolute relative error (AARE) is the lowest as 3.11%. The constitutive equation with DRV + DRX can also predict flow stress accurately, and its values of R and AARE are 0.9920 and 4.41%, respectively. However, compared to the other two constitutive equations, the modified FB equation does not give good description of hot deformation behavior for this magnesium alloy. Finally, the advantages and drawbacks of these three kinds of constitutive models are discussed and compared. Therefore, this work could provide theoretical guidelines for investigating hot deformation behavior of wrought magnesium alloys and determining the appropriate extrusion process parameters under large strain condition.

  13. Very large strain gauges based on single layer MoSe2 and WSe2 for sensing applications

    NASA Astrophysics Data System (ADS)

    Hosseini, Manouchehr; Elahi, Mohammad; Pourfath, Mahdi; Esseni, David

    2015-12-01

    Here, we propose a strain gauge based on single-layer MoSe2 and WSe2 and show that, in these materials, the strain induced modulation of inter-valley phonon scattering leads to large mobility changes, which in turn result in highly sensitive strain gauges. By employing density-functional theory bandstructure calculations, comprehensive scattering models, and the linearized Boltzmann equation, we explain the physical mechanisms for the high sensitivity to strain of the resistivity in single-layer MoSe2 and WSe2, discuss the reduction of the gauge factor produced by extrinsic scattering sources (e.g., chemical impurities), and propose ways to mitigate such sensitivity degradation.

  14. Oxygen disorder, a way to accommodate large epitaxial strains in oxides

    SciTech Connect

    Zhang, Yu Yang; Mishra, Rohan; Pennycook, Timothy J.; Borisevich, Albina Y.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2015-09-22

    Density-functional calculations (total-energy comparisons) and checks for negative-frequency phonon modes are employed as a stability indicator to show that, in rutile- and fluorite-structure oxides, e.g., zirconia strained by a strontium titanate substrate, oxygen-sublattice disorder can be the energetically preferred way to accommodate strain.

  15. Strength and flexibility of bulk high-T{sub c} superconductors.

    SciTech Connect

    Goretta, K. C.; Jiang, M.; Kupperman, D. S.; Lanagan, M. T.; Singh, J. P.; Vasanthamohan, N.; Hinks, D. G.; Mitchell, J. F.; Richardson, J. W., Jr.

    1997-06-01

    Strength, fracture toughness, and elastic modulus data for bulk high-temperature superconductors, commercial 99.9% Ag, and a 1.2 at.% Mg/Ag alloy have been collected. These data have been used to calculate fracture strains for bulk conductors. The calculations indicate that the superconducting cores of clad tapes should begin to fracture at strains below 0.2%. In addition, residual strains in Ag-clad (Bi,Pb)2Sr2Ca2Cu3Ox tapes have been measured by neutron diffraction. An explanation is offered for why many tapes appear to be able to tolerate large strains before exhibiting a reduction in current transport.

  16. Development and Progress in Bulk c-Plane AlN Single-Crystalline Template Growth for Large-Area Native Seeds

    NASA Astrophysics Data System (ADS)

    Radhakrishnan Sumathi, R.; Gille, Peter

    2013-08-01

    28-mm diameter free-standing AlN substrates were obtained from single crystalline templates grown hetero-epitaxially on (0001) SiC substrates by the sublimation method. The grown template crystals have fairly high structural quality with X-ray rocking curve FWHM values of 120 and 200 arcsec for symmetric and asymmetric reflections, respectively and an average etch pit density of about 5×105 cm-2. In Raman spectroscopy, the E2(high) phonon mode peak FWHM is 18 cm-1 and its position shift shows a very low tensile strain of ˜1.5×10-4 in the crystals. The presence of Si and C impurity-related local vibrational modes is observed. These impurities might be responsible for lowering the optical absorption band edge to 4.3 eV. Homo-epitaxial growth of 5-mm-thick bulk crystals, using 10 mm diameter seeds prepared from these templates demonstrates their suitability as native seeds for further growth.

  17. Development and Progress in Bulk c-Plane AlN Single-Crystalline Template Growth for Large-Area Native Seeds

    NASA Astrophysics Data System (ADS)

    Sumathi, R. Radhakrishnan; Gille, Peter

    2013-08-01

    28-mm diameter free-standing AlN substrates were obtained from single crystalline templates grown hetero-epitaxially on (0001) SiC substrates by the sublimation method. The grown template crystals have fairly high structural quality with X-ray rocking curve FWHM values of 120 and 200 arcsec for symmetric and asymmetric reflections, respectively and an average etch pit density of about 5× 105 cm-2. In Raman spectroscopy, the E2(high) phonon mode peak FWHM is 18 cm-1 and its position shift shows a very low tensile strain of ˜1.5× 10-4 in the crystals. The presence of Si and C impurity-related local vibrational modes is observed. These impurities might be responsible for lowering the optical absorption band edge to 4.3 eV. Homo-epitaxial growth of 5-mm-thick bulk crystals, using 10 mm diameter seeds prepared from these templates demonstrates their suitability as native seeds for further growth.

  18. Flexible and printable paper-based strain sensors for wearable and large-area green electronics.

    PubMed

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-07-14

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.

  19. Flexible and printable paper-based strain sensors for wearable and large-area green electronics

    NASA Astrophysics Data System (ADS)

    Liao, Xinqin; Zhang, Zheng; Liao, Qingliang; Liang, Qijie; Ou, Yang; Xu, Minxuan; Li, Minghua; Zhang, Guangjie; Zhang, Yue

    2016-06-01

    Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control.Paper-based (PB) green electronics is an emerging and potentially game-changing technology due to ease of recycling/disposal, the economics of manufacture and the applicability to flexible electronics. Herein, new-type printable PB strain sensors (PPBSSs) from graphite glue (graphite powder and methylcellulose) have been fabricated. The graphite glue is exposed to thermal annealing to produce surface micro/nano cracks, which are very sensitive to compressive or tensile strain. The devices exhibit a gauge factor of 804.9, response time of 19.6 ms and strain resolution of 0.038%, all performance indicators attaining and even surpassing most of the recently reported strain sensors. Due to the distinctive sensing properties, flexibility and robustness, the PPBSSs are suitable for monitoring of diverse conditions such as structural strain, vibrational motion, human muscular movements and visual control. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02172g

  20. Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device

    SciTech Connect

    Nishiura, M.; Tanaka, K.; Kubo, S.; Kawahata, K.; Shimozuma, T.; Mutoh, T.; Saito, T.; Tatematsu, Y.; Notake, T.

    2008-10-15

    Collective Thomson scattering (CTS) system is expected to be a strong diagnostic tool for measuring thermal and fast ion distribution function at a local point inside plasmas. The electron cyclotron resonance heating system using a gyrotron at the frequency range of 77 GHz has been installed at the large helical device (LHD). The feasibility of CTS system using the 77 GHz gyrotron is assessed in terms of scattering spectrum and a background noise of the electron cyclotron emission, which affect the signal to noise ratio, with the realistic plasma parameters and incident port locations of LHD. Based on the calculated scattering spectra for bulk and tail fast ion diagnostics, the scattering radiation receiver system with gyrotron frequency feedback circuit is proposed to avoid the frequency chirping.

  1. Sensitivity-Improved Strain Sensor over a Large Range of Temperatures Using an Etched and Regenerated Fiber Bragg Grating

    PubMed Central

    Wang, Yupeng; Qiao, Xueguang; Yang, Hangzhou; Su, Dan; Li, Ling; Guo, Tuan

    2014-01-01

    A sensitivity-improved fiber-optic strain sensor using an etched and regenerated fiber Bragg grating (ER-FBG) suitable for a large range of temperature measurements has been proposed and experimentally demonstrated. The process of chemical etching (from 125 μm to 60 μm) provides regenerated gratings (at a temperature of 680 °C) with a stronger reflective intensity (from 43.7% to 69.8%), together with an improved and linear strain sensitivity (from 0.9 pm/με to 4.5 pm/με) over a large temperature range (from room temperature to 800 °C), making it a useful strain sensor for high temperature environments. PMID:25299954

  2. Ultra-High-Strength Interstitial-Free Steel Processed by Equal-Channel Angular Pressing at Large Equivalent Strain

    NASA Astrophysics Data System (ADS)

    Verma, Deepa; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2016-04-01

    The billets of interstitial-free (IF) steel are deformed by equal-channel angular pressing (ECAP) at 298 K (25 °C) adopting the route BC up to an equivalent strain ( ɛ vm) of 24. The evolution of microstructures and their effects on the mechanical properties are examined. The microstructural refinement involves the elongation of grains, the subdivision of grains to the bands with high dislocation density, and the splitting of bands into the cell blocks and then cell blocks into the cells. The widths of the bands and the size of cells decrease with strain. The degree of reduction in the grain size is highest at the low strain level. However, most of the boundaries at this stage are of low-angle boundaries (at ɛ vm = 3). Thereafter, the misorientation angle increases by progressive lattice rotation with strain. The coarse bands transform step by step from the lamellar structure to the ribbon-shaped grains and finally to the near-equiaxed grain structures with the subgrains of a saturated low-angle grain boundary fraction of 0.34 at very large strain >15. The as-received coarse-grained microstructure (grain size of 57.6 ± 21 µm) has been refined to 257 ± 48 nm at an equivalent strain of 24. The strength increases considerably up to ɛ vm = 3 due to grain refinement and high dislocation density. However, the strengthening at later stages is mainly due to the increase in misorientation angle and refinement. Initial yield strength of 227 MPa is increased to a record value of 895 MPa on straining up to ɛ vm = 24 at 298 K (25 °C). Uniform elongation decreases drastically at low equivalent strain but it regains marginally later. The ECAPed sample fails by a ductile fracture at ɛ vm = 0.6 to 6 but by a mixed mode of ductile-brittle fracture at larger strain of 9 to 24.

  3. Draft Genome Sequence of Rheinheimera sp. F8, a Biofilm-Forming Strain Which Produces Large Amounts of Extracellular DNA

    PubMed Central

    Szewzyk, Ulrich

    2016-01-01

    Rheinheimera sp. strain F8 is a biofilm-forming gammaproteobacterium that has been found to produce large amounts of filamentous extracellular DNA. Here, we announce the de novo assembly of its genome. It is estimated to be 4,464,511 bp in length, with 3,970 protein-coding sequences and 92 RNA-coding sequences. PMID:26966195

  4. The choice of strain gage for use in a large superconducting alternator

    SciTech Connect

    Ferrero, C.; Desogus, S.

    1982-01-01

    Electrical strain gages are investigated from ambient to liquid-helium temperatures. Experimental determination of the curves of apparent strain vs. temperature were especially considered, because of the role of thermal and mechanical stresses in a superconducting rotor in the cooling and operational phases. Commercially available Karma and modified-Karma alloy foil strain gages were used. These were either applied on the surface of supports of Cu, Al, Incar, AISI 304L, Araldite, and Nb, or embedded inside the specimen. Results are analyzed in terms of 4.2 to 7.2 range, 4.2 to 30 K range, reversal temperature, behavior with strain, and power dissipation effects. Conclusions are formulated with proposed applications to a wide range of technological items which require stress measurement and control in a narrow temperature range near 4.2 K.

  5. Genomic Characterization of a Large Outbreak of Legionella pneumophila Serogroup 1 Strains in Quebec City, 2012

    PubMed Central

    Mendis, Nilmini; Cantin, Philippe; Marchand, Geneviève; Charest, Hugues; Raymond, Frédéric; Huot, Caroline; Goupil-Sormany, Isabelle; Desbiens, François; Faucher, Sébastien P.; Corbeil, Jacques; Tremblay, Cécile

    2014-01-01

    During the summer of 2012, a major Legionella pneumophila serogroup 1 outbreak occurred in Quebec City, Canada, which caused 182 declared cases of Legionnaire's disease and included 13 fatalities. Legionella pneumophila serogroup 1 isolates from 23 patients as well as from 32 cooling towers located in the vicinity of the outbreak were recovered for analysis. In addition, 6 isolates from the 1996 Quebec City outbreak and 4 isolates from patients unrelated to both outbreaks were added to allow comparison. We characterized the isolates using pulsed-field gel electrophoresis, sequence-based typing, and whole genome sequencing. The comparison of patients-isolated strains to cooling tower isolates allowed the identification of the tower that was the source of the outbreak. Legionella pneumophila strain Quebec 2012 was identified as a ST-62 by sequence-based typing methodology. Two new Legionellaceae plasmids were found only in the epidemic strain. The LVH type IV secretion system was found in the 2012 outbreak isolates but not in the ones from the 1996 outbreak and only in half of the contemporary human isolates. The epidemic strains replicated more efficiently and were more cytotoxic to human macrophages than the environmental strains tested. At least four Icm/Dot effectors in the epidemic strains were absent in the environmental strains suggesting that some effectors could impact the intracellular replication in human macrophages. Sequence-based typing and pulsed-field gel electrophoresis combined with whole genome sequencing allowed the identification and the analysis of the causative strain including its likely environmental source. PMID:25105285

  6. Genomic characterization of a large outbreak of Legionella pneumophila serogroup 1 strains in Quebec City, 2012.

    PubMed

    Lévesque, Simon; Plante, Pier-Luc; Mendis, Nilmini; Cantin, Philippe; Marchand, Geneviève; Charest, Hugues; Raymond, Frédéric; Huot, Caroline; Goupil-Sormany, Isabelle; Desbiens, François; Faucher, Sébastien P; Corbeil, Jacques; Tremblay, Cécile

    2014-01-01

    During the summer of 2012, a major Legionella pneumophila serogroup 1 outbreak occurred in Quebec City, Canada, which caused 182 declared cases of Legionnaire's disease and included 13 fatalities. Legionella pneumophila serogroup 1 isolates from 23 patients as well as from 32 cooling towers located in the vicinity of the outbreak were recovered for analysis. In addition, 6 isolates from the 1996 Quebec City outbreak and 4 isolates from patients unrelated to both outbreaks were added to allow comparison. We characterized the isolates using pulsed-field gel electrophoresis, sequence-based typing, and whole genome sequencing. The comparison of patients-isolated strains to cooling tower isolates allowed the identification of the tower that was the source of the outbreak. Legionella pneumophila strain Quebec 2012 was identified as a ST-62 by sequence-based typing methodology. Two new Legionellaceae plasmids were found only in the epidemic strain. The LVH type IV secretion system was found in the 2012 outbreak isolates but not in the ones from the 1996 outbreak and only in half of the contemporary human isolates. The epidemic strains replicated more efficiently and were more cytotoxic to human macrophages than the environmental strains tested. At least four Icm/Dot effectors in the epidemic strains were absent in the environmental strains suggesting that some effectors could impact the intracellular replication in human macrophages. Sequence-based typing and pulsed-field gel electrophoresis combined with whole genome sequencing allowed the identification and the analysis of the causative strain including its likely environmental source. PMID:25105285

  7. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    SciTech Connect

    Challacombe, Jean F; Eichorst, Stephanie A; Xie, Gary; Kuske, Cheryl R; Hauser, Loren; Land, Miriam

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  8. Strength and flexibility of bulk high-{Tc} superconductors

    SciTech Connect

    Goretta, K.C.; Jiang, M.; Kupperman, D.S.; Lanagan, M.T.; Singh, J.P.; Vasanthamohan, N.; Hinks, D.G.; Mitchell, J.F.; Richardson, J.W. Jr.

    1996-08-01

    Strength, fracture toughness, and elastic modulus data have been gathered for bulk high-temperature superconductors, commercial 99.9% Ag, and a 1.2 at.% Mg/Ag alloy. These data have been used to calculate fracture strains for bulk conductors. The calculations indicate that the superconducting cores of clad tapes should begin to fracture at strains below 0.2%. In addition, residual strains in Ag-clad (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes have been measured by neutron diffraction. An explanation is offered for why many tapes appear to be able to tolerate large strains before exhibiting a reduction in current transport.

  9. An efficient numerical method for predicting the evolution of internal variables and springback in bending under tension at large strains

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Jeng, Yeau-Ren

    2013-12-01

    Quite a general elastic/plastic material model including evolution equations for internal variables is adopted to predict the distribution of material properties and springback in plane strain bending under tension at large strains. A transformation equation to connect Lagrangian and Eulerian coordinates is used to reduce the original boundary value problem to a system of hyperbolic equations. This system is then solved by the method of characteristics combined with a finite difference scheme. In a particular case of elastic/plastic hardening materials (in this case the only internal variable is the equivalent plastic strain) an analytic solution is available in the literature. Using this solution it is demonstrated that the accuracy of the numerical method is very high.

  10. Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice.

    PubMed

    Myint, Anthony; White, Cory H; Ohmen, Jeffrey D; Li, Xin; Wang, Juemei; Lavinsky, Joel; Salehi, Pezhman; Crow, Amanda L; Ohyama, Takahiro; Friedman, Rick A

    2016-02-01

    A cornerstone technique in the study of hearing is the Auditory Brainstem Response (ABR), an electrophysiologic technique that can be used as a quantitative measure of hearing function. Previous studies have published databases of baseline ABR thresholds for mouse strains, providing a valuable resource for the study of baseline hearing function and genetic mapping of hearing traits in mice. In this study, we further expand upon the existing literature by characterizing the baseline ABR characteristics of 100 inbred mouse strains, 47 of which are newly characterized for hearing function. We identify several distinct patterns of baseline hearing deficits and provide potential avenues for further investigation. Additionally, we characterize the sensitivity of the same 100 strains to noise exposure using permanent thresholds shifts, identifying several distinct patterns of noise-sensitivity. The resulting data provides a new resource for studying hearing loss and noise-sensitivity in mice.

  11. Large scale analysis of virulence genes in Escherichia coli strains isolated from Avalon Bay, CA.

    PubMed

    Hamilton, Matthew J; Hadi, Asbah Z; Griffith, John F; Ishii, Satoshi; Sadowsky, Michael J

    2010-10-01

    Contamination of recreational waters with Escherichia coli and Enterococcus sp. is a widespread problem resulting in beach closures and loss of recreational activity. While E. coli is frequently used as an indicator of fecal contamination, and has been extensively measured in waterways, few studies have examined the presence of potentially pathogenic E. coli strains in beach waters. In this study, a combination of high-throughput, robot-assisted colony hybridization and PCR-based analyses were used to determine the genomic composition and frequency of virulence genes present in E. coli isolated from beach water in Avalon Bay, Santa Catalina Island, CA. A total of 24,493 E. coli isolates were collected from two sites at a popular swimming beach between August through September 2007 and from July through August 2008. All isolates were examined for the presence of shiga-like toxins (stx1/stx2), intimin (eaeA), and enterotoxins (ST/LT). Of the 24,493 isolates examined, 3.6% contained the eaeA gene, indicating that these isolates were potential EPEC strains. On five dates, however, greater than 10% of the strains were potential EPEC, suggesting that incidence of virulence genes at this beach has a strong temporal component. No STEC or ETEC isolates were detected, and only eight (<1.0%) of the potential EPEC isolates were found to carry the EAF plasmid. The potential EPEC isolates mainly belonged to E. coli phylogenetic groups B1 or B2, and carried the β intimin subtype. DNA fingerprint analyses of the potential EPEC strains indicated that the isolates belonged to several genetically diverse groups, although clonal isolates were frequently detected. While the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potential EPEC strains can be found in marine beach water and their presence needs to be considered as one of the factors used in decisions concerning beach closures. PMID:20643468

  12. Large-strain cyclic response and martensitic transformation of austenitic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hamasaki, H.; Nakano, T.; Ishimaru, E.; Yoshida, F.

    2016-08-01

    Cyclic tension-compression tests were carried out for austenitic stainless steel (SUS304) at elevated temperatures. The significant Bauschinger effect was found in the obtained stress-strain curve. In addition, stagnation of deformation induced martensitic transformation was observed just after stress reversal until the equivalent stress reached the maximum value in the course of experiment. The constitutive model for SUS304 at room temperature was developed, in which homogenized stress of SUS304 was expressed by the weighed summation of stresses of austenite and martensite phases. The calculated stress-strain curves and predicted martensite volume fraction were well correlated with those experimental results.

  13. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets.

    PubMed

    Li, Qingwei; Liu, Changhong; Lin, Yuan-Hua; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2015-01-27

    Many electroactive polymer (EAP) actuators use diverse configurations of carbon nanotubes (CNTs) as pliable electrodes to realize discontinuous, agile movements, for CNTs are conductive and flexible. However, the reported CNT-based EAP actuators could only accomplish simple, monotonous actions. Few actuators were extended to complex devices because efficiently preparing a large-area CNT electrode was difficult, and complex electrode design has not been carried out. In this work, we successfully prepared large-area CNT paper (buckypaper, BP) through an efficient approach. The BP is highly anisotropic, strong, and suitable as flexible electrodes. By means of artful graphic design and processing on BP, we fabricated various functional BP electrodes and developed a series of BP-polymer electrothermal actuators (ETAs). The prepared ETAs can realize various controllable movements, such as large-stain bending (>180°), helical curling (∼ 630°), or even bionic actuations (imitating human-hand actions). These functional and interesting movements benefit from flexible electrode design and the anisotropy of BP material. Owing to the advantages of low driving voltage (20-200 V), electrolyte-free and long service life (over 10000 times), we think the ETAs will have great potential applications in the actuator field. PMID:25559661

  14. Detection and characterisation of Yersinia enterocolitica strains in cold-stored carcasses of large game animals in Poland.

    PubMed

    Bancerz-Kisiel, Agata; Socha, Piotr; Szweda, Wojciech

    2016-02-01

    Yersinia enterocolitica is an important foodborne pathogen. The aim of the present study was to identify the bioserotypes and virulence markers of Y.enterocolitica strains isolated from three different anatomical regions of cold-stored carcasses of large game animals intended for human consumption. Y.enterocolitica strains were found in 12/20 (60%) of the roe deer carcasses examined, 7/16 (43.8%) of red deer carcasses and 11/20 (55%) of wild boar carcasses. Of the 52 Y.enterocolitica strains, 19 were isolated from the perineum, followed by 17 strains from the peritoneum of the longissimus dorsi muscle and 16 from the tonsils. Only one strain was isolated from warm culture. Bioserotype 1A/NI was the most commonly found and was detected in 29/52 isolates. All isolates contained amplicons corresponding to ystB gene fragments. The relatively high degree of carcass contamination with Y.enterocolitica is of concern due to the growing popularity of game meat with consumers. PMID:26626093

  15. Large-strain optical fiber sensing and real-time FEM updating of steel structures under the high temperature effect

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Fang, Xia; Bevans, Wesley James; Zhou, Zhi; Xiao, Hai; Chen, Genda

    2013-01-01

    Steel buildings are subjected to fire hazards during or immediately after a major earthquake. Under combined gravity and thermal loads, they have non-uniformly distributed stiffness and strength, and thus collapse progressively with large deformation. In this study, large-strain optical fiber sensors for high temperature applications and a temperature-dependent finite element model updating method are proposed for accurate prediction of structural behavior in real time. The optical fiber sensors can measure strains up to 10% at approximately 700 °C. Their measurements are in good agreement with those from strain gauges up to 0.5%. In comparison with the experimental results, the proposed model updating method can reduce the predicted strain errors from over 75% to below 20% at 800 °C. The minimum number of sensors in a fire zone that can properly characterize the vertical temperature distribution of heated air due to the gravity effect should be included in the proposed model updating scheme to achieve a predetermined simulation accuracy.

  16. Computational strategy for the solution of large strain nonlinear problems using the Wilkins explicit finite-difference approach

    NASA Technical Reports Server (NTRS)

    Hofmann, R.

    1980-01-01

    The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.

  17. Increase of Si0.5Ge0.5 Bulk Single Crystal Size as Substrates for Strained Ge Epitaxial Layers

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kyoichi; Nakatsuka, Osamu; Arai, Yasutomo; Taguchi, Keisuke; Tomioka, Hiroshi; Tanaka, Ryota; Yoda, Shinichi

    2013-04-01

    Compositionally uniform 2 and 10 mm diameter Si0.5Ge0.5 bulk crystals have been grown by the traveling liquidus-zone (TLZ) method. The TLZ method requires diffusion controlled mass transport in a melt and crystal size was limited for suppressing convection in a melt. For substrate use, however, larger diameter crystals are required. Increase of crystal diameter was challenged in spite of the concern that compositional homogeneity of grown crystals might be degraded due to faster convective flow in a larger diameter melt. As a result, however, increase of crystal diameter was possible up to 30 mm although single crystal length was limited to 5 mm. Si0.55Ge0.45 and Si0.6Ge0.4 bulk crystals with 30 mm diameter showed excellent compositional homogeneity and high crystallinity without mosaicity.

  18. Evaluation of the bulk and strip characteristics of large area n-in-p silicon sensors intended for a very high radiation environment

    NASA Astrophysics Data System (ADS)

    Bohm, J.; Mikestikova, M.; Affolder, A. A.; Allport, P. P.; Bates, R.; Betancourt, C.; Brown, H.; Buttar, C.; Carter, J. R.; Casse, G.; Chen, H.; Chilingarov, A.; Cindro, V.; Clark, A.; Dawson, N.; Dewilde, B.; Doherty, F.; Dolezal, Z.; Eklund, L.; Fadeyev, V.; Ferrere, D.; Fox, H.; French, R.; Garcia, C.; Gerling, M.; Gonzalez Sevilla, S.; Gorelov, I.; Greenall, A.; Grillo, A. A.; Hara, K.; Hatano, H.; Hoeferkamp, M.; Hommels, L. B. A.; Ikegami, Y.; Jakobs, K.; Kierstead, J.; Kodys, P.; Köhler, M.; Kohriki, T.; Krambergen, G.; Lacasta, C.; Li, Z.; Lindgren, S.; Lynn, D.; Maddock, P.; Mandic, I.; Marti I Garcia, S.; Martinez-McKinney, F.; Maunu, R.; McCarthy, R.; Metcalfe, J.; Mikuz, M.; Minano, M.; Mitsui, S.; O'Shea, V.; Paganis, S.; Parzefall, U.; Puldon, D.; Robinson, D.; Sadrozinski, H. F.-W.; Sattari, S.; Schamberger, D.; Seidel, S.; Seiden, A.; Soldevila, U.; Terada, S.; Toms, K.; Tsionou, D.; Unno, Y.; von Wilpert, J.; Wormald, M.; Wright, J.; Yamada, M.

    2011-04-01

    The ATLAS collaboration R&D group “Development of n-in-p Silicon Sensors for very high radiation environment” has developed single-sided p-type 9.75 cm×9.75 cm sensors with an n-type readout strips having radiation tolerance against the 1015 1-MeV neutron equivalent (neq)/cm2 fluence expected in the Super Large Hadron Collider. The compiled results of an evaluation of the bulk and strip parameter characteristics of 19 new non-irradiated sensors manufactured by Hamamatsu Photonics are presented in this paper. It was verified in detail that the sensors comply with the technical specifications required before irradiation. The reverse bias voltage dependence of various parameters, frequency dependence of tested capacitances, and strip scans of more than 23,000 strips as a test of parameter uniformity and strip quality over the whole sensor area have been carried out at Stony Brook University, Cambridge University, University of Geneva, and Academy of Sciences of CR and Charles University in Prague. No openings, shorts, or pinholes were observed on all tested strips, confirming the high quality of sensors made by Hamamatsu Photonics.

  19. The nonconforming linear strain tetrahedron for a large deformation elasticity problem

    NASA Astrophysics Data System (ADS)

    Hansbo, Peter; Larsson, Fredrik

    2016-08-01

    In this paper we investigate the performance of the nonconforming linear strain tetrahedron element introduced by Hansbo (Comput Methods Appl Mech Eng 200(9-12):1311-1316, 2011; J Numer Methods Eng 91(10):1105-1114, 2012). This approximation uses midpoints of edges on tetrahedra in three dimensions with either point continuity or mean continuity along edges of the tetrahedra. Since it contains (rotated) bilinear terms it performs substantially better than the standard constant strain element in bending. It also allows for under-integration in the form of one point Gauss integration of volumetric terms in near incompressible situations. We combine under-integration of the volumetric terms with houglass stabilization for the isochoric terms.

  20. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome

    PubMed Central

    van Opijnen, Tim; Bento, José

    2016-01-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic’s mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable. PMID:27607357

  1. Strain Dependent Genetic Networks for Antibiotic-Sensitivity in a Bacterial Pathogen with a Large Pan-Genome.

    PubMed

    van Opijnen, Tim; Dedrick, Sandra; Bento, José

    2016-09-01

    The interaction between an antibiotic and bacterium is not merely restricted to the drug and its direct target, rather antibiotic induced stress seems to resonate through the bacterium, creating selective pressures that drive the emergence of adaptive mutations not only in the direct target, but in genes involved in many different fundamental processes as well. Surprisingly, it has been shown that adaptive mutations do not necessarily have the same effect in all species, indicating that the genetic background influences how phenotypes are manifested. However, to what extent the genetic background affects the manner in which a bacterium experiences antibiotic stress, and how this stress is processed is unclear. Here we employ the genome-wide tool Tn-Seq to construct daptomycin-sensitivity profiles for two strains of the bacterial pathogen Streptococcus pneumoniae. Remarkably, over half of the genes that are important for dealing with antibiotic-induced stress in one strain are dispensable in another. By confirming over 100 genotype-phenotype relationships, probing potassium-loss, employing genetic interaction mapping as well as temporal gene-expression experiments we reveal genome-wide conditionally important/essential genes, we discover roles for genes with unknown function, and uncover parts of the antibiotic's mode-of-action. Moreover, by mapping the underlying genomic network for two query genes we encounter little conservation in network connectivity between strains as well as profound differences in regulatory relationships. Our approach uniquely enables genome-wide fitness comparisons across strains, facilitating the discovery that antibiotic responses are complex events that can vary widely between strains, which suggests that in some cases the emergence of resistance could be strain specific and at least for species with a large pan-genome less predictable. PMID:27607357

  2. Large and Uniform Optical Emission Shifts in Quantum Dots Strained along Their Growth Axis.

    PubMed

    Stepanov, Petr; Elzo-Aizarna, Marta; Bleuse, Joël; Malik, Nitin S; Curé, Yoann; Gautier, Eric; Favre-Nicolin, Vincent; Gérard, Jean-Michel; Claudon, Julien

    2016-05-11

    We introduce a calibration method to quantify the impact of external mechanical stress on the emission wavelength of distinct quantum dots (QDs). Specifically, these emitters are integrated in a cross-section of a semiconductor core wire and experience a longitudinal strain that is induced by an amorphous capping shell. Detailed numerical simulations show that, thanks to the shell mechanical isotropy, the strain in the core is uniform, which enables a direct comparison of the QD responses. Moreover, the core strain is determined in situ by an optical measurement, yielding reliable values for the QD emission tuning slope. This calibration technique is applied to self-assembled InAs QDs submitted to incremental elongation along their growth axis. In contrast to recent studies conducted on similar QDs submitted to a uniaxial stress perpendicular to the growth direction, optical spectroscopy reveals up to ten times larger tuning slopes, with a moderate dispersion. These results highlight the importance of the stress direction to optimize the QD optical shift, with general implications, both in static and dynamic regimes. As such, they are in particular relevant for the development of wavelength-tunable single-photon sources or hybrid QD opto-mechanical systems. PMID:27058255

  3. Strain-Rate Dependence of Material Strength: Large-Scale Atomistic Simulations of Defective Cu and Ta Crystals

    NASA Astrophysics Data System (ADS)

    Abeywardhana, M.; Vasquez, A.; Gaglione, J.; Germann, T. C.; Ravelo, R.

    2015-06-01

    Large-Scale molecular dynamics (MD) simulations are used to model shock wave (SW) and quasi-isentropic compression (QIC) in defective copper and tantalum crystals. The atomic interactions were modeled employing embedded-atom method (EAM) potentials. In the QIC simulations, the MD equations of motion are modified by incorporating a collective strain rate function in the positions and velocities equations, so that the change in internal energy equals the PV work on the system. We examined the deformation mechanisms and material strength for strain rates in the 109-1012 s-1 range For both Cu and Ta defective crystals, we find that the strain rate dependence of the flow stress in this strain rate regime, follows a power law with an exponent close to 0.40. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396.

  4. Large area and depth-profiling dislocation imaging and strain analysis in Si/SiGe/Si heterostructures.

    PubMed

    Chen, Xin; Zuo, Daniel; Kim, Seongwon; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min

    2014-10-01

    We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

  5. New Class of Plastic Bulk Metallic Glass

    SciTech Connect

    Chen, L. Y.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Zeng, Y. W.; Jiang, J. Z.; Fu, Z. D.; Zhang, S. L.; Zhang, G. Q.; Hao, X. P.; Wang, B. Y.; Franz, H.; Liu, Y. G.; Xie, H. S.

    2008-02-22

    An intrinsic plastic Cu{sub 45}Zr{sub 46}Al{sub 7}Ti{sub 2} bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  6. Fracture Toughness Properties of Gd123 Superconducting Bulks

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Murakami, A.

    Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.

  7. Nonlinear equations for dynamics of pretwisted beams undergoing small strains and large rotations

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1985-01-01

    Nonlinear beam kinematics are developed and applied to the dynamic analysis of a pretwisted, rotating beam element. The common practice of assuming moderate rotations caused by structural deformation in geometric nonlinear analyses of rotating beams was abandoned in the present analysis. The kinematic relations that described the orientation of the cross section during deformation are simplified by systematically ignoring the extensional strain compared to unity in those relations. Open cross section effects such as warping rigidity and dynamics are ignored, but other influences of warp are retained. The beam cross section is not allowed to deform in its own plane. Various means of implementation are discussed, including a finite element formulation. Numerical results obtained for nonlinear static problems show remarkable agreement with experiment.

  8. Use of endochronic plasticity for multi-dimensional small and large strain problems

    SciTech Connect

    Hsieh, B J

    1980-04-01

    The endochronic plasticity theory was proposed in its general form by K.C. Valanis. An intrinsic time measure, which is a property of the material, is used in the theory. the explicit forms of the constitutive equation resemble closely those of the classical theory of linear viscoelasticity. Excellent agreement between the predicted and experimental results is obtained for some metallic and non-metallic materials for one dimensional cases. No reference on the use of endochronic plasticity consistent with the general theory proposed by Valanis is available in the open literature. In this report, the explicit constitutive equations are derived that are consistent with the general theory for one-dimensional (simple tension or compression), two-dimensional plane strain or stress and three-dimensional axisymmetric problems.

  9. Bulk nanostructured alloys prepared by flux melting and melt solidification

    SciTech Connect

    Shen, T.D.; Schwarz, R.B.; Zhang, X.

    2005-10-03

    We have prepared bulk nanostructured Ag{sub 60}Cu{sub 40} alloys by a flux-melting and melt-solidification technique. The flux purifies the melts, leading to a large undercooling and nanometer-sized microstructure. The as-prepared alloys are composed of nanolayered Ag and Cu within micrometer-sized grains. The bulk nanostructured alloys have an ultimate tensile strength of approximately 560 MPa, similar yield strength in tension and compression, elongation of 7% in tension, strain hardening exponent of 0.1, and relatively high mechanical and thermal stability up to 400 deg. C.

  10. Material State Change Relationships to Fracture Path Development for Large-Strain Fatigue of Composite Materials

    SciTech Connect

    Reifsnider, Kenneth; Majumdar, Prasun

    2011-04-06

    The long-term performance of engineering structures is typically discussed in terms of such concepts as structural integrity, durability, damage tolerance, fracture toughness, etc. These familiar concepts are usually addressed by considering balance equations, crack growth relationships, constitutive equations with constant material properties, and constant or cyclically applied load conditions. The loading histories are represented by changing stress (or strain) states only. For many situations, especially for those associated with high-performance engineering structures, the local state of the material may also change during service, so that the properties used in the equations are functions of time and history of applied conditions. For example, the local values of stiffness, strength, and conductivity are altered by material degradation to create "property fields" that replace the global constants, and introduce time and history into the governing equations. The present paper will examine a small set of such problems, which involve the accumulation of distributed damage and the development of an eventual fracture path leading to failure. Specifically, the paper discusses this problem in the context of material state changes measured by impedance variations as a method of following the details of fracture path development. An analysis and interpretations of observations will be presented, and limitations and opportunities associated with this general concept will be discussed.

  11. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain.

    PubMed

    Takaza, Michael; Moerman, Kevin M; Gindre, Juliette; Lyons, Garry; Simms, Ciaran K

    2013-01-01

    The passive mechanical properties of muscle tissue are important for many biomechanics applications. However, significant gaps remain in our understanding of the three-dimensional tensile response of passive skeletal muscle tissue to applied loading. In particular, the nature of the anisotropy remains unclear and the response to loading at intermediate fibre directions and the Poisson's ratios in tension have not been reported. Accordingly, tensile tests were performed along and perpendicular to the muscle fibre direction as well as at 30°, 45° and 60° to the muscle fibre direction in samples of Longissimus dorsi muscle taken from freshly slaughtered pigs. Strain was measured using an optical non-contact method. The results show the transverse or cross fibre (TT') direction is broadly linear and is the stiffest (77 kPa stress at a stretch of 1.1), but that failure occurs at low stretches (approximately λ=1.15). In contrast the longitudinal or fibre direction (L) is nonlinear and much less stiff (10 kPa stress at a stretch of 1.1) but failure occurs at higher stretches (approximatelyλ=1.65). An almost sinusoidal variation in stress response was observed at intermediate angles. The following Poisson's ratios were measured: VLT=VLT'=0.47, VTT'=0.28 and VTL=0.74. These observations have not been previously reported and they contribute significantly to our understanding of the three dimensional deformation response of skeletal muscle tissue.

  12. Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys

    NASA Astrophysics Data System (ADS)

    Wei, Z. Y.; Liu, E. K.; Li, Y.; Han, X. L.; Du, Z. W.; Luo, H. Z.; Liu, G. D.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.

    2016-08-01

    The all-d-metal Mn2-based Heusler ferromagnetic shape memory alloys Mn50Ni40-xCoxTi10 (x = 8 and 9.5) are realized. With a generic comparison between d-metal Ti and main-group elements in lowering the transformation temperature, the magnetostructural martensitic transformations are established by further introducing Co to produce local ferromagnetic Mn-Co-Mn configurations. A 5-fold modulation and (3, -2) stacking of [00 10] of martensite are determined by X-ray diffraction and HRTEM analysis. Based on the transformation, a large magneto-strain of 6900 ppm and a large volume change of -2.54% are observed in polycrystalline samples, which makes the all-d-metal magnetic martensitic alloys of interest for magnetic/pressure multi-field driven applications.

  13. Large electric-field control of perpendicular magnetic anisotropy in strained [Co/Ni] / PZT heterostructures

    NASA Astrophysics Data System (ADS)

    Gopman, Daniel; Dennis, Cindi; Chen, P. J.; Iunin, Yury; Shull, Robert

    We present a piezoelectric/ferromagnetic heterostructure with PMA - a Co/Ni multilayer sputtered directly onto a Pb(Zr,Ti)O3 (PZT) substrate. Chemical-mechanical polishing was used to reduce the roughness of PZT plates to below 2 nm rms, enabling optimal magnetoelectric coupling via the direct interface between PZT and sputtered Co/Ni films with large PMA (Keff = (95 +/-9 kJ/m3)) . We grew the following layer stack: Ta(3)/Pt(2)/[Co(0.15)/Ni(0.6)]x4/Co(0.15)/Pt(2)/Ta(3); numbers in parentheses indicate thicknesses in nm. Applied electric fields up to +/- 2 MV/m to the PZT generated 0.05% in-plane compression in the Co/Ni multilayer, enabling a large electric-field reduction of the PMA (ΔKeff >= 103 J/m3) and of the coercive field (35%). Our results demonstrate that: (i) heterostructures combining PZT and [Co/Ni] exhibit larger PMA (Keff ~105 J/m3) than previous magnetoelectric heterostructures based on Co/Pt and CoFeB, enabling thermally stable hybrid magnetoelectric/spintronic devices only tens of nm in diameter and (ii) electric-field control of the PMA is promising for more energy efficient switching of spintronic devices.

  14. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region.

    PubMed

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis "wild-type" substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not exactly

  15. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region

    PubMed Central

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, Judith; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Cyanobacterium Synechocystis PCC 6803 represents a favored model organism for photosynthetic studies. Its easy transformability allowed construction of a vast number of Synechocystis mutants including many photosynthetically incompetent ones. However, it became clear that there is already a spectrum of Synechocystis “wild-type” substrains with apparently different phenotypes. Here, we analyzed organization of photosynthetic membrane complexes in a standard motile Pasteur collection strain termed PCC and two non-motile glucose-tolerant substrains (named here GT-P and GT-W) previously used as genetic backgrounds for construction of many photosynthetic site directed mutants. Although, both the GT-P and GT-W strains were derived from the same strain constructed and described by Williams in 1988, only GT-P was similar in pigmentation and in the compositions of Photosystem II (PSII) and Photosystem I (PSI) complexes to PCC. In contrast, GT-W contained much more carotenoids but significantly less chlorophyll (Chl), which was reflected by lower level of dimeric PSII and especially trimeric PSI. We found that GT-W was deficient in Chl biosynthesis and contained unusually high level of unassembled D1-D2 reaction center, CP47 and especially CP43. Another specific feature of GT-W was a several fold increase in the level of the Ycf39-Hlip complex previously postulated to participate in the recycling of Chl molecules. Genome re-sequencing revealed that the phenotype of GT-W is related to the tandem duplication of a large region of the chromosome that contains 100 genes including ones encoding D1, Psb28, and other PSII-related proteins as well as Mg-protoporphyrin methylester cyclase (Cycl). Interestingly, the duplication was completely eliminated after keeping GT-W cells on agar plates under photoautotrophic conditions for several months. The GT-W strain without a duplication showed no obvious defects in PSII assembly and resembled the GT-P substrain. Although, we do not

  16. Large-scale assembly of organic micro/nanocrystals into highly ordered patterns and their applications for strain sensors.

    PubMed

    Gong, Chao; Deng, Wei; Zou, Bin; Xing, Yuliang; Zhang, Xiujuan; Zhang, Xiaohong; Jie, Jiansheng

    2014-07-23

    Large-scale assembly of zero-dimensional (0-D) organic nano/microcrystals into desired patterns is essential to their applications. However, current methods can hardly apply to the 0D organic crystals because of their relatively large sizes and polyhedral structures. Here, we demonstrate a facile and convenient way to assemble organic single crystals into large-area two-dimensional (2D) structures by application of appropriate electric field (EF). The ordering of the 2D structure depends on the frequency and field strength of the external electric field. Furthermore, lithographically patterning electrodes offer an efficient way to assemble the crystals into controllable patterns. By tuning the electrode pattern geometry, various desirable patterns with variable microstructures can be achieved. These formed superstructures and patterns can be fixed on the electrodes through exerting an external direct current, which allows for the further utilization of the patterns. With assistance of adhesive tape, patterns could be transferred onto flexible substrates for constructing a highly sensitive strain sensor. This strategy is applicable to nonsphere organic crystals with different sizes to assemble at desired positions and construct highly ordered arrays in a large scale, which opens new possibilities of organic microcrystals application in new-generation electronic devices and sensors.

  17. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality.

    PubMed

    Kirschner, Alexander K T; Schlesinger, Jane; Farnleitner, Andreas H; Hornek, Romana; Süss, Beate; Golda, Beate; Herzig, Alois; Reitner, Bettina

    2008-04-01

    Vibrio cholerae non-O1/non-O139 strains have caused several cases of ear, wound, and blood infections, including one lethal case of septicemia in Austria, during recent years. All of these cases had a history of local recreational activities in the large eastern Austrian lake Neusiedler See. Thus, a monitoring program was started to investigate the prevalence of V. cholerae strains in the lake over several years. Genetic analyses of isolated strains revealed the presence of a variety of pathogenic genes, but in no case did we detect the cholera toxin gene or the toxin-coregulated pilus gene, both of which are prerequisites for the pathogen to be able to cause cholera. In addition, experiments were performed to elucidate the preferred ecological niche of this pathogen. As size filtration experiments indicated and laboratory microcosms showed, endemic V. cholerae could rapidly grow in a free-living state in natural lake water at growth rates similar to those of the bulk natural bacterial population. Temperature and the quality of dissolved organic carbon had a highly significant influence on V. cholerae growth. Specific growth rates, growth yield, and enzyme activity decreased markedly with increasing concentrations of high-molecular-weight substances, indicating that the humic substances originating from the extensive reed belt in the lake can inhibit V. cholerae growth.

  18. Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp.

    PubMed Central

    Martiny, Adam C.; Albrechtsen, Hans-Jørgen; Arvin, Erik; Molin, Søren

    2005-01-01

    In a model drinking water distribution system characterized by a low assimilable organic carbon content (<10 μg/liter) and no disinfection, the bacterial community was identified by a phylogenetic analysis of rRNA genes amplified from directly extracted DNA and colonies formed on R2A plates. Biofilms of defined periods of age (14 days to 3 years) and bulk water samples were investigated. Culturable bacteria were associated with Proteobacteria and Bacteriodetes, whereas independently of cultivation, bacteria from 12 phyla were detected in this system. These included Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia, some of which have never been identified in drinking water previously. A cluster analysis of the population profiles from the individual samples divided biofilms and bulk water samples into separate clusters (P = 0.027). Bacteria associated with Nitrospira moscoviensis were found in all samples and encompassed 39% of the sequenced clones in the bulk water and 25% of the biofilm community. The close association with Nitrospira suggested that a large part of the population had an autotrophic metabolism using nitrite as an electron donor. To test this hypothesis, nitrite was added to biofilm and bulk water samples, and the utilization was monitored during 15 days. A first-order decrease in nitrite concentration was observed for all samples with a rate corresponding to 0.5 × 105 to 2 × 105 nitrifying cells/ml in the bulk water and 3 × 105 cells/cm2 on the pipe surface. The finding of an abundant nitrite-oxidizing microbial population suggests that nitrite is an important substrate in this system, potentially as a result of the low assimilable organic carbon concentration. This finding implies that microbial communities in water distribution systems may control against elevated nitrite concentrations but also contain large indigenous populations that are capable of assisting the depletion of disinfection agents like chloramines. PMID

  19. [INVITED] Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics. Invited paper for the section : Hot topics in Ultrafast Lasers

    NASA Astrophysics Data System (ADS)

    Stoian, R.; D'Amico, C.; Bhuyan, M. K.; Cheng, G.

    2016-06-01

    Ultrafast laser photoinscription and laser-based refractive index engineering develop towards a unique way for three-dimensional optical design inside bulk materials for the conception of embedded photonic applications. The specific optical functions for the light guiding elements, notably their single mode characteristics and the accessible spectral domains, depend on the achieved refractive index contrast in the material transparency window and on the characteristic dimensions of the optical modification. We give here an overview of several laser processing options, developed to increase the effective index area and contrast using pulse engineering methods in space and time, and optical design involving focal shaping, tubular concepts, evanescently coupled waveguide arrays, or structured waveguides.

  20. Strain-driven band inversion and topological aspects in Antimonene

    PubMed Central

    Zhao, Mingwen; Zhang, Xiaoming; Li, Linyang

    2015-01-01

    Searching for the two-dimensional (2D) topological insulators (TIs) with large bulk band gaps is the key to achieve room-temperature quantum spin Hall effect (QSHE). Using first-principles calculations, we demonstrated that the recently-proposed antimonene [Zhang et al., Angew. Chem. Int. Ed. 54, 3112–3115 (2015)] can be tuned to a 2D TI by reducing the buckling height of the lattice which can be realized under tensile strain. The strain-driven band inversion in the vicinity of the Fermi level is responsible for the quantum phase transition. The buckled configuration of antimonene enables it to endure large tensile strain up to 18% and the resulted bulk band gap can be as large as 270 meV. The tunable bulk band gap makes antimonene a promising candidate material for achieving quantum spin Hall effect (QSH) at high temperatures which meets the requirement of future electronic devices with low power consumption. PMID:26537994

  1. Strain-driven band inversion and topological aspects in Antimonene.

    PubMed

    Zhao, Mingwen; Zhang, Xiaoming; Li, Linyang

    2015-01-01

    Searching for the two-dimensional (2D) topological insulators (TIs) with large bulk band gaps is the key to achieve room-temperature quantum spin Hall effect (QSHE). Using first-principles calculations, we demonstrated that the recently-proposed antimonene [Zhang et al., Angew. Chem. Int. Ed. 54, 3112-3115 (2015)] can be tuned to a 2D TI by reducing the buckling height of the lattice which can be realized under tensile strain. The strain-driven band inversion in the vicinity of the Fermi level is responsible for the quantum phase transition. The buckled configuration of antimonene enables it to endure large tensile strain up to 18% and the resulted bulk band gap can be as large as 270 meV. The tunable bulk band gap makes antimonene a promising candidate material for achieving quantum spin Hall effect (QSH) at high temperatures which meets the requirement of future electronic devices with low power consumption.

  2. Rheology and microstructure of non-Brownian suspensions in the liquid and crystal coexistence region: strain stiffening in large amplitude oscillatory shear.

    PubMed

    Lee, Young Ki; Nam, Jaewook; Hyun, Kyu; Ahn, Kyung Hyun; Lee, Seung Jong

    2015-05-28

    Concentrated hard-sphere suspensions in the liquid and crystal coexistence region show a unique nonlinear behavior under a large amplitude oscillatory shear flow, the so-called strain stiffening, in which the viscosity or modulus suddenly starts to increase near a critical strain amplitude. Even though this phenomenon has been widely reported in experiments, its key mechanism has never been investigated in a systematic way. To have a good understanding of this behavior, a numerical simulation was performed using the lattice Boltzmann method (LBM). Strain stiffening was clearly observed at large strain amplitudes, and the critical strain amplitude showed an angular frequency dependency. The distortion of the shear stress appeared near the critical strain amplitude, and the nonlinear behavior was quantified by the Fourier transformation (FT) and the stress decomposition methods. Above the critical strain amplitude, an increase in the global bond order parameter Ψ(6) was observed at the flow reversal. The maximum of Ψ(6) and the maximum shear stress occurred at the same strain. These results show how strongly the ordered structure of the particles is related to the stress distortion. The ordered particles maintained a bond number of "two" with alignment with the compressive axis, and they were distributed over a narrow range of angular distribution (110°-130°). In addition, the ordered structure was formed near the lowest shear rate region (the flow reversal). The characteristics of the ordered structure were remarkably different from those of the hydroclusters which are regarded as the origin of shear thickening. It is clear that strain stiffening and shear thickening originate from different mechanisms. Our results clearly demonstrate how the ordering of the particles induces strain stiffening in the liquid and crystal coexistence region.

  3. Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening.

    PubMed

    Kechaou, Noura; Chain, Florian; Gratadoux, Jean-Jacques; Blugeon, Sébastien; Bertho, Nicolas; Chevalier, Christophe; Le Goffic, Ronan; Courau, Stéphanie; Molimard, Pascal; Chatel, Jean Marc; Langella, Philippe; Bermúdez-Humarán, Luis G

    2013-03-01

    In this study, we developed a large-scale screening of bacterial strains in order to identify novel candidate probiotics with immunomodulatory properties. For this, 158 strains, including a majority of lactic acid bacteria (LAB), were screened by two different cellular models: tumor necrosis factor alpha (TNF-α)-activated HT-29 cells and peripheral blood mononuclear cells (PBMCs). Different strains responsive to both models (pro- and anti-inflammatory strains) were selected, and their protective effects were tested in vivo in a murine model of influenza virus infection. Daily intragastric administrations during 10 days before and 10 days after viral challenge (100 PFU of influenza virus H1N1 strain A Puerto Rico/8/1934 [A/PR8/34]/mouse) of Lactobacillus plantarum CNRZ1997, one potentially proinflammatory probiotic strain, led to a significant improvement in mouse health by reducing weight loss, alleviating clinical symptoms, and inhibiting significantly virus proliferation in lungs. In conclusion, in this study, we have combined two cellular models to allow the screening of a large number of LAB for their immunomodulatory properties. Moreover, we identified a novel candidate probiotic strain, L. plantarum CNRZ1997, active against influenza virus infection in mice.

  4. Identification of One Novel Candidate Probiotic Lactobacillus plantarum Strain Active against Influenza Virus Infection in Mice by a Large-Scale Screening

    PubMed Central

    Kechaou, Noura; Chain, Florian; Gratadoux, Jean-Jacques; Blugeon, Sébastien; Bertho, Nicolas; Chevalier, Christophe; Le Goffic, Ronan; Courau, Stéphanie; Molimard, Pascal; Chatel, Jean Marc

    2013-01-01

    In this study, we developed a large-scale screening of bacterial strains in order to identify novel candidate probiotics with immunomodulatory properties. For this, 158 strains, including a majority of lactic acid bacteria (LAB), were screened by two different cellular models: tumor necrosis factor alpha (TNF-α)-activated HT-29 cells and peripheral blood mononuclear cells (PBMCs). Different strains responsive to both models (pro- and anti-inflammatory strains) were selected, and their protective effects were tested in vivo in a murine model of influenza virus infection. Daily intragastric administrations during 10 days before and 10 days after viral challenge (100 PFU of influenza virus H1N1 strain A Puerto Rico/8/1934 [A/PR8/34]/mouse) of Lactobacillus plantarum CNRZ1997, one potentially proinflammatory probiotic strain, led to a significant improvement in mouse health by reducing weight loss, alleviating clinical symptoms, and inhibiting significantly virus proliferation in lungs. In conclusion, in this study, we have combined two cellular models to allow the screening of a large number of LAB for their immunomodulatory properties. Moreover, we identified a novel candidate probiotic strain, L. plantarum CNRZ1997, active against influenza virus infection in mice. PMID:23263960

  5. Predeformation and Subsequent Annealing—A Way for Controlling Morphology of Carbides in Large Dimensional Bulk Nanocrystalline Fe-Al-Cr Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Hongding; La, Peiqing; Shi, Ting; Wei, Yupeng; Jiao, Huisheng

    2014-01-01

    In this study, a processing route is introduced to control the morphology of carbide and the grain size of nanocrystalline matrix of Fe-Al-Cr alloy. After predeformation followed by annealing treatment, the grain size of nanocrystalline matrix decreased slightly and the Cr7C3 phases transformed from a fiber shape to the globular shape. The yield strength and the flow stress of the alloy increased from 1048 to 1338 MPa and 1150 to 1550 MPa, respectively, while the ductility of the alloy also became better. This proposed method may open a way for controlling the morphology of carbide and the grain size of matrix in bulk nanocrystalline materials to receive higher strength and better plasticity.

  6. Predominance of Nonculturable Cells of the Biocontrol Strain Pseudomonas fluorescens CHA0 in the Surface Horizon of Large Outdoor Lysimeters

    PubMed Central

    Troxler, J.; Zala, M.; Moenne-Loccoz, Y.; Keel, C.; Defago, G.

    1997-01-01

    The persistence of the biocontrol agent Pseudomonas fluorescens CHA0 in the surface horizon of 12 large outdoor lysimeters planted with winter wheat, Phacelia tanacetifolia followed by spring wheat, or maize was monitored for 1 year. Soil was inoculated with a spontaneous rifampin-resistant mutant (CHA0-Rif) of CHA0, and the strain was studied by using colony counts, Kogure's direct viable counts, and total counts (immunofluorescence). The number of culturable cells of the inoculant decreased progressively from 8 to 2 log CFU/g of soil or lower. However, culturable cells of CHA0-Rif accounted for less than 1% of the total cells of the inoculant 8 months after release in autumn. Since viable but nonculturable cells represented less than a quarter of the latter, most cells of CHA0-Rif in soil were thus inactive-dormant or dead at that time. Nonculturable cells of the inoculant were predominant also in the surface horizon of the lysimeters inoculated in the spring, and a significant fraction of them were viable. Results suggest that the occurrence of nonculturable cells of CHA0-Rif was influenced by climatic factors (water availability and soil temperature) and the abundance of roots in soil. The fact that the inoculant persisted as mixed populations of cells of different physiological states, in which nonculturable cells were predominant, needs to be taken into account when assessing the autecology of wild-type or genetically modified pseudomonads released into the soil ecosystem. PMID:16535703

  7. Bulk pesticide storage - state perspective

    SciTech Connect

    Buzicky, G.

    1994-12-31

    State bulk pesticide storage regulations continue to evolve differentially due, in large part, to the absence of federal regulations. This is about to change because of the pending promulgation of 40 CFR Part 165, as amended in 1988 by the Environmental Protection Agency (EPA) rules regarding storage, handling and disposal. Until final adoption of the rules by EPA, states continue to address bulk pesticide storage and handling according to individual state statute, rules and guidelines.

  8. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOEpatents

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  9. Lagrangian numerical techniques for modelling multicomponent flow in the presence of large viscosity contrasts: Markers-in-bulk versus Markers-in-chain

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Dabrowski, Marcin; Steinberger, Bernhard

    2015-04-01

    Many problems in geodynamic applications may be described as viscous flow of chemically heterogeneous materials. Examples include subduction of compositionally stratified lithospheric plates, folding of rheologically layered rocks, and thermochemical convection of the Earth's mantle. The associated time scales are significantly shorter than that of chemical diffusion, which justifies the commonly featured phenomena in geodynamic flow models termed contact discontinuities. These are spatially sharp interfaces separating regions of different material properties. Numerical modelling of advection of fields with sharp interfaces is challenging. Typical errors include numerical diffusion, which arises due to the repeated action of numerical interpolation. Mathematically, a material field can be represented by discrete indicator functions, whose values are interpreted as logical statements (e.g. whether or not the location is occupied by a given material). Interpolation of a discrete function boils down to determining where in the intermediate node-positions one material ends, and the other begins. The numerical diffusion error thus manifests itself as an erroneous location of the material-interface. Lagrangian advection-schemes are known to be less prone to numerical diffusion errors, compared to their Eulerian counterparts. The tracer-ratio method, where Lagrangian markers are used to discretize the bulk of materials filling the entire domain, is a popular example of such methods. The Stokes equation in this case is solved on a separate, static grid, and in order to do it - material properties must be interpolated from the markers to the grid. This involves the difficulty related to interpolation of discrete fields. The material distribution, and thus material-properties like viscosity and density, seen by the grid is polluted by the interpolation error, which enters the solution of the momentum equation. Errors due to the uncertainty of interface-location can be

  10. A UNIFIED MONTE CARLO TREATMENT OF GAS-GRAIN CHEMISTRY FOR LARGE REACTION NETWORKS. II. A MULTIPHASE GAS-SURFACE-LAYERED BULK MODEL

    SciTech Connect

    Vasyunin, A. I.; Herbst, Eric E-mail: eh2ef@virginia.edu

    2013-01-10

    The observed gas-phase molecular inventory of hot cores is believed to be significantly impacted by the products of chemistry in interstellar ices. In this study, we report the construction of a full macroscopic Monte Carlo model of both the gas-phase chemistry and the chemistry occurring in the icy mantles of interstellar grains. Our model treats icy grain mantles in a layer-by-layer manner, which incorporates laboratory data on ice desorption correctly. The ice treatment includes a distinction between a reactive ice surface and an inert bulk. The treatment also distinguishes between zeroth- and first-order desorption, and includes the entrapment of volatile species in more refractory ice mantles. We apply the model to the investigation of the chemistry in hot cores, in which a thick ice mantle built up during the previous cold phase of protostellar evolution undergoes surface reactions and is eventually evaporated. For the first time, the impact of a detailed multilayer approach to grain mantle formation on the warm-up chemistry is explored. The use of a multilayer ice structure has a mixed impact on the abundances of organic species formed during the warm-up phase. For example, the abundance of gaseous HCOOCH{sub 3} is lower in the multilayer model than in previous grain models that do not distinguish between layers (so-called two phase models). Other gaseous organic species formed in the warm-up phase are affected slightly. Finally, we find that the entrapment of volatile species in water ice can explain the two-jump behavior of H{sub 2}CO previously found in observations of protostars.

  11. Draft Genome Sequence of Agreia bicolorata Strain AC-1804, a Producer of Large Amounts of Carotenoid Pigments, Isolated from Narrow Reed Grass Infected by the Phytoparasitic Nematode

    PubMed Central

    Siniagina, Maria; Malanin, Sergey; Boulygina, Eugenia; Grygoryeva, Tatiana; Yarullina, Dina; Ilinskaya, Olga

    2015-01-01

    Here, we report the draft genome sequence of Agreia bicolorata strain AC-1804, isolated from narrow reed grass galls induced by a plant-parasitic nematode which is able to produce large amounts of carotenoid pigments. The draft genome sequence of 3,919,485 bp provides a resource for carotenoid pathway research. PMID:26634752

  12. Comparison of the large-scale periplasmic proteomes of the Escherichia coli K-12 and B strains.

    PubMed

    Han, Mee-Jung; Kim, Jin Young; Kim, Jung A

    2014-04-01

    Escherichia coli typically secretes many proteins into the periplasmic space, and the periplasmic proteins have been used for the secretory production of various proteins by the biotechnology industry. However, the identity of all of the E. coli periplasmic proteins remains unknown. Here, high-resolution periplasmic proteome reference maps of the E. coli K-12 and B strains were constructed and compared. Of the 145 proteins identified by tandem mass spectrometry, 61 proteins were conserved in the two strains, whereas 11 and 12 strain-specific proteins were identified for the E. coli K-12 and B strains, respectively. In addition, 27 proteins exhibited differences in intensities greater than 2-fold between the K-12 and B strains. The periplasmic proteins MalE and OppA were the most abundant proteins in the two E. coli strains. Distinctive differences between the two strains included several proteins that were caused by genetic variations, such as CybC, FliC, FliY, KpsD, MglB, ModA, and Ybl119, hydrolytic enzymes, particularly phosphatases, glycosylases, and proteases, and many uncharacterized proteins. Compared to previous studies, the localization of many proteins, including 30 proteins for the K-12 strain and 53 proteins for the B strain, was newly identified as periplasmic. This study identifies the largest number of proteins in the E. coli periplasm as well as the dynamics of these proteins. Additionally, these findings are summarized as reference proteome maps that will be useful for studying protein secretion and may provide new strategies for the enhanced secretory production of recombinant proteins.

  13. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer.

    PubMed

    Hopf, R; Bernardi, L; Menze, J; Zündel, M; Mazza, E; Ehret, A E

    2016-07-01

    The commercial polydimethysiloxane elastomer Sylgard(®) 184 with mixing ratio 10:1 is in wide use for biomedical research or fundamental studies of mechanobiology. In this paper, a comprehensive study of the large strain mechanical behavior of this material under multiaxial monotonic and cyclic loads, and its change during the first 26 days after preparation is reported. The equibiaxial stress response studied in inflation experiments reveals a much stiffer and more nonlinear response compared to the uniaxial and pure shear characteristics. The polymer revealed remarkably elastic behavior, in particular, very little dependence on strain rates between 0.3%/s and 11%/s, and on the strain history in cyclic experiments. On the other hand, both the small-strain and large strain nonlinear mechanical characteristics of the elastomer are changing with sample age and the results suggest that this process has not ceased after 26 days. A recent re-interpretation of the well-known Ogden model for incompressible rubber-like materials was applied to rationalize the results and accurate agreement was obtained with the experimental data over all testing configurations and testing times. The change of a single parameter in this model is shown to govern the evolution of the nonlinear material characteristics with sample age, attributed to a continuation of the cross-linking process. Based on a kinetic relation to account for this process over time, the model provided successful predictions of the material behavior even after more than one year.

  14. Flow Curve Determination at Large Plastic Strain Levels: Limitations of the Membrane Theory in the Analysis of the Hydraulic Bulge Test

    NASA Astrophysics Data System (ADS)

    Lemoine, X.; Iancu, A.; Ferron, G.

    2011-05-01

    Nowadays, an accurate determination of the true stress-strain curve is a key-element for all finite element (FE) forming predictions. Since the introduction of Advanced High Strength Steels (AHSS) for the automotive market, the standard uniaxial tension test suffers the drawback of relatively low uniform elongations. The extrapolation of the uniaxial stress-strain curve up to large strains is not without consequence in forming predictions—especially formability and springback. One of the means to solve this problem is to use experimental tests where large plastic strain levels can be reached. The hydraulic bulge test is one of these tests. The effective plastic strain levels reached in the bulge test are of about 0.7. From an experimental standpoint, the biaxial flow stress is estimated using measurement of fluid pressure, and calculation of thickness and curvature at the pole, via appropriate measurements and assumptions. The biaxial stress at the pole is determined using the membrane equilibrium equation. The analysis proposed in this paper consists of performing "virtual experiments" where the results obtained by means of FE calculations are used as input data for determining the biaxial stress-strain law in agreement with the experimental procedure. In this way, a critical discussion of the experimental procedure can be made, by comparing the "experimental" stress-strain curve (Membrane theory curve) with the "reference" one introduced in the simulations. In particular, the influences of the "(die diameter)/thickness" ratio and of the plastic anisotropy are studied, and limitations of the hydraulic bulge test analysis are discussed.

  15. Flexoelectricity as a bulk property

    NASA Astrophysics Data System (ADS)

    Resta, Raffaele

    2010-03-01

    Piezoelectric composites can be created using nonpiezoelectric materials, by exploiting flexoelectricity. This is by definition the linear response of polarization to strain gradient, and is symmetry-allowed even in elemental crystals. However, the basic issue whether flexoelectricity is a bulk or a surface material property is open. We mention that the analogous issue about piezoelectricity is nontrivial either.^1 In this first attempt towards a full theory of flexoelectricity we prove that, for a simple class of strain and strain gradients, flexoelectricity is indeed a bulk effect. The key ingredients of the present theory are the long-range perturbations linearly induced by a unit displacement of a single nucleus in an otherwise perfect crystal: to leading order these are dipolar, quadrupolar, and octupolar. The corresponding tensors have rank 2, 3, and 4, respectively. Whereas dipoles and quadrupoles provide the piezoelectric response,^1 we show that dipoles and octupoles provide the flexoelectric response in nonpiezoelectric crystals. We conjecture that the full dipole and octupole tensors provide the flexoelectric response to the most general form of strain gradient. Our problem has a close relationship to the one of the ``absolute'' deformation potentials, which is based on a similar kind of dipolar and octupolar tensors.^2 ^1 R. M. Martin, Phys. Rev. B 5, 1607 (1972). ^2 R. Resta, L. Colombo and S. Baroni, Phys. Rev. B 41, 12538 (1990).

  16. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    PubMed

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary. PMID:26824565

  17. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    PubMed

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  18. Large dielectric permittivity and possible correlation between magnetic and dielectric properties in bulk BaFeO{sub 3−δ}

    SciTech Connect

    Sagdeo, Archna; Gautam, Kamini; Singh, M. N.; Sinha, A. K.; Ghosh, Haranath; Ganguli, Tapas; Chakrabarti, Aparna; Sagdeo, P. R.; Gupta, S. M.; Nigam, A. K.; Rawat, Rajeev

    2014-07-28

    We report structural, magnetic, and dielectric properties of oxygen deficient hexagonal BaFeO{sub 3−δ}. A large dielectric permittivity comparable to that of other semiconducting oxides is observed in BaFeO{sub 3−δ}. Magnetization measurements indicate magnetic inhomogeneity and the system shows a paramagnetic to antiferromagnetic transition at ∼160 K. Remarkably, the temperature, at which paramagnetic to antiferromagnetic transition occurs, around this temperature, a huge drop in the dissipation factor takes place and resistivity shoots up; this indicates the possible correlation among magnetic and dielectric properties. First principle simulations reveal that some of these behaviors may be explained in terms of many body electron correlation effect in the presence of oxygen vacancy present in BaFeO{sub 3−δ} indicating its importance in both fundamental science as well as in applications.

  19. Global melting of Zr57Ti5Ni8Cu20Al10 bulk metallic glass under microcompression

    SciTech Connect

    Cheng, Sheng; Choo, H.; Wang, Xun-Li; Liaw, Peter K

    2007-01-01

    Global melting was observed in micron-sized pillar samples tested under microcompression. In addition to a higher strength that was reproduced in samples with different sizes, a large plastic strain was also observed prior to the final fracture, as compared to bulk counterparts. The global melting was a result of the final fracture as evidenced by the acoustic emission at the end of the microcompression. However, the increased strain rate and large plastic strain might have contributed to the temperature increase prior to the fracture.

  20. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds.

  1. The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity.

    PubMed

    Bourbouli, Maria; Katsifas, Efstathios A; Papathanassiou, Evangelos; Karagouni, Amalia D

    2015-05-01

    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds. PMID:25627249

  2. Infection of a Single Cell Line with Distinct Strains of Human Cytomegalovirus Can Result in Large Variations in Virion Production and Facilitate Efficient Screening of Virus Protein Function

    PubMed Central

    Zavala, Anamaria G.; O'Dowd, John M.

    2015-01-01

    ABSTRACT Previously, we reported that the absence of the ataxia telangiectasia mutated (ATM) kinase, a critical DNA damage response (DDR) signaling component for double-strand breaks, caused no change in HCMV Towne virion production. Later, others reported decreased AD169 viral titers in the absence of ATM. To address this discrepancy, human foreskin fibroblasts (HFF) and three ATM− lines (GM02530, GM05823, and GM03395) were infected with both Towne and AD169. Two additional ATM− lines (GM02052 and GM03487) were infected with Towne. Remarkably, both previous studies' results were confirmed. However, the increased number of cell lines and infections with both lab-adapted strains confirmed that ATM was not necessary to produce wild-type-level titers in fibroblasts. Instead, interactions between individual virus strains and the cellular microenvironment of the individual ATM− line determined efficiency of virion production. Surprisingly, these two commonly used lab-adapted strains produced drastically different titers in one ATM− cell line, GM05823. The differences in titer suggested a rapid method for identifying genes involved in differential virion production. In silico comparison of the Towne and AD169 genomes determined a list of 28 probable candidates responsible for the difference. Using serial iterations of an experiment involving virion entry and input genome nuclear trafficking with a panel of related strains, we reduced this list to four (UL129, UL145, UL147, and UL148). As a proof of principle, reintroduction of UL148 largely rescued genome trafficking. Therefore, use of a battery of related strains offers an efficient method to narrow lists of candidate genes affecting various virus life cycle checkpoints. IMPORTANCE Human cytomegalovirus (HCMV) infection of multiple cell lines lacking ataxia telangiectasia mutated (ATM) protein produced wild-type levels of infectious virus. Interactions between virus strains and the microenvironment of individual

  3. Uniform description of bulk observables in the hydrokinetic model of A+A collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Karpenko, Iu. A.; Sinyukov, Yu. M.; Werner, K.

    2013-02-01

    A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Monte Carlo Glauber simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions, and barionic chemical potential. The hydrokinetic model is used in its hybrid version, which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle-number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.

  4. An Investigation of the Diversity of Strains of Enteroaggregative Escherichia coli Isolated from Cases Associated with a Large Multi-Pathogen Foodborne Outbreak in the UK

    PubMed Central

    Dallman, Timothy J.; Chattaway, Marie A.; Cowley, Lauren A.; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J.; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A.; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype. PMID:24844597

  5. An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK.

    PubMed

    Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.

  6. An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK.

    PubMed

    Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype. PMID:24844597

  7. Structural features and high quasi-static strain rate sensitivity of Au{sub 49}Cu{sub 26.9}Ag{sub 5.5}Pd{sub 2.3}Si{sub 16.3} bulk metallic glass

    SciTech Connect

    Ketov, S. V.; Chen, N.; Inoue, A.; Louzguine-Luzgin, D. V.; Caron, A.

    2012-12-10

    Here we report on the formation of a crystalline Au-based solid solution surface layer on solidification, which is responsible for yellow color of the Au-based bulk metallic glass (BMG) samples. The structure of the BMG alloy was studied by X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy. The deformation behavior of these Au-based BMG samples on heating was studied at temperatures above T{sub g} at different strain rates.

  8. Micromechanical poroelastic finite element and shear-lag models of tendon predict large strain dependent Poisson's ratios and fluid expulsion under tensile loading.

    PubMed

    Ahmadzadeh, Hossein; Freedman, Benjamin R; Connizzo, Brianne K; Soslowsky, Louis J; Shenoy, Vivek B

    2015-08-01

    As tendons are loaded, they reduce in volume and exude fluid to the surrounding medium. Experimental studies have shown that tendon stretching results in a Poisson's ratio greater than 0.5, with a maximum value at small strains followed by a nonlinear decay. Here we present a computational model that attributes this macroscopic observation to the microscopic mechanism of the load transfer between fibrils under stretch. We develop a finite element model based on the mechanical role of the interfibrillar-linking elements, such as thin fibrils that bridge the aligned fibrils or macromolecules such as glycosaminoglycans (GAGs) in the interfibrillar sliding and verify it with a theoretical shear-lag model. We showed the existence of a previously unappreciated structure-function mechanism whereby the Poisson's ratio in tendon is affected by the strain applied and interfibrillar-linker properties, and together these features predict tendon volume shrinkage under tensile loading. During loading, the interfibrillar-linkers pulled fibrils toward each other and squeezed the matrix, leading to the Poisson's ratio larger than 0.5 and fluid expulsion. In addition, the rotation of the interfibrillar-linkers with respect to the fibrils at large strains caused a reduction in the volume shrinkage and eventual nonlinear decay in Poisson's ratio at large strains. Our model also predicts a fluid flow that has a radial pattern toward the surrounding medium, with the larger fluid velocities in proportion to the interfibrillar sliding. PMID:25934322

  9. Ductile damage prediction in sheet and bulk metal forming

    NASA Astrophysics Data System (ADS)

    Badreddine, Houssem; Labergère, Carl; Saanouni, Khemais

    2016-04-01

    This paper is dedicated to the presentation of an advanced 3D numerical methodology for virtual sheet and/or bulk metal forming simulation to predict the anisotropic ductile defects occurrence. First, the detailed formulation of thermodynamically-consistent fully coupled and fully anisotropic constitutive equations is given. The proposed constitutive equations account for the main material nonlinearities as the anisotropic plastic flow, the mixed isotropic and kinematic hardening and the anisotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are very briefly presented in the framework of the 3D finite element method. The global resolution schemes as well as the local integration schemes of the fully coupled constitutive equations are briefly discussed. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed numerical methodology.

  10. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  11. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  12. Long Pathways for Outgassing Generated by a Rapid and Large Shear Strain of Bubbly Fluids Reducing Effective Viscosity and Affecting Eruption Styles

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Tanaka, Y.

    2015-12-01

    The styles of basaltic explosive eruptions have a wide variety, which is usually attributed to the separation of volcanic gas from the surrounding silicate melt. As a mechanism of gas separation, shear deformation has been suggested. However, the bubble shape evolution under large strain at high strain rate and its effects on viscosity have not yet understood well. We thus performed shear deformation experiments of bubbly liquid under high shear rate and large strain with in situ observation of bubble deformation and viscosity measurements. We used syrup solution as a magma analogue whose viscosity of 3, 50, 500 Pa s, similar to that of basaltic magma. We rotated disc-shaped bubbly syrup at shear rates of 0.03-10 s-1 with strains of 3-1000. Experiments show that deformed bubbles coalesce into larger bubbles and finally generate concentric air rings, resulting that the striped shape of air and liquid parts appears. The widths of air rings greatly exceed the bubble sizes and can be long outgassing pathways if those exist in a volcanic conduit. During the evolution of air rings the measured effective viscosity decreases, while after reaching to a steady state, viscous resistance increases again. At this stage, bubble volume and size in the liquid parts become considerably small. Time evolution of bubble size distribution suggests that most of bubbles are assimilated into the air rings and the remnants in the liquid parts break up into small bubbles. Similar shear deformation of bubbly magma could occur in volcanic conduits, which generates large bubbles at a depth where the lower effective viscosity enhances the ascending velocity. The large bubbles may originate Strombolian eruption or suppresses the explosive eruption by making the long outgassing pathways reaching to the Earth's surface. In both cases, bubble free dense melt accumulates at a shallow conduit. Our experiments suggest that, for larger melt viscosity and narrower conduit, the gas separation occurs

  13. Bulk Fuel Man.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by bulk fuel workers. Addressed in the four individual units of the course are the following topics: bulk fuel equipment, bulk fuel systems, procedures for handling fuels, and…

  14. Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation.

    PubMed

    Matthijnssens, Jelle; Miño, Samuel; Papp, Hajnalka; Potgieter, Christiaan; Novo, Luis; Heylen, Elisabeth; Zeller, Mark; Garaicoechea, Lorena; Badaracco, Alejandra; Lengyel, György; Kisfali, Péter; Cullinane, Ann; Collins, P J; Ciarlet, Max; O'Shea, Helen; Parreño, Viviana; Bányai, Krisztián; Barrandeguy, María; Van Ranst, Marc

    2012-04-01

    In this study, the complete genome sequences of seven equine group A rotavirus (RVA) strains (RVA/Horse-tc/GBR/L338/1991/G13P[18], RVA/Horse-wt/IRL/03V04954/2003/G3P[12] and RVA/Horse-wt/IRL/04V2024/2004/G14P[12] from Europe; RVA/Horse-wt/ARG/E30/1993/G3P[12], RVA/Horse-wt/ARG/E403/2006/G14P[12] and RVA/Horse-wt/ARG/E4040/2008/G14P[12] from Argentina; and RVA/Horse-wt/ZAF/EqRV-SA1/2006/G14P[12] from South Africa) were determined. Multiple novel genotypes were identified and genotype numbers were assigned by the Rotavirus Classification Working Group: R9 (VP1), C9 (VP2), N9 (NSP2), T12 (NSP3), E14 (NSP4), and H7 and H11 (NSP5). The genotype constellation of L338 was unique: G13-P[18]-I6-R9-C9-M6-A6-N9-T12-E14-H11. The six remaining equine RVA strains showed a largely conserved genotype constellation: G3/G14-P[12]-I2/I6-R2-C2-M3-A10-N2-T3-E2/E12-H7, which is highly divergent from other known non-equine RVA genotype constellations. Phylogenetic analyses revealed that the sequences of these equine RVA strains are related distantly to non-equine RVA strains, and that at least three lineages exist within equine RVA strains. A small number of reassortment events were observed. Interestingly, the three RVA strains from Argentina possessed the E12 genotype, whereas the three RVA strains from Ireland and South Africa possessed the E2 genotype. The unusual E12 genotype has until now only been described in Argentina among RVA strains collected from guanaco, cattle and horses, suggesting geographical isolation of this NSP4 genotype. This conserved genetic configuration of equine RVA strains could be useful for future vaccine development or improvement of currently used equine RVA vaccines.

  15. Large-strain, high-stress tubular dielectric elastomer actuator with high pre-stretch and oil encapsulation

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; Tan, Desmond D.; La, Thanh-Giang

    2015-04-01

    Rolled dielectric elastomer actuators (DEA), which are prepared by rolling up a flat dielectric elastomer , are subjected to non-homogenous deformation and thus does not perform as well as the flat ones. Typically, the rolled ones reported actuation of not more than 37.3% axial strain; whereas the flat one undergoing pure-shear deformation reported much greater actuation . This study shows that oil encapsulation helps the rolled DEA suppress pre-mature breakdown. Under isotonic test, oil-encapsulated tubular DEAs sustain very high electric field of up to 712.0 MV/m, which is 50% higher than that of the dry DEAs. Hence, it can produce up to 50% axial strain while deforming the passive oil capsules. In addition, it produces an isometric stress up to nearly 0.6 MPa, 114% higher than that of the dry one.

  16. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  17. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  18. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  19. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  20. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Bulk and break bulk cargo. 149.4 Section 149.4... TREASURY (CONTINUED) IMPORTER SECURITY FILING § 149.4 Bulk and break bulk cargo. (a) Bulk cargo exempted.... (b) Break bulk cargo exempted from time requirement. For break bulk cargo that is exempt from...

  1. Genomic variability of Mycobacterium tuberculosis strains of the Euro-American lineage based on large sequence deletions and 15-locus MIRU-VNTR polymorphism.

    PubMed

    Rindi, Laura; Medici, Chiara; Bimbi, Nicola; Buzzigoli, Andrea; Lari, Nicoletta; Garzelli, Carlo

    2014-01-01

    A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122, RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RD(Rio) deletion was detected exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the "Cameroon" family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related spoligotype profiles that can serve as a basis for better spoligotype-based classification.

  2. Distributed strain measurement of a large-scale reinforced concrete beam-column assembly under cyclic loading

    NASA Astrophysics Data System (ADS)

    Chen, Genda; Xu, Bin; McDaniel, Ryan D.; Ying, Xiaofei; Pommerenke, David J.; Wu, Zhishen

    2005-05-01

    In this paper, comparisons are made between the performances of two kinds of distributed sensors, Electric Time Domain Reflectometry (ETDR) cable sensor that is based on the propagation of electromagnetic waves in an electrical cable and Brillouin Optical Time Domain Reflectometry (BOTDR) optical sensor that is based on the propagation of optic pulses and Brillouin scattering that occurs when light is transmitted through the optic fiber. A cable sensor was mounted near the surface of the 80% scale beam-column reinforced concrete assembly that was loaded cyclically until the shear failure occurred. The embedded depth was 0.5 inches. At the same time, a fiber optic sensor was mounted on the surface of the assembly with two installation procedures called Point Fixation (PF) Method and Overall Bonding (OB) Method to measure the strain distribution. Both BOTDR and ETDR sensors were subjected to tension and compression in one loading cycle. Strain distributions obtained from the ETDR and BOTDR sensing systems under different cycle loadings were compared with each other. They were also compared with those measured from the traditional strain gauge.

  3. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.

    PubMed

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-12-21

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health. PMID:24142261

  4. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.

    PubMed

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-12-21

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm(-1) electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.

  5. Growth of Si Bulk Crystals with Large Diameter Ratio Using Small Crucibles by Creating a Large Low-Temperature Region Inside a Si Melt Contained in an NOC Furnace Developed Using Two Zone Heaters

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Murai, Ryota; Kaneko, Yuzuru

    2016-06-01

    Three zone heaters were generally used for a noncontact crucible (NOC) furnace. For practical reasons a simpler NOC furnace was developed with two zone heaters, which had a carbon heat holder to cover the three roles of each heater. Large low-temperature regions were obtained, and silicon ingots were grown in small crucibles with a large diameter and diameter ratio. Here, the diameter ratio is the ratio of the ingot diameter to the crucible diameter and can be as large as 0.90. The diameter ratio was controlled mainly by the temperature reduction of the first heater. Power changes of the second heater did not have a significant impact on the ingot diameter. Using this NOC furnace, maximum ingot diameters of 28.0, 33.5, and 45.0 cm were obtained using crucibles of 33, 40, and 50 cm in diameter, respectively. The oxygen concentration of the ingots did not strongly depend on the diameter ratio and were always low because convection in the Si melt was markedly suppressed by the carbon heat holder. Moreover, the oxygen concentration of the ingots has a tendency to become lower as the crucible diameter becomes larger.

  6. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor

    NASA Astrophysics Data System (ADS)

    Kuang, Jun; Liu, Luqi; Gao, Yun; Zhou, Ding; Chen, Zhuo; Han, Baohang; Zhang, Zhong

    2013-11-01

    A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically porous structure, as demonstrated by the compression test. The excellent compression recovery and high conductivity provide the ReG foam with exceptional piezoresistive capabilities. The electrical resistance of the ReG foam shows a linearly decreasing trend with compressive strain increments of up to 60%, which cannot be observed in conventional rigid material-based sensors and carbon nanotube-based polymer sensors. Such intriguing linear strain-responsive behavior, along with the fast response time and high thermal stability, makes the ReG foam a promising candidate for strain sensing. We demonstrated that it could be used as a wearable device for real-time monitoring of human health.A hierarchically structured thermal-reduced graphene (ReG) foam with 0.5 S cm-1 electrical conductivity is fabricated from a well-dispersed graphene oxide suspension via a directional freezing method followed by high-temperature thermal treatment. The as-prepared three-dimensional ReG foam has an ordered macroporous honeycomb-like structure with straight and parallel voids in the range of 30 μm to 75 μm separated by cell walls of several tens of nanometers thick. Despite its ultra-low density, the ReG foam has an excellent compression recovery along its in-plane direction. This property of the ReG foam can be attributed to its hierarchically

  7. Modeling and simulation framework for dynamic strain localization in elasto-viscoplastic metallic materials subject to large deformations

    DOE PAGES

    Mourad, Hashem Mourad; Bronkhorst, Curt Allan; Livescu, Veronica; Plohr, JeeYeon Nam; Cerreta, Ellen Kathleen

    2016-09-23

    This study describes a theoretical and computational framework for the treatment of adiabatic shear band formation in rate-sensitive polycrystalline metallic materials. From a computational perspective, accurate representation of strain localization behavior has been a long-standing challenge. In addition, the underlying physical mechanisms leading to the localization of plastic deformation are still not fully understood. The proposed framework is built around an enhanced-strain finite element formulation, designed to alleviate numerical pathologies known to arise in localization problems, by allowing a localization band of given finite width (weak discontinuity) to be embedded within individual elements. The mechanical threshold strength (MTS) model ismore » used to represent the temperature and strain rate-dependent viscoplastic response of the material. This classical flow stress model employs an internal state variable to quantify the effect of dislocation structure evolution (work hardening and recovery). In light of growing evidence suggesting that the softening effect of dynamic recrystallization may play a significant role, alongside thermal softening, in the process of shear band formation and growth, a simple dynamic recrystallization model is proposed and cast within the context of the MTS model with the aid of the aforementioned internal state variable. An initiation criterion for shear localization in rate and temperature-sensitive materials is introduced and used in the present context of high-rate loading, where material rate-dependence is pronounced and substantial temperature increases are achieved due to the dissipative nature of viscoplastic processes. In addition, explicit time integration is adopted to facilitate treatment of the dynamic problems under consideration, where strain rates in excess of 104 s–1 are typically attained. Two series of experiments are conducted on AISI 316L stainless steel, employing the commonly used top-hat sample

  8. A Powerful New Quantitative Genetics Platform, Combining Caenorhabditis elegans High-Throughput Fitness Assays with a Large Collection of Recombinant Strains

    PubMed Central

    Andersen, Erik C.; Shimko, Tyler C.; Crissman, Jonathan R.; Ghosh, Rajarshi; Bloom, Joshua S.; Seidel, Hannah S.; Gerke, Justin P.; Kruglyak, Leonid

    2015-01-01

    The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the lack of statistical power from measuring the phenotypes of small numbers of individuals, and (2) the use of phenotyping platforms that do not scale to hundreds of individuals and are prone to noisy measurements. Here, we generated a new resource of 359 recombinant inbred strains that augments the existing C. elegans N2xCB4856 recombinant inbred advanced intercross line population. This new strain collection removes variation in the neuropeptide receptor gene npr-1, known to have large physiological and behavioral effects on C. elegans and mitigates the hybrid strain incompatibility caused by zeel-1 and peel-1, allowing for identification of quantitative trait loci that otherwise would have been masked by those effects. Additionally, we optimized highly scalable and accurate high-throughput assays of fecundity and body size using the COPAS BIOSORT large particle nematode sorter. Using these assays, we identified quantitative trait loci involved in fecundity and growth under normal growth conditions and after exposure to the herbicide paraquat, including independent genetic loci that regulate different stages of larval growth. Our results offer a powerful platform for the discovery of the genetic variants that control differences in responses to drugs, other aqueous compounds, bacterial foods, and pathogenic stresses. PMID:25770127

  9. Bulk Data Mover

    SciTech Connect

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections, data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/

  10. Large enhancement of bulk spin polarization by suppressing CoMn anti-sites in Co2Mn(Ge0.75Ga0.25) Heusler alloy thin film

    NASA Astrophysics Data System (ADS)

    Li, S.; Takahashi, Y. K.; Sakuraba, Y.; Tsuji, N.; Tajiri, H.; Miura, Y.; Chen, J.; Furubayashi, T.; Hono, K.

    2016-03-01

    We have investigated the structure and magneto-transport properties of Co2Mn(Ge0.75Ga0.25) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that CoMn anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-area product change (ΔRA) of 12.8 mΩ μm2 was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of CoMn-antisites in CMGG films, being consistent with first-principle calculation results.

  11. Structure of the exceptionally large nonrepetitive carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-82164.

    PubMed

    Vinogradov, Evgeny; Petersen, Bent O; Sadovskaya, Irina; Jabbouri, Said; Duus, Jens Ø; Helander, Ilkka M

    2003-07-01

    The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage.

  12. On the development of explicit robust schemes for implementation of a class of hyperelastic models in large-strain analysis of rubbers

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Chang, T. Y. P.; Arnold, S. M.

    1992-01-01

    The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models, for large-strain analysis of rubber-like materials, is addressed. To this end, explicit forms for the corresponding material tangent-stiffness tensors are developed, and these are valid for the entire deformation range; i.e., with both distinct as well as repeated principal-stretch values. Throughout the analysis the various implications of the underlying property of separability of the strain-energy functions are exploited, thus leading to compact final forms of the tensor expressions. In particular, this facilitated the treatment of the complex cases of uncoupled volumetric/deviatoric formulations for incompressible materials, which are becoming increasingly popular in recent years. The forms derived are also amenable for use with symbolic-manipulation packages for systematic code generation.

  13. Genomic diversity of Mycobacterium tuberculosis Beijing strains isolated in Tuscany, Italy, based on large sequence deletions, SNPs in putative DNA repair genes and MIRU-VNTR polymorphisms.

    PubMed

    Garzelli, Carlo; Lari, Nicoletta; Rindi, Laura

    2016-03-01

    The Beijing genotype of Mycobacterium tuberculosis is cause of global concern as it is rapidly spreading worldwide, is considered hypervirulent, and is most often associated to massive spread of MDR/XDR TB, although these epidemiological or pathological properties have not been confirmed for all strains and in all geographic settings. In this paper, to gain new insights into the biogeographical heterogeneity of the Beijing family, we investigated a global sample of Beijing strains (22% from Italian-born, 78% from foreign-born patients) by determining large sequence polymorphism of regions RD105, RD181, RD150 and RD142, single nucleotide polymorphism of putative DNA repair genes mutT4 and mutT2 and MIRU-VNTR profiles based on 11 discriminative loci. We found that, although our sample of Beijing strains showed a considerable genomic heterogeneity, yielding both ancient and recent phylogenetic strains, the prevalent successful Beijing subsets were characterized by deletions of RD105 and RD181 and by one nucleotide substitution in one or both mutT genes. MIRU-VNTR analysis revealed 47 unique patterns and 9 clusters including a total of 33 isolates (41% of total isolates); the relatively high proportion of Italian-born Beijing TB patients, often occurring in mixed clusters, supports the possibility of an ongoing cross-transmission of the Beijing genotype to autochthonous population. High rates of extra-pulmonary localization and drug-resistance, particularly MDR, frequently reported for Beijing strains in other settings, were not observed in our survey. PMID:26597137

  14. SISGR -- Domain Microstructures and Mechanisms for Large, Reversible and Anhysteretic Strain Behaviors in Phase Transforming Ferroelectric Materials

    SciTech Connect

    Wang, Yu U.

    2013-12-06

    This four-year project (including one-year no-cost extension) aimed to advance fundamental understanding of field-induced strain behaviors of phase transforming ferroelectrics. We performed meso-scale phase field modeling and computer simulation to study domain evolutions, mechanisms and engineering techniques, and developed computational techniques for nanodomain diffraction analysis; to further support above originally planned tasks, we also carried out preliminary first-principles density functional theory calculations of point defects and domain walls to complement meso-scale computations as well as performed in-situ high-energy synchrotron X-ray single crystal diffraction experiments to guide theoretical development (both without extra cost to the project thanks to XSEDE supercomputers and DOE user facility Advanced Photon Source).

  15. Repeated large-magnitude earthquakes in a tectonically active, low-strain continental interior: The northern Tien Shan, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Landgraf, A.; Dzhumabaeva, A.; Abdrakhmatov, K. E.; Strecker, M. R.; Macaulay, E. A.; Arrowsmith, Jr.; Sudhaus, H.; Preusser, F.; Rugel, G.; Merchel, S.

    2016-05-01

    The northern Tien Shan of Kyrgyzstan and Kazakhstan has been affected by a series of major earthquakes in the late 19th and early 20th centuries. To assess the significance of such a pulse of strain release in a continental interior, it is important to analyze and quantify strain release over multiple time scales. We have undertaken paleoseismological investigations at two geomorphically distinct sites (Panfilovkoe and Rot Front) near the Kyrgyz capital Bishkek. Although located near the historic epicenters, both sites were not affected by these earthquakes. Trenching was accompanied by dating stratigraphy and offset surfaces using luminescence, radiocarbon, and 10Be terrestrial cosmogenic nuclide methods. At Rot Front, trenching of a small scarp did not reveal evidence for surface rupture during the last 5000 years. The scarp rather resembles an extensive debris-flow lobe. At Panfilovkoe, we estimate a Late Pleistocene minimum slip rate of 0.2 ± 0.1 mm/a, averaged over at least two, probably three earthquake cycles. Dip-slip reverse motion along segmented, moderately steep faults resulted in hanging wall collapse scarps during different events. The most recent earthquake occurred around 3.6 ± 1.3 kyr ago (1σ), with dip-slip offsets between 1.2 and 1.4 m. We calculate a probabilistic paleomagnitude to be between 6.7 and 7.2, which is in agreement with regional data from the Kyrgyz range. The morphotectonic signals in the northern Tien Shan are a prime example of deformation in a tectonically active intracontinental mountain belt and as such can help understand the longer-term coevolution of topography and seismogenic processes in similar structural settings worldwide.

  16. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains

    PubMed Central

    Giuntini, Elisa; Mengoni, Alessio; De Filippo, Carlotta; Cavalieri, Duccio; Aubin-Horth, Nadia; Landry, Christian R; Becker, Anke; Bazzicalupo, Marco

    2005-01-01

    Background Sinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa (Medicago sativa). This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH) on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region. Results From 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function. Conclusion The obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti. PMID:16283928

  17. Determination and mitigation of the uncertainty of neutron diffraction measurements of residual strain in large-grained polycrystalline material

    PubMed Central

    Holden, Tom M.; Traore, Yeli; James, Jon; Kelleher, Joe; Bouchard, P. John

    2015-01-01

    For large-grained samples it is advantageous to perform pairs of neutron diffraction measurements at the same spatial location but rotated 180° around the geometric centre of the gauge volume as a means of minimizing the scatter coming from the random positioning of grains within the gauge volume. PMID:25844082

  18. Dual-phase steel sheets under cyclic tension–compression to large strains: Experiments and crystal plasticity modeling

    NASA Astrophysics Data System (ADS)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  19. Numerical calculation of thermo-mechanical problems at large strains based on complex step derivative approximation of tangent stiffness matrices

    NASA Astrophysics Data System (ADS)

    Balzani, Daniel; Gandhi, Ashutosh; Tanaka, Masato; Schröder, Jörg

    2015-05-01

    In this paper a robust approximation scheme for the numerical calculation of tangent stiffness matrices is presented in the context of nonlinear thermo-mechanical finite element problems and its performance is analyzed. The scheme extends the approach proposed in Kim et al. (Comput Methods Appl Mech Eng 200:403-413, 2011) and Tanaka et al. (Comput Methods Appl Mech Eng 269:454-470, 2014 and bases on applying the complex-step-derivative approximation to the linearizations of the weak forms of the balance of linear momentum and the balance of energy. By incorporating consistent perturbations along the imaginary axis to the displacement as well as thermal degrees of freedom, we demonstrate that numerical tangent stiffness matrices can be obtained with accuracy up to computer precision leading to quadratically converging schemes. The main advantage of this approach is that contrary to the classical forward difference scheme no round-off errors due to floating-point arithmetics exist within the calculation of the tangent stiffness. This enables arbitrarily small perturbation values and therefore leads to robust schemes even when choosing small values. An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of thermo-elastic and thermo-elastoplastic boundary value problems at finite strains the performance of the proposed approach is analyzed.

  20. Distribution of strain type and antimicrobial susceptibility of Escherichia coli isolates causing meningitis in a large urban setting in Brazil.

    PubMed

    Berman, Hillary; Barberino, Maria Goreth; Moreira, Edson Duarte; Riley, Lee; Reis, Joice N

    2014-05-01

    The clinical management of meningitis caused by Escherichia coli is greatly complicated when the organism becomes resistant to broad-spectrum antibiotics. We sought to characterize the antimicrobial susceptibilities, sequence types (ST), and presence of known drug resistance genes of E. coli isolates that caused meningitis between 1996 and 2011 in Salvador, Brazil. We then compared these findings to those for E. coli isolates from community-acquired urinary tract infections (UTI) that occurred during the same time period and in the same city. We found that 19% of E. coli isolates from cases of meningitis and less than 1% of isolates from UTI were resistant to third-generation cephalosporins. The sequence types of E. coli isolates from cases of meningitis included ST131, ST69, ST405, and ST62, which were also found among isolates from UTI. Additionally, among the E. coli isolates that were resistant to third-generation cephalosporins, we found genes that encode the extended-spectrum beta-lactamases CTX-M-2, CTX-M-14, and CTX-M-15. These observations demonstrate that compared to E. coli strains isolated from cases of community-acquired UTI, those isolated from cases of meningitis are more resistant to third-generation cephalosporins, even though the same sequence types are shared between the two forms of extraintestinal infections.

  1. Bulk Data Mover

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections,more » data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/« less

  2. [Assessment of job strain and its consequencies in a large public organisation. Findings from the SEMM Study].

    PubMed

    Ferrario, M M; Cimmino, L; Ganna, A; Cambiano, V; Borchini, R; Cesana, G

    2008-01-01

    The demand-control model originally developed by Robert Karasek is in Italy the preferred tool to investigate perceived work stress due to work-related organizational constrains. We wish to report the comprehensive results of the SEMM Study, carried on a wide sample of civil servants. N. 5271 women and 2601 men, employed at the Municipality of Milan in the years 1991-1996 were enrolled into the study. The overall participation rate was high in both gender group (75% or more), indicating a good compliance of employees for health prevention programmes carried out in work settings. Each participant, who has given consent, in addition to the medical examinations and biological tests related to the investigation of work exposures, underwent to a structured procedure to measure cardiovascular risk factors, according to the methods developed in the WHO MONICA Project, job strain adopting the Job Content Questionnaire (JCQ), and the Baecke Questionnaire to investigate major quotes of physical activity. In this contest the JCQ has shown an acceptable level of internal and external consistency as well as of acceptance, measured by employees compliance. Psychological job demand and decision latitude can be assessed with two different JCQ revisions available in Italian, which were validated with the contribution of the author, at different complexity, but with comparable results of weighted scores. For a comprehensive assessment of the working conditions social support at work is also of relevance. In the work public sector considered, the JCQ major scores resulted to be valid descriptors of key aspects of the work organization. The concurrent assessment of sick leaves, known marker of burnout, allows to identify work- and individual-related determinants and, in a specific work setting, to give indications for coping actions which may improve workers' integration. In addition, the assessment of cardiovascular risk factors, carried out with standardised and then reliable

  3. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing

    NASA Astrophysics Data System (ADS)

    Al-Jabr, A. A.; Majid, M. A.; Alias, M. S.; Anjum, D. H.; Ng, T. K.; Ooi, B. S.

    2016-04-01

    We report on a novel quantum well intermixing (QWI) technique that induces a large degree of bandgap blueshift in the InGaP/InAlGaP laser structure. In this technique, high external compressive strain induced by a thick layer of SiO2 cap with a thickness ≥1 μm was used to enhance QWI in the tensile-strained InGaP/InAlGaP quantum well layer. A bandgap blueshift as large as 200 meV was observed in samples capped with 1-μm SiO2 and annealed at 1000 °C for 120 s. To further enhance the degree of QWI, cycles of annealing steps were applied to the SiO2 cap. Using this method, wavelength tunability over the range of 640 nm to 565 nm (˜250 meV) was demonstrated. Light-emitting diodes emitting at red (628 nm), orange (602 nm), and yellow (585 nm) wavelengths were successfully fabricated on the intermixed samples. Our results show that this new QWI method technique may pave the way for the realization of high-efficiency orange and yellow light-emitting devices based on the InGaP/InAlGaP material system.

  4. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  5. Use of sequence analysis of the P2 domain for characterization of norovirus strains causing a large multistate outbreak of norovirus gastroenteritis in Germany 2012.

    PubMed

    Höhne, Marina; Niendorf, Sandra; Mas Marques, Andreas; Bock, C-Thomas

    2015-10-01

    Human norovirus is the main cause of non-bacterial gastroenteritis worldwide. It is transmitted from person to person, by fecally contaminated food or water or through virus containing aerosols originating during vomiting of infected persons. In September and October 2012, the largest foodborne norovirus outbreak in Germany so far spread over 5 Federal States (Berlin, Brandenburg, Saxony, Saxony-Anhalt, and Thuringia) affecting nearly 11,000 people mainly in schools and child care facilities. Epidemiological and trace-back investigations supported the assumption that a batch of frozen strawberries imported from China was the likely source of the outbreak. Sequence analysis of the capsid region encoding the P2 domain was used successfully for identification of transmission routes and epidemiologic relationship but was hampered by a lack of universal primers for all known genotypes so far. In the present study, a molecular approach was designed to track outbreak-related samples from the affected states of the large foodborne outbreak in Germany. Therefore, sequence analysis within the highly variable P2 domain of the capsid gene using newly developed universal P2 primers for genogroup I and genogroup II strains in combination with sequencing of the polymerase gene (region A) and the orf1/orf2 junction (region c) was used. The sequence analysis of 138 norovirus positive stool samples suspected to be outbreak-related revealed a considerable genomic diversity. At least 3 strains of genogroup I (I.3, I.4, and I.9) and 5 strains of genogroup II (II.6, II.7, II. 8, and recombinants II.P7_II.6, and II.P16_II.13) as well as 19 samples containing mixtures of these strains were detected. Six samples were considered as not linked to the outbreak. The most prevalent genotype was GI.4 (48/132; 36%). Genotype I.9 and the recombinant strain II.P16_II.13 were detected for the first time in Germany. Notably, the genotype II.P16_II.13 could also be determined in one of the samples of

  6. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  7. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients.

    PubMed

    Hayden, Hillary S; Gillett, Will; Saenphimmachak, Channakhone; Lim, Regina; Zhou, Yang; Jacobs, Michael A; Chang, Jean; Rohmer, Laurence; D'Argenio, David A; Palmieri, Anthony; Levy, Ruth; Haugen, Eric; Wong, Gane K S; Brittnacher, Mitch J; Burns, Jane L; Miller, Samuel I; Olson, Maynard V; Kaul, Rajinder

    2008-06-01

    Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation.

  8. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients.

    PubMed

    Hayden, Hillary S; Gillett, Will; Saenphimmachak, Channakhone; Lim, Regina; Zhou, Yang; Jacobs, Michael A; Chang, Jean; Rohmer, Laurence; D'Argenio, David A; Palmieri, Anthony; Levy, Ruth; Haugen, Eric; Wong, Gane K S; Brittnacher, Mitch J; Burns, Jane L; Miller, Samuel I; Olson, Maynard V; Kaul, Rajinder

    2008-06-01

    Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation. PMID:18445516

  9. Bulk solitary waves in elastic solids

    NASA Astrophysics Data System (ADS)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  10. The polarization signature of local bulk flows

    SciTech Connect

    Roebber, Elinore; Holder, Gilbert

    2014-02-01

    A large peculiar velocity of the intergalactic medium produces a Doppler shift of the cosmic microwave background with a frequency-dependent quadrupole term. This quadrupole will act as a source for polarization of the cosmic microwave background, creating a large-scale polarization anisotropy if the bulk flow is local and coherent on large scales. In the case where we are near the center of the moving region, the polarization signal is a pure quadrupole. We show that the signal is small, but detectable with future experiments for bulk flows as large as some recent reports.

  11. Phobos: Observed bulk properties

    NASA Astrophysics Data System (ADS)

    Pätzold, Martin; Andert, Tom; Jacobson, Robert; Rosenblatt, Pascal; Dehant, Véronique

    2014-11-01

    This work is a review of the mass determinations of the Mars moon Phobos by spacecraft close flybys, by solving for the Martian gravity field and by the analysis of secular orbit perturbations. The absolute value and accuracy is sensitive on the knowledge and accuracy of the Phobos ephemeris, of the spacecraft orbit, other perturbing forces acting on the spacecraft and the resolution of the Martian gravity field besides the measurement accuracy of the radio tracking data. The mass value and its error improved from spacecraft mission to mission or from the modern analysis of “old” tracking data but these solutions depend on the accuracy of the ephemeris at the time of observation. The mass value seems to settle within the range of GMPh=(7.11±0.09)×10-4 km3 s-2 which covers almost all mass values from close flybys and “distant” encounters within its 3-σ error (1.5%). Using the volume value determined from MEX HRSC imaging, the bulk density is (1873±31) kg m-3 (3-σ error or 1.7%), a low value which suggests that Phobos is either highly porous, is composed partially of light material or both. The determination of the gravity coefficients C20 and C22 from the Mars Express 2010 close flyby does not allow to draw conclusion on the internal structure. The large errors do not distinguish whether Phobos is homogeneous or not. In view of theories of the Phobos' origin, one possibility is that Phobos is not a captured asteroid but accreted from a debris disk in Mars orbit as a second generation solar system object.

  12. Large bulk soft magnetic [(Fe{sub 0.5}Co{sub 0.5}){sub 0.75}B{sub 0.20}Si{sub 0.05}]{sub 96}Nb{sub 4} glassy alloy prepared by B{sub 2}O{sub 3} flux melting and water quenching

    SciTech Connect

    Bitoh, T.; Makino, A.; Inoue, A.; Greer, A.L.

    2006-05-01

    The large bulk soft magnetic glassy [(Fe{sub 0.5}Co{sub 0.5}){sub 0.75}B{sub 0.20}Si{sub 0.05}]{sub 96}Nb{sub 4} alloy specimens with the diameters up to 7.7 mm have been prepared by water quenching the melt immersed in the molten flux of B{sub 2}O{sub 3}. The maximum diameter of the obtained specimens is approximately 1.5 times as large as the previous result for copper mold casting. The bulk specimen with 7.7 mm in diameter exhibits the saturation magnetization of 1.13 T, the coercivity lower than 20 A/m at room temperature, and the Curie temperature of 732 K. This bulk specimen is the thickest of any soft magnetic glassy alloys formed until now.

  13. Job strain, effort-reward imbalance and employee well-being: a large-scale cross-sectional study.

    PubMed

    de Jonge, J; Bosma, H; Peter, R; Siegrist, J

    2000-05-01

    This study investigated the effects of the Job Demand-Control (JD-C) Model and the Effort-Reward Imbalance (ERI) Model on employee well-being. A cross-sectional survey was conducted comprising a large representative sample of 11,636 employed Dutch men and women. Logistic regression analyses were used. Controlling for job sector, demographic characteristics (including educational level) and managerial position, employees reporting high job demands (i.e. psychological and physical demands) and low job control had elevated risks of emotional exhaustion, psychosomatic and physical health complaints and job dissatisfaction (odds ratios ranged from 2.89 to 10.94). Odds ratios were generally higher in employees reporting both high (psychological and physical) efforts and low rewards (i.e. poor salary, job insecurity and low work support): they ranged from 3.23 to 15.43. Furthermore, overcommitted people had higher risks of poor well-being due to a high effort-low reward mismatch (ORs: 3.57-20.81) than their less committed counterparts (ORs: 3.01-12.71). Finally, high efforts and low occupational rewards were stronger predictors of poor well-being than low job control when both job stress models were simultaneously adjusted. In conclusion, our findings show independent cumulative effects of both the JD-C Model and the ERI Model on employee well-being and are not significantly different in men and women as well as in young and old people. In particular, high (psychological and physical) efforts and low rewards adversely affected employee well-being. Preliminary findings also indicate excess risks of poor well-being in overcommitted persons suffering from high cost--low gain conditions at work.

  14. Quantum spin hall insulators in strain-modified arsenene.

    PubMed

    Zhang, Haijun; Ma, Yandong; Chen, Zhongfang

    2015-12-01

    By means of density functional theory (DFT) computations, we predict that the suitable strain modulation of honeycomb arsenene results in a unique two-dimensional (2D) topological insulator (TI) with a sizable bulk gap (up to 696 meV), which could be characterized and utilized at room temperature. Without considering any spin-orbit coupling, the band inversion occurs around the Gamma (G) point at tensile strains larger than 11.7%, which indicates the quantum spin Hall effect in arsenene at appropriate strains. The nontrivial topological phase was further confirmed by the topological invariant ν = 1 and edge states with a single Dirac-type crossing at the G point. Our results provide a promising strategy for designing 2D TIs with large bulk gaps from commonly used materials.

  15. Bulk viscosity of a pion gas

    SciTech Connect

    Lu Egang; Moore, Guy D.

    2011-04-15

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of m{sub {pi}}, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity {zeta}{approx}(F{sub 0}{sup 8}/m{sub {pi}}{sup 5})exp(2m{sub {pi}}/T), where F{sub 0}{approx_equal}93 MeV is the pion decay constant.

  16. Efficient bulk-loading of gridfiles

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Nicol, David M.

    1994-01-01

    This paper considers the problem of bulk-loading large data sets for the gridfile multiattribute indexing technique. We propose a rectilinear partitioning algorithm that heuristically seeks to minimize the size of the gridfile needed to ensure no bucket overflows. Empirical studies on both synthetic data sets and on data sets drawn from computational fluid dynamics applications demonstrate that our algorithm is very efficient, and is able to handle large data sets. In addition, we present an algorithm for bulk-loading data sets too large to fit in main memory. Utilizing a sort of the entire data set it creates a gridfile without incurring any overflows.

  17. Constraints on strain rates during large-scale mid-crustal shearing: An example from the basal Vaddas shear zone, northern Caledonides

    NASA Astrophysics Data System (ADS)

    Gasser, Deta; Stünitz, Holger; Nasipuri, Pritam; Menegon, Luca

    2013-04-01

    The Caledonian orogen in Scandinavia is characterized by large-scale crustal nappe stacks which were emplaced east-/southeast-wards onto the Baltica shield. Whereas original thrust relationships are generally obscured by syn- to post-collisional extensional deformation in the southern and central Scandinavian Caledonides, several large-scale thrust systems are well-preserved in the northern Scandinavian Caledonides in Troms and Finnmark. One example is the mid-crustal Vaddas shear zone, which emplaced the Vaddas nappe on top of the Kalak nappe complex. In this contribution we present a structural, petrological and geochronological analysis of the rocks under- and overlying the Vaddas shear zone in northern Troms, in order to estimate the strain rate associated with thrusting along this major shear zone. The Vaddas nappe above the investigated shear zone consists mainly of Upper Ordovician to Silurian metasediments, which were deposited in a marine environment and which were intruded by voluminous gabbroic intrusions, before they were sheared off from their substratum and transported on top of the Kalak nappe complex during the Caledonian orogeny. PT conditions from one of these gabbroic bodies indicate that the body intruded the metasediments at ~9 kbar (Getsinger et al., subm to G3), which corresponds to a depth of ~34 km. U-Pb SIMS dating of zircons from this gabbro indicate that intrusion occurred at 439±2 Ma. The Vaddas nappe is separated from the Kalak nappe by an at least ~150 m thick, amphibolite-facies shear zone with a subhorizontal fabric and top-to-the-SE shear sense. It has developed within the lowest part of the Vaddas nappe as well as the upper part of the Kalak nappe complex and PT calculations indicate that final shearing occurred at ~450° C and ~6 kbar (depth of ~23 km). U-Pb TIMS dating of titanites, which grow parallel to the shear fabric in the Kalak nappe complex, gives 206Pb/238U ages ranging from 442±1 to 429±1 Ma, indicating that

  18. Structural features of plastic deformation in bulk metallic glasses

    SciTech Connect

    Scudino, S. Shakur Shahabi, H.; Stoica, M.; Kühn, U.; Kaban, I.; Escher, B.; Eckert, J.; Vaughan, G. B. M.

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  19. Strain evolution of epitaxial tetragonal-like BiFeO3 thin films on LaAlO3(001) substrates prepared by sputtering and their bulk photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Nakashima, Seiji; Uchida, Tomohisa; Doi, Kentaro; Saitoh, Koh; Fujisawa, Hironori; Sakata, Osami; Katsuya, Yoshio; Tanaka, Nobuo; Shimizu, Masaru

    2016-10-01

    The structural evolution of high-quality 3.3-73.2-nm-thick tetragonal-like BiFeO3 (T-BFO) thin films grown on LaAlO3(001) substrates and the bulk photovoltaic effect of the films were investigated. The T-BFO films were grown by rf magnetron sputtering, showing the Peudellösung fringes around the T-BFO (001) diffraction peak in X-ray diffraction θ-2θ patterns. These indicate the structural coherence between the surface and the interface in the surface normal direction of the films. High-resolution synchrotron X-ray diffraction analysis and transmission electron microscopy reveal that the lattice relaxation behavior from the MA monoclinic to MC monoclinic structure occurs as the film thickness increases. The domain structure was partly controlled by using a vicinal LAO (001) substrate along [100]. Regarding the current-voltage characteristics of the Pt/T-BFO/Pt coplanar capacitor under violet laser illumination, T-BFO films show an anomalous photovoltaic effect with an open-circuit voltage of 6.1 V and a short-circuit current of -290 pA along the [100]T-BFO direction.

  20. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.

    PubMed

    Schatschneider, Sarah; Persicke, Marcus; Watt, Steven Alexander; Hublik, Gerd; Pühler, Alfred; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2013-08-20

    The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the polysaccharide xanthan, a commercially important viscosifier. Since the complete genome of Xcc B100 is available, systems biology tools were applied to obtain a deeper understanding of the metabolism involved in xanthan biosynthesis. A large-scale metabolic network was reconstructed and manually curated. The reconstructed network included 352 genes, 437 biochemical reactions, 10 transport reactions, and 338 internal metabolites. To use this network for flux balance analysis, the biomass composition of Xcc B100 was determined. The comprehensive model obtained was applied for in silico analyses to predict biomass generation and gene essentiality. Predictions were extensively validated by analyzing batch culture performance and by carbon balancing including xanthan production. Single gene deletion mutants causing deficiencies in the central carbohydrate metabolism were constructed to enforce major flux redistributions. The impact of xanthan production was studied in vivo and in silico, comparing the physiology of a gumD mutant, negative in xanthan production, with the original strain. The results indicate a redistribution of resources from xanthan to biomass, rather than a reduction in carbon uptake. With this high quality metabolic model, both systems biology analyses and synthetic biology reengineering of Xcc gained an important tool.

  1. A three-dimensional, extended field of view ultrasound method for estimating large strain mechanical properties of the cervix during pregnancy

    PubMed Central

    House, Michael; Feltovich, Helen; Hall, Timothy J; Stack, Trevor; Patel, Atur; Socrate, Simona

    2015-01-01

    Cervical shortening and cervical insufficiency contribute to a significant number of preterm births. However, the deformation mechanisms that control how the cervix changes its shape from long and closed to short and dilated are not clear. Investigation of the biomechanical problem is limited by 1) lack of thorough characterization of the three-dimensional anatomical changes associated with cervical deformation and 2) difficulty measuring cervical tissue properties in vivo. The objective of the present study was to explore the feasibility of using three-dimensional ultrasound and fundal pressure to obtain anatomically accurate numerical models of large-strain cervical deformation during pregnancy and enable non-invasive assessment of cervical tissue compliance. Healthy subjects (n=6) and one subject with acute cervical insufficiency in the midtrimester were studied. Extended field of view ultrasound images were obtained of the entire uterus and cervix. These images aided construction of anatomically accurate numerical models. Cervical loading was achieved with fundal pressure, which was quantified with a vaginal pressure catheter. In one subject, the anatomical response to fundal pressure was matched by a model-based simulation of the deformation response, thereby deriving the corresponding cervical mechanical properties and showing the feasibility of non-invasive assessment of compliance. The results of this pilot study demonstrate the feasibility of a biomechanical modeling framework for estimating cervical mechanical properties in vivo. An improved understanding of cervical biomechanical function will clarify the pathophysiology of cervical shortening. PMID:22655487

  2. Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus.

    PubMed

    Govindarajan, Dhanasekaran; Samal, Siba K

    2004-09-15

    The complete nucleotide sequence of the large polymerase (L) protein of the avian metapneumovirus subgroup C strain Colorado was determined. The L protein gene of avian pneumovirus Colorado isolate (APV-C) was 6173 nucleotides in length from the gene-start to the gene-end and encoded a polypeptide of 2005 amino acids in length. The length of the L protein of APV-C was exactly the same as that of human metapneumovirus (hMPV) and one amino acid longer than the L protein of APV subgroup A. The L protein of APV-C showed 80% amino acid identity with the L protein of hMPV, but only 64% amino acid identity with the L protein of APV-A. The nucleotide and deduced amino acid sequences were compared with the corresponding sequences of eleven other paramyxoviruses. All six domains characteristic of paramyxovirus L proteins were also observed in the L protein of APV-C. All the polymerase core motifs in domain III were conserved to nearly 100% in the metapneumoviruses. Similarly, the putative ATP-binding motif in domain VI was completely conserved among the metapneumoviruses and differed in length, by one intermediate residue, from other paramyxoviruses. Phylogenetic analysis of the different L proteins also revealed a closer relationship between APV-C and hMPV.

  3. Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100.

    PubMed

    Schatschneider, Sarah; Persicke, Marcus; Watt, Steven Alexander; Hublik, Gerd; Pühler, Alfred; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2013-08-20

    The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the polysaccharide xanthan, a commercially important viscosifier. Since the complete genome of Xcc B100 is available, systems biology tools were applied to obtain a deeper understanding of the metabolism involved in xanthan biosynthesis. A large-scale metabolic network was reconstructed and manually curated. The reconstructed network included 352 genes, 437 biochemical reactions, 10 transport reactions, and 338 internal metabolites. To use this network for flux balance analysis, the biomass composition of Xcc B100 was determined. The comprehensive model obtained was applied for in silico analyses to predict biomass generation and gene essentiality. Predictions were extensively validated by analyzing batch culture performance and by carbon balancing including xanthan production. Single gene deletion mutants causing deficiencies in the central carbohydrate metabolism were constructed to enforce major flux redistributions. The impact of xanthan production was studied in vivo and in silico, comparing the physiology of a gumD mutant, negative in xanthan production, with the original strain. The results indicate a redistribution of resources from xanthan to biomass, rather than a reduction in carbon uptake. With this high quality metabolic model, both systems biology analyses and synthetic biology reengineering of Xcc gained an important tool. PMID:23395674

  4. Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried

    2016-03-01

    A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated.

  5. Complete Genome Sequence of a Porcine Epidemic Diarrhea Virus Strain from Vietnam, HUA-14PED96, with a Large Genomic Deletion

    PubMed Central

    Choe, Se-Eun; Park, Kee-Hwan; Lim, Seong-In; Hien, Nguyen Ba; Thach, Pham Ngoc; Phuong, Le Huynh Thanh; An, Byung-Hyun; Han, Song Hee; Cho, In-Soo

    2016-01-01

    A highly virulent strain of Porcine epidemic diarrhea virus (PEDV) causing severe diarrhea has recently emerged in Vietnam. Genomic sequences from a novel strain, HUA-14PED96, isolated from a Vietnamese piglet with serious diarrhea show relatively high identity with U.S.-like PEDV strains, and have a 72-nt deletion in the open reading frame 1a (ORF1a) gene. PMID:26893409

  6. Strain effects on the SERS enhancements for spherical silver nanoparticles.

    PubMed

    Qian, Xiaohu; Park, Harold S

    2010-09-10

    We demonstrate in the present work through the utilization of classical Mie scattering theory in conjunction with a radiation damping and dynamic depolarization-corrected electrostatic approximation the significant effect that mechanical strain has on the optical properties of spherical silver nanoparticles. Through appropriate modifications of the bulk dielectric functions, we find that the application of tensile strain generates significant enhancements in the local electric field for the silver nanoparticles, leading to large SERS enhancements of more than 300% compared to bulk, unstrained nanoparticles when a 5% tensile strain is applied. While the strain-induced SERS enhancements are found to be strongest for nanoparticle diameters where radiation damping effects are minimized, we find that the surface plasmon resonance wavelengths are relatively unchanged by mechanical strain, and that the various measures of the far field optical efficiencies (absorption, scattering, extinction) can be enhanced by up to 150% through the application of tensile strain. The present findings indicate the opportunity to actively engineer and enhance the optical properties of silver nanoparticles through the application of mechanical deformation.

  7. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions

    PubMed Central

    2014-01-01

    Background Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. Methods We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. Results The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. Conclusion

  8. Reversible modulation of spontaneous emission by strain in silicon nanowires.

    PubMed

    Shiri, Daryoush; Verma, Amit; Selvakumar, C R; Anantram, M P

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires.

  9. Large-scale whole genome sequencing identifies country-wide spread of an emerging G9P[8] rotavirus strain in Hungary, 2012.

    PubMed

    Dóró, Renáta; Mihalov-Kovács, Eszter; Marton, Szilvia; László, Brigitta; Deák, Judit; Jakab, Ferenc; Juhász, Ágnes; Kisfali, Péter; Martella, Vito; Melegh, Béla; Molnár, Péter; Sántha, Ildikó; Schneider, Ferenc; Bányai, Krisztián

    2014-12-01

    With the availability of rotavirus vaccines routine strain surveillance has been launched or continued in many countries worldwide. In this study relevant information is provided from Hungary in order to extend knowledge about circulating rotavirus strains. Direct sequencing of the RT-PCR products obtained by VP7 and VP4 genes specific primer sets was utilized as routine laboratory method. In addition we explored the advantage of random primed RT-PCR and semiconductor sequencing of the whole genome of selected strains. During the study year, 2012, we identified an increase in the prevalence of G9P[8] strains across the country. This genotype combination predominated in seven out of nine study sites (detection rates, 45-83%). In addition to G9P[8]s, epidemiologically major strains included genotypes G1P[8] (34.2%), G2P[4] (13.5%), and G4P[8] (7.4%), whereas unusual and rare strains were G3P[8] (1%), G2P[8] (0.5%), G1P[4] (0.2%), G3P[4] (0.2%), and G3P[9] (0.2%). Whole genome analysis of 125 Hungarian human rotaviruses identified nine major genotype constellations and uncovered both intra- and intergenogroup reassortment events in circulating strains. Intergenogroup reassortment resulted in several unusual genotype constellations, including mono-reassortant G1P[8] and G9P[8] strains whose genotype 1 (Wa-like) backbone gene constellations contained DS1-like NSP2 and VP3 genes, respectively, as well as, a putative bovine-feline G3P[9] reassortant strain. The conserved genomic constellations of epidemiologically major genotypes suggested the clonal spread of the re-emerging G9P[8] genotype and several co-circulating strains (e.g., G1P[8] and G2P[4]) in many study sites during 2012. Of interest, medically important G2P[4] strains carried bovine-like VP1 and VP6 genes in their genotype constellation. No evidence for vaccine associated selection, or, interaction between wild-type and vaccine strains was obtained. In conclusion, this study reports the reemergence of G9P[8

  10. Performance and applications of quench melt-growth bulk magnets

    NASA Astrophysics Data System (ADS)

    Nariki, S.; Teshima, H.; Morita, M.

    2016-03-01

    This paper describes the progress in quench melt-growth (QMG) bulk magnets, developed by the Nippon Steel & Sumitomo Metal Corporation, which consist of single crystalline RE123 phase and finely dispersed RE211 particles. QMG bulks can trap high magnetic fields. The field-trapping ability of QMG bulks is largely increased with an improvement in its J c and size, promising the realization of various applications such as flywheel energy-storage systems, ship motors, NMR/MRI spectrometers, wind-power generators and so on. Intensive research has revealed that the optimal RE element is different depending on application requirements. Gd-QMG bulk is the most promising material for several high-field engineering applications. The trapped magnetic field of Gd-QMG bulk 60 mm in diameter at 77 K is twice as large as that of Y-QMG bulk with a similar size due to its excellent J c properties. The large Gd-based QMG bulks up to 150 mm in diameter are fabricated by incorporating the RE compositional gradient method. Compact NMR/MRI spectrometers are one of the promising applications of bulk superconductors. Eu-QMG bulks are suitable for NMR magnets. NMR applications require extremely homogeneous magnetic fields. In the Eu-system, the small paramagnetic moment of a Eu ion compared to a Gd ion improves the field homogeneity in the bulk. For the application of current leads, Dy-based QMG is available by utilizing a low thermal conductivity.

  11. Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles

    SciTech Connect

    Qiang, J. B.; Zhang, W.; Xie, G. Q.; Inoue, A.

    2007-06-04

    Highly ductile Zr{sub 65}Al{sub 7.5}Cu{sub 27.5} bulk metallic glass (BMG) containing nanometer scaled fcc phase was obtained by copper mold casting. Room temperature compression tests revealed superior mechanical properties of the alloy: yielding stress of 1670 MPa, Young's modulus of 90 GPa, elastic strain of 2%, and especially a remarkable plasticity of over 50%. The marginal BMG is a useful model system to examine the nanocrystal coalescence model and the shear-transformation-zone model proposed for large scale plastic deformations of metallic glasses.

  12. Teaching Advanced SQL Skills: Text Bulk Loading

    ERIC Educational Resources Information Center

    Olsen, David; Hauser, Karina

    2007-01-01

    Studies show that advanced database skills are important for students to be prepared for today's highly competitive job market. A common task for database administrators is to insert a large amount of data into a database. This paper illustrates how an up-to-date, advanced database topic, namely bulk insert, can be incorporated into a database…

  13. Gold based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-08-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644K, a glass transition temperature of 401K, and a supercooled liquid region of 58K. The Vickers hardness of the alloys in this system is ˜350Hv, twice that of conventional 18-karat crystalline gold alloys. This combination of properties makes the alloys attractive for many applications including electronic, medical, dental, surface coating, and jewelry.

  14. Recent TB transmission, clustering and predictors of large clusters in London, 2010–2012: results from first 3 years of universal MIRU-VNTR strain typing

    PubMed Central

    Hamblion, Esther L; Le Menach, Arnaud; Anderson, Laura F; Lalor, Maeve K; Brown, Tim; Abubakar, Ibrahim; Anderson, Charlotte; Maguire, Helen; Anderson, Sarah R

    2016-01-01

    Background The incidence of TB has doubled in the last 20 years in London. A better understanding of risk groups for recent transmission is required to effectively target interventions. We investigated the molecular epidemiological characteristics of TB cases to estimate the proportion of cases due to recent transmission, and identify predictors for belonging to a cluster. Methods The study population included all culture-positive TB cases in London residents, notified between January 2010 and December 2012, strain typed using 24-loci multiple interspersed repetitive units-variable number tandem repeats. Multivariable logistic regression analysis was performed to assess the risk factors for clustering using sociodemographic and clinical characteristics of cases and for cluster size based on the characteristics of the first two cases. Results There were 10 147 cases of which 5728 (57%) were culture confirmed and 4790 isolates (84%) were typed. 2194 (46%) were clustered in 570 clusters, and the estimated proportion attributable to recent transmission was 34%. Clustered cases were more likely to be UK born, have pulmonary TB, a previous diagnosis, a history of substance abuse or alcohol abuse and imprisonment, be of white, Indian, black-African or Caribbean ethnicity. The time between notification of the first two cases was more likely to be <90 days in large clusters. Conclusions Up to a third of TB cases in London may be due to recent transmission. Resources should be directed to the timely investigation of clusters involving cases with risk factors, particularly those with a short period between the first two cases, to interrupt onward transmission of TB. PMID:27417280

  15. Microstructure Evolution of a Ti-Based Bulk Metallic Glass Composite During Deformation

    NASA Astrophysics Data System (ADS)

    Cui, J.; Li, J. S.; Wang, J.; Kou, H. C.

    2015-02-01

    The deformation behavior of Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite at room temperature was investigated by uniaxial compression tests. The results indicate that the composite exhibits excellent compressive properties at ambient temperature with high fracture strength (about 2425 MPa) and outstanding plasticity (about 23%). All the true stress-strain curves of Ti50Zr20Nb12Cu5Be13 display work-hardening effect with the same tendency which decreases with the increase of the strain. The dendrite morphology almost does not change before yielding, and there are only a few shear bands in the bulk metallic glass composite after yielding. More interestingly, the plastic deformation of dendrites can be observed evidently. Before fracture, the plastic deformation of dendrite becomes more severe, and the dendrite is stretched and more shear bands appear in the composite. Combined with the fracture surface, it can be concluded that the large step shape area, plastic dimple fracture, and shear bands are the evidences of an excellent plasticity in Ti50Zr20Nb12Cu5Be13 bulk metallic glass composite.

  16. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435.

    PubMed

    Watanabe, Shinya; Ito, Teruyo; Morimoto, Yuh; Takeuchi, Fumihiko; Hiramatsu, Keiichi

    2007-04-01

    Large-scale chromosomal inversions (455 to 535 kbp) or deletions (266 to 320 kbp) were found to accompany spontaneous loss of beta-lactam resistance during drug-free passage of the multiresistant Staphylococcus haemolyticus clinical strain JCSC1435. Identification and sequencing of the rearranged chromosomal loci revealed that ISSha1 of S. haemolyticus is responsible for the chromosome rearrangements.

  17. Generation of Pure Bulk Valley Current in Graphene

    NASA Astrophysics Data System (ADS)

    Jiang, Yongjin; Low, Tony; Chang, Kai; Katsnelson, Mikhail I.; Guinea, Francisco

    2013-01-01

    The generation of valley current is a fundamental goal in graphene valleytronics but no practical ways of its realization are known yet. We propose a workable scheme for the generation of bulk valley current in a graphene mechanical resonator through adiabatic cyclic deformations of the strains and a chemical potential in the suspended region. The accompanied strain gauge fields can break the spatial mirror symmetry of the problem within each of the two inequivalent valleys, leading to a finite valley current due to quantum pumping. An all-electrical measurement configuration is designed to detect the novel state with pure bulk valley currents.

  18. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  19. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  20. Bulk Topological Proximity Effect.

    PubMed

    Hsieh, Timothy H; Ishizuka, Hiroaki; Balents, Leon; Hughes, Taylor L

    2016-02-26

    Existing proximity effects stem from systems with a local order parameter, such as a local magnetic moment or a local superconducting pairing amplitude. Here, we demonstrate that despite lacking a local order parameter, topological phases also may give rise to a proximity effect of a distinctively inverted nature. We focus on a general construction in which a topological phase is extensively coupled to a second system, and we argue that, in many cases, the inverse topological order will be induced on the second system. To support our arguments, we rigorously establish this "bulk topological proximity effect" for all gapped free-fermion topological phases and representative integrable models of interacting topological phases. We present a terrace construction which illustrates the phenomenological consequences of this proximity effect. Finally, we discuss generalizations beyond our framework, including how intrinsic topological order may also exhibit this effect.

  1. Bulk muscles, loose cables

    PubMed Central

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  2. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  3. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  4. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  5. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed

  6. Identification of Stable Processing Parameters in Ti-6Al-4V Alloy from a Wide Temperature Range Across β Transus and a Large Strain Rate Range

    NASA Astrophysics Data System (ADS)

    Quan, Guo-Zheng; Wen, Hai-Rong; Pu, Shi-Ao; Zou, Zhen-Yu; Wu, Dong-Sen

    2015-11-01

    The hot workability of Ti-6Al-4V alloy was investigated according to the measured stress-strain data and their derived forms from a series of hot compressions at the temperatures of 1,023-1,323 K and strain rates of 0.01-10 s-1 with a height reduction of 60%. As the true strain was 0.3, 0.5, 0.7 and 0.9, respectively, the response maps of strain rate sensitivity (m-value), power dissipation efficiency (η-value) and instability parameter (ξ-value) to temperature and strain rate were developed on the basis of dynamic material model (DMM). Then the processing map was obtained by superimposition of the power dissipation and the instability maps. According to the processing map, the stable regions (η > 0 and ξ > 0) and unstable regions (η < 0 or ξ < 0) were clarified clearly. Further, the stable regions (temperatures of 1,198-1,248 K and strain rates of 0.01-0.1 s-1) with higher η value (> 0.3) corresponding to the ideal deformation mechanisms involving globularization and superplasticity were identified and recommended. The microstructures of the deformed samples were then observed by microscopy. And homogeneous microstructures with refined grains were found in the recommended parameter domains. The optimal working parameter domains identified by processing map and validated by microstructure observations contribute to the design in reasonable hot forming process of Ti-6Al-4V alloy without resorting to expensive and time-consuming trial-and-error methods.

  7. Bulk flow scaling for turbulent channel and pipe flows

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hussain, Fazle; She, Zhen-Su

    2016-08-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel vs. circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e., m = 4 for the channel and 5 for the pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant κ≈0.45 . Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  8. Large magnetic entropy change and adiabatic temperature rise of a Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass

    SciTech Connect

    Xia, L.; Tang, M. B.; Chan, K. C.; Dong, Y. D.

    2014-06-14

    Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} bulk metallic glass (BMG) was synthesized by minor Ni substitution for Co in the Gd{sub 55}Al{sub 20}Co{sub 25} BMG in which excellent glass forming ability (GFA) and magneto-caloric effect were reported previously. The Gd{sub 55}Al{sub 20}Ni{sub 20}Co{sub 5} amorphous rod has a similar GFA to the Gd{sub 55}Al{sub 20}Co{sub 25} BMG but exhibits better magnetic properties. The peak value of magnetic entropy change (−ΔS{sub m}{sup peak}) of the Gd{sub 55}Al{sub 20}Co{sub 20}Ni{sub 5} BMG is 9.8 Jkg{sup −1} K{sup −1}. The field dependence of −ΔS{sub m}{sup peak} follows a −ΔS{sub m}{sup peak}∝H{sup 0.85} relationship. The adiabatic temperature rise of the rod is 4.74 K under 5 T and is larger than of other BMGs previously reported. The improved magnetic properties were supposed to be induced by the enhanced interaction between 4f electron in the rare-earth and 3d electron in the transition metal elements by means of a minor Ni substitution for Co.

  9. Robust large-gap quantum spin Hall insulators in chemically decorated arsenene films

    NASA Astrophysics Data System (ADS)

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-03-01

    Based on first-principles calculations, we propose one new category of two-dimensional topological insulators (2D TIs) in chemically functionalized (-CH3 and -OH) arsenene films. The results show that the surface decorated arsenene (AsCH3 and AsOH) films are intrinsic 2D TIs with sizeable bulk gap. The bulk energy gaps are 0.184 eV, and 0.304 eV in AsCH3 and AsOH films, respectively. Such large bulk gaps make them suitable to realize quantum spin Hall effect in an experimentally accessible temperature regime. Topologically helical edge states in these systems are desirable for dissipationless transport. Moreover, we find that the topological properties in these systems are robust against mechanical deformation by exerting biaxial strain. These novel 2D TIs with large bulk gaps are potential candidate in future electronic devices with ultralow dissipation.

  10. Gravitational potential wells and the cosmic bulk flow

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  11. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors.

    PubMed

    Huang, Wenzhu; Zhang, Wentao; Li, Fang

    2015-04-01

    This Letter presents a static strain demodulation technique for FBG-FP sensors using a suppressed carrier LiNbO(3) (LN) optical single sideband (SSB-SC) modulator. A narrow-linewidth tunable laser source is generated by driving the modulator using a linear chirp signal. Then this tunable single-frequency laser is used to interrogate the FBG-FP sensors with the Pound-Drever-Hall (PDH) technique, which is beneficial to eliminate the influence of light intensity fluctuation of the modulator at different tuning frequencies. The static strain is demodulated by calculating the wavelength difference of the PDH signals between the sensing FBG-FP sensor and the reference FBG-FP sensor. As an experimental result using the modulator, the linearity (R2) of the time-frequency response increases from 0.989 to 0.997, and the frequency-swept range (dynamic range) increases from hundreds of MHz to several GHz compared with commercial PZT-tunable lasers. The high-linearity time-wavelength relationship of the modulator is beneficial for improving the strain measurement resolution, as it can solve the problem of the frequency-swept nonlinearity effectively. In the laboratory test, a 0.67 nanostrain static strain resolution, with a 6 GHz dynamic range, is demonstrated.

  12. Detection of a large RIII-derived chromosomal segment on chromosome 10 in the H-2 congenic strain B10.RIII(71NS)/Sn

    SciTech Connect

    Dong, P.; Hood, L.; McIndoe, R.A.

    1996-01-15

    This report describes the results of a study of the chromosomal localization of certain loci related to the susceptibility of specific mouse strains to collagen-induced arthritis, the biological model for rheumatoid arthritis. There were surprising results concerning the chromosomal mapping of mouse chromosome 10 and 17 and the backcrosses of mice involved. 7 refs., 1 fig., 2 tabs.

  13. Large Scale Genome Analysis Shows that the Epitopes for Broadly Cross-Reactive Antibodies Are Predominant in the Pandemic 2009 Influenza Virus A H1N1 Strain

    PubMed Central

    Lara-Ramírez, Edgar E.; Segura-Cabrera, Aldo; Salazar, Ma Isabel; Rodríguez-Pérez, Mario A.; Guo, Xianwu

    2013-01-01

    The past pandemic strain H1N1 (A (H1N1)pdm09) has now become a common component of current seasonal influenza viruses. It has changed the pre-existing immunity of the human population to succeeding infections. In the present study, a total of 14,210 distinct sequences downloaded from National Center for Biotechnology Information (NCBI) database were used for the analysis. The epitope compositions in A (H1N1)pdm09, classic seasonal strains, swine strains as well as highly virulent avian strain H5N1, identified with the aid of the Immune Epitope DataBase (IEDB), were compared at genomic level. The result showed that A (H1N1) pdm09 contains the 90% of B-cell epitopes for broadly cross-reactive antibodies (EBCA), which is in consonance with the recent reports on the experimental identification of new epitopes or antibodies for this virus and the binding tests with influenza virus protein HA of different subtypes. Our analysis supports that high proportional EBCA depends on the epitope pattern of A (H1N1)pdm09 virus. This study may be helpful for better understanding of A (H1N1)pdm09 and the production of new influenza vaccines. PMID:24257096

  14. Effects of gasket on coupled plastic flow and strain-induced phase transformations under high pressure and large torsion in a rotational diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Feng, Biao; Levitas, Valery I.

    2016-01-01

    Combined plastic flow and strain-induced phase transformations (PTs) under high pressure in a sample within a gasket subjected to three dimensional compression and torsion in a rotational diamond anvil cell (RDAC) are studied using a finite element approach. The results are obtained for the weaker, equal-strength, and stronger high-pressure phases in comparison with low-pressure phases. It is found that, due to the strong gasket, the pressure in the sample is relatively homogenous and the geometry of the transformed zones is mostly determined by heterogeneity in plastic flow. For the equal-strength phases, the PT rate is higher than for the weaker and stronger high-pressure phases. For the weaker high-pressure phase, transformation softening induces material instability and leads to strain and PT localization. For the stronger high-pressure phase, the PT is suppressed by strain hardening during PT. The effect of the kinetic parameter k that scales the PT rate in the strain-controlled kinetic equation is also examined. In comparison with a traditional diamond anvil cell without torsion, the PT progress is much faster in RDAC under the same maximum pressure in the sample. Finally, the gasket size and strength effects are discussed. For a shorter and weaker gasket, faster plastic flow in radial and thickness directions leads to faster PT kinetics in comparison with a longer and stronger gasket. The rates of PT and plastic flows are not very sensitive to the modest change in a gasket thickness. Multiple experimental results are reproduced and interpreted. Obtained results allow one to design the desired pressure-plastic strain loading program in the experiments for searching new phases, reducing PT pressure by plastic shear, extracting kinetic properties from experiments with heterogeneous fields, and controlling homogeneity of all fields and kinetics of PTs.

  15. Evidence for Bulk Ripplocations in Layered Solids.

    PubMed

    Gruber, Jacob; Lang, Andrew C; Griggs, Justin; Taheri, Mitra L; Tucker, Garritt J; Barsoum, Michel W

    2016-09-19

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  16. Evidence for Bulk Ripplocations in Layered Solids

    NASA Astrophysics Data System (ADS)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  17. Evidence for Bulk Ripplocations in Layered Solids.

    PubMed

    Gruber, Jacob; Lang, Andrew C; Griggs, Justin; Taheri, Mitra L; Tucker, Garritt J; Barsoum, Michel W

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  18. Evidence for Bulk Ripplocations in Layered Solids

    PubMed Central

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-01-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation–best described as an atomic scale ripple–was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain. PMID:27640724

  19. Piezoelectric field in strained GaAs.

    SciTech Connect

    Chow, Weng Wah; Wieczorek, Sebastian Maciej

    2005-11-01

    This report describes an investigation of the piezoelectric field in strained bulk GaAs. The bound charge distribution is calculated and suitable electrode configurations are proposed for (1) uniaxial and (2) biaxial strain. The screening of the piezoelectric field is studied for different impurity concentrations and sample lengths. Electric current due to the piezoelectric field is calculated for the cases of (1) fixed strain and (2) strain varying in time at a constant rate.

  20. Atomic-level study of BiFe O3 under epitaxial strain

    NASA Astrophysics Data System (ADS)

    Graf, M.; Sepliarsky, M.; Stachiotti, M. G.

    2016-08-01

    Structural and thermal properties of BiFe O3 under compressive epitaxial strain are investigated using a shell model fitted to first-principles calculations. We show that a model developed for the bulk describes properly the behavior of the compound as function of the strain, including the appearance of tetragonallike phase with a large c /a ratio. The obtained temperature-strain phase diagram reproduces several features observed experimentally in thin films. Molecular dynamic simulations show that morphotropic phase boundary separating the R -like and T -like regions is temperature independent but with different phases along the transition region. The microscopic analysis of the temperature-strain phase diagram emphasizes the relevance of the interplay between polarization, oxygen octahedron rotations, and strain.

  1. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    SciTech Connect

    Thorbeck, Ted; Zimmerman, Neil M.

    2015-08-15

    A long-standing mystery in the field of semiconductor quantum dots (QDs) is: Why are there so many unintentional dots (also known as disorder dots) which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  2. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel.

    PubMed

    Liu, X C; Zhang, H W; Lu, K

    2013-10-18

    Heavy plastic deformation may refine grains of metals and make them very strong. But the strain-induced refinement saturates at large strains, forming three-dimensional ultrafine-grained (3D UFG) structures with random orientations. Further refinement of this microstructure is limited because of the enhanced mobility of grain boundaries. Very-high-rate shear deformation with high strain gradients was applied in the top surface layer of bulk nickel, where a 2D nanometer-scale laminated structure was induced. The strongly textured nanolaminated structure (average lamellar thickness of 20 nanometers) with low-angle boundaries among the lamellae is ultrahard and ultrastable: It exhibits a hardness of 6.4 gigapascal--which is higher than any reported hardness of the UFG nickel--and a coarsening temperature of 40 kelvin above that in UFG nickel. PMID:24136963

  3. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  4. Characteristics of an electromagnetic levitation system using a bulk superconductor

    SciTech Connect

    Senba, A.; Kitahara, H.; Ohsaki, H.; Masada, E.

    1996-09-01

    It is beneficial to apply a high-Tc bulk superconductor as a large flux source to an electromagnetic levitation system, which needs large amounts of levitation force. The authors made an attractive-type electromagnetic levitation system using a hybrid magnet that mainly consisted of bulk superconductor and control coils to confirm the principle of the levitation, and obtained characteristics of its system by both experiment and numerical analysis with magnetic circuit calculation. This is applicable to maglev transportation systems.

  5. Effect of constitutive equations on qualitative behavior of solutions in the vicinity of bi-material interfaces at large plastic strains

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Goldstein, Robert

    2016-11-01

    The main objective of the present paper is to compare, by means of a problem permitting a closed-form solution, qualitative behavior of solutions based on three models of strain hardening plasticity and two models of viscoplasticity. The elastic portion of the strain tensor is neglected. The study focuses on the solution behavior near frictional interfaces. The solution behavior essentially depends on the model chosen. Such features of the solutions as nonexistence and singularity are emphasized. The key constitutive parameter that divides all the models considered into two groups is the saturation stress. In particular, under certain conditions no solution satisfying the regime of sticking exists for the models that involve the saturation stress. Qualitative comparison with numerous experimental observations is made. It is concluded that models with a saturation stress, including the models considered in the present paper, may be capable of describing the generation of a narrow layer of severe plastic deformation in the vicinity of frictional interfaces.

  6. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  7. Magnetocaloric materials: Strained relations

    NASA Astrophysics Data System (ADS)

    Nordblad, Per

    2013-01-01

    The magnetocaloric effect could form the basis for efficient refrigeration technologies. The finding that large and reversible magnetocaloric effects can be induced through a strain-mediated feedback mechanism may expand the range of available magnetocaloric materials.

  8. The mechanisms of plastic strain accommodation during the high strain rate collapse of corrugated Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G. M.; Stover, A. K.; Benson, D. J.; Nesterenko, V. F.

    2014-09-01

    The Thick-Walled Cylinder method was used on corrugated Ni-Al reactive laminates to examine how their mesostructures accommodate large strain, high strain rate plastic deformation and to examine the potential for intermetallic reaction initiation due to mechanical stimuli. Three main mesoscale mechanisms of large plastic strain accommodation were observed in addition to the bulk distributed uniform plastic flow: (a) the extrusion of wedge-shaped regions into the interior of the cylinder along planes of easy slip provided by angled layers, (b) the development of trans-layer shear bands in the layers with orientation close to radial and (c) the cooperative buckling of neighbouring layers perpendicular to the radius. These mesoscale mechanisms acted to block the development of periodic patterns of multiple, uniformly distributed, shear bands that have been observed in all previously examined solid homogeneous materials and granular materials. The high-strain plastic flow within the shear bands resulted in the dramatic elongation and fragmentation of Ni and Al layers. The quenched reaction between Al and Ni was observed inside these trans-layer shear bands and in a number of the interfacial extruded wedge-shaped regions. The reaction initiated in these spots did not ignite the bulk of the material, demonstrating that these mesostructured Ni-Al laminates are able to withstand high-strain, high-strain rate deformation without reaction. Numerical simulations of the explosively collapsed samples were performed using the digitized geometry of corrugated laminates and predictions of the final, deformed mesostructures agree with the observed deformation patterns.

  9. Crystal structure and electronic properties of bulk and thin film brownmillerite oxides.

    SciTech Connect

    Young, Joshua; Rondinelli, James M.

    2015-11-17

    The equilibrium structure and functional properties exhibited by brownmillerite oxides, a family of perovskitederived structures with alternating layers of BO6 octahedra and BO4 tetrahedra, viz., ordered arrangements of oxygen vacancies, is dependent on a variety of competing crystal-chemistry factors. We use electronic structure calculations to disentangle the complex interactions in two ferrates, Sr2Fe2O5 and Ca2Fe2O5, relating the stability of the equilibrium (strain-free) and thin film structures to both previously identified and herein newly proposed descriptors.We show that cation size and intralayer separation of the tetrahedral chains provide key contributions to the preferred ground state. We show the bulk ground-state structure is retained in the ferrates over a range of strain values; however, a change in the orientation of the tetrahedral chains, i.e., a perpendicular orientation of the vacancies relative to the substrate, is stabilized in the compressive region. The structure stability under strain is largely governed by maximizing the intraplane separation of the dipoles generated from rotations of the FeO4 tetrahedra. Lastly, we find that the electronic band gap is strongly influenced by strain, manifesting as an unanticipated asymmetric-vacancy alignment dependent response. This atomistic understanding establishes a practical route for the design of functional electronic materials in thin film geometries.

  10. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene

    NASA Astrophysics Data System (ADS)

    Kuang, Y. D.; Lindsay, L.; Shi, S. Q.; Zheng, G. P.

    2016-02-01

    Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size; however, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W m-1 K-1 at 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon at 84 μm, indicating the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, ~39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at ~7% strain and then decreases with further strain. In germanene and stanene, increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. These findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques for these freestanding samples and engineering of k by size and strain for applications of thermal management and thermoelectricity.Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under

  11. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  12. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 μm is determined as a more

  13. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  14. Silicon Bulk Micromachined Vibratory Gyroscope

    NASA Technical Reports Server (NTRS)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  15. Surface-Facet-Dependent Phonon Deformation Potential in Individual Strained Topological Insulator Bi2Se3 Nanoribbons.

    PubMed

    Yan, Yuan; Zhou, Xu; Jin, Han; Li, Cai-Zhen; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Liu, Kaihui; Yu, Dapeng; Dressel, Martin; Liao, Zhi-Min

    2015-10-27

    Strain is an important method to tune the properties of topological insulators. For example, compressive strain can induce superconductivity in Bi2Se3 bulk material. Topological insulator nanostructures are the superior candidates to utilize the unique surface states due to the large surface to volume ratio. Therefore, it is highly desirable to monitor the local strain effects in individual topological insulator nanostructures. Here, we report the systematical micro-Raman spectra of single strained Bi2Se3 nanoribbons with different thicknesses and different surface facets, where four optical modes are resolved in both Stokes and anti-Stokes Raman spectral lines. A striking anisotropy of the strain dependence is observed in the phonon frequency of strained Bi2Se3 nanoribbons grown along the ⟨112̅0⟩ direction. The frequencies of the in-plane Eg(2) and out-of-plane A1g(1) modes exhibit a nearly linear blue-shift against bending strain when the nanoribbon is bent along the ⟨112̅0⟩ direction with the curved {0001} surface. In this case, the phonon deformation potential of the Eg(2) phonon for 100 nm-thick Bi2Se3 nanoribbon is up to 0.94 cm(–1)/%, which is twice of that in Bi2Se3 bulk material (0.52 cm(–1)/%). Our results may be valuable for the strain modulation of individual topological insulator nanostructures.

  16. Induction detection of concealed bulk banknotes

    NASA Astrophysics Data System (ADS)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  17. The Soret effect in bulk metallic glasses

    SciTech Connect

    Liu, Yong; Liu, Chain T; George, Easo P; Wang, Xianzhen

    2007-01-01

    Compositional inhomogeneity induced by the Soret effect was studied in two Zr-based bulk metallic glasses (BMG): Zr50Cu50 and Zr50Cu40Al10 (at.%), and one Cu-based BMG: Cu60Zr30Ti10 (at.%), all of which were prepared by rapid solidification. The concentration of Cu increases from the surface to the interior, while the concentrations of Zr, Ti and Al decrease. The magnitude of the Soret effect is found to be highly dependant on sample size and interactions between the diffusing atoms in bulk metallic glasses. For the Zr50Cu50 alloy, a large sample size favors the Soret effect, because of the longer diffusion time it affords compared to a small sample. Further, the additions of Al and Ti in the Zr-Cu BMGs reduce the magnitude of the Soret effect by the formation of short-range order and/or inter-atomic clusters.

  18. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  19. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.

    PubMed

    Kuang, Y D; Lindsay, L; Shi, S Q; Zheng, G P

    2016-02-14

    Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size; however, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W m(-1) K(-1) at 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon at 84 μm, indicating the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, ∼39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at ∼7% strain and then decreases with further strain. In germanene and stanene, increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. These findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques for these freestanding samples and engineering of k by size and strain for applications of thermal management and thermoelectricity. PMID:26815838

  20. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene

    DOE PAGES

    Kuang, Youdi D.; Lindsay, Lucas R.; Shi, Sanqiang Q.; Zhen, Guangping P.

    2016-01-11

    Based on first principles calculations and self-consistent solution of linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size, in contrast, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W/m–1 K–1 by 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon by 84 m, indicatingmore » the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, –39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at –7% strain and then decreases with further strain. In germanene and stanene increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. As a result, these findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques of these freestanding samples and engineering k by size and strain for applications of thermal management and thermoelectricity.« less

  1. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene.

    PubMed

    Kuang, Y D; Lindsay, L; Shi, S Q; Zheng, G P

    2016-02-14

    Based on first principles calculations and self-consistent solution of the linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size; however, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W m(-1) K(-1) at 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon at 84 μm, indicating the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, ∼39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at ∼7% strain and then decreases with further strain. In germanene and stanene, increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. These findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques for these freestanding samples and engineering of k by size and strain for applications of thermal management and thermoelectricity.

  2. Recent Progress in HTS Bulk Technology and Performance at NSC

    NASA Astrophysics Data System (ADS)

    Teshima, Hidekazu; Morita, Mitsuru

    This paper describes the current status of large single-grained RE-Ba-Cu-O (where RE: Y or rare earth elements) bulk superconductors with excellent superconducting properties in Nippon Steel Corporation. Intensive research on RE-Ba-Cu-O revealed that the optimal RE element is different for application requirements. While Gd-Ba-Cu-O bulk superconductors are greatly attractive for almost all bulk applications, Eu-Ba-Cu-O is suitable for compact NMR/MRI and Dy-Ba-Cu-O for current leads. In addition, single-domain bulk superconductors have been grown up to 150 mm in diameter by incorporating the RE compositional gradient method. Furthermore, progress of machining technology enables to obtain various complicated shapes of bulk superconductors.

  3. Fabrication of Microdevices Using Bulk Ceramics of Lead Zirconate Titanate

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Konishi, Takahiro; Ide, Masato; Meng, Zhicong; Sugiyama, Susumu

    2005-09-01

    Piezoelectric microdevices using lead zirconate titanate (PZT) bulk ceramics are desired for use in actuators requiring a large driving force. We have designed a fabrication process for microdevices using PZT bulk ceramics together with Si single crystals. The key techniques of the process are the bonding of PZT bulk ceramics to Si single crystals, the thinning of bulk ceramics, and the micromachining of bulk ceramics. PZT ceramics were bonded to Si using a gold thin film as an intermediate layer. The tensile strength of the PZT-Si bonded wafers depended on the PZT poling process. A dicer or a KrF excimer laser was used to cut the PZT ceramics along the designed pattern. A PZT-Si diaphragm was fabricated as an example of a basic structure that can be used in a device such as a piezoelectric micropump.

  4. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3

    PubMed Central

    Ma, Yandong; Dai, Ying; Wei, Wei; Huang, Baibiao; Whangbo, Myung-Hwan

    2014-01-01

    Quantum spin Hall (QSH) insulators exhibit a bulk insulting gap and metallic edge states characterized by nontrivial topology. We investigated the electronic structure of an isolated layer of methyl substituted germanane GeCH3 by density functional calculations (DFT), and its dynamic stability by phonon dispersion calculations. Our results show that an isolated GeCH3 layer has no dynamic instability, and is a QSH insulator under reasonable strain. This QSH insulator has a large enough band gap (up to 108 meV) at 12% strain. The advantageous features of this QSH insulator for practical room-temperature applications are discussed. PMID:25465887

  5. Modelling of bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  6. Bulk viscosity and the conformal anomaly in the pion gas.

    PubMed

    Fernández-Fraile, D; Nicola, A Gómez

    2009-03-27

    We calculate the bulk viscosity of the massive pion gas within unitarized chiral perturbation theory. We obtain a low-temperature peak arising from explicit conformal breaking due to the pion mass and another peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We discuss the role of resonances, heavier states, and large-N_(c) counting.

  7. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains.

    PubMed

    Tree, J A; Richardson, C; Fooks, A R; Clegg, J C; Looby, D

    2001-05-14

    Different types of microcarriers were assessed for the large-scale culture of influenza virus in the Madin-Darby canine kidney (MDCK) cells. Both porous and solid carriers were examined. A higher titre of influenza A/PR8/34 virus was recovered from cultures using solid (1.3x10(9) PFU per ml) rather than porous carriers (4.0x10(8) PFU per ml). High titres of virus (1.0x10(9) PFU per ml) were also obtained from roller bottle cultures of MDCK cells and the traditional culture technique using embryonated hens' eggs (3.9x10(9) PFU per ml). We found that solid carriers composed of dextran with a positive charge are the most suitable carriers for the large-scale growth of influenza A virus in MDCK cells using serum-free media. PMID:11348709

  8. Ovarian tissue characterization using bulk optical properties

    NASA Astrophysics Data System (ADS)

    Tavakoli, B.; Xu, Y.; Zhu, Q.

    2013-03-01

    Ovarian cancer, the deadliest of all gynecologic cancers, is not often found in its early stages due to few symptoms and no reliable screening test. Optical imaging has a great potential to improve the ovarian cancer detection and diagnosis. In this study we have characterized the bulk optical properties of 26 ex-vivo human ovaries using a Diffuse Optical Tomography system. The quantitative values indicated that, in the postmenopausal group, malignant ovaries showed significantly lower scattering coefficient than normal ones. The scattering parameter is largely related to the collagen content that has shown a strong correlation with the cancer development.

  9. Unprecedented Melioidosis Cases in Northern Australia Caused by an Asian Burkholderia pseudomallei Strain Identified by Using Large-Scale Comparative Genomics

    PubMed Central

    Smith, Emma J.; MacHunter, Barbara; Harrington, Glenda; Theobald, Vanessa; Hall, Carina M.; Hornstra, Heidie M.; McRobb, Evan; Podin, Yuwana; Mayo, Mark; Sahl, Jason W.; Wagner, David M.; Keim, Paul; Kaestli, Mirjam; Currie, Bart J.

    2015-01-01

    Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia. PMID:26607593

  10. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems

    NASA Astrophysics Data System (ADS)

    Cao, Wenping; Li, Weili; Feng, Yu; Bai, Terigele; Qiao, Yulong; Hou, Yafei; Zhang, Tiandong; Yu, Yang; Fei, Weidong

    2016-05-01

    In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (Pmax) and negligible remanent polarization (Pr) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of Pmax-Pr (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications.

  11. Comparison of bulk- and surface-micromachined pressure sensors

    SciTech Connect

    Eaton, W.P.; Smith, J.H.; Monk, D.J.; O`Brien, G.; Miller, T.F.

    1998-08-01

    Two piezoresistive micromachined pressure sensors were compared: a commercially available bulk-micromachined (BM) pressure sensor and an experimental surface-micromachined (SM) pressure sensor. While the SM parts had significantly smaller die sizes, they were outperformed in most areas by the BM parts. This was due primarily to the smaller piezoresistive gauge factor in the polysilicon piezoresistors in the SM parts compared to the single crystal strain gauge used in the BM parts.

  12. Excellent soft-magnetic properties of (Fe,Co)-Mo-(P,C,B,Si) bulk glassy alloys with ductile deformation behavior

    NASA Astrophysics Data System (ADS)

    Li, Fushan; Shen, Baolong; Makino, Akihiro; Inoue, Akihisa

    2007-12-01

    High glass-forming ability and excellent soft-magnetic and mechanical properties were simultaneously achieved in (Fe,Co)-Mo-(P,C,B,Si) bulk glassy alloys (BGAs). The large BGA with a maximal diameter up to 6mm was formed by copper mold casting in the alloys, which is the largest size in FePC BGA system. The BGA with a proper content of Co exhibits superhigh initial effective permeability of over 360 90 at 1kHz and saturation magnetization of over 1.0T. The fracture strength of the BGA reaches 3370MPa. This bulk specimen undergoes a plastic strain exceeding 1%, which is the largest for such large ferromagnetic BGAs.

  13. Predictions for weak mechanical ignition of strain hardened granular explosive

    NASA Astrophysics Data System (ADS)

    Gonthier, Keith A.

    2004-04-01

    Predictions are given for the coupled bulk and grain scale response of initially unstressed, strain hardened granular HMX (C4H8N8O8) due to mild piston impact (impact speeds <100 m/s). Importantly, this response depends on the material's strain history as the stress necessary for bulk inelastic compaction (crush up) increases with the solid volume fraction. Although the quasistatic compaction behavior of HMX is well characterized, the influence of strain history on the bulk and grain scale dynamic loading response has largely been unexplored. In this study, the initial solid volume fraction of the unstressed material is varied over the range of φf⩽φ0⩽1, where φf=0.655 is its free pour value. A Hugoniot analysis for the bulk material identifies three dispersed compaction wave structures that depend on the impact speed and initial solid volume fraction, and are analogous to elastic-plastic waves in dynamically loaded solids. For increasing impact speed, these structures consist of (1) a single viscoelastic wave; (2) a leading viscoelastic wave and a trailing viscoplastic wave; and (3) a single viscoplastic wave. It is shown that the resulting localized heating near intergranular contact surfaces can trigger sustained combustion of the material. Predictions for the grain scale thermochemical response indicate that significant bulk viscoplastic heating is required for ignition of materials with φf⩽φ0⩽0.88, whereas bulk viscoelastic heating leads to the ignition of denser materials (φ0>0.91). Both viscoelastic and viscoplastic heating are predicted to be important for ignition of materials having 0.88⩽φ0⩽0.91. Within this transition range there is predicted a sharp increase in impact sensitivity as the power input needed for ignition rapidly decreases to a value close to that for the free pour density (0.40 MW/cm2) before increasing again. This result is important for assessing the impact sensitivity and deflagration-to-detonation transition of

  14. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    PubMed Central

    Lambert, P. K.; Hustedt, C. J.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Woll, A. R.; Purohit, P.; Weiss, J. T.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.

    2014-01-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼103–104 s−1 in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. PMID:25273733

  15. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ∼10{sup 3}–10{sup 4} s{sup −1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (∼40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  16. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    PubMed

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40 μs) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  17. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days

    PubMed Central

    Aubry, Fabien; Gould, Ernest A.; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines. PMID:27548676

  18. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  19. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix

    PubMed Central

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-01-01

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties. PMID:26625854

  20. Wind turbine generators using superconducting coils and bulks

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Terao, Y.; Sekino, M.

    2010-06-01

    Wind power generation has been expected as a promising clean energy source in the world. Recently, generation capacity produced by wind power generators has been growing with increasing size of windmills. However, huge nacelles result in extreme load for towers supporting them. We have focused on a wind power generator using superconducting wires and superconducting bulks to solve the problem. Large currents may flow through superconducting wires with zero DC resistance. Superconducting bulks are magnetic shielding materials. These enable reduction of size and weight of nacelles. In addition, large generators using these materials can generate an output power of 10 MW with very large power densities. This paper describes calculation of generated magnetic field and power generation characteristics using three-dimensional finite element method (FEM) analysis of the generators using high temperature superconducting coils and bulks.

  1. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  2. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently.

  3. Efficiency of bulk-heterojunction organic solar cells

    PubMed Central

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  4. Bulk viscosity of anisotropically expanding hot QCD plasma

    SciTech Connect

    Chandra, Vinod

    2011-11-01

    The bulk viscosity, {zeta} and its ratio with the shear viscosity, {zeta}/{eta} have been studied in an anisotropically expanding pure glue plasma in the presence of turbulent color fields. It has been shown that the anisotropy in the momentum distribution function of gluons, which has been determined from a linearized transport equation eventually leads to the bulk viscosity. For the isotropic (equilibrium) state, a recently proposed quasiparticle model of pure SU(3) lattice QCD equation of state has been employed where the interactions are encoded in the effective fugacity. It has been argued that the interactions present in the equation of state, significantly contribute to the bulk viscosity. Its ratio with the shear viscosity is significant even at 1.5T{sub c}. Thus, one needs to take in account the effects of the bulk viscosity while studying the hydrodynamic expansion of quark-gluon plasma in the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  5. Efficiency of bulk-heterojunction organic solar cells.

    PubMed

    Scharber, M C; Sariciftci, N S

    2013-12-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10-15%. A more general approach assuming device operation close to the Shockley-Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices.

  6. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  7. Strain evolution in Si substrate due to implantation of MeV ion observed by extremely asymmetric x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Emoto, T.; Ghatak, J.; Satyam, P. V.; Akimoto, K.

    2009-08-01

    We studied the strain introduced in a Si(111) substrate due to MeV ion implantation using extremely asymmetric x-ray diffraction and measured the rocking curves of asymmetrical 113 diffraction for the Si substrates implanted with a 1.5 MeV Au2+ ion at fluence values of 1×1013, 5×1013, and 1×1014/cm2. The measured curves consisted of a bulk peak and accompanying subpeak with an interference fringe. The positional relationship of the bulk peak to the subpeak and the intensity variation of those peaks with respect to the wavelengths of the x rays indicated that crystal lattices near the surface were strained; the lattice spacing of surface normal (111) planes near the surface was larger than that of the bulk. Detailed strain profiles along the depth direction were successfully estimated using a curve-fitting method based on Darwin's dynamical diffraction theory. Comparing the shapes of resultant strain profiles, we found that a strain evolution rapidly occurred within a depth of ˜300 nm at fluence values between 1×1013 and 5×1013/cm2. This indicates that formation of the complex defects progressed near the surface when the fluence value went beyond a critical value between 1×1013 and 5×1013/cm2 and the defects brought a large strain to the substrate.

  8. Bulk rheology and simulated episodic tremor and slip within a numerically-modeled block-dominated subduction melange

    NASA Astrophysics Data System (ADS)

    Webber, S.; Ellis, S. M.; Fagereng, A.

    2015-12-01

    We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of

  9. Large strain and pyroelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics prepared by partial oxalate route

    NASA Astrophysics Data System (ADS)

    Fang, Bijun; Qian, Kun; Chen, Zhihui; Yuan, Ningyi; Ding, Jianning; Zhao, Xiangyong; Xu, Haiqing; Luo, Haosu

    2014-06-01

    Partial oxalate route is an efficient method to synthesize complex perovskite ferroelectric ceramics, in which the synthesized (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) ceramics exhibit rather pure perovskite structure, densified microstructure morphology, and excellent dielectric and piezoelectric properties. The PMN-PT ceramics synthesized by the partial oxalate route exhibit rather symmetric strain-electric (S-E) field hysteresis loops, where the strain is large and far less than saturated at 2 kV/mm. The PMN-PT ceramics exhibit excellent pyroelectric properties, in which the values of the pyroelectric coefficient and the calculated pyroelectric figures of merit maintain almost stable over the frequency range of 100 Hz-2000 Hz, and vary differently depending on composition with the increase of temperature. Such investigations reveal that high-performance piezoelectric and pyroelectric devices can be prepared by the partial oxalate route in low production cost.

  10. Fracture in Bulk Amorphous Alloys

    SciTech Connect

    Horton, J.A.; Wright, J.L.

    1998-11-30

    The fracture behavior of a Zr-based bulk amorphous alloy, Zr-10 AI-5 Ti-17.9 Cu-14.6 Ni, was examined by transmission electron microscopy (TEM) and x-ray diffraction for any evidence of crystallization preceding crack propagation. No evidence for crystallization was found in shear bands in compression specimens or at the fracture surface in tensile specimens. In- situ TEM deformation experiments were performed to more closely examine actual crack tip regions. During the in-situ deformation experiment controlled crack growth occurred to the point where the specimen was approximately 20 {micro}m thick at which point uncontrolled crack growth occurred. No evidence of any crystallization was found at the crack tips or the crack flanks. Subsequent scanning microscope examination showed that the uncontrolled crack growth region exhibited ridges and veins that appeared to have resulted from melting. Performing the deformations, both bulk and in-situ TEM, at liquid nitrogen temperatures (LN{sub 2}) resulted in an increase in the amount of controlled crack growth. The surface roughness of the bulk regions fractured at LN{sub 2} temperatures corresponded with the roughness of the crack propagation observed during the in-situ TEM experiment, suggesting that the smooth-appearing room temperature fracture sur-faces may also be a result of localized melting.

  11. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  12. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  13. Zero-temperature bulk modulus of alpha-plutonium

    NASA Astrophysics Data System (ADS)

    Ledbetter, H.; Migliori, A.; Betts, J.; Harrington, S.; El-Khatib, S.

    2005-05-01

    Using resonant-ultrasound spectroscopy, we measured alpha-plutonium’s bulk modulus B between 298 and 18K . Fitting the measurements to an Einstein-oscillator-based function gave the zero-temperature bulk modulus Bo=70.9GPa . We compare our measurement with numerous previous measurements and with numerous theoretical estimates ranging from 41to227GPa . From 0to300K , B(T) is regular and smooth, evincing no phase transition (electronic, magnetic, structural). The bulk modulus decreases to 54.4GPa , about 30%, a very large change compared with typical materials. We attribute this large decrease to electron localization during warming. High-temperature dB/dT yields a Gruneisen parameter γ=5.1 , too high we believe because of temperature-induced electron localization. From the low-temperature elastic constants, averaged in the usual Debye ⟨v-3⟩ manner, we obtain a Debye temperature ΘD=205K .

  14. Perspectives on Bulk Locality in Gauge/Gravity Duality

    NASA Astrophysics Data System (ADS)

    Heemskerk, Idse J.

    2012-05-01

    In this thesis we consider the question of how local bulk physics emerges from the perspective of the boundary field theory in the supergravity limit of gauge/gravity duality. We take three different approaches to this problem, which in retrospect correspond to the different ways of thinking about quantum field theory in the bulk. In the S-matrix approach, we study crossing constraints on two-to-two scattering amplitudes, and provide evidence for the conjecture that a large N expansion and a hierarchy in the spectrum of operator dimension are sufficient conditions for a conformal theory to have a local bulk dual. In the path integral approach we attempt to connect the holographic and Wilsonian renormalization groups. An important role for multi-trace operators is discovered. Although locality remains unexplained, several parallels between holographic and Wilsonian renormalization are made and a physical picture of how the bulk dynamics might emerge from the perspective of the renormalization group is sketched. In the last part we consider the construction of the bulk field operators in terms of smeared boundary operators. Aside from extending the previous work on this construction in several directions, we formulate conditions for obtaining the field operators without already knowing the bulk dynamics and address some paradoxes related to a cat inside a black hole.

  15. Stress-corrosion fatigue-crack growth in a Zr-based bulk amorphousmetal

    SciTech Connect

    Schroeder, V.; Ritchie, R.O.

    2005-09-21

    Electrochemical and mechanical experiments were conducted to analyze the environmentally-influenced cracking behavior of a bulk amorphous metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5. This study was motivated by a scientific interest in mechanisms of fatigue-crack propagation in an amorphous metal, and by a practical interest in the use of this amorphous metal in applications that take advantage of its unique properties, including high specific strength, large elastic strains and low damping. The objective of the work was to determine the rate and mechanisms of subcritical crack growth in this metallic glass in an aggressive environment. Specifically, fatigue-crack propagation behavior was investigated at a range of stress intensities in air and aqueous salt solutions by examining the effects of loading cycle, stress-intensity range, solution concentration, anion identity, solution de-aeration, and bulk electrochemical potential. Results indicate that crack growth in aqueous solution in this alloy is driven by a stress-assisted anodic reaction at the crack tip. Rate-determining steps for such behavior are reasoned to be electrochemical, stress-dependent reaction at near-threshold levels, and mass transport at higher (steady-state) growth rates.

  16. Enhancing bulk superconductivity by engineering granular materials

    NASA Astrophysics Data System (ADS)

    Mayoh, James; García García, Antonio

    2014-03-01

    The quest for higher critical temperatures is one of the main driving forces in the field of superconductivity. Recent theoretical and experimental results indicate that quantum size effects in isolated nano-grains can boost superconductivity with respect to the bulk limit. Here we explore the optimal range of parameters that lead to an enhancement of the critical temperature in a large three dimensional array of these superconducting nano-grains by combining mean-field, semiclassical and percolation techniques. We identify a broad range of parameters for which the array critical temperature, TcArray, can be up to a few times greater than the non-granular bulk limit, Tc 0. This prediction, valid only for conventional superconductors, takes into account an experimentally realistic distribution of grain sizes in the array, charging effects, dissipation by quasiparticles and limitations related to the proliferation of thermal fluctuations for sufficiently small grains. For small resistances we find the transition is percolation driven. Whereas at larger resistances the transition occurs above the percolation threshold due to phase fluctuations. JM acknowledes support from an EPSRC Ph.D studentship, AMG acknowledges support from EPSRC, grant No. EP/I004637/1, FCT, grant PTDC/FIS/111348/2009 and a Marie Curie International Reintegration Grant PIRG07-GA-2010-268172.

  17. Bulk micromachined vibrating wheel rate gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Gao, Zhongyu; Chen, Zhiyong

    2001-10-01

    This paper presents a vibrating wheel rate gyroscope fabricated by bulk machining. The structure pattern is symmetrical and has differential detecting capacitor. It weakens the coupling between the driving and sensing modes, restrains the influence of linear acceleration. A so-called 'cosine beam' is designed to reduce the nonlinearity of large amplitude vibration. The structure is fabricated by a bulk process. It is called dissolve wafer process. This process is very simple and can get high aspect ratio. It is in favor of improving the performance of the sensing element. The circuit of the gyroscope consists of two parts: One is the exciting and control circuit, the other is read out circuit. The exciting and control circuit is implemented with phase lock and amplitude control loops. These are dual close control loops. High stability of vibrating amplitude can be achieved with the loops. It is helpful to improve the stability of scale factor. The read out circuit is implemented with a kind of passive switched demodulator circuit. The demodulated signal can be gained directly, which greatly reduce the circuit. The resolution of this circuit is high. The experimental result is given in this paper. In vacuum situation, the resolution of the gyroscope is about 0.03 degree(s)/s (with bandwidth 10Hz).

  18. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  19. Understanding of martensitic (TiCu)-based bulk metallic glasses through deformation behavior of a binary Ti{sub 50}Cu{sub 50} martensitic alloy

    SciTech Connect

    Kim, K. B.; Song, K. A.; Zhang, X. F.; Yi, S.

    2008-06-16

    A binary Ti{sub 50}Cu{sub 50} martensitic alloy having similar atomic clusters to (TiCu)-based martensitic bulk metallic glasses presents a large plastic strain of 18.04% with high fracture strength of 1705 MPa. Detailed microstructural investigations point out that martensite embedded in {gamma}-TiCu matrix is effective to dissipate localization of the shear stress thus leading to rotational propagation, interaction, and multiplication of the shear bands. Furthermore, the propagation of microcracks formed by local stress transition during deformation is hindered by the martensite.

  20. Time-resolved spectra of bulk titanium combustion

    NASA Technical Reports Server (NTRS)

    Runyan, C. C.; Moulder, J. C.; Clark, A. F.

    1974-01-01

    Some preliminary spectroscopic results of an investigation of the radiation from bulk specimens of burning titanium are presented. The use of larger stationary specimens is shown to have considerably eased some of the experimental difficulties associated with metal combustion research and to approximate more closely the conditions prevailing in large-scale accidental metal fires.

  1. Soil water sensor response to bulk electrical conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water monitoring using electromagnetic (EM) sensors can facilitate observations of water content at high temporal and spatial resolutions. These sensors measure soil dielectric permittivity (Ka) which is largely a function of volumetric water content. However, bulk electrical conductivity BEC c...

  2. Strain incompatibility and residual strains in ferroelectric single crystals

    PubMed Central

    Pramanick, A.; Jones, J. L.; Tutuncu, G.; Ghosh, D.; Stoica, A. D.; An, K.

    2012-01-01

    Residual strains in ferroelectrics are known to adversely affect the material properties by aggravating crack growth and fatigue degradation. The primary cause for residual strains is strain incompatibility between different microstructural entities. For example, it was shown in polycrystalline ferroelectrics that residual strains are caused due to incompatibility between the electric-field-induced strains in grains with different crystallographic orientations. However, similar characterization of cause-effect in multidomain ferroelectric single crystals is lacking. In this article, we report on the development of plastic residual strains in [111]-oriented domain engineered BaTiO3 single crystals. These internal strains are created due to strain incompatibility across 90° domain walls between the differently oriented domains. The average residual strains over a large crystal volume measured by in situ neutron diffraction is comparable to previous X-ray measurements of localized strains near domain boundaries, but are an order of magnitude lower than electric-field-induced residual strains in polycrystalline ferroelectrics. PMID:23226595

  3. Tunable thermoelectric transport in nanomeshes via elastic strain engineering

    SciTech Connect

    Piccione, Brian; Gianola, Daniel S.

    2015-03-16

    Recent experimental explorations of silicon nanomeshes have shown that the unique metastructures exhibit reduced thermal conductivity while preserving bulk electrical conductivity via feature sizes between relevant phonon and electron mean free paths, aiding in the continued promise that nanometer-scale engineering may further enhance thermoelectric behavior. Here, we introduce a strategy for tuning thermoelectric transport phenomena in semiconductor nanomeshes via heterogeneous elastic strain engineering, using silicon as a model material for demonstration of the concept. By combining analytical models for electron mobility in uniformly stressed silicon with finite element analysis of strained silicon nanomeshes in a lumped physical model, we show that the nonuniform and multiaxial strain fields defined by the nanomesh geometry give rise to spatially varying band shifts and warping, which in aggregate accelerate electron transport along directions of applied stress. This allows for global electrical conductivity and Seebeck enhancements beyond those of homogenous samples under equivalent far-field stresses, ultimately increasing thermoelectric power factor nearly 50% over unstrained samples. The proposed concept and structures—generic to a wide class of materials with large dynamic ranges of elastic strain in nanoscale volumes—may enable a new pathway for active and tunable control of transport properties relevant to waste heat scavenging and thermal management.

  4. Bulk Forming of Industrial Micro Components in Conventional Metals and Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Arentoft, M.; Paldan, N. A.; Eriksen, R. S.; Gastaldi, T.; Wert, J. A.; Eldrup, M.

    2007-04-01

    For production of micro components in large numbers, forging is an interesting and challenging process. The conventional metals like silver, steel and aluminum often require multi-step processes, but high productivity and increased strength justify the investment. As an alternative, bulk metallic glasses will at elevated temperatures behave like a highly viscous liquid, which can easily form even complicated geometries in 1 step. The strengths and limitations of forming the 2 materials are analyzed for a micro 3D component in a silver alloy and an Mg-Cu-Y BMG.

  5. Technique for Calculating the Bulk Modulus

    NASA Astrophysics Data System (ADS)

    Greshnyakov, V. A.; Belenkov, E. A.

    2014-10-01

    A comparative analysis of different techniques for calculating the bulk modulus of solid bodies has been performed. A new technique for calculating the bulk modulus is proposed which is especially adapted for theoretical calculations of the elastic properties of crystals. The new technique makes it possible to calculate the values of bulk moduli at high pressures with greater accuracy.

  6. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  7. An approach to predict free surface fracture in bulk forming

    NASA Astrophysics Data System (ADS)

    Ragab, A. R.

    2006-04-01

    This work presents a unified approach to predict surface strains at failure in bulk forming processes. The approach does not deal with a specific process but rather with prescribed strain and stress paths. The material to be processed is assumed to possess an initial void volume fraction that grows and colaesces with straining, ending by fracture. The predictions are based on a formulation for voided solids according to the Gurson-Tvergaard yield function adapted to include orthotropic anisotropy. The incident of fracture is characterized by shear band formation within the ligaments of the matrix material among spheroidal voids as described by McClintock. The results are represented by a straight line plot of tensile limit strain versus the compressive strain for different loading paths. These limit curves are shown to be dependent on the initial void fraction, hardening, and anisotropy of the matrix matrial. Alloys with lower initial void fractions as well as those of higher hardening show better workability. The model is applied to predict bulk formability curves for steels AISI 1040 and 1045, Aluminum AI 7075-T6, and copper, based on the proper selection of micromechanical parameters for these alloys. The validity of the model is ensured through fairly favorable comparison with experimentally determined limit curves. The current failure conditions are suitable to predict the experimental dual slope fracture line that may exist for some alloys such as cold-drawn steel AISI 1045 and aluminum 2024-T6 by considering two mechanisms of failure: internal necking in the ligament material between voids, followed by transition to shear band formation.

  8. Non-destructive magneto-strain analysis of YB2Cu3Oy superconducting magnets using neutron diffraction in the time-of-flight mode

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Muralidhar, M.; Suzuki, K.; Ishihara, A.; Fukumoto, Y.; Osamura, K.; Machiya, S.; Harjo, S.

    2012-09-01

    In general, neutron diffraction allows a non-destructive investigation of bulk samples. In this study, a magneto-strain analysis of the trapped field in YB2Cu3Oy "YBCO" superconducting bulks was carried out at 45 K using neutron diffraction time-of-flight (TOF) method. The TAKUMI TOF neutron diffractometer offers unique advantages, including accommodation of large objectives, control of the experimental set-up using a 4-axial goniometer (XYZθ), and a positional resolution of 0.01 mm allowing an accurate sample positioning. As a result, the lattice strain in the YB2Cu3Oy material could be estimated in both radial and hoop directions by estimating the difference of plane spacing with/without the trapped magnetic field. The results indicate that the samples with a low trapped field values have smaller magnetic strain than those with a high trapped field. Further, the strain in the hoop direction is higher than that in the radial direction. The present results indicate that neutron diffraction measurements are an effective method for evaluating the bulk residual strains in a non-destructive manner.

  9. High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces.

    PubMed

    Zheng, Shijian; Beyerlein, Irene J; Carpenter, John S; Kang, Keonwook; Wang, Jian; Han, Weizhong; Mara, Nathan A

    2013-01-01

    Bulk nanostructured metals can attribute both exceptional strength and poor thermal stability to high interfacial content, making it a challenge to utilize them in high-temperature environments. Here we report that a bulk two-phase bimetal nanocomposite synthesised via severe plastic deformation uniquely possesses simultaneous high-strength and high thermal stability. For a bimetal spacing of 10 nm, this composite achieves an order of magnitude increase in hardness of 4.13 GPa over its constituents and maintains it (4.07 GPa), even after annealing at 500 °C for 1 h. It owes this extraordinary property to an atomically well-ordered bimaterial interface that results from twin-induced crystal reorientation, persists after extreme strains and prevails over the entire bulk. This discovery proves that interfaces can be designed within bulk nanostructured composites to radically outperform previously prepared bulk nanocrystalline materials, with respect to both mechanical and thermal stability. PMID:23591863

  10. Prediction of the Viscoelastic Bulk Modulus

    NASA Astrophysics Data System (ADS)

    Guo, Jiaxi; Simon, Sindee

    2010-03-01

    The bulk and shear viscoelastic responses for several materials appear to arise from the same molecular mechanisms at short times, i.e., Andrade creep where the KWW beta parameter is approximately 0.3. If this is indeed the case, prediction and placement of the bulk viscoelastic response can be made simply by knowing the limiting elastic and rubbery bulk moduli and the viscoelastic shear response. The proposed methodology, which uses only easily measured functions, is considerably less time- and labor-intensive than direct measurement of the viscoelastic bulk modulus. Here we investigate this hypothesis and compare the calculated viscoelastic bulk responses for several materials to existing data in the literature.

  11. Microwave disinfestation of bulk timber.

    PubMed

    Plaza, Pedro Jose; Zona, Angela Tatiana; Sanchís, Raul; Balbastre, Juan Vicente; Martínez, Antonio; Muñoz, Eva Maria; Gordillo, Javier; de los Reyes, Elías

    2007-01-01

    In this paper a complete microwave system for bulk timber disinfestation is developed and tested. A commercial FEM simulator has been used to design the applicator, looking for structures providing uniform field distributions, which is a factor of capital relevance for a successful treatment. Special attention has also been given to the reduction of electromagnetic energy leakage. A dual polarized cylindrical applicator with a corrugated flange has been designed. The applicator has also been numerically tested emulating some real-life operating conditions. A prototype has been built using two low-cost magnetrons of 900 W and high power coaxial cables and it has been tested inside a shielded semianechoic chamber. The tests have been carried out in three stages: validation of the applicator design, determination of the lethal dosage as a function of the insect position and the maximum wood temperature allowed and statement of safe operation procedures. PMID:18351001

  12. New fermions in the bulk

    NASA Astrophysics Data System (ADS)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  13. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  14. Strain effects on thermal conductivity of nanostructured silicon by Raman piezothermography

    NASA Astrophysics Data System (ADS)

    Murphy, Kathryn Fay

    A fundamental problem facing the rational design of materials is the independent control of electrical and thermal properties, with implications for a wide range of applications including thermoelectrics, solar thermal power generation, and thermal logic. One strategy for controlling transport involves manipulating the length scales which affect it. For instance, Si thermal conductivity may be reduced with relatively little change in electrical properties when the confining dimension (e.g., nanowire diameter) is small enough that heat carriers are preferentially scattered at free surfaces. However, tailoring properties by geometry or chemistry alone does not allow for on-demand modification, precluding applications which require responsive behavior such as thermal transistors, thermoelectric modules which adapt to their environmental temperature, or switchable thermal barriers. One means of tuning transport is elastic strain, which has long been exploited to improve carrier mobility in electronic devices. Uniform strain is predicted to affect thermal conductivity primarily via changes in heat capacity and phonon velocity, and crystalline defects such as vacancies or dislocations---which induce large strain gradients---should lower thermal conductivity by decreasing the phonon mean free path. Nanowires are ideal for the study of strain and defect effects due to the availability of a range of elastic strain an order of magnitude larger than in bulk and due to their small volumes. However, experimental measurements of strain-mediated thermal conductivity in nanowires have been limited due to the complexity of simultaneously applying and measuring stress or strain, heating, and measuring temperature. In this dissertation, we measure strain effects on thermal conductivity using a novel non-contact approach which we name Raman piezothermography. We apply a uniaxial load to individual Si nanowires, Si thin films, and Si micromeshes under a confocal mu-Raman microscope and

  15. A tale of two mechanisms. Strain-softening versus strain-hardening in single crystals under small stressed volumes

    DOE PAGES

    Bei, Hongbin; Xia, Yuzhi; Barabash, Rozaliya; Gao, Y. F.

    2015-08-10

    Pre-straining defect-free single crystals will introduce heterogeneous dislocation nucleation sources that reduce the measured strength from the theoretical value, while pre-straining bulk samples will lead to strain hardening. Their competition is investigated by nanoindentation pop-in tests on variously pre-strained Mo single crystals with several indenter radii (~micrometer). Pre-straining primarily shifts deformation mechanism from homogeneous dislocation nucleation to a stochastic behavior, while strain hardening plays a secondary role, as summarized in a master plot of pop-in strength versus normalized indenter radius.

  16. High temperature static strain gage development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Bailey, R. S.; Grant, H. P.; Anderson, W. L.; Przybyszewski, J. S.

    1991-01-01

    Final results are presented from a program to develop a thin film static strain gage for use on the blades and vanes of running, test stand gas turbine engines with goals of an 3 x 3 mm gage area and total errors of less than 10 pct. of + or - 2,000 microstrain after 50 hrs at 1250 K. Pd containing 13 Wt. pct. Cr was previously identified as a new strain sensor alloy that appeared to be potentially usable to 1250 K. Subsequently, it was discovered, in contrast with its behavior in bulk, that Pd-13Cr suffered from oxidation attack when prepared as a 4.5 micron thick thin film. Continuing problems with electrical leakage to the substrate and the inability of sputtered alumina overcoats to prevent oxidation led to the discovery that sputtered alumina contains appreciable amounts of entrapped argon. After the argon has been exsolved by heating to elevated temperatures, the alumina films undergo a linear shrinkage of about 2 pct. resulting in formation of cracks. These problems can be largely overcome by sputtering the alumina with the substrate heated to 870 K. With 2 micron thick hot sputtered alumina insulation and overcoat films, total 50 hr drifts of about 100 microstrain (2 tests) and about 500 microstrain (1 test) were observed at 1000 and 1100 K, respectively. Results of tests on complete strain gage systems on constant moment bend bars with Pd temperature compensation grids revealed that oxidation of the Pd grid was a major problem even when the grid was overcoated with a hot or cold sputtered alumina overcoat.

  17. Low-Temperature Cationic Rearrangement in a Bulk Metal Oxide.

    PubMed

    Li, Man-Rong; Retuerto, Maria; Stephens, Peter W; Croft, Mark; Sheptyakov, Denis; Pomjakushin, Vladimir; Deng, Zheng; Akamatsu, Hirofumi; Gopalan, Venkatraman; Sánchez-Benítez, Javier; Saouma, Felix O; Jang, Joon I; Walker, David; Greenblatt, Martha

    2016-08-16

    Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures. PMID:27203790

  18. Low-Temperature Cationic Rearrangement in a Bulk Metal Oxide.

    PubMed

    Li, Man-Rong; Retuerto, Maria; Stephens, Peter W; Croft, Mark; Sheptyakov, Denis; Pomjakushin, Vladimir; Deng, Zheng; Akamatsu, Hirofumi; Gopalan, Venkatraman; Sánchez-Benítez, Javier; Saouma, Felix O; Jang, Joon I; Walker, David; Greenblatt, Martha

    2016-08-16

    Cationic rearrangement is a compelling strategy for producing desirable physical properties by atomic-scale manipulation. However, activating ionic diffusion typically requires high temperature, and in some cases also high pressure in bulk oxide materials. Herein, we present the cationic rearrangement in bulk Mn2 FeMoO6 at unparalleled low temperatures of 150-300 (o) C. The irreversible ionic motion at ambient pressure, as evidenced by real-time powder synchrotron X-ray and neutron diffraction, and second harmonic generation, leads to a transition from a Ni3 TeO6 -type to an ordered-ilmenite structure, and dramatic changes of the electrical and magnetic properties. This work demonstrates a remarkable cationic rearrangement, with corresponding large changes in the physical properties in a bulk oxide at unprecedented low temperatures.

  19. Composite superconducting bulks for efficient heat dissipation during pulse magnetization

    NASA Astrophysics Data System (ADS)

    Baskys, A.; Patel, A.; Hopkins, S.; Kenfaui, D.; Chaud, X.; Zhang, M.; Glowacki, B. A.

    2014-05-01

    Pulsed field magnetization is the most practical method of magnetizing a (RE)BCO bulk, however large heat generation limits the trapped field to significantly less than possible using field cooling. Modelling has been used to show that effective heat removal from the bulk interior, using embedded metallic structures, can enhance trapped field by increasing thermal stability. The reported results are for experimental pulsed magnetization of a thin walled YBCO sample with 55 vertical holes embedded with high thermal conductivity wires. A specially designed copper coldhead was used to increase the trapped field and flux of the perforated YBCO by about 12% at 35 K using a multi-pulse magnetization. Moreover, by filling the perforations with copper, the central trapped field was enhanced by 15% after a single-pulse at 35 K. 3D FEM computer model of a perforated YBCO bulk was also developed showing localised heating effects around the perforations during pulse magnetisation.

  20. Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses

    SciTech Connect

    Stoica, Alexandru Dan; Wang, Xun-Li; Lu, Z.P.; Clausen, Bjorn; Brown, Donald

    2012-01-01

    We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.

  1. Enhancing polarization by electrode-controlled strain relaxation in PbTiO{sub 3} heterostructures

    SciTech Connect

    Peräntie, J. Stratulat, M. S.; Hannu, J.; Jantunen, H.; Tyunina, M.

    2016-01-01

    A large remanent polarization close to theoretical value 80 μC/cm{sup 2} of bulk PbTiO{sub 3} is achieved in epitaxial heterostructures of (120–600)-nm-thick PbTiO{sub 3} films grown by pulsed laser deposition on (001) SrTiO{sub 3} substrate using a 100-nm-thick SrRuO{sub 3} bottom electrode layer. The heterostructures employing a 50-nm-thick electrode exhibit a significantly smaller polarization of ≤60 μC/cm{sup 2}. A detailed x-ray diffraction analysis of the crystal structure allows for relating this large polarization to electrode-controlled relaxation of epitaxial strain in PbTiO{sub 3}. Based on the observed results, we anticipate that the electrode-promoted strain relaxation can be used to enhance polarization in other epitaxial ferroelectric films.

  2. Magnetic lenses using different MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Choi, S.; Matsumoto, S.; Teranishi, R.; Giunchi, G.; Figini Albisetti, A.; Kiyoshi, T.

    2012-02-01

    A magnetic lens allows the concentration of magnetic fields using the diamagnetism of superconductors. The important features of the magnetic lens are a tapered inner diameter from which the magnetic flux is extruded and a slit to suppress the circumference current that shields the magnetic flux. This concept was experimentally confirmed through the use of GdBaCuO bulks and a stack of NbTi/Nb/Cu sheets. We refer to this arrangement as a magnetic lens. The Mg-reactive liquid infiltration (Mg-RLI) process developed by Edison SpA is suitable for the production of large and high-density MgB2 bulks. Three MgB2 bulk magnetic lenses, each with a different microstructure, were fabricated following the Mg-RLI process. The properties of the MgB2 magnetic lenses were measured in a cryocooler system as well as in liquid helium. The results confirmed that the MgB2 bulk magnetic lenses could concentrate a magnetic field and that their field concentration properties were greatly affected by the temperature and the external field. In addition, the microstructure of the MgB2 bulk also had an influence on the magnetic properties at different external fields. The results indicated that the MgB2 lens might be utilized as a field amplifier in intermediate fields.

  3. Dark goo: bulk viscosity as an alternative to dark energy

    SciTech Connect

    Gagnon, Jean-Sebastien; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch

    2011-09-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an 'effective' pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.

  4. Molecular identification and thermoresistance to boiling of Nocardia farcinica and Nocardia cyriacigeorgica from bovine bulk tank milk

    PubMed Central

    Condas, L.A.Z.; Ribeiro, M.G.; Gonoi, T.; Matsuzawa, T.; Yazawa, K.; Motta, R.G.; Franco, M.M.J.; Listoni, F.J.P.

    2012-01-01

    Two strains of Nocardia spp. were isolated from bovine milk of two individual bulk tank. Molecular identification classified the strains as Nocardia farcinica and Nocardia cyriacigeorgica. The thermorresistance to boiling of the isolates was carried out and was observed bacterial growth after boiling. Our findings indicate the potential risk of pathogen transmission to humans through contaminated milk with Nocardia spp. PMID:24031926

  5. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  6. Pressure derivatives of the bulk modulus

    NASA Astrophysics Data System (ADS)

    Hofmeister, A. M.

    1991-12-01

    Simple relations between the first (or second) pressure derivative of the bulk modulus and first (or second) thermal Grüneisen parameter γTh (or qTh) are derived from equations that relate KT(P) to vibrational frequencies Vi as a function of pressure for cubic structures or those that have only one nearest neighbor distance, by assuming that the mode Grüneisen parameters, γi = -∂ ln vi/∂ ln V, are approximately equal. The free volume equation results, which holds within experimental uncertainties for about 70% for solids meeting the symmetry requirements. Agreement is poor for compounds with the rutile structure, which have the largest range of γi observed. Another result is a three-parameter equation of state, KoK″o = (5/3 - K'o)2 - (5/3 - K'o)qTh(0) - (K'o - 1)2. All available experimental determinations of K″o are bracketed by the spectroscopic limits for qTh. Use of the average value of zero for qTh (or qTh calculated from other thermodynamic parameters) gives the proper sign for K″o and nearly the same values as experiment, suggesting that this approximate equation can be used predictively. The equations involving K″o and K'o are probably valid for any structure, if the γi are roughly equal, although this most likely occurs for solids that compress nearly isotropically. The new formula, with qTh of zero, give values similar to that obtained from the Vinet-Ferrante-Rose-Smith equation at low K'o gives the same values as the Birch-Murnaghan (third-order finite strain) equation near K'o of 4, and gives nearly equal values as the Grover-Getting-Kennedy equation of state at high K'o. Physically reasonable positive values of K″o as K'o approaches zero are obtained only from the new equation of state and that of Vinet et al. Comparison of the new equation of state with third-order finite strain suggests that the latter is also likely to be incorrect at high K'o and thus should be cautiously applied to V(P) for liquids.

  7. Strain localisation in two-phase materials: Insights from centimetre-scale numerical models and laboratory experiments with ice mixtures

    NASA Astrophysics Data System (ADS)

    Brune, S.; Czaplinska, D.; Piazolo, S.; Wilson, C. J. L.; Quinteros, J.

    2015-12-01

    Most numerical models of lithosphere deformation approximate the rheological behavior of polymineralic crust and mantle via single-phase flow laws assuming that the weakest or most abundant material controls the bulk rheology. However, previous work showed that in two phase aggregates the bulk viscosity of the dominant phase is significantly affected by second phase particles. Here we combine two unconventional approaches to quantify the relative impact of such particles on strain localisation and bulk response: (1) We run centimetre-scale numerical models of a matrix with inclusions using the elasto-visco-plastic FEM software Slim3D. Recrystallization-induced weakening processes in the matrix, i.e. grain boundary migration and nucleation, are approximated using strain-dependent viscous softening. (2) We conduct high T, constant strain rate deformation experiments with a matrix of deuterated ice (D2O) containing rigid or soft particles, i.e. calcite and graphite, respectively. Ice is a valuable rock analogue, as it replicates the microstructural and fabric changes as well as the non-Newtonian response of other anisotropic minerals, such as olivine and quartz. The laboratory experiments exhibit two types of rheological behaviour: stress partitioning between ice and particles and strain localization in rheologically softer material. To quantify the contribution of both response types, we calibrate numerical simulations with data derived from laboratory experiments. The strain rate, stress, and viscosity evolution of the numerical experiment provides insight to non-linear strain localization processes, particle motion and time-dependent stress concentrations during the deformation. We fit the parameters of the viscous softening function and thereby quantify the amount of additional weakening in the matrix of ice mixtures in comparison to pure ice, which allows to constrain softening parameters used in large-scale simulations of glacial flow and lithosphere deformation.

  8. Braneworld gravity in a symmetric space bulk

    NASA Astrophysics Data System (ADS)

    Yilmaz, Nejat T.

    2010-07-01

    By considering the p-brane motion in a G/K symmetric space bulk we identify the G-invariant bulk metric in the solvable Lie algebra gauge of the brane action. After calculating the Levi-Civita connection of this bulk metric we use it in the Gauss equation to compute the braneworld curvature in terms of the bulk coordinates. Finally, by making use of the Gauss equation in the braneworld Einstein equation we present a geometrical method of implementing the first fundamental form in the gravitating brane dynamics for the specially chosen symmetric space bulk case leading to an Einstein equation expressed solely in terms of the bulk coordinates of the braneworld.

  9. Aspects of silicon bulk lifetimes

    NASA Technical Reports Server (NTRS)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  10. Relative entropy equals bulk relative entropy

    DOE PAGES

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  11. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  12. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  13. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  14. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  15. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The...

  16. Effect of rare earth substitution in cobalt ferrite bulk materials

    NASA Astrophysics Data System (ADS)

    Bulai, G.; Diamandescu, L.; Dumitru, I.; Gurlui, S.; Feder, M.; Caltun, O. F.

    2015-09-01

    The study was focused on the influence of small amounts of rare earth (RE=La, Ce, Sm, Gd, Dy, Ho, Er, Yb) addition on the microstructure, phase content and magnetic properties of cobalt ferrite bulk materials. The X-Ray diffraction measurements confirmed the formation of the spinel structure but also the presence of secondary phases of RE oxides or orthoferrite in small percentages (up to 3%). Density measurements obtained by Archimedes method revealed a ~1 g cm-3 decrease for the RE doped cobalt ferrite samples compared with stoichiometric one. Both the Mössbauer and Fourier Transform Infrared Spectrocopy analysis results confirmed the formation of the spinel phase. The saturation magnetization and coercive field values of the doped samples obtained by Vibrating Sample Magnetometry were close to those of the pure cobalt ferrite. For magnetostrictive property studies the samples were analyzed using the strain gauge method. Higher maximum magnetostriction coefficients were found for the Ho, Ce, Sm and Yb doped cobalt ferrite bulk materials as related to the stoichiometric CoFe2O4 sample. Moreover, improved strain derivative was observed for these samples but at higher magnetic fields due to the low increase of the coercive field values for doped samples.

  17. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  18. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  19. Bulk from bi-locals in Thermo field CFT

    DOE PAGES

    Jevicki, Antal; Yoon, Junggi

    2016-02-15

    For this research, we study the Large N dynamics of the O(N) field theory in the Thermo field dynamics approach. The question of recovering the high temperature phase and the corresponding O(N) gauging is clarified. Through the associated bi-local representation we discuss the emergent bulk space-time and construction of (Higher spin) fields. In addition, we note the presence of ‘evanescent’ modes in this construction and also the mixing of spins at finite temperature.

  20. Hard and fragile holmium-based bulk metallic glasses

    SciTech Connect

    Luo, Q.; Zhao, D.Q.; Pan, M.X.; Wang, R.J.; Wang, W.H.

    2006-05-01

    A family of holmium-based bulk metallic glasses (BMGs) with high glass-forming ability is obtained. The Ho-based BMGs exhibit much larger elastic moduli and high thermal stability in contrast to other known rare-earth (RE)-based BMGs. In particular, the BMGs show a large value of fragility. It is expected that the hard RE-based glasses with high glass-forming ability and fragile behaviors make them the appropriate candidate for glass transition study.

  1. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  2. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  3. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  4. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  5. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  6. Temporal soil bulk density following tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...

  7. 75 FR 34682 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... SECURITY Coast Guard 46 CFR Parts 97 and 148 RIN 1625-AB47 Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code; Correction AGENCY: Coast Guard, DHS... proposed rule published in the Federal Register on June 17, 2010, entitled ``Bulk Solid Hazardous...

  8. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...), 1974, as amended, that carry bulk solid cargoes other than grain. The final rule (75 FR 64586) allows... SECURITY Coast Guard 46 CFR Part 148 RIN 1625-AB47 Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code AGENCY: Coast Guard, DHS. ACTION: Rule;...

  9. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk.

    PubMed

    Decimo, Marilù; Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2014-10-01

    Eighty psychrotrophic bacterial strains, isolated from different northwest Italian bulk tank milks destined for Grana Padano cheese production, were identified by 16S rRNA gene amplification and partial sequence analysis of the rpoB gene. Pseudomonas spp. were the most commonly occurring contaminants, P. fluorescens being the predominant isolated species, along with Enterobacteriaceae, primarily Serratia marcescens. RAPD-PCR was used to study genetic variability and distinguish closely related strains; a high degree of genetic heterogeneity among the strains was highlighted. All the strains were characterized for their ability to produce proteases, lipases and lecithinases at different temperatures (7, 22, and 30 °C). Forty-one of the psychrotrophic strains were positive for all the enzymatic activities. The highest number of positive strains for all the incubation temperatures was found for lipolytic activity (59), followed by proteolytic (31) and lecithinase (28) activities, and the enzymatic traits varied among the Pseudomonas and Enterobacteriaceae strains. The proteolytic psychrotrophic strains were screened for the presence of the aprX gene, coding for a heat-resistant metalloprotease in Pseudomonas spp. The aprX gene was detected in 19 of 63 Pseudomonas strains, and was widespread in the P. fluorescens strains (14/19). PRATICAL APPLICATION: The study provides new data on the enzymatic activity of Gram-negative psychrotrophic bacteria, useful in developing strategies to control the proteo-lipolytic spoilage of raw and processed milk that causes gelation, off-flavors, and loss of sensory quality and shelf life. PMID:25224662

  10. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk.

    PubMed

    Decimo, Marilù; Morandi, Stefano; Silvetti, Tiziana; Brasca, Milena

    2014-10-01

    Eighty psychrotrophic bacterial strains, isolated from different northwest Italian bulk tank milks destined for Grana Padano cheese production, were identified by 16S rRNA gene amplification and partial sequence analysis of the rpoB gene. Pseudomonas spp. were the most commonly occurring contaminants, P. fluorescens being the predominant isolated species, along with Enterobacteriaceae, primarily Serratia marcescens. RAPD-PCR was used to study genetic variability and distinguish closely related strains; a high degree of genetic heterogeneity among the strains was highlighted. All the strains were characterized for their ability to produce proteases, lipases and lecithinases at different temperatures (7, 22, and 30 °C). Forty-one of the psychrotrophic strains were positive for all the enzymatic activities. The highest number of positive strains for all the incubation temperatures was found for lipolytic activity (59), followed by proteolytic (31) and lecithinase (28) activities, and the enzymatic traits varied among the Pseudomonas and Enterobacteriaceae strains. The proteolytic psychrotrophic strains were screened for the presence of the aprX gene, coding for a heat-resistant metalloprotease in Pseudomonas spp. The aprX gene was detected in 19 of 63 Pseudomonas strains, and was widespread in the P. fluorescens strains (14/19). PRATICAL APPLICATION: The study provides new data on the enzymatic activity of Gram-negative psychrotrophic bacteria, useful in developing strategies to control the proteo-lipolytic spoilage of raw and processed milk that causes gelation, off-flavors, and loss of sensory quality and shelf life.

  11. A study of the effect of apparent strain on thermal stress measurement for two types of elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1983-01-01

    A weldable type strain gage was used to measure low level thermal stress in an elevated temperature environment. Foil strain gages used in a comparative manner reveal that the apparent strain of weldable strain gages is not sufficiently known to acquire accurate low level thermal stress data. Apparent strain data acquired from coupon tests reveals a large scatter in apparent strain characteristics among the weldable strain gages. It is concluded that apparent strain data for individual weldable strain gages must be required prior to installation if valid thermal stress data is to be obtained through the temperature range of room temperature to 755 K (900 F).

  12. Comparison of bulk Micromegas with different amplification gaps

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Purba; Bhattacharya, Sudeb; Majumdar, Nayana; Mukhopadhyay, Supratik; Sarkar, Sandip; Colas, Paul; Attie, David

    2013-12-01

    The bulk Micromegas detector is considered to be a promising candidate for building TPCs for several future experiments including the projected linear collider. The standard bulk with a spacing of 128 μm has already established itself as a good choice for its performances in terms of gas gain uniformity, energy and space point resolution, and its capability to efficiently pave large readout surfaces with minimum dead zone. The present work involves the comparison of this standard bulk with a relatively less used bulk Micromegas detector having a larger amplification gap of 192 μm. Detector gain, energy resolution and electron transparency of these Micromegas have been measured under different conditions in various Argon-based gas mixtures to evaluate their performance. These measured characteristics have also been compared in detail to numerical simulations using the Garfield framework that combines packages such as neBEM, Magboltz and Heed. Further, we have carried out another numerical study to determine the effect of dielectric spacers on different detector features. A comprehensive comparison of the two detectors has been presented and analyzed in this work.

  13. Lateral Transport of Black vs. Bulk SOM with soil erosion

    NASA Astrophysics Data System (ADS)

    Berhe, A. A.; Stacy, E.; Hart, S. C.; Hunsaker, C.; Johnson, D.

    2012-04-01

    Erosion of topsoil, and associated bulk soil organic matter (SOM) and black carbon (BC) impose significant controls on dynamics of SOM within the eroding watershed. As of yet, the relative lateral distribution and export of bulk SOM vs. BC from eroding upland, fire-affected forested ecosystems has been poorly quantified. The extent of both bulk and BC export from eroding watersheds depends on SOM concentration, composition and stability in eroding slope profiles, the type and rate of erosion, and time since and severity of past fires. Sediment traps located at the point where first-order streams leave the watershed provide insight into the amount and composition of material removed by soil erosion. Here, we will present data on the amount and composition of soil material eroded from eight first-order watersheds in the mixed-conifer zone of the Sierra National Forest in the Kings River Experimental Watershed. Our results show that there is large variability in nature of exported material - including ratio of bulk sediment vs. BC content, chemical composition of SOM, and overall sediment export across the watersheds that is not directly related to watershed size or climatic variability.

  14. No evidence for bulk velocity from type Ia supernovae

    SciTech Connect

    Huterer, Dragan; Shafer, Daniel L.; Schmidt, Fabian E-mail: dlshafer@umich.edu

    2015-12-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard ΛCDM model. We then consider the dipolar component of the velocity correlations—the frequently studied ''bulk velocity''—and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in ΛCDM and effectively captured by the covariance. We further clarify the nature of the apparent bulk flow that is inferred when the velocity covariance is ignored. We show that a significant fraction of this quantity is expected to be noise bias due to uncertainties in supernova magnitudes and not any physical peculiar motion.

  15. Genetic diversity of Rhodopirellula strains.

    PubMed

    Frank, Carsten S; Klockow, Christine; Richter, Michael; Glöckner, Frank Oliver; Harder, Jens

    2013-10-01

    Rhodopirellula baltica SH1(T) is a marine planctomycete with 7,325 genes in its genome. Ten strains of the genus Rhodopirellula were studied in whole genome microarray experiments to assess the extent of their genetic relatedness to R. baltica SH1(T). DNA of strains which were previously affiliated with the species R. baltica (OTU A) hybridized with 3,645-5,728 genes of the type strain on the microarray. Strains SH398 and 6C (OTU B), representing a closely related species with an average nucleotide identity of 88 %, showed less hybridization signals: 1,816 and 3,302 genes gave a hybridization signal, respectively. Comparative genomics of eight permanent draft genomes revealed the presence of over 4,000 proteins common in R. baltica SH1(T) and strains of OTU A or B. The genus Rhodopirellula is characterized by large genomes, with over 7,000 genes per genome and a core genome of around 3000 genes. Individual Rhodopirellula strains have a large portion of strain-specific genes. PMID:23975513

  16. Tensile GaAs(111) quantum dashes with tunable luminescence below the bulk bandgap

    SciTech Connect

    Yerino, Christopher D. Jung, Daehwan; Lee, Minjoo Larry; Simmonds, Paul J.; Liang, Baolai; Dorogan, Vitaliy G.; Ware, Morgan E.; Mazur, Yuriy I.; Salamo, Gregory J.; Huffaker, Diana L.

    2014-08-18

    Strain-based band engineering in quantum dots and dashes has been predominantly limited to compressively strained systems. However, tensile strain strongly reduces the bandgaps of nanostructures, enabling nanostructures to emit light at lower energies than they could under compressive strain. We demonstrate the self-assembled growth of dislocation-free GaAs quantum dashes on an InP(111)B substrate, using a 3.8% tensile lattice-mismatch. Due to the high tensile strain, the GaAs quantum dashes luminesce at 110–240 meV below the bandgap of bulk GaAs. The emission energy is readily tuned by adjusting the size of the quantum dashes via deposition thickness. Tensile self-assembly creates new opportunities for engineering the band alignment, band structure, and optical properties of epitaxial nanostructures.

  17. Actin- and Dynamin-Dependent Maturation of Bulk Endocytosis Restores Neurotransmission following Synaptic Depletion

    PubMed Central

    Nguyen, Tam H.; Maucort, Guillaume; Sullivan, Robert K. P.; Schenning, Mitja; Lavidis, Nickolas A.; McCluskey, Adam; Robinson, Phillip J.; Meunier, Frederic A.

    2012-01-01

    Bulk endocytosis contributes to the maintenance of neurotransmission at the amphibian neuromuscular junction by regenerating synaptic vesicles. How nerve terminals internalize adequate portions of the presynaptic membrane when bulk endocytosis is initiated before the end of a sustained stimulation is unknown. A maturation process, occurring at the end of the stimulation, is hypothesised to precisely restore the pools of synaptic vesicles. Using confocal time-lapse microscopy of FM1-43-labeled nerve terminals at the amphibian neuromuscular junction, we confirm that bulk endocytosis is initiated during a sustained tetanic stimulation and reveal that shortly after the end of the stimulation, nerve terminals undergo a maturation process. This includes a transient bulging of the plasma membrane, followed by the development of large intraterminal FM1-43-positive donut-like structures comprising large bulk membrane cisternae surrounded by recycling vesicles. The degree of bulging increased with stimulation frequency and the plasmalemma surface retrieved following the transient bulging correlated with the surface membrane internalized in bulk cisternae and recycling vesicles. Dyngo-4a, a potent dynamin inhibitor, did not block the initiation, but prevented the maturation of bulk endocytosis. In contrast, cytochalasin D, an inhibitor of actin polymerization, hindered both the initiation and maturation processes. Both inhibitors hampered the functional recovery of neurotransmission after synaptic depletion. Our data confirm that initiation of bulk endocytosis occurs during stimulation and demonstrates that a delayed maturation process controlled by actin and dynamin underpins the coupling between exocytosis and bulk endocytosis. PMID:22629340

  18. Effect of metal impregnation in the field cool magnetization of bulk superconductor

    NASA Astrophysics Data System (ADS)

    Kita, M.; Nariki, S.; Sakai, N.; Hirabayashi, I.

    2006-10-01

    Gd-Ba-Cu-O bulk superconductors have significant potential for various applications due to the high critical current density and the highly trapped magnetic fields. Recently we have developed a large sized bulk superconductor using Gd210, which is discovered in the microgravity experiment. We investigated the mechanical properties and the cryostability of the Gd-Ba-Cu-O bulk superconductor to determine how to improve toughness and heat conduction of the large sized bulk superconductor. We introduced a stainless ring around the circumference of the bulk to increase the fracture strength of the bulk. Also, we introduced Al wires inserted in the hole along the c-axis of the bulk, and then the sample was subjected to the impregnation by using Bi-Sn-Cd alloy. We measured the trapped magnetic fields and the repulsive forces of the samples. The trapped magnetic field distributions were 1.13-1.36 T. The repulsive forces at 1 mm gap between the sample bulk and the permanent magnet with the surface magnetic induction of 0.37 T were about 70 N at 77 K. We have also measured the temperature dependence of the trapped magnetic field, and confirmed the effect of metal impregnation.

  19. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  20. Bulk viscosity of superfluid hyperon stars

    SciTech Connect

    Gusakov, Mikhail E.; Kantor, Elena M.

    2008-10-15

    We calculate the bulk viscosity due to nonequilibrium weak processes in superfluid nucleon-hyperon matter of neutron stars. For that, the dissipative relativistic hydrodynamics, formulated eariler [M. E. Gusakov, Phys. Rev. D 76, 083001 (2007).] for superfluid mixtures, is extended to the case when both nucleons and hyperons are superfluid. It is demonstrated that in the most general case (when neutrons, protons, {lambda}, and {sigma}{sup -} hyperons are superfluid), nonequilibrium weak processes generate 16 bulk viscosity coefficients, with only three of them being independent. In addition, we correct an inaccuracy in a widely used formula for the bulk viscosity of nonsuperfluid nucleon-hyperon matter.

  1. Understanding strain-induced phase transformations in BiFeO3 thin films

    DOE PAGES

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resultingmore » in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.« less

  2. Understanding strain-induced phase transformations in BiFeO3 thin films

    SciTech Connect

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M.; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M.; Cooper, Valentino R.

    2015-05-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO₃ thin films, which comprises a tetragonal-like (T´) and an intermediate S´ polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T´ phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S´ phase is energetically very close to the T´ phase, but is structurally similar to the bulk rhombohedral (R) phase. By fully characterizing the intermediate S´ polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T´ and S´ phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S´ and T´ polymorphs, which have very different octahedral rotation patterns and c/a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO3 films. Additionally, a blueshift in the band gap when moving from R to S´ to T´ is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  3. Epitaxially grown layered MFI-bulk MFI hybrid zeolitic materials.

    PubMed

    Kim, Wun-gwi; Zhang, Xueyi; Lee, Jong Suk; Tsapatsis, Michael; Nair, Sankar

    2012-11-27

    The synthesis of hybrid zeolitic materials with complex micropore-mesopore structures and morphologies is an expanding area of recent interest for a number of applications. Here we report a new type of hybrid zeolite material, composed of a layered zeolite material grown epitaxially on the surface of a bulk zeolite material. Specifically, layered (2-D) MFI sheets were grown on the surface of bulk MFI crystals of different sizes (300 nm and 10 μm), thereby resulting in a hybrid material containing a unique morphology of interconnected micropores (∼0.55 nm) and mesopores (∼3 nm). The structure and morphology of this material, referred to as a "bulk MFI-layered MFI" (BMLM) material, was elucidated by a combination of XRD, TEM, HRTEM, SEM, TGA, and N(2) physisorption techniques. It is conclusively shown that epitaxial growth of the 2-D layered MFI sheets occurs in at least two principal crystallographic directions of the bulk MFI crystal and possibly in the third direction as well. The BMLM material combines the properties of bulk MFI (micropore network and mechanical support) and 2-D layered MFI (large surface roughness, external surface area, and mesoporosity). As an example of the uses of the BMLM material, it was incorporated into a polyimide and fabricated into a composite membrane with enhanced permeability for CO(2) and good CO(2)/CH(4) selectivity for gas separations. SEM-EDX imaging and composition analysis showed that the polyimide and the BMLM interpenetrate into each other, thereby forming a well-adhered polymer/particle microstructure, in contrast with the defective interfacial microstructure obtained using bare MFI particles. Analysis of the gas permeation data with the modified Maxwell model also allows the estimation of the effective volume of the BMLM particles, as well as the CO(2) and CH(4) gas permeabilities of the interpenetrated layer at the BMLM/polyimide interface.

  4. First-principles calculation of the bulk photovoltaic effect in KNbO3 and (K,Ba)(Ni,Nb)O3 -δ

    NASA Astrophysics Data System (ADS)

    Wang, Fenggong; Rappe, Andrew M.

    2015-04-01

    The connection between noncentrosymmetric materials' structure, electronic structure, and bulk photovoltaic performance remains not well understood. In particular, it is still unclear which photovoltaic (PV) mechanisms are relevant for the recently demonstrated visible-light ferroelectric photovoltaic (K,Ba)(Ni,Nb)O3 -δ. In this paper, we study the bulk photovoltaic effect (BPVE) of (K,Ba)(Ni,Nb)O3 -δ and KNbO3 by calculating the shift current from first principles. The effects of structural phase, lattice distortion, oxygen vacancies, cation arrangement, composition, and strain on BPVE are systematically studied. We find that (K,Ba)(Ni,Nb)O3 -δ has a comparable shift current with that of the broadly explored BiFeO3, but for a much lower photon energy. In particular, the Glass coefficient of (K,Ba)(Ni,Nb)O5 in a simple layered structure can be as large as 12 times that of BiFeO3. Furthermore, the nature of the wavefunctions dictates the eventual shift current yield, which can be significantly affected and engineered by changing the O vacancy location, cation arrangement, and strain. This is not only helpful for understanding other PV mechanisms that relate to the motion of the photocurrent carriers, but also provides guidelines for the design and optimization of PV materials.

  5. Shift-current-induced strain waves in LiNbO3 mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Holtz, Marcel; Hauf, Christoph; Hernández Salvador, Antonio-Andres; Costard, Rene; Woerner, Michael; Elsaesser, Thomas

    2016-09-01

    The response of the crystal lattice to an electric shift current induced via the two-photon bulk-photovoltaic effect in a lithium niobate (LiNbO3) crystal is directly mapped by femtosecond x-ray diffraction. Acoustic strain waves of large amplitude are generated by piezoelectric coupling to the current-related polarization while other mechanisms such as anharmonic phonon-phonon couplings and electron-phonon coupling through deformation potentials play a minor role. A striking variation of the strain wave speed occurs as a function of the relative orientation between the crystal's c -axis, the direction of the current flow, and the polarization of the incident pump pulse. The observed behavior is relevant for a large class of ferroelectrics.

  6. Superconducting bulk magnets for magnetic levitation systems

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  7. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  8. Imprinting bulk amorphous alloy at room temperature.

    PubMed

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T; Lograsso, Thomas A; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  9. Imprinting bulk amorphous alloy at room temperature

    NASA Astrophysics Data System (ADS)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  10. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  11. Effects of bulk viscosity at freezeout

    SciTech Connect

    Monnai, Akihiko; Hirano, Tetsufumi

    2009-11-15

    We investigate particle spectra and elliptic flow coefficients in relativistic heavy-ion collisions by taking into account the distortion of phase space distributions by bulk viscosity at freezeout. We first calculate the distortion of phase space distributions in a multicomponent system with Grad's 14-moment method. We find some subtle issues when macroscopic variables are matched with microscopic momentum distributions in a multicomponent system, and we develop a consistent procedure to uniquely determine the corrections to the phase space distributions. Next, we calculate particle spectra by using the Cooper-Frye formula to see the effect of the bulk viscosity. Despite the relative smallness of the bulk viscosity, we find that it is likely to have a visible effect on particle spectra and elliptic flow coefficients. This indicates the importance of taking into account bulk viscosity together with shear viscosity to constrain the transport coefficients with better accuracy from comparison with experimental data.

  12. Zinc Isotope Anomalies in bulk Chondrites

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Boyet, M.; Moynier, F.

    2014-09-01

    This study is the first to demonstrate that Zn isotope anomalies are present in bulk primitive meteorites, consistent with the injection of material derived from a neutron-rich supernova source into the solar nebula.

  13. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  14. In vitro activity of the new fluoroketolide solithromycin (CEM-101) against a large collection of clinical Neisseria gonorrhoeae isolates and international reference strains, including those with high-level antimicrobial resistance: potential treatment option for gonorrhea?

    PubMed

    Golparian, Daniel; Fernandes, Prabhavathi; Ohnishi, Makoto; Jensen, Jörgen S; Unemo, Magnus

    2012-05-01

    Gonorrhea may become untreatable, and new treatment options are essential. We investigated the in vitro activity of the first fluoroketolide, solithromycin. Clinical Neisseria gonorrhoeae isolates and reference strains (n = 246), including the two extensively drug-resistant strains H041 and F89 and additional isolates with clinical cephalosporin resistance and multidrug resistance, were examined. The activity of solithromycin was mainly superior to that of other antimicrobials (n = 10) currently or previously recommended for gonorrhea treatment. Solithromycin might be an effective treatment option for gonorrhea.

  15. Bulk ordering and surface segregation in Ni50Pt50

    NASA Astrophysics Data System (ADS)

    Pourovskii, L. V.; Ruban, A. V.; Abrikosov, I. A.; Vekilov, Y. Kh.; Johansson, B.

    2001-07-01

    Interatomic interactions obtained from the effective screened generalized-perturbation method have been applied in Monte Carlo simulations to derive the bulk and surface-alloy configurations for Ni50Pt50. The calculated order-disorder transition temperature and short-range order parameters in the bulk compare well with experimental data. The surface-alloy compositions for the (111) and (110) facets above the ordering transition temperature are also found to be in a good agreement with experiments. It is demonstrated that the segregation profile at the (110) surface of NiPt is mainly caused by the unusually strong segregation of Pt into the second layer and the interlayer ordering due to large chemical nearest-neighbor interactions.

  16. Phonon anharmonicity in bulk Td-MoTe2

    NASA Astrophysics Data System (ADS)

    Joshi, Jaydeep; Stone, Iris R.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Davydov, Albert V.; Vora, Patrick M.

    2016-07-01

    We examine anharmonic contributions to the optical phonon modes in bulk Td-MoTe2 through temperature-dependent Raman spectroscopy. At temperatures ranging from 100 K to 200 K, we find that all modes redshift linearly with temperature in agreement with the Grüneisen model. However, below 100 K, we observe nonlinear temperature-dependent frequency shifts in some modes. We demonstrate that this anharmonic behavior is consistent with the decay of an optical phonon into multiple acoustic phonons. Furthermore, the highest frequency Raman modes show large changes in intensity and linewidth near T ≈ 250 K that correlate well with the T d → 1 T ' structural phase transition. These results suggest that phonon-phonon interactions can dominate anharmonic contributions at low temperatures in bulk Td-MoTe2, an experimental regime that is currently receiving attention in efforts to understand Weyl semimetals.

  17. A bulk flow model of a brush seal system

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, S.; Braun, M. J.; Choy, F.; Mullen, R. L.

    1991-01-01

    Fibers can be readily fabricated into a variety of seal configurations that are compliant and responsive to high speed or lightly loaded systems. A linear, circular, or contoured brush seal system is a contact seal consisting of the bristle pattern and hardened interface. When compared to a labyrinth seal, the brush seal system is superior and features low leakage, dynamic stability, and permits compliant structures. But in turn, the system usually requires a hardened smooth interface and permits only limited pressure drops. Wear life and wear debris for operations with static or dynamic excitation are largely undetermined. A seal system involves control of fluid within specific boundaries. The brush and rub ring (or rub surface) form a seal system. Design similitudes, a bulk flow model, and rub ring (interface) coatings are discussed. The bulk flow model calculations are based on flows in porous media and filters. The coatings work is based on experience and expanded to include current practice.

  18. Investigating the Existence of Bulk Nanobubbles with Ultrasound.

    PubMed

    Leroy, Valentin; Norisuye, Tomohisa

    2016-09-19

    Nanobubbles are expected to dissolve in milliseconds. Experimental evidence of nanobubbles that were stable for days had thus been first received with circumspection. If the large number of experimental confirmations has now made clear that surface nanobubbles could exist, bulk nanobubbles are still subject to debate. When observations are reported, the main problem is to make sure the observed particles are really made of gas. We show that ultrasound is an ideal tool for investigating the existence of bulk nanobubbles: 1) it is sensitive to minute quantities of gas, 2) it allows one to determine the bubble size distribution, 3) it discriminates unambiguously between gaseous and solid/liquid inclusions. To illustrate the efficiency of ultrasonic detection, we performed size measurements of bubbles produced by a commercial nano-/microbubble generator. No nanobubble was detected with this device. It would be insightful to use ultrasonic detection in experimental situations for which stable nanobubbles were reported.

  19. Bulk and Thin Film Contact Resistance with Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Zhang, P.; Tang, W.; Gomez, M. R.; French, D. M.; Zier, J. C.; Gilgenbach, R. M.

    2011-10-01

    Contact resistance is important to integrated circuits, thin film devices, carbon nanotube based cathodes, MEMS relays and interconnectors, wire-array z-pinches, metal-insulator-vacuum junctions, and high power microwave sources, etc. This paper summarizes the recent modeling efforts at U of M, addressing the effect of dissimilar materials and of finite dimensions on the contact resistance of both bulk contacts and thin film contacts. Accurate analytical scaling laws are constructed for the contact resistance of both bulk and thin film contacts over a large range of resistivity ratios and aspect ratios in Cartesian and cylindrical geometries. They were validated against known limiting cases; and spot-checks with numerical simulations and experiments. Supported by AFOSR, AFRL, L-3, and Northrop-Grumman.

  20. Analysis of 1w Bulk Laser Damage in KDP

    SciTech Connect

    Cross, D A; Carr, C W

    2011-04-11

    The influence of laser parameters on laser-induced damage in the bulk of KDP is difficult to determine because the damage manifests as discrete sites a few microns in diameter distributed throughout a relatively large volume of material. Here, they present a method to directly measure the size and location of many thousands of such sites and correlate them to the laser conditions which produced them. This technique is used to characterize the effects of pulse duration on damage initiated by 1053 nm light in the bulk of KDP crystals. They find that the density of damage sites produced by 1053 nm light is less sensitive to pulse duration than was previously reported for 526 nm and 351 nm light. In addition, the effect of pulse duration on the size of the damage sites produced appears insensitive to wavelength.

  1. Full-scale engine tests of bulk absorber acoustic inlet treatment

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.

    1979-01-01

    Three different densities of Kevlar bulk absorber fan inlet treatment were tested on a YF 102 turbofan engine. This bulk absorber material may have potential for flight application. Far-field noise measurements were made and the attenuation properties of the three treatment densities were compared. In addition the best bulk treatment was compared to the best single degree of freedom, SDOF (honeycomb and perforated cover sheet) treatment from another investigation. Although the density was varied over a large range, (3 to 1) the effect on attenuation was small. The highest density treatment, 11.8 lb/cu ft, had a somewhat broader attenuation bandwidth. The comparison of the best bulk and SDOF treatments showed the bulk to have a greater attenuation bandwidth. At the design frequency both types of treatment had almost equal performance.

  2. Full-scale engine tests of bulk absorber acoustic inlet treatment

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Homyak, L.

    1979-01-01

    Three different densities of Keviar bulk absorber fan inlet treatment were tested on a YF 102 turbofan engine. This bulk absorber material may have potential for flight application. Farfield noise measurements were made and the attenuation properties of the three treatment densities were compared. In addition, the best bulk treatment was compared to the best single degree of freedom, SDOF (honeycomb and perforated cover sheet) treatment from another investigation. Although the density was varied over a large range, (3 to 1) the effect on attenuation was small. The highest density treatment, 11.8 lb/cubic ft., had a somewhat broader attenuation bandwidth. The comparison of the best bulk and SDOF treatments showed the bulk to have a much greater attenuation bandwidth. At the design frequency both types of treatment had almost equal performance.

  3. Design of bulk micromachined suspensions

    NASA Astrophysics Data System (ADS)

    Fang, Weileun

    1997-09-01

    Microsuspensions are very useful mechanical structures in microelectromechanical systems. The fabrication processes of microsuspensions, including front-side etching and back-side etching processes, have been studied extensively. Due to the restriction of undercutting process, the front-side etching approach offers only limited patterns of microsuspension. The present study intends to develop a method to predict the possibility of fabricating microsuspensions on a (100) substrate through front-side etching process. According to the proposed method, microsuspensions with arbitrary shapes can be designed easily. It is found that the formation of the microsuspensions predicted by the proposed technique agrees well with the experimental observation. The contribution of this paper is to provide a convenient tool to design microsuspensions fabricated through front-side etching process. The application of front-side etching process on microsuspensions will become more attractive. Thus the problems of having a large cavity on substrate, longer etching time, and larger die size leaded by the back-side etching process can be prevented.

  4. New bulk amorphous magnetic materials

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Lupu, N.

    2001-06-01

    The relationship between structure and magnetic properties of the melt-spun ribbons with thicknesses up to 200 μm and rods having up to 3 mm diameter prepared by mould casting and suction casting techniques, of nominal compositions Fe 56Co 7Ni 7Zr 6M 1.5Nb 2.5B 20 (M=Zr, Ti, Ta or Mo) and Nd 50Fe 40Si 10- xAl x was investigated. Saturation magnetisations up to 1.1 T, coercive fields of about 5 A/m, magnetic permeabilities of 25 000-30 000 in the as-cast state were measured for the Fe-based amorphous alloys. The large values over 200 kA/m of the intrinsic coercive field at room temperature and over 600 kA/m at 200 K measured in low magnetic fields for the Nd-Fe-based “X-ray amorphous” alloys, and its dependence on temperature and cooling rate are ascribed to the existence of very small ferromagnetic clusters embedded in an Nd-rich matrix. The thermal treatments applied to the amorphous samples below the crystallisation temperature cause an improvement in the magnetic properties as a consequence of structural relaxation.

  5. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  6. Bulk ion heating with ICRF waves in tokamaks

    NASA Astrophysics Data System (ADS)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Nocente, M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Hellsten, T.; Mantica, P.; Maraschek, M.; Nielsen, S. K.; Noterdaeme, J.-M.; Rasmussen, J.; Ryter, F.; Stejner, M.; Stober, J.; Tardocchi, M.

    2015-12-01

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without 3He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with 3He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature Ti from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the 3He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  7. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  8. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  9. Contribution to the large and stable electric field induced strain for textured Pb(Mg1/3Nb2/3)0.675Ti0.325O3 ceramics

    NASA Astrophysics Data System (ADS)

    Zeng, Jiangtao; Zhao, Kunyu; Ruan, Wei; Ruan, Xuezheng; Zheng, Liaoying; Li, Guorong

    2016-08-01

    Textured Pb(Mg1/3Nb2/3)0.675Ti0.325O3 (PMN-PT) ceramics were prepared by the templated grain growth method with 3% plate-like BaTiO3 as templates. The degree of grain orientation was about 81% by calculating from the XRD pattern. Temperature dependence of electric field induced strain was measured for both untextured and textured PMN-PT ceramics. The results show that the electric field induced strain for textured PMN-PT ceramics is much larger and more stable than that for untextured PMN-PT ceramics in a wide temperature range. The contribution from the piezoelectric effect and electrostrictive effect to the strain was analyzed, and it was found that textured PMN-PT ceramics exhibited electrostrictive coefficient Q33 as high as 5.19 × 10-2 m4 C-2 and it was comparable to that of PMN-PT single crystals. The electrostrictive effect contributed the main part of the enhancement of electric field induced strain for textured PMN-PT ceramics.

  10. Simulation study of mechanical properties of bulk metallic glass systems: martensitic inclusions and twinned precipitates

    NASA Astrophysics Data System (ADS)

    Zaheri, A.; Abdeljawad, F.; Haataja, M.

    2014-12-01

    Monolithic bulk metallic glasses (BMGs) exhibit a unique combination of mechanical properties, such as high strength and large elasticity limits, but the lack of ductility is considered the main Achilles' heel of BMG systems. To increase the competitiveness of BMGs vis-à-vis conventional structural materials, the problem of catastrophic failure via intense plastic strain localization (‘shear banding’) has to be addressed. Recent experimental observations suggest that the addition of structural heterogeneities, in the form of crystalline particles, to BMG systems hinders the catastrophic propagation of shear bands and leads to enhanced ductility. These structural heterogeneities can be introduced by either forming BMG composites, where second-phase crystalline particles accommodate applied loads via martensitic transformation mechanisms, or developing glassy alloys that precipitate crystalline particles under deformation, a process by which further deformation can be sustained by twinning mechanisms in the crystalline phase. In this work, we present a non-linear continuum model capable of capturing the structural heterogeneity in the glassy phase and accounting for intrinsic work hardening via martensitic transformations in second-phase reinforcements in BMG composites and deformation twinning in precipitated crystalline particles. Simulation results reveal that in addition to intrinsic work hardening in the crystalline phase, particle size greatly affects the overall mechanical behavior of these BMG systems. The precipitation of crystalline particles in monolithic BMGs yields two-phase microstructures that promote more homogeneous deformation, delay the propagation of incipient shear bands, and ultimately result in improved ductility characteristics.

  11. Bulk density of wet and dry wheat straw and switchgrass particles

    SciTech Connect

    Sokhansanj, Shahabaddine; Bi, X.T.; Naimi, L.J.; Hoque, M.; Mani, Sudhagar; Narayan, S.

    2008-05-01

    ABSTRACT. Bulk density is a major physical property in designing the logistic system for biomass handling. The size, shape, moisture content, individual particle density, and surface characteristics are few factors affecting the bulk density. This research investigates the effects of true particle lengths ranging from 6 to 50 mm and moisture contents ranging from 8% to 60% wet basis (wb) on the bulk density of wheat straw and switchgrass. Three types of particle densities of straw and switchgrass measured were: a hollow particle density assuming a hollow cylindrical geometry, a solid particle density assuming a solid cylindrical geometry, and a particle density measured using a gas pycnometer at a gas pressure of 40 kPa. The bulk density of both loose fill and packed fill biomass samples was examined. The calculated wet and dry bulk density ranged from 24 to 111 kg m 3 for straw and from 49 to 266 kg m 3 for switchgrass. The corresponding tapped bulk density ranged from 34 to 130 kg m 3 for straw and 68 to 323 kg m 3 for switchgrass. The increase in bulk density due to tapping the container was from 10% for short 6 mm particles to more than 50% for long 50 mm particles. An equation relating the bulk density of stems as a function of moisture content, dry bulk density, and particle size was developed. After the validation of this bulk density equation, the relationship would be highly useful in designing the logistics system for large scale transport of biomass to a biorefinery. The bulk density and particle density data of uniform particles would be important, if straw and switchgrass is used for pulping and paper making.

  12. FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect

    Jordan, J.

    2010-06-02

    The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

  13. Ab initio calculation of the shock Hugoniot of bulk silicon

    NASA Astrophysics Data System (ADS)

    Strickson, Oliver; Artacho, Emilio

    2016-03-01

    We describe how ab initio molecular dynamics can be used to determine the Hugoniot locus (states accessible by a shock wave) for materials with a number of stable phases, and with an approximate treatment of plasticity and yield, without having to simulate these phenomena directly. We consider the case of bulk silicon, with forces from density-functional theory, up to 70 GPa. The fact that shock waves can split into multiple waves due to phase transitions or yielding is taken into account here by specifying the strength of any preceding waves explicitly based on their yield strain. Points corresponding to uniaxial elastic compression along three crystal axes and a number of postshock phases are given, including a plastically yielded state, approximated by an isotropic stress configuration following an elastic wave of predetermined strength. The results compare well to existing experimental data for shocked silicon.

  14. Geobacteraceae strains and methods

    SciTech Connect

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  15. Measuring the cosmological bulk flow using the peculiar velocities of supernovae

    SciTech Connect

    Dai, De-Chang; Kinney, William H.; Stojkovic, Dejan E-mail: whkinney@buffalo.edu

    2011-04-01

    We study large-scale coherent motion in our universe using the existing Type IA supernovae data. If the recently observed bulk flow is real, then some imprint must be left on supernovae motion. We perform a Bayesian Monte Carlo Markov Chain analysis in various redshift bins and find a sharp contrast between the z < 0.05 and z > 0.05 data. The z < 0.05 data are consistent with the bulk flow in the direction (l,b) = (290{sup +39}{sub −31}°,20{sup +32}{sub −32}°) with a magnitude of v{sub bulk} = 188{sup +119}{sub −103}km/s at 68% confidence. The significance of detection (compared to the null hypothesis) is 95%. In contrast, z > 0.05 data (which contains 425 of the 557 supernovae in the Union2 data set) show no evidence for the bulk flow. While the direction of the bulk flow agrees very well with previous studies, the magnitude is significantly smaller. For example, the Kashlinsky, et al.'s original bulk flow result of v{sub bulk} > 600km/s is inconsistent with our analysis at greater than 99.7% confidence level. Furthermore, our best-fit bulk flow velocity is consistent with the expectation for the ΛCDM model, which lies inside the 68% confidence limit.

  16. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering

    NASA Astrophysics Data System (ADS)

    Johnston, I. D.; McCluskey, D. K.; Tan, C. K. L.; Tracey, M. C.

    2014-03-01

    Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32-2.97 MPa, ultimate tensile strength of 3.51-7.65 MPa, compressive modulus of 117.8-186.9 MPa and ultimate compressive strength of 28.4-51.7 GPa in a range up to 40% strain and hardness of 44-54 ShA.

  17. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.

    PubMed

    Ortiz, Brenden R; Peng, Haowei; Lopez, Armando; Parilla, Philip A; Lany, Stephan; Toberer, Eric S

    2015-07-15

    The design of thermoelectric materials often involves the integration of point defects (alloying) as a route to reduce the lattice thermal conductivity. Classically, the point defect scattering strength follows from simple considerations such as mass contrast and the presence of induced strain fields (e.g. radius contrast, coordination changes). While the mass contrast can be easily calculated, the associated strain fields induced by defect chemistry are not readily predicted and are poorly understood. In this work, we use classical and first principles calculations to provide insight into the strain field component of phonon scattering from isoelectronic point defects. Our results also integrate experimental measurements on bulk samples of SnSe and associated alloys with S, Te, Ge, Sr and Ba. These efforts highlight that the strength and extent of the resulting strain field depends strongly on defect chemistry. Strain fields can have a profound impact on the local structure. For example, in alloys containing Ba, the strain fields have significant spatial extent (1 nm in diameter) and produce large shifts in the atomic equilibrium positions (up to 0.5 Å). Such chemical complexity suggests that computational assessment of point defects for thermal conductivity depression should be hindered. However, in this work, we present and verify several computational descriptors that correlate well with the experimentally measured strain fields. Furthermore, these descriptors are conceptually transparent and computationally inexpensive, allowing computation to provide a pivotal role in the screening of effective alloys. The further development of point defect engineering could complement or replace nanostructuring when optimizing the thermal conductivity, offering the benefits of thermodynamic stability, and providing more clearly defined defect chemistry. PMID:26145414

  18. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  19. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  20. Bulk and interfacial glass transitions of water.

    PubMed

    Bhattacharya, Deepanjan; Payne, Candace N; Sadtchenko, Vlad

    2011-06-16

    Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in bulk-like and ultrathin glassy water films. Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor-deposition approach was also used to grow multiple nanoscale (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 K below the onset of crystallization. However, no such transition was observed in bulk-like samples prior to their crystallization. These results indicate that thin-film water demonstrates glass softening dynamics that are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition, which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these findings for past studies of glass softening dynamics in various glassy water samples are discussed. PMID:21401034